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We propose a new method for supervised learning with multiple sets
of features (“views”). The multi-view problem is especially important
in biology and medicine, where “-omics” data such as genomics,
proteomics and radiomics are measured on a common set of sam-
ples. Cooperative learning combines the usual squared error loss
of predictions with an “agreement” penalty to encourage the predic-
tions from different data views to agree. By varying the weight of the
agreement penalty, we get a continuum of solutions that include the
well-known early and late fusion approaches. Cooperative learning
chooses the degree of agreement (or fusion) in an adaptive manner,
using a validation set or cross-validation to estimate test set predic-
tion error. One version of our fitting procedure is modular, where one
can choose different fitting mechanisms (e.g. lasso, random forests,
boosting, neural networks) appropriate for different data views. In the
setting of cooperative regularized linear regression, the method com-
bines the lasso penalty with the agreement penalty, yielding feature
sparsity. The method can be especially powerful when the different
data views share some underlying relationship in their signals that
can be exploited to boost the signals. We show that cooperative
learning achieves higher predictive accuracy on simulated data and
real multiomics examples of labor onset prediction and breast ductal
carcinoma in situ and invasive breast cancer classification. Lever-
aging aligned signals and allowing flexible fitting mechanisms for
different modalities, cooperative learning offers a powerful approach
to multiomics data fusion.

data fusion | multiomics | supervised learning | sparsity | deep learning

With new technologies in biomedicine, we are able to
generate and collect data of various modalities, includ-
ing genomics, epigenomics, transcriptomics, proteomics, and
metabolomics (Fig. 1A4). Integrating heterogeneous features
on a common set of observations provides a unique opportu-
nity to gain a comprehensive understanding of an outcome
of interest. It offers the potential for making discoveries that
are hidden in data analyses of a single modality and achiev-
ing more accurate predictions of the outcome (1-6). While
“multi-view data analysis” can mean different things, we use it
here in the context of supervised learning, where the goal is
to fuse different data views to model an outcome of interest.
To give a concrete example, assume that a researcher wants
to predict cancer outcomes from RNA expression and DNA
methylation measurements for a set of patients. The researcher
suspects that: (1) both data views potentially have prognostic
value; (2) the two views share some underlying relationship
with each other, as DNA methylation regulates gene expression
and can repress the expression of tumor suppressor genes or
promote the expression of oncogenes. Should the researcher
use both data views for downstream prediction, or just use one
view or the other? If using both views, how can the researcher
leverage their underlying relationship in making more accurate
prediction? Is there a way to strengthen the shared signals in
the two data views while reducing idiosyncratic noise?
There are two broad categories of existing “data fusion

www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

methods” for the multi-view problem (Fig. 1B). They differ
in the stage at which the “fusion” of predictors takes place,
namely early fusion and late fusion. Early fusion works by
transforming the multiple data views into a single representa-
tion before feeding the aggregated representation into a super-
vised learning model of choice (7-10). The simplest approach
is to column-wise concatenate the M datasets Xi,..., Xy to
obtain a combined matrix X, which is then used as the input
to a supervised learning model. Another type of early fusion
approach projects each high-dimensional dataset into a low-
dimensional space using methods such as principal component
analysis (PCA) or autoencoders (11, 12). Then one combines
the low-dimensional representations through aggregation and
feed the aggregated matrix into a supervised learning model.
Early fusion approaches have an important limitation that they
do not explicitly leverage the underlying relationship across
data views. Late fusion, or “integration”, refers to methods
where individual models are first built from the distinct data
views, and then the predictions of the individual models are
combined into the final predictor (13-17).

In this paper, we propose a new method to multi-view data
analysis called cooperative learning, a supervised learning ap-
proach that fuses the different views in a systematic way. The
method combines the usual squared error loss of predictions
with an “agreement” penalty that encourages the predictions
from different data views to align. By varying the weight of
the agreement penalty, we get a continuum of solutions that
include the commonly-used early and late fusion approaches.
Our proposal can be especially powerful when the different
data views share some underlying relationship in their signals
that can be leveraged to strengthen the signals.

