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We propose a new method for supervised learning with multiple sets

of features (“views”). The multi-view problem is especially important

in biology and medicine, where “-omics” data such as genomics,

proteomics and radiomics are measured on a common set of sam-

ples. Cooperative learning combines the usual squared error loss

of predictions with an “agreement” penalty to encourage the predic-

tions from different data views to agree. By varying the weight of the

agreement penalty, we get a continuum of solutions that include the

well-known early and late fusion approaches. Cooperative learning

chooses the degree of agreement (or fusion) in an adaptive manner,

using a validation set or cross-validation to estimate test set predic-

tion error. One version of our fitting procedure is modular, where one

can choose different fitting mechanisms (e.g. lasso, random forests,

boosting, neural networks) appropriate for different data views. In the

setting of cooperative regularized linear regression, the method com-

bines the lasso penalty with the agreement penalty, yielding feature

sparsity. The method can be especially powerful when the different

data views share some underlying relationship in their signals that

can be exploited to boost the signals. We show that cooperative

learning achieves higher predictive accuracy on simulated data and

real multiomics examples of labor onset prediction and breast ductal

carcinoma in situ and invasive breast cancer classification. Lever-

aging aligned signals and allowing flexible fitting mechanisms for

different modalities, cooperative learning offers a powerful approach

to multiomics data fusion.
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W ith new technologies in biomedicine, we are able to1

generate and collect data of various modalities, includ-2

ing genomics, epigenomics, transcriptomics, proteomics, and3

metabolomics (Fig. 1A). Integrating heterogeneous features4

on a common set of observations provides a unique opportu-5

nity to gain a comprehensive understanding of an outcome6

of interest. It o�ers the potential for making discoveries that7

are hidden in data analyses of a single modality and achiev-8

ing more accurate predictions of the outcome (1–6). While9

“multi-view data analysis” can mean di�erent things, we use it10

here in the context of supervised learning, where the goal is11

to fuse di�erent data views to model an outcome of interest.12

To give a concrete example, assume that a researcher wants13

to predict cancer outcomes from RNA expression and DNA14

methylation measurements for a set of patients. The researcher15

suspects that: (1) both data views potentially have prognostic16

value; (2) the two views share some underlying relationship17

with each other, as DNA methylation regulates gene expression18

and can repress the expression of tumor suppressor genes or19

promote the expression of oncogenes. Should the researcher20

use both data views for downstream prediction, or just use one21

view or the other? If using both views, how can the researcher22

leverage their underlying relationship in making more accurate23

prediction? Is there a way to strengthen the shared signals in24

the two data views while reducing idiosyncratic noise?25

There are two broad categories of existing “data fusion26

methods” for the multi-view problem (Fig. 1B). They di�er 27

in the stage at which the “fusion” of predictors takes place, 28

namely early fusion and late fusion. Early fusion works by 29

transforming the multiple data views into a single representa- 30

tion before feeding the aggregated representation into a super- 31

vised learning model of choice (7–10). The simplest approach 32

is to column-wise concatenate the M datasets X1, . . . , XM to 33

obtain a combined matrix X, which is then used as the input 34

to a supervised learning model. Another type of early fusion 35

approach projects each high-dimensional dataset into a low- 36

dimensional space using methods such as principal component 37

analysis (PCA) or autoencoders (11, 12). Then one combines 38

the low-dimensional representations through aggregation and 39

feed the aggregated matrix into a supervised learning model. 40

Early fusion approaches have an important limitation that they 41

do not explicitly leverage the underlying relationship across 42

data views. Late fusion, or “integration”, refers to methods 43

where individual models are first built from the distinct data 44

views, and then the predictions of the individual models are 45

combined into the final predictor (13–17). 46

In this paper, we propose a new method to multi-view data 47

analysis called cooperative learning, a supervised learning ap- 48

proach that fuses the di�erent views in a systematic way. The 49

method combines the usual squared error loss of predictions 50

with an “agreement” penalty that encourages the predictions 51

from di�erent data views to align. By varying the weight of 52

the agreement penalty, we get a continuum of solutions that 53

include the commonly-used early and late fusion approaches. 54

Our proposal can be especially powerful when the di�erent 55

data views share some underlying relationship in their signals 56

that can be leveraged to strengthen the signals. 57
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Fig. 1. Framework for multiomics data fusion. (A) Advances in biotechnologies have enabled the collection of a myriad of “-omics” data ranging from genomics to proteomics
measured on a common set of samples. These data capture the molecular variations of human health at multiple levels and can help us understand complex biological
systems in a more comprehensive way. Fusing the data offers the potential to improve predictive accuracy of disease phenotypes and treatment response, thus enabling better
diagnostics and therapeutics. However, multi-view analysis of omics data presents challenges such as increased dimensionality, noise and complexity. (B) Commonly-used
approaches to the problem can be broadly categorized into early and late fusion. Early fusion begins by transforming all datasets into a single representation, which is then
used as the input to a supervised learning model of choice. Late fusion works by developing first-level models from individual data views and then combining the predictions by
training a second-level model as the final predictor. Encompassing early and late fusion, cooperative learning combines the usual squared error loss of predictions with an
agreement penalty term to encourage the predictions from different data views to align.