Significance Statement

Multi-view analysis with “-omics” data such as genomics and
proteomics measured on a common set of samples represents
an increasingly important challenge in biology and medicine.
Commonly-used approaches can be broadly categorized into
early and late fusion, depending on when “fusion” occurs.
We introduce a supervised learning algorithm— “cooperative
learning”— that encompasses both early and late fusion, and
blended versions of these methods. This algorithm encourages
the predictions from different views to agree and chooses the
degree of agreement in a data-adaptive manner. By leveraging
aligned signals in multiomics, it can yield better predictions on
tasks such as disease classification and treatment response
prediction, and has implications for improving diagnostics and
therapeutics.

Author contributions: D.Y.D. and R.T. designed research; D.Y.D., S.L., B.N. and R.T. performed
research; D.Y.D. and R.T. analyzed data; D.Y.D. and R.T. wrote the paper.

The authors declare no conflict of interest.

7o whom correspondence should be addressed. E-mail: tibs@stanford.edu

PNAS | August7,2022 | vol. XXX | no.XX | 1-10

27
28
29
30
31

32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51

52
53
54
55
56

57


www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

58

59

60

61

62

63

64

65

66
67
68
69
70

71

72

73

74

75

76

77

78

79

80

A Multiomics Data Fusion B R

- &
S: le 1 .
sZS&E 2 W View X
: - Combined View -
SN Predictive model
sempten = = u fit to target y
Genomics RN P g u - —
¢S Q€ |
Sample 1 View Z u | | |
Sample 2
Epigenomics j} Semplen g

( Cooperative Learning j ][ mqu[%(y— Fx(X) = f2(2))* + g(f_\«,\') 7fz(2))2}

Transcriptomics

Sample 1
Sample2 g
Proteomics z’%: >

Sample n

sample 1
Sample 2

Radiomics

Samplen

A
e

PR

?FZ%

. . Late Fusion
View X |
u X Predictive model
fit to target y
— ™ Combine into
final prediction | ]

—

| [ |
N
o"e\‘\o’@\‘\

x
‘0\2\‘\
<

Z Predictive model |
fit to target y

View Z

—

Fig. 1. Framework for multiomics data fusion. (A) Advances in biotechnologies have

enabled the collection of a myriad of “-omics” data ranging from genomics to proteomics

measured on a common set of samples. These data capture the molecular variations of human health at multiple levels and can help us understand complex biological
systems in a more comprehensive way. Fusing the data offers the potential to improve predictive accuracy of disease phenotypes and treatment response, thus enabling better
diagnostics and therapeutics. However, multi-view analysis of omics data presents challenges such as increased dimensionality, noise and complexity. (B) Commonly-used
approaches to the problem can be broadly categorized into early and late fusion. Early fusion begins by transforming all datasets into a single representation, which is then
used as the input to a supervised learning model of choice. Late fusion works by developing first-level models from individual data views and then combining the predictions by
training a second-level model as the final predictor. Encompassing early and late fusion, cooperative learning combines the usual squared error loss of predictions with an
agreement penalty term to encourage the predictions from different data views to align.

Cooperative Learning

A. Cooperative learning with two data views. We begin with
a simple form of our proposal for the population (random
variable) setting. Let X € R"*P* Z € R"*P> — representing
two data views — and y € R" be a real-valued random
variable (the target). Fixing the hyperparameter p > 0, we
propose to minimize the population quantity:

min B[3(y = Fx(X) = f2(2)7 + 5(fx(X) - f2(2)?]. 11

The first term above is the usual prediction error, while
the second term is an “agreement” penalty, encouraging the
predictions from different views to agree. This penalty term
is related to “contrastive learning” (18, 19), which we discuss
in more detail in Materials and Methods.

The solution to Eq. (1) has fixed points:

_ y (1—p)fz(2)
Ix(X) = [1+p_ (1+p) ‘X}’
f2(2) = [1ip -4 _({Y};)(X)'Z]' 2

We can optimize the objective by repeatedly updating the

fit for each data view in turn, holding the other view fixed.

When updating a function, this approach allows us to apply
the fitting method for that data view to a penalty-adjusted
“partial residual”. For more than two views, this generalizes
easily (see Materials and Methods).

The following relationships to early and late fusion can be
seen immediately:

2 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

o If p =0, from Eq. (1) we see that cooperative learning
chooses a functional form for fx and fz and fits them
together. If these functions are additive (for example,
linear) then it yields a simple form of early fusion, where
we simply use the combined set of features in a supervised
learning procedure.

o If p =1, then from Eq. (2) we see that the solutions are
the average of the marginal fits for X and Z. This is a
simple form of late fusion.

We explore the relation of cooperative learning to early/late
fusion in more detail in Section D, in the setting of regularized
linear regression.

Note that this “one-at-a-time” fitting procedure is modular,
so that we can choose a fitting mechanism appropriate for
each data view. Specifically:

o For quantitative features like gene expression, copy number
variation, or methylation: regularized regression (lasso,
elastic net), a generalized additive model, boosting, ran-
dom forests, or neural networks.

e For images: a convolutional neural network.

o For time series data: an auto-regressive model or a recur-
rent neural network.

We illustrate this on a simulated image and omics example in
the Results Section.

B. Cooperative regularized linear regression. We make our
proposal more concrete in the setting of cooperative regularized
linear regression. Consider feature matrices X € R"™*P=,
Z € R"P= and our target y € R". We assume that the
columns of X and Z have been standardized, and y has mean
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0 (hence we can omit the intercept below). For a fixed value
of the hyperparameter p > 0, we want to find 8, € RP* and
0. € RP* that minimize:

1
J(82,62) = 5 |ly — X0z — 26| + £||(x0. - 26.) |
+ AP (62) + A.P(0:), 3]

where p is the hyperparameter that controls the relative im-
portance of the agreement penalty term ||(X0, — Z6.)||? in
the objective, and P® and P? are penalty functions. Most
commonly, we use ¢; penalties, giving the objective function:

1
J(82,02) = 5 |ly — X0s — 26| + £||(X0. — 26.)|?

+ Azl0a]l1 + A [10=]]1. [4hs

130

Note that when p = 0, this reduces to early fusion, where we
simply concatenate the columns of X and Z and apply lasso.
Furthermore, in Section D, we show that p = 1 yields a late
fusion estimate.

In our experiments, we standardize the features and simply
take Ay = A\, = A\. We have found that generally there is
often no advantage to allowing different A values for different
views. However, for completeness, in SI Appendix Section 1,
we outline an adaptive strategy for optimizing over A, and ..
We call this adaptive cooperative learning in our studies.

With a common A the objective becomes
1
J(82,62) = Slly — X0z — 26| + £||(x6. — Z6.)|?
+ A(0z[11 + [10=]1), [5]
and we can compute a regularization path of solutions indexed
by A.

Problem (5) is convex, and the solution can be computed
as follows. Letting

- X Z - =~ (7
= (L yi)o=(8) 2= (@)

then the equivalent problem to Eq. (5) is

1., ~=
118 = XBI” + A([[0z]1 +[16=]1)- [7]

This is a form of the lasso, and can be computed, for exam-
ple by the glmnet package (20). This new problem has 2n
observations and p, + p. features.

Let Lasso(X,y, ) denote the generic problem:

.1
ming §|ly—Xﬂll2+>\llﬂII1~ 8]

We outline the direct algorithm for cooperative regularized
regression in Algorithm 1.

Ding etal.

Algorithm 1 Direct algorithm for cooperative regularized

Tegression.

Input: X € R"*?* and Z € R"*P#, the response y € R",
and a grid of hyperparameter values (fuin, - - . , Pnax)-

for p < puin, ...