Cooperative Learning58

A. Cooperative learning with two data views. We begin with59

a simple form of our proposal for the population (random60

variable) setting. Let X œ Rn◊px , Z œ Rn◊pz — representing61

two data views — and y œ Rn be a real-valued random62

variable (the target). Fixing the hyperparameter fl Ø 0, we63

propose to minimize the population quantity:64

min E
Ë1

2(y ≠ fX(X) ≠ fZ(Z))2 + fl
2 (fX(X) ≠ fZ(Z))2

È
. [1]65

The first term above is the usual prediction error, while66

the second term is an “agreement” penalty, encouraging the67

predictions from di�erent views to agree. This penalty term68

is related to “contrastive learning” (18, 19), which we discuss69

in more detail in Materials and Methods.70

The solution to Eq. (1) has fixed points:71

fX(X) = E
Ë

y
1 + fl

≠ (1 ≠ fl)fZ(Z)
(1 + fl) |X

È
,

fZ(Z) = E
Ë

y
1 + fl

≠ (1 ≠ fl)fX(X)
(1 + fl) |Z

È
. [2]72

We can optimize the objective by repeatedly updating the73

fit for each data view in turn, holding the other view fixed.74

When updating a function, this approach allows us to apply75

the fitting method for that data view to a penalty-adjusted76

“partial residual”. For more than two views, this generalizes77

easily (see Materials and Methods).78

The following relationships to early and late fusion can be79

seen immediately:80

• If fl = 0, from Eq. (1) we see that cooperative learning 81

chooses a functional form for fX and fZ and fits them 82

together. If these functions are additive (for example, 83

linear) then it yields a simple form of early fusion, where 84

we simply use the combined set of features in a supervised 85

learning procedure. 86

• If fl = 1, then from Eq. (2) we see that the solutions are 87

the average of the marginal fits for X and Z. This is a 88

simple form of late fusion. 89

We explore the relation of cooperative learning to early/late 90

fusion in more detail in Section D, in the setting of regularized 91

linear regression. 92

Note that this “one-at-a-time” fitting procedure is modular, 93

so that we can choose a fitting mechanism appropriate for 94

each data view. Specifically: 95

• For quantitative features like gene expression, copy number 96

variation, or methylation: regularized regression (lasso, 97

elastic net), a generalized additive model, boosting, ran- 98

dom forests, or neural networks. 99

• For images: a convolutional neural network. 100

• For time series data: an auto-regressive model or a recur- 101

rent neural network. 102

We illustrate this on a simulated image and omics example in 103

the Results Section. 104

B. Cooperative regularized linear regression. We make our
proposal more concrete in the setting of cooperative regularized
linear regression. Consider feature matrices X œ Rn◊px ,
Z œ Rn◊pz , and our target y œ Rn. We assume that the
columns of X and Z have been standardized, and y has mean
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0 (hence we can omit the intercept below). For a fixed value
of the hyperparameter fl Ø 0, we want to find ◊x œ Rpx and
◊z œ Rpz that minimize:

J(◊x, ◊z) = 1
2 ||y ≠ X◊x ≠ Z◊z||2 + fl

2 ||(X◊x ≠ Z◊z)||2

+ ⁄xP x(◊x) + ⁄zP z(◊z), [3]

where fl is the hyperparameter that controls the relative im-
portance of the agreement penalty term ||(X◊x ≠ Z◊z)||2 in
the objective, and P x and P z are penalty functions. Most
commonly, we use ¸1 penalties, giving the objective function:

J(◊x, ◊z) = 1
2 ||y ≠ X◊x ≠ Z◊z||2 + fl

2 ||(X◊x ≠ Z◊z)||2

+ ⁄x||◊x||1 + ⁄z||◊z||1. [4]

Note that when fl = 0, this reduces to early fusion, where we 105

simply concatenate the columns of X and Z and apply lasso. 106

Furthermore, in Section D, we show that fl = 1 yields a late107

fusion estimate.108

In our experiments, we standardize the features and simply109

take ⁄x = ⁄z = ⁄. We have found that generally there is110

often no advantage to allowing di�erent ⁄ values for di�erent111

views. However, for completeness, in SI Appendix Section 1,112

we outline an adaptive strategy for optimizing over ⁄x and ⁄z.113

We call this adaptive cooperative learning in our studies.114

With a common ⁄ the objective becomes

J(◊x, ◊z) = 1
2 ||y ≠ X◊x ≠ Z◊z||2 + fl

2 ||(X◊x ≠ Z◊z)||2

+ ⁄(||◊x||1 + ||◊z||1), [5]

and we can compute a regularization path of solutions indexed115

by ⁄.116

Problem (5) is convex, and the solution can be computed117

as follows. Letting118

X̃ =
3

X Z
≠Ô

flX
Ô

flZ

4
, ỹ =

3
y
0

4
, —̃ =

3
◊x

◊z

4
, [6]119

then the equivalent problem to Eq. (5) is120

1
2 ||ỹ ≠ X̃—̃||2 + ⁄(||◊x||1 + ||◊z||1). [7]121

This is a form of the lasso, and can be computed, for exam-122

ple by the glmnet package (20). This new problem has 2n123

observations and px + pz features.124

Let Lasso(X, y, ⁄) denote the generic problem:125

min—
1
2Îy ≠ X—Î2 + ⁄Î—Î1. [8]126

We outline the direct algorithm for cooperative regularized127

regression in Algorithm 1.128

Algorithm 1 Direct algorithm for cooperative regularized

regression.

Input: X œ Rn◊px and Z œ Rn◊pz , the response y œ Rn,
and a grid of hyperparameter values (flmin, . . . , flmax).

for fl Ω flmin, . . . , flmax do
Set

X̃ =
3

X Z
≠Ô

flX
Ô

flZ

4
, ỹ =

3
y
0

4
.

Solve Lasso(X̃, ỹ, ⁄) over a decreasing grid of ⁄ values.
end
Select the optimal value of flú based on the CV error and get
the final fit.

Remark A. We note that for cross-validation (CV) to129

estimate ⁄ and fl, we do not form folds from the rows of X̃,130

but instead form folds from the rows of X and Z and then 131

construct the corresponding X̃. 132

Remark B. We can add ¸2 penalties to the objective in 133

Eq. (5), replacing ⁄(||◊x||1 + ||◊z||1) by the elastic net form 134

⁄
Ë
(1 ≠ –)(||◊x||1 + ||◊z||1) + –(||◊x||22/2 + ||◊z||22/2)