Set
5 X Z -

Solve Lasso(X' , U, A) over a decreasing grid of A values.
end

, Puax dO

Select the optimal value of p* based on the CV error and get
the final fit.

Remark A. We note that for cross-validation (CV) to
estimate A and p, we do not form folds from the rows of X,
hut instead form folds from the rows of X and Z and then
gonstruct the corresponding X.

Remark B. We can add /> penalties to the objective in
Eq. (5), replacing A(]|0z||1 + ||6z]|1) by the elastic net form

A (L= )18l + 18:110) + a(l6:3/2 +116-13/2)|. 9]

This leads to elastic net fitting, in place of the lasso, in the
last step of the algorithm. This option will be included in our
publically available software implementation of cooperative
learning.

We show here an illustrative simulation study of cooperative
learning in the regression setting in Fig. 2A4. We will discuss
more comprehensive studies in the Results Section. In Fig.
2A, the first and second plots correspond to the settings where
the two data views X and Z are correlated, while in the third
plot X and Z are uncorrelated. We see that when the data
views are correlated, cooperative learning offers significant
performance gains over the early and late fusion methods,
by encouraging the predictions from different views to agree.
When the data views are uncorrelated and only one view
X contains signal as in the third plot, early and late fusion
methods hurt performance as compared to the separate model
fit on only X, while adaptive cooperative learning is able to
perform on par with the separate model.

C. One-at-a-time algorithm for cooperative regularized linear
regression. As an alternative, one can optimize Eq. (4) by
iteratively optimizing over 8, and 8., fixing one and optimizing
over the other. The updates are as follows:

. 1—-p)Z06.
0, = Lasso(X, yy, \z), where y5 = y (L—p) ,

I+p  (1+p)
. 1—p) X0,
0. = Lasso(Z,yz, \.), where y; = 1 J?i i ( § i)p) . [10]

This is analogous to the general iterative procedure in
Eq. (2). It is summarized in Algorithm 2.
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Fig. 2. An illustrative simulation study of cooperative learning in the regression setting, and sparsity of the solution. (A) Cooperative learning achieves superior prediction
accuracy on a test set when the data views X and Z are correlated. The y-axis shows the mean squared error (MSE) on a test set. The methods in comparison from left to
right in each panel correspond to (1) Separate X : lasso applied on the data view X only; (2) Separate Z: lasso applied on the data view Z only; (3) Early fusion: lasso applied
on the concatenated data views of X and Z; (4) Late fusion: separate lasso models are fit on X and Z independently and the predictors are then combined through linear
least squares; (5) Coop: cooperative learning as outlined in Algorithm 1; (6) Adap Coop: adaptive cooperative learning as outlined in Algorithm S2 (see Sl Appendix Section 1).
Note that the test MSE in each panel is of a different scale because we experiment with simulating the data of different signal-to-noise ratios (SNR). We conducted each
simulation experiment 10 times. (B) The number of non-zero coefficients as a function of the £; norm of the solution with different values of the weight on the agreement penalty

term p: the solution becomes less sparse as p increases.

Algorithm 2 One-at-a-time algorithm for cooperative regusze

larized regression. 180

Input: X € R™"*P* and Z € R"*P*, the response y € R",
and a grid of hyperparameter values (puin, - - - , Pax)-

Fix the lasso penalty weights A\, and A, for p < puin, - - .
do
Initialize 0% € R?* and 0" € RP=. for k «+ 0,1,2,...
until convergence do

(k)
%p - %. Solve Lasso(X, ¥z, A») and

update 0501”1) to be the solution.

b pmax

Set yy =

(1—p)x6F+D

Set yr = % — T Solve Lasso(Z,yz, Az)
and update 0" to be the solution.
end
end

Select the optimal value of p* based on the sum of the CV
errors and get the final fit.

By iterating back and forth between the two lasso problems,
we can find the optimal solution to Eq. (4). When both X and
Z have full column rank, Eq. (4) is strictly convex and each
iteration decreases the overall objective value. Therefore, the
one-at-a-time procedure is guaranteed to converge. In general,
it can be shown to converge to some stationary point, using
results such as those in (21). This algorithm uses fixed values
for Az, A.: we need to run the algorithm over a grid of such
values, or use CV to choose A, A\, within each iteration.

With just two views, there seems to be no advantage to
this approach over the direct solution given in Algorithm
1. However, for a larger number of views, there can be a
computational advantage, which we will discuss in Materials
and Methods.

D. Relation to early/late fusion. From the objective functions
Eq. (3) and Eq. (4), when the weight on the agreement term p
is set to 0, cooperative learning (regression) reduces to a form
of early fusion: we simply concatenate the columns of different

4 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

views and apply lasso or another regularized regression method.

Next we discuss the relation of cooperative learning to late

fusion. Let X and Z have centered columns and y centered,
from Eq. (6) we obtain
T

B _ (X X(1+p)

[11]

ZTX1-p) ZTZ(1+p)

XTz(1 - p))
Assuming X and Z have full rank, and omitting the ¢; penal-
ties, we obtain the least squares estimates

0.\  (XTX(1+p) XTz1-p)\ ' [(XTy
0.) \Z'X(1—-p) ZTZ(1+p) ZTy |- 12
If XTZ = 0 (uncorrelated features between the views), this
reduces to a linear combination of the least squares estimates
for each block; when p = 1, it is simply the average of the
least squares estimates for each block. The above relation also
holds when we include the ¢; penalties.
This calculation suggests that restricting p to be in [0, 1]
would be natural. However, we have found that values larger

than one can sometimes yield lower prediction error (see the
Results Section).

‘€. Sparsity of the solution. We explore how the sparsity of the
solution depends on the agreement hyperparameter p in Fig.
2B. We did 100 simulations of Gaussian data with n = 100 and
p = 20 in each of two views, with all coefficients equal to 2.0.
The standard deviation of the errors was chosen so that the
SNR was about 2. The figure shows the number of non-zero
coefficients as a function of the overall ¢; of the solutions, for
different values of p. Note that the lasso parameter A is varying
along the horizontal axis; we chose to plot against the /1 norm,
a more meaningful quantity. We see that the solutions become
less sparse as p increases, much like the behavior that one sees
in the elastic net.

F. Theoretical analysis under the latent factor model. To un-
derstand the role of the agreement penalty from a theo-
retical perspective, we consider the following latent factor
model. Let w = (U1,Us,...,U,) be a vector of n i.i.d. ran-
dom variables with U; ~ N(0,1), ¥y = (y1,---,Yn), T =

Ding etal.
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Fig. 3. Simulation studies on cooperative regularized linear regression. (A) Simulation results when X and Z have a medium level of correlation and both contain signal
(tz =t = 2),n = 200, p = 1000, SNR = 1.8. The first panel shows MSE on a test test; the second panel shows the MSE difference on the test set relative to early fusion;
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outlined in Algorithm 1 and “Adap Coop” refers to adaptive cooperative learning outlined in Algorithm S2 (see S| Appendix Section 1). (B) Simulation results when X and Z
have a high level of correlation and X contains more signal than Z (¢, = 6,t, = 1), n = 200, p = 1000, SNR = 0.6.

(X1,...,Xn), and z = (Z1,...,Zn), with y5 = v U; + ey
X; = v.U; + €2 and Z; = v, U; + €4, where gy; ~ N (O, 05}43
Exi ~ N (O, Ui), €zxi~ N (0, JE) independently. We show that
the mean squared error (MSE) of the predictions from cooper-
ative learning is a decreasing function of p around 0 with high
probability (see details in ST Appendix Section 4). Therefore,
the agreement penalty offers an advantage in reducing MSE
of the predictions under the latent factor model.