È
. [9] 135

This leads to elastic net fitting, in place of the lasso, in the 136

last step of the algorithm. This option will be included in our 137

publically available software implementation of cooperative 138

learning. 139

We show here an illustrative simulation study of cooperative 140

learning in the regression setting in Fig. 2A. We will discuss 141

more comprehensive studies in the Results Section. In Fig. 142

2A, the first and second plots correspond to the settings where 143

the two data views X and Z are correlated, while in the third 144

plot X and Z are uncorrelated. We see that when the data 145

views are correlated, cooperative learning o�ers significant 146

performance gains over the early and late fusion methods, 147

by encouraging the predictions from di�erent views to agree. 148

When the data views are uncorrelated and only one view 149

X contains signal as in the third plot, early and late fusion 150

methods hurt performance as compared to the separate model 151

fit on only X, while adaptive cooperative learning is able to 152

perform on par with the separate model. 153

C. One-at-a-time algorithm for cooperative regularized linear 154

regression. As an alternative, one can optimize Eq. (4) by 155

iteratively optimizing over ◊x and ◊z, fixing one and optimizing 156

over the other. The updates are as follows: 157

◊̂x = Lasso(X, yú
x, ⁄x), where yú

x = y
1 + fl

≠ (1 ≠ fl)Z◊z

(1 + fl) ,

◊̂z = Lasso(Z, yú
z , ⁄z), where yú

z = y
1 + fl

≠ (1 ≠ fl)X◊x

(1 + fl) . [10] 158

This is analogous to the general iterative procedure in 159

Eq. (2). It is summarized in Algorithm 2. 160

Ding et al. PNAS | August 7, 2022 | vol. XXX | no. XX | 3
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BA

Fig. 2. An illustrative simulation study of cooperative learning in the regression setting, and sparsity of the solution. (A) Cooperative learning achieves superior prediction
accuracy on a test set when the data views X and Z are correlated. The y-axis shows the mean squared error (MSE) on a test set. The methods in comparison from left to
right in each panel correspond to (1) Separate X : lasso applied on the data view X only; (2) Separate Z: lasso applied on the data view Z only; (3) Early fusion: lasso applied
on the concatenated data views of X and Z; (4) Late fusion: separate lasso models are fit on X and Z independently and the predictors are then combined through linear
least squares; (5) Coop: cooperative learning as outlined in Algorithm 1; (6) Adap Coop: adaptive cooperative learning as outlined in Algorithm S2 (see SI Appendix Section 1).
Note that the test MSE in each panel is of a different scale because we experiment with simulating the data of different signal-to-noise ratios (SNR). We conducted each
simulation experiment 10 times. (B) The number of non-zero coefficients as a function of the ¸1 norm of the solution with different values of the weight on the agreement penalty
term fl: the solution becomes less sparse as fl increases.

Algorithm 2 One-at-a-time algorithm for cooperative regu-

larized regression.

Input: X œ Rn◊px and Z œ Rn◊pz , the response y œ Rn,
and a grid of hyperparameter values (flmin, . . . , flmax).

Fix the lasso penalty weights ⁄x and ⁄z, for fl Ω flmin, . . . , flmax
do

Initialize ◊(0)
x œ Rpx and ◊(0)

z œ Rpz . for k Ω 0, 1, 2, . . .
until convergence do

Set yú
x = y

1+fl ≠ (1≠fl)Z◊
(k)
z

(1+fl) . Solve Lasso(X, yú
x, ⁄x) and

update ◊(k+1)
x to be the solution.

Set yú
z = y

1+fl ≠ (1≠fl)X◊
(k+1)
x

(1+fl) . Solve Lasso(Z, yú
z , ⁄z)

and update ◊(k+1)
z to be the solution.

end
end
Select the optimal value of flú based on the sum of the CV
errors and get the final fit.

By iterating back and forth between the two lasso problems, 161

we can find the optimal solution to Eq. (4). When both X and 162

Z have full column rank, Eq. (4) is strictly convex and each163

iteration decreases the overall objective value. Therefore, the164

one-at-a-time procedure is guaranteed to converge. In general,165

it can be shown to converge to some stationary point, using166

results such as those in (21). This algorithm uses fixed values167

for ⁄x, ⁄z: we need to run the algorithm over a grid of such168

values, or use CV to choose ⁄x, ⁄z within each iteration.169

With just two views, there seems to be no advantage to170

this approach over the direct solution given in Algorithm171

1. However, for a larger number of views, there can be a172

computational advantage, which we will discuss in Materials173

and Methods.174

D. Relation to early/late fusion. From the objective functions175

Eq. (3) and Eq. (4), when the weight on the agreement term fl176

is set to 0, cooperative learning (regression) reduces to a form177

of early fusion: we simply concatenate the columns of di�erent178

views and apply lasso or another regularized regression method.179

Next we discuss the relation of cooperative learning to late180

fusion. Let X and Z have centered columns and y centered, 181

from Eq. (6) we obtain 182

X̃T X̃ =
3

XT X(1 + fl) XT Z(1 ≠ fl)
ZT X(1 ≠ fl) ZT Z(1 + fl)

4
. [11] 183

Assuming X and Z have full rank, and omitting the ¸1 penal- 184

ties, we obtain the least squares estimates 185

3
◊̂x

◊̂z

4
=

3
XT X(1 + fl) XT Z(1 ≠ fl)
ZT X(1 ≠ fl) ZT Z(1 + fl)

4≠1 3
XT y
ZT y

4
. [12] 186

If XT Z = 0 (uncorrelated features between the views), this 187

reduces to a linear combination of the least squares estimates 188

for each block; when fl = 1, it is simply the average of the 189

least squares estimates for each block. The above relation also 190

holds when we include the ¸1 penalties. 191

This calculation suggests that restricting fl to be in [0, 1] 192

would be natural. However, we have found that values larger 193

than one can sometimes yield lower prediction error (see the 194

Results Section). 195

E. Sparsity of the solution. We explore how the sparsity of the 196

solution depends on the agreement hyperparameter fl in Fig. 197

2B. We did 100 simulations of Gaussian data with n = 100 and 198

p = 20 in each of two views, with all coe�cients equal to 2.0. 199

The standard deviation of the errors was chosen so that the 200

SNR was about 2. The figure shows the number of non-zero 201

coe�cients as a function of the overall ¸1 of the solutions, for 202

di�erent values of fl. Note that the lasso parameter ⁄ is varying 203

along the horizontal axis; we chose to plot against the ¸1 norm, 204

a more meaningful quantity. We see that the solutions become 205

less sparse as fl increases, much like the behavior that one sees 206

in the elastic net. 207

F. Theoretical analysis under the latent factor model. To un- 208

derstand the role of the agreement penalty from a theo- 209

retical perspective, we consider the following latent factor 210

model. Let u = (U1, U2, . . . , Un) be a vector of n i.i.d. ran- 211

dom variables with Ui ≥ N (0, 1), y = (y1, . . . , yn), x = 212

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Ding et al.
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A X and Z correlated (medium correlation) - Both contain signal - SNR 1.8