Results

Simulation studies on cooperative regularized linear regres-
sion. Here we compare cooperative learning in the regression
setting with early and late fusion methods in simulations. We
generated Gaussian data with n = 200 and p = 500 in each
of two views X and Z, and created correlation between them
using latent factors. The response y was generated as a linear
combination of the latent factors, corrupted by Gaussian noise.
We introduced sparsity by letting some columns of X and
Z have no effect on y. The detailed simulation procedure is
outlined in Materials and Methods. Data sets are simulated
with different levels of correlation between the two data views
X and Z, different contributions of X and Z to the signal,
and different signal-to-noise ratios (SNR). We consider the
settings of both small p and large p regimes, and of both low
and high SNR ratios. We use 10-fold CV to select the optimal
values of hyperparameters.

We compare the following methods: (1) separate X and
separate Z: the standard lasso is applied on the separate data
views of X and Z with 10-fold CV; (2) early fusion: the stan-
dard lasso is applied on the concatenated data views of X and

Ding etal.

24 with 10-fold CV (note that this is equivalent to cooperative
dearning with p = 0); (3) late fusion: separate lasso models are
first fitted on X and Z independently with 10-fold CV, and
the two resulting predictors are then combined through linear
least squares for the final prediction; (4) cooperative learning
(regression) and adaptive cooperative learning. We evaluated
the performance based on the mean-squared error (MSE) on a
test set and conducted each simulation experiment 10 times.

Overall, the simulation results can be summarized as fol-
lows:

o Cooperative learning performs the best in terms of test
MSE across the range of SNR and correlation settings. It
is most helpful when the data views are correlated and
both contain signal (as in Fig. 34 and Fig. 3B). When
the correlation between data views is higher, higher values
of p are more likely to be selected.

e« When only one view contains signal and the views are not
correlated (SI Appendix Fig. S3C), cooperative learning
is outperformed by the separate model fit on the view
containing the signal, but adaptive cooperative learning
is able to perform on par with the separate model, out-
performing early and late fusion.

e Moreover, we also find that cooperative learning tends to
yield a less sparse model, as expected from the results of
Section E.

We include more comprehensive results across a wider range
of simulation settings in SI Appendix Fig. S1-S6.

Simulation studies on cooperative learning with imaging and
“omics” data. Here we extend the simulation studies for coop-
erative learning to the setting where we have two data views
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of more distinct data modalities, such as imaging and omicss
data (e.g. transcriptomics and proteomics). We tailor thes
fitter suitable to each view, i.e. convolutional neural networks

(CNN) for images and lasso for omics. We simulate the “omics”
data (X) and the “imaging” data (Z) such that they share

some common factors. These factors are also used to generate

the signal in the response y. We use a factor model to gen-
erate the data, as it is a natural way to create correlations

between X, Z, and y. In SI Appendix Section 6, we outline

the full details of the simulation procedure. Fig. 4 shows some

examples of the synthetic images generated for this study.

Disease Sample ‘I’

Healthy Sample /)
1.0 o 1.0
n
0.8 08
06 06 |
L}

0.4 - 0.4 - u
0.2 02
00 =7 T T T T T k o T T T T T

o o <« © @ o Pixel o o~ < © @ o

S IS = = = < Intensity ] S S S = =

Fig. 4. Generated images for “healthy” and “disease” samples. One can think of the
image as an abstract form of a patient’s lung, with the darker spots corresponding to
the tumor sites. The intensity of the dark spots on the disease samples is generated
to correlate with the omics data and the signal in the outcome.

Our task is to use the omics and imaging data to predict
if a patient has a certain disease. We use CNN for modeling
the imaging data and lasso for the omics data, and optimize
the objective for the general form of cooperative learning as in
Eq. (1) with the iterative “one-at-a-time” algorithm outlined
in Eq. (2).