B X and Z correlated (high correlation) - X contains more signal than Z - SNR 0.6

Fig. 3. Simulation studies on cooperative regularized linear regression. (A) Simulation results when X and Z have a medium level of correlation and both contain signal
(tx = tz = 2), n = 200, p = 1000, SNR = 1.8. The first panel shows MSE on a test test; the second panel shows the MSE difference on the test set relative to early fusion;
the third panel shows the number of features selected; the fourth panel shows the fl values selected by CV in cooperative learning. Here “Coop” refers to cooperative learning
outlined in Algorithm 1 and “Adap Coop” refers to adaptive cooperative learning outlined in Algorithm S2 (see SI Appendix Section 1). (B) Simulation results when X and Z
have a high level of correlation and X contains more signal than Z (tx = 6, tz = 1), n = 200, p = 1000, SNR = 0.6.

(X1, . . . , Xn), and z = (Z1, . . . , Zn), with yi = “yUi + Áyi, 213

Xi = “xUi + Áxi and Zi = “zUi + Ázi, where Áyi ≥ N
!
0, ‡2

y

"
, 214

Áxi ≥ N
!
0, ‡2

x

"
, Ázi ≥ N

!
0, ‡2

z

"
independently. We show that215

the mean squared error (MSE) of the predictions from cooper-216

ative learning is a decreasing function of fl around 0 with high217

probability (see details in SI Appendix Section 4). Therefore,218

the agreement penalty o�ers an advantage in reducing MSE219

of the predictions under the latent factor model.220

Results221

Simulation studies on cooperative regularized linear regres-222

sion. Here we compare cooperative learning in the regression223

setting with early and late fusion methods in simulations. We224

generated Gaussian data with n = 200 and p = 500 in each225

of two views X and Z, and created correlation between them226

using latent factors. The response y was generated as a linear227

combination of the latent factors, corrupted by Gaussian noise.228

We introduced sparsity by letting some columns of X and229

Z have no e�ect on y. The detailed simulation procedure is230

outlined in Materials and Methods. Data sets are simulated231

with di�erent levels of correlation between the two data views232

X and Z, di�erent contributions of X and Z to the signal,233

and di�erent signal-to-noise ratios (SNR). We consider the234

settings of both small p and large p regimes, and of both low235

and high SNR ratios. We use 10-fold CV to select the optimal236

values of hyperparameters.237

We compare the following methods: (1) separate X and238

separate Z: the standard lasso is applied on the separate data239

views of X and Z with 10-fold CV; (2) early fusion: the stan-240

dard lasso is applied on the concatenated data views of X and241

Z with 10-fold CV (note that this is equivalent to cooperative242

learning with fl = 0); (3) late fusion: separate lasso models are243

first fitted on X and Z independently with 10-fold CV, and 244

the two resulting predictors are then combined through linear 245

least squares for the final prediction; (4) cooperative learning 246

(regression) and adaptive cooperative learning. We evaluated 247

the performance based on the mean-squared error (MSE) on a 248

test set and conducted each simulation experiment 10 times. 249

Overall, the simulation results can be summarized as fol- 250

lows: 251

• Cooperative learning performs the best in terms of test 252

MSE across the range of SNR and correlation settings. It 253

is most helpful when the data views are correlated and 254

both contain signal (as in Fig. 3A and Fig. 3B). When 255

the correlation between data views is higher, higher values 256

of fl are more likely to be selected. 257

• When only one view contains signal and the views are not 258

correlated (SI Appendix Fig. S3C), cooperative learning 259

is outperformed by the separate model fit on the view 260

containing the signal, but adaptive cooperative learning 261

is able to perform on par with the separate model, out- 262

performing early and late fusion. 263

• Moreover, we also find that cooperative learning tends to 264

yield a less sparse model, as expected from the results of 265

Section E. 266

We include more comprehensive results across a wider range 267

of simulation settings in SI Appendix Fig. S1-S6. 268

Simulation studies on cooperative learning with imaging and 269

“omics” data. Here we extend the simulation studies for coop- 270

erative learning to the setting where we have two data views 271

Ding et al. PNAS | August 7, 2022 | vol. XXX | no. XX | 5
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of more distinct data modalities, such as imaging and omics 272

data (e.g. transcriptomics and proteomics). We tailor the 273

fitter suitable to each view, i.e. convolutional neural networks274

(CNN) for images and lasso for omics. We simulate the “omics”275

data (X) and the “imaging” data (Z) such that they share276

some common factors. These factors are also used to generate277

the signal in the response y. We use a factor model to gen-278

erate the data, as it is a natural way to create correlations279

between X, Z, and y. In SI Appendix Section 6, we outline280

the full details of the simulation procedure. Fig. 4 shows some281

examples of the synthetic images generated for this study.282

Healthy Sample Disease Sample 

Pixel 
Intensity 

Fig. 4. Generated images for “healthy” and “disease” samples. One can think of the
image as an abstract form of a patient’s lung, with the darker spots corresponding to
the tumor sites. The intensity of the dark spots on the disease samples is generated
to correlate with the omics data and the signal in the outcome.

Our task is to use the omics and imaging data to predict283

if a patient has a certain disease. We use CNN for modeling284

the imaging data and lasso for the omics data, and optimize285

the objective for the general form of cooperative learning as in286

Eq. (1) with the iterative “one-at-a-time” algorithm outlined287

in Eq. (2).288

We compare cooperative learning to the following methods:289

(1) Only images: a simple one-layer CNN with max pooling290

and ReLU activation is applied on the imaging data only; (2)291

Only omics: the standard lasso is applied on the omics data292

only; (3) Late fusion: separate models (CNN and lasso) are293

first fit on the imaging and omics data, respectively, and the294

resulting predictors are then combined through linear least295

squares using a validation set. We evaluated the performance296

based on the misclassification error on a test set, as well as 297

the di�erence in misclassification error relative to late fusion�. 298

We consider both low and high SNR settings†. We conducted 299

each simulation experiment 10 times. 300

The results are shown in Fig. 5. We find that (1) late fusion 301

achieves a lower misclassification error on the test set than 302

the separate models; (2) cooperative learning outperforms late 303

fusion and achieves the lowest test error by encouraging the 304

predictions from the two views to agree; (3) cooperative learn- 305

ing is especially helpful when the SNR is low, while its benefit 306

is less pronounced when the SNR is higher. The last observa- 307

tion makes sense, because when the SNR is lower the marginal 308

benefit of leveraging the other view(s) in strengthening signal 309

becomes larger. 310

Multiomics studies on labor onset prediction. We applied co- 311

operative learning (regression) to a data set of labor onset, 312

collected from a cohort of women who went into labor spon- 313

taneously, as described in (22). Proteome and metabolome 314

were measured from blood samples collected from the patients 315

during the last 120 days of pregnancy. The goal of the analysis 316

is to predict time to spontaneous labor using proteomics and 317

metabolomics data. 318

The proteomics data contained measurements for 1,322 319

proteins and the metabolomics data contained measurements 320

for 3,529 metabolites. We split the data set of 53 patients 321

into training and test sets of 40 and 13 patients, respectively‡. 322

Both the proteomics and metabolomics measurements were 323

screened by their variance across the subjects. We extracted 324

the first time point for each patient from the longitudinal study 325

and predicted the corresponding time to labor. We conducted 326

the same set of experiments across 10 di�erent random splits 327

of the training and test sets. 328

The results are shown in Table 1. The model fit on the 329

metabolomics data achieves lower test MSE than the one fit on 330

the proteomics data. Early and late fusion hurt performance as 331

�Early fusion is not applicable in this setting.
†The SNR is calculated based on the logits of the probabilities used to generate the class labels.
‡The cohort consisted of 63 patients as described in (22), but in the public dataset we only found 53

patients with matched proteomics and metabolomics data.

A B SNR Low (~1) SNR High (~6) 

Fig. 5. Simulation studies on cooperative learning with imaging and “omics” data. Panel (A) corresponds to the relatively low SNR setting (SNR = 1) and panel (B) to the
higher SNR setting (SNR = 6). For each setting, the left panel shows the misclassification error on the test set for CNN on only images, lasso on only omics, late fusion, and
cooperative learning; the right panel shows the difference in misclassification error relative to late fusion. Here “Coop” refers to cooperative learning. For both settings, the
range of fl values for cooperative learning to select from is (0,20). The average fl selected in the low SNR setting is 6.8 and in the high SNR setting is 8.0.
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Table 1. Multiomics studies on labor onset prediction.

Methods Test MSE Relative to Early Fusion
Number of Features

Selected

Mean Std Mean Std Mean

Separate Proteomics 475.51 80.89 69.14 81.44 26
Separate Metabolomics 381.13 36.88 -25.24 30.91 11

Early fusion 406.37 44.77 0 0 15
Late fusion 493.34 63.44 86.97 68.13 21

Cooperative learning 364.99 54.85 -41.38 25.63 51

The first two columns in the table show the mean and standard deviation (std) of MSE on the test set across di�erent splits of the
training and test sets; the third and fourth column show the MSE di�erence relative to early fusion; the last column shows the average
number of features selected. The methods include (1) separate proteomics: the standard lasso is applied on the proteomics data only;
(2) separate metabolomics: the standard lasso is applied on the metabolomics data only; (3) early fusion: the standard lasso is applied
on the concatenated data of proteomics and metabolomics data; (4) late fusion: separate lasso models are first fit on proteomics and
metabolomics independently and the predictors are then combined through linear least squares; (5) cooperative learning (Algorithm 1).
The average of the selected fl values is 0.9 for cooperative learning.