We compare cooperative learning to the following methods:
(1) Only images: a simple one-layer CNN with max pooling
and ReLU activation is applied on the imaging data only; (2)
Only omics: the standard lasso is applied on the omics data
only; (3) Late fusion: separate models (CNN and lasso) are
first fit on the imaging and omics data, respectively, and the

zesulting predictors are then combined through linear least
sguares using a validation set. We evaluated the performance
based on the misclassification error on a test set, as well as
the difference in misclassification error relative to late fusion™.
We consider both low and high SNR settings’. We conducted
each simulation experiment 10 times.

The results are shown in Fig. 5. We find that (1) late fusion
achieves a lower misclassification error on the test set than
the separate models; (2) cooperative learning outperforms late
fusion and achieves the lowest test error by encouraging the
predictions from the two views to agree; (3) cooperative learn-
ing is especially helpful when the SNR is low, while its benefit
is less pronounced when the SNR is higher. The last observa-
tion makes sense, because when the SNR is lower the marginal
benefit of leveraging the other view(s) in strengthening signal
becomes larger.

Multiomics studies on labor onset prediction. We applied co-
operative learning (regression) to a data set of labor onset,
collected from a cohort of women who went into labor spon-
taneously, as described in (22). Proteome and metabolome
were measured from blood samples collected from the patients
during the last 120 days of pregnancy. The goal of the analysis
is to predict time to spontaneous labor using proteomics and
metabolomics data.

The proteomics data contained measurements for 1,322
proteins and the metabolomics data contained measurements
for 3,529 metabolites. We split the data set of 53 patients
into training and test sets of 40 and 13 patients, respectively?.
Both the proteomics and metabolomics measurements were
screened by their variance across the subjects. We extracted
the first time point for each patient from the longitudinal study
and predicted the corresponding time to labor. We conducted
the same set of experiments across 10 different random splits
of the training and test sets.

The results are shown in Table 1. The model fit on the
metabolomics data achieves lower test MSE than the one fit on
the proteomics data. Early and late fusion hurt performance as

*Early fusion is not applicable in this setting.

TThe SNR is calculated based on the logits of the probabilities used to generate the class labels.

*The cohort consisted of 63 patients as described in (22), but in the public dataset we only found 53
patients with matched proteomics and metabolomics data.
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Fig. 5. Simulation studies on cooperative learning with imaging and “omics” data. Panel (A) corresponds to the relatively low SNR setting (SNR = 1) and panel (B) to the
higher SNR setting (SNR = 6). For each setting, the left panel shows the misclassification error on the test set for CNN on only images, lasso on only omics, late fusion, and
cooperative learning; the right panel shows the difference in misclassification error relative to late fusion. Here “Coop” refers to cooperative learning. For both settings, the
range of p values for cooperative learning to select from is (0,20). The average p selected in the low SNR setting is 6.8 and in the high SNR setting is 8.0.
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Table 1. Multiomics studies on labor onset prediction.

Methods Test MSE Relative to Early Fusion Number of Features
Selected
Mean Std Mean Std Mean

Separate Proteomics 475.51 80.89 69.14 81.44 26
Separate Metabolomics 381.13 36.88 -25.24 30.91 11
Early fusion 406.37 44.77 0 0 15

Late fusion 493.34 63.44 86.97 68.13 21
Cooperative learning 364.99 54.85 -41.38 25.63 51

The first two columns in the table show the mean and standard deviation (std) of MSE on the test set across different splits of the
training and test sets; the third and fourth column show the MSE difference relative to early fusion; the last column shows the average
number of features selected. The methods include (1) separate proteomics: the standard lasso is applied on the proteomics data only;
(2) separate metabolomics: the standard lasso is applied on the metabolomics data only; (3) early fusion: the standard lasso is applied
on the concatenated data of proteomics and metabolomics data; (4) late fusion: separate lasso models are first fit on proteomics and
metabolomics independently and the predictors are then combined through linear least squares; (5) cooperative learning (Algorithm 1).

The average of the selected p values is 0.9 for cooperative learning.

compared to the model fit on only metabolomics. Cooperatives
learning gives performance gains over the model fit only oma
metabolomics, outperforming both early and late fusion and

achieving the lowest MSE on the test set.

We examined the selected features from cooperative learn-
ing and the other methods by comparing the ranking of the
features based on the magnitude of their coefficients. All
methods rank sialic acid binding immunoglobulin like lectin-6
(Siglec-6), a protein highly expressed by the placenta (23), as
the most important feature for predicting labor onset. As com-
pared to the other methods, cooperative learning boosts up
the ranking of features such as plexin-B2 (PLXB2), which is a
protein expressed by the fetal membranes (24), and Activin-A,
which is highly expressed by the placenta as well (22). While
factors such as Siglec-6, PLXB2 and Activin-A have previ-
ously also been discovered by (22) for labor onset prediction,
Clq was only identified by cooperative learning as one of the
top 10 features. Clq is an important factor involved in the
complement cascade, which influences implantation and fetal
development (25), and worth further investigation for its role
in predicting labor onset.

Multiomics studies on ductal carcinoma in situ and breast
cancer classification. Finally, we applied cooperative learning
to a data set of breast ductal carcinoma in situ (DCIS), a
common precursor of invasive breast cancer (IBC), as described
n (26). In the data set, the Resource of Archival Breast Tissue
(RAHBT) cohort contained 78 DCIS patients, among which
16 patients had contralateral IBC. Samples were collected
from patients and organized into a tissue microarray, with
laser capture microdissection used to separate the samples into
epithelial and stromal components, which were then sequenced
separately for RNA expression. The goal of the analysis is
to differentiate DCIS patients with and without contralateral
IBC using epithelial and stromal RNA expression.

We split the data set of 78 patients into training and test
sets of 58 and 20 patients, respectively. Both the epithelial
and stromal RNA expression measurements were screened by
their variance across the subjects. We conducted the same set
of experiments across 10 different random splits of the training
and test sets.

The results are shown in Table 2. Early fusion gives some

Ding etal.

grerformance gain over the models fit on the separate data views
smmly. Cooperative learning outperforms early and late fusion,
achieving the highest AUROC on the test set. We examined
the selected features as before by comparing their ranking
based on the magnitude of the coefficients. As compared to
the other methods, cooperative learning boosts up the ranking
of hemoglobin subunit beta (HBB) gene expression in both
epithelial and stromal samples. HBB, a member of the globin
family and oxygen transporter, has been shown to play a role
in breast cancer progression (27).

Cooperative generalized linear models and Cox regres-
sion

We next describe how cooperative learning can be extended to
generalized linear models (GLMs) (28) and Cox proportional
hazards models (29).

Consider a GLM, consisting of 3 components: (1) a linear
predictor: n = XB; (2) a link function g such that E(Y|X) =
g *(n); (3) a variance function as a function of the mean:
V =V(E(Y]X)). For cooperative GLMs, we have the linear
predictor as n = X0, + Z60,, and an additional agreement
penalty term p||(X0, — Z0.)||* with the following objective
to be minimized:

J(82,05) = 6(X 0 + 262,y) + £||(X 0, — 26)]

+ Aa0zll1 + A:[[6=]]1, [13]
where £ is the negative log likelihood (NLL) of the data. For
Cox proportional hazards models, £ becomes the negative log
partial likelihood of the data.

We make the usual quadratic approximation to Eq. (13),
reducing the minimization problem to a weighted least squares
(WLS) problem, which yields

1
min S [||W(z — X6a — 26:)|I* + pl| (X0 — Z62)|[°]

+ Aal|0z[1 + A:|6=]]1,  [14]
where z is the adjusted dependent variable and W is the
diagonal weight matrix, both of which are functions of 8, and
0..
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Table 2. Multiomics studies on ductal carcinoma in situ and breast cancer classification.

Methods Test AUROC Relative to Early Fusion Number of Features
Selected
Mean Std Mean Std Mean