compared to the model fit on only metabolomics. Cooperative 332

learning gives performance gains over the model fit only on 333

metabolomics, outperforming both early and late fusion and334

achieving the lowest MSE on the test set.335

We examined the selected features from cooperative learn-336

ing and the other methods by comparing the ranking of the337

features based on the magnitude of their coe�cients. All338

methods rank sialic acid binding immunoglobulin like lectin-6339

(Siglec-6), a protein highly expressed by the placenta (23), as340

the most important feature for predicting labor onset. As com-341

pared to the other methods, cooperative learning boosts up342

the ranking of features such as plexin-B2 (PLXB2), which is a343

protein expressed by the fetal membranes (24), and Activin-A,344

which is highly expressed by the placenta as well (22). While345

factors such as Siglec-6, PLXB2 and Activin-A have previ-346

ously also been discovered by (22) for labor onset prediction,347

C1q was only identified by cooperative learning as one of the348

top 10 features. C1q is an important factor involved in the349

complement cascade, which influences implantation and fetal350

development (25), and worth further investigation for its role351

in predicting labor onset.352

Multiomics studies on ductal carcinoma in situ and breast353

cancer classification. Finally, we applied cooperative learning354

to a data set of breast ductal carcinoma in situ (DCIS), a355

common precursor of invasive breast cancer (IBC), as described356

in (26). In the data set, the Resource of Archival Breast Tissue357

(RAHBT) cohort contained 78 DCIS patients, among which358

16 patients had contralateral IBC. Samples were collected359

from patients and organized into a tissue microarray, with360

laser capture microdissection used to separate the samples into361

epithelial and stromal components, which were then sequenced362

separately for RNA expression. The goal of the analysis is363

to di�erentiate DCIS patients with and without contralateral364

IBC using epithelial and stromal RNA expression.365

We split the data set of 78 patients into training and test366

sets of 58 and 20 patients, respectively. Both the epithelial367

and stromal RNA expression measurements were screened by368

their variance across the subjects. We conducted the same set369

of experiments across 10 di�erent random splits of the training370

and test sets.371

The results are shown in Table 2. Early fusion gives some372

performance gain over the models fit on the separate data views373

only. Cooperative learning outperforms early and late fusion,374

achieving the highest AUROC on the test set. We examined 375

the selected features as before by comparing their ranking 376

based on the magnitude of the coe�cients. As compared to 377

the other methods, cooperative learning boosts up the ranking 378

of hemoglobin subunit beta (HBB) gene expression in both 379

epithelial and stromal samples. HBB, a member of the globin 380

family and oxygen transporter, has been shown to play a role 381

in breast cancer progression (27). 382

Cooperative generalized linear models and Cox regres- 383

sion 384

We next describe how cooperative learning can be extended to 385

generalized linear models (GLMs) (28) and Cox proportional 386

hazards models (29). 387

Consider a GLM, consisting of 3 components: (1) a linear 388

predictor: ÷ = X—; (2) a link function g such that E(Y |X) = 389

g≠1(÷); (3) a variance function as a function of the mean: 390

V = V (E(Y |X)). For cooperative GLMs, we have the linear 391

predictor as ÷ = X◊x + Z◊z, and an additional agreement 392

penalty term fl||(X◊x ≠ Z◊z)||2 with the following objective 393

to be minimized: 394

J(◊x, ◊z) = ¸(X◊x + Z◊z, y) + fl
2 ||(X◊x ≠ Z◊z)||2

+ ⁄x||◊x||1 + ⁄z||◊z||1, [13]

where ¸ is the negative log likelihood (NLL) of the data. For 395

Cox proportional hazards models, ¸ becomes the negative log 396

partial likelihood of the data. 397

We make the usual quadratic approximation to Eq. (13),
reducing the minimization problem to a weighted least squares
(WLS) problem, which yields

min 1
2 [||W (z ≠ X◊x ≠ Z◊z)||2 + fl||(X◊x ≠ Z◊z)||2]

+ ⁄x||◊x||1 + ⁄z||◊z||1, [14]

where z is the adjusted dependent variable and W is the 398

diagonal weight matrix, both of which are functions of ◊x and 399

◊z. 400
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Table 2. Multiomics studies on ductal carcinoma in situ and breast cancer classification.

Methods Test AUROC Relative to Early Fusion
Number of Features

Selected

Mean Std Mean Std Mean

Separate Epithelial RNA 0.79 0.06 -0.08 0.03 10
Separate Stromal RNA 0.86 0.02 -0.02 0.05 16

Early fusion 0.88 0.05 0 0 17
Late fusion 0.81 0.05 -0.07 0.06 17

Cooperative learning 0.93 0.02 0.05 0.05 47

The first two columns in the table show the mean and standard deviation (std) of the area under the receiver operating characteristic curve
(AUROC) on the test set across di�erent splits of the training and test sets; the third and fourth column show the AUROC di�erence
relative to early fusion; the last column shows the average number of features selected. The methods include (1) separate RNA expression
of epithelial samples: the standard lasso is applied on the epithelial gene expression only; (2) separate RNA expression of stromal samples:
the standard lasso is applied on the stromal gene expression only; (3) early fusion: the standard lasso is applied on the concatenated data
of RNA expression of epithelial and stromal samples; (4) late fusion: separate lasso models are first fit on epithelial RNA expression
and stromal RNA expression independently and the predictors are then combined through linear least squares; (5) cooperative learning
(Algorithm 1). The average of the selected fl values is 0.3 for cooperative learning.

This leads to an iteratively reweighted least squares (IRLS) 401

algorithm: 402

• Outer loop: Update the quadratic approximation using403

the current parameter ◊̂x and ◊̂z, i.e. update the working404

response z and the weight matrix W .405

• Inner loop: Letting406

X̃ =
3

W 1/2X W 1/2Z
≠Ô

flX
Ô

flZ

4
, z̃ =

3
W 1/2z

0

4
, —̃ =

3
◊x

◊z

4
,

[15]407

solve the following problem408

J(◊x, ◊z) = 1
2 ||z̃ ≠ X̃—̃||2 + ⁄x||◊x||1 + ⁄z||◊z||1, [16]409

which is equivalent to Eq. (14).410

Some extensions411

Paired features from different views. One can extend cooper-412

ative learning to the setting where a feature in one view is413

naturally paired with a feature in another view. For example,414

if the jth column Xj of X is the gene expression for gene j,415

while Zk is the expression of the protein k for which gene j416

codes. In that setup, we would like to encourage agreement417

between Xj◊xj and Zk◊zk. This pairing need not exist for all418

features, but can occur for a subset of features.419

Looking back at our objective function Eq. (4) for two420

views in the linear case, we add to this objective a pairwise421

agreement penalty of the form422

fl2
ÿ

j,kœP

(Xj◊xj ≠ Zk◊zk)2 [17]423

where P is the set of indices of the paired features.424

This additional penalty can be handled easily in the op-425

timization framework. For the direct algorithm (Algorithm426

1), we simply add a new row to X̃ and ỹ for each pairwise427

constraint, while the one-at-a-time algorithm (Algorithm 2)428

can be similarly modified.429

Modeling interactions between views. In our general objec-
tive function Eq. (1), we can capture interactions between
features in the same view, by using methods such as random

forests or boosting for the learners fX and fZ . However, this
framework does not allow for interactions between features in
di�erent views. Here is an objective function to facilitate such
interactions:

min E
Ë1

2(y ≠ fX(X) ≠ fZ(Z) ≠ fXZ(X, Z))2

+ fl
2 (fX(X) ≠ fZ(Z))2 + fl

2(1 ≠ fl)f2
XZ(X, Z)

È
, [18]

where fXZ(X, Z) is a joint function of X and Z, including for430

example, interactions between the features in each view.431

The solution to Eq. (18) has fixed points: 432

fX(X) = E
Ë

y
1 + fl

≠ (1 ≠ fl)fZ(Z)
(1 + fl) ≠ fXZ(X, Z)

1 + fl
|X

È
,

fZ(Z) = E
Ë

y
1 + fl

≠ (1 ≠ fl)fX(X)
(1 + fl) ≠ fXZ(X, Z)

1 + fl
|Z

È
,

fXZ(X, Z) = E
Ë
(1 ≠ fl)(y ≠ fX(X) ≠ fZ(Z))|X, Z

È
. [19] 433

When fl = 0, from Eq. (18) the solution reduces to the additive 434

model fX(X) + fZ(Z) + fXZ(X, Z). As fl æ 1, the joint term 435

fXY æ 0 and we again get the late fusion estimate as the 436

average of the marginal predictions f̂X(X) and f̂Z(Z). To 437

implement this in practice, we simply insert learners such as 438

random forest or boosting for fX , fZ and fXZ . The first two 439

use only features from X and Z, while the last uses features 440

from both. 441

Discussion 442

In this paper, we introduce a new method called cooperative 443

learning for supervised learning with multiple set of features, 444

or “data views”. The method encourages the predictions from 445

di�erent data views to align through an agreement penalty. By 446

varying the weight of the agreement penalty in the objective, 447

we obtain a spectrum of solutions that include the commonly- 448

used early and late fusion methods. The method can choose the 449

degree of agreement (or fusion) in an data-adaptive manner. 450

Cooperative learning provides a powerful tool for multi- 451

omics data fusion by strengthening aligned signals across 452

modalities and allowing flexible fitting mechanisms for dif- 453

ferent modalities. The e�ectiveness of our methodology has 454
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implications for improving diagnostics and therapeutics in an 455

increasingly multiomic world. 456

Furthermore, cooperative learning could be extended to the457

semi-supervised setting when we have additional matched data458

views on unlabeled samples. The agreement penalty allows459

us to leverage the signals in the matched unlabeled samples460

to our advantage. In addition, when we have missing values461

in some data views, the agreement penalty also allows us to462

impute one view from the other(s). Lastly, the method can be463

easily extended to binary, count and survival data.464

Materials and Methods465

466 Cooperative learning with more than two data views. When we
have more than two views of the data, X1 œ Rn◊p1 , X2 œ
Rn◊p2 , . . . , XM œ Rn◊pM , the population quantity that we want
to minimize becomes

min E
Ë1

2
(y ≠

Mÿ

m=1

fXm (Xm))2

+
fl

2

ÿ

m<mÕ

(fXm (Xm) ≠ fXmÕ (XmÕ ))2
È

. [20]

We can also have di�erent weights on the agreement penalties for467

distinct pairs of data views, forcing some pairs to agree while others468

not. In addition, we can incorporate prior knowledge in determining469

the relative strength of the agreement penalty for each pair of views.470

As with two views, this can be optimized with an iterative
algorithm that updates each fXm (Xm) as follows:

fXm (Xm) = E
Ë

y

1 + (M ≠ 1)fl

≠
(1 ≠ fl)

q
mÕ ”=m

fXmÕ (XmÕ )

1 + (M ≠ 1)fl
|Xm

È
. [21]

As in the two-view setup above, the fitter E(·|Xm) can be tailored471

to the data type of each view.472

For regularized linear regression with more than two views, the
objective becomes

J(◊1, ◊2, . . . , ◊M ) =
1
2

||y ≠
Mÿ

m=1

Xm◊m||2+

fl

2

ÿ

m<mÕ

||(Xm◊m ≠ XmÕ ◊mÕ )||2 +
Mÿ

m=1

⁄mÎ◊m||1. [22]

This is again a convex problem. The optimal solution can be473

found by forming augmented data matrices as before in Eq. (6) and474

Eq. (7).475

Let

X̃ =

Q

cccccca

X1 X2 ... XM≠1 XM
≠Ô

flX1
Ô

flX2 ... 0 0
≠Ô

flX1 0 ...
Ô

flXM≠1 0
≠Ô

flX1 0 ... 0 Ô
flXM

0 ≠Ô
flX2 ...

Ô
flXM≠1 0

0 ≠Ô
flX2 ... 0 Ô

flXM
... ... ... ... ...
0 0 ... ≠Ô

flXM≠1
Ô

flXM

R

ddddddb
,

ỹ =
!

y 0 ... 0
"T

, —̃ =
!

◊1 ◊2 ... ◊M

"T
, [23]476

then the equivalent problem to Eq. (22) becomes477

1
2

||ỹ ≠ X̃—̃||2 +
Mÿ

m=1

⁄mÎ◊m||1. [24]478

With M views, the augmented matrix in Eq. (23) has n+
!

M
2

"
·n479

rows, which could be computationally challenging to solve.480

Alternatively, the optimal solution ◊̂1, ◊̂2, . . . , ˆ◊M has fixed
points

◊̂m = Lasso(X, yú
m, ⁄m),

where yú
m =

y

1 + (M ≠ 1)fl
≠

(1 ≠ fl)
q

mÕ ”=m
XmÕ ◊mÕ

1 + (M ≠ 1)fl
.

[25]

This leads to an iterative algorithm, where we successively solve481

each subproblem, until convergence. For a large number of views,482

this can be a more e�cient procedure than the direct approach 483

in Eq. (24) above. We include simulation studies on cooperative 484

learning for more than two views in SI Appendix Section 3. 485

Simulation procedure for cooperative regularized linear regression. 486

The simulation is set up as follows. Given values for parameters 487

n, px, pz , pu, su, tx, tz , —u, ‡, we generate data according to the fol- 488

lowing procedure: 489

1. xj œ Rn distributed i.i.d. MVN(0, In) for j = 1, 2, . . . , px. 490

2. zj œ Rn distributed i.i.d. MVN(0, In) for j = 1, 2, . . . , pz . 491

3. For i = 1, 2, . . . , pu (pu corresponds to the number of latent 492

factors, pu < px and pu < pz): 493

(a) ui œ Rn distributed i.i.d. MVN(0, s2
uIn); 494

(b) xi = xi + tx ú ui; 495

(c) zi = zi + tz ú ui. 496

4. X = [x1, x2, . . . , xpx ], Z = [z1, z2, . . . , zpz ]. 497

5. U = [u1, u2, . . . , upu ], y = U—u + ‘ where ‘ œ Rn distributed 498

i.i.d. MVN(0, ‡2In). 499

There is sparsity in the solution since a subset of columns of X 500

and Z are independent of the latent factors used to generate y. 501

Relation to existing approaches. We have mentioned the close con- 502

nection of cooperative learning to early and late fusion: setting 503

fl = 0 or 1 gives a version of each of these, respectively. There 504

are many variations of late fusion, including the use of stacked 505

generalization to combine the predictions at the last stage (30). 506

Cooperative learning is also related to collaborative regression 507

(31). This method uses an objective function of the form 508

bxy

2
||y ≠ X◊x||2 +

bzy

2
||y ≠ Z◊z ||2 +

bxz

2
||X◊x ≠ Z◊z ||2. [26] 509

With ¸1 penalties added, this is proposed as a method for sparse 510

supervised canonical correlation analysis. It is di�erent from co- 511

operative learning in an important way: here X and Z are not 512

fit jointly to the target. The authors state that collaborative re- 513

gression is not well suited to the prediction task. We note that if 514

bxy = bzy = bxz = 1, each of ◊̂x, ◊̂z are the one-half of the least 515

squares (LS) estimates on X, Z respectively. Hence the overall 516

prediction ŷ is the average of the individual LS predictions. This 517

late fusion estimate is the same as that obtained from cooperative 518

learning with fl = 1. In addition, a related framework based on 519

optimizing measures of agreement between data views was also 520

proposed in (32), but it is di�erent from cooperative learning in the 521

sense that the data views are not used jointly to model the target. 522

Cooperative learning also has connections with contrastive learn- 523

ing (18, 19). This method is an unsupervised learning technique 524

first proposed for learning visual representations. Without the su- 525

pervision of y, it learns representations of images by maximizing 526

agreement between di�erently augmented “views” of the same data 527

example. While both contrastive learning and cooperative learning 528

have a term in the objective that encourages agreement between 529

correlated views, our method combines the agreement term with 530

the usual prediction error loss and is thus supervised. 531

Moreover, the iteration Eq. (2) looks much like the backfitting 532

algorithm for generalized additive models (33). In that setting, each 533

of fX and fZ are typically functions of one-dimensional features 534

X and Z, and the backfitting algorithm iterations correspond to 535

Eq. (2) with fl = 0. In the additive model setting, backfitting is 536

a special case of the Gauss-Seidel algorithm (33). In cooperative 537

learning, each of X, Z are views with multiple features; we could 538

use an additive model for each view, i.e. fX(X) =
q

i
gi(Xi), 539

fZ(Z) =
q

j
hj(Zj), where i and j are column indices of X and Z, 540

respectively. Then each of the iterations in Eq. (2) could be solved 541

using a backfitting algorithm, leading to a nested procedure. 542
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We next discuss the relation of cooperative learning to a re- 543

cently proposed method for multi-view analysis called sparse in- 544

tegrative discriminant analysis (SIDA) (34). This method aims545

to identify variables that are associated across views while also546

able to optimally separate data points into di�erent classes. Specif-547

ically, it combines canonical correlation analysis and linear dis-548

criminate analysis by solving the following optimization problem.549

Let Xk = (x1k, . . . , xnk,k)T œ Rnk◊p, xk œ Rp be the data550

matrix for class k, where k = 1, . . . , K, and nk is the num-551

ber of samples in class k. Then, the mean vector for class k is552

µ̂k = 1
nk

qnk
i=1 xik; the common variance matrix for all class553

is Sw =
qK

k=1
qn

i=1(xik ≠ µ̂k)(xik ≠ µ̂k)T ; the between class554

covariance matrix is Sb =
qK

k=1 nk(µ̂k ≠ µ̂)(µ̂k ≠ µ̂)T , where555

µ̂ = 1
n

qK

k=1 nkµ̂k is the combined class mean vector. Assume556

that we have two data views X œ Rn◊px and Z œ Rn◊pz557

with centered columns, we want to find A = [a1, . . . , aK≠1] and558

B = [b1, . . . , bK≠1] such that559

max fl · tr(AT Sx
b A + BT Sz

b B) + (1 ≠ fl) · tr(AT SxzBBT ST
xzA)

s.t. tr(AT Sx
wA)/(K ≠ 1) = 1 & tr(BT Sz

wB)/(K ≠ 1) = 1,

where Sxz œ Rpx◊pz is the sample cross-covariance matrix560

between X and Z. Here, tr(·) is the trace function, and fl is the561

parameter that controls the relative importance of the “separation”562

term and the “association” terms in the objective. While SIDA563

also considers the association across data views by choosing vectors564

that are associated and able to separate data points into classes, it565

solves the problem in a “backward” manner, that is the features566

are modeled as a function of the outcome. Cooperative learning,567

in contrast, solves the problem in a “forward” manner (Y ≥ X, Z),568

which is more suitable for prediction.569

We also note the connection between cooperative learning (re-570

gression) with the standardized group lasso (35). This method is a571

variation of the group lasso (36), and uses572

ÎX◊xÎ2 + ÎZ◊zÎ2 [27]573

as the penalty term, rather than the sum of squared two norms.574

It encourages group-level sparsity by eliminating entire blocks of575

features at a time. In the group lasso, each block is a group of576

features, and we do not expect each block to be predictive on its577

own. This is di�erent from cooperative learning, where each feature578

block is a data view and we generally do not want to eliminate an579

entire view for prediction. In addition, the standardized group lasso580

does not have an agreement penalty. One could in fact add the581

standardized group lasso penalty (27) to the cooperative learning582

objective, which would allow elimination of entire data views.583

Code and data availability. The data associated with the labor584

onset study (22) can be obtained via Zenodo ( doi: 10.5281/zen-585

odo.4509768). The data associated with the DCIS study will586

be made available by (26) on the Human Tumor Atlas Network587

public repository. The code used to perform the study has588

been deposited onto the cooperative-learning GitHub repos-589

itory. An open-source R language package for cooperative590

learning called multiview is available on the CRAN reposi-591

tory.592
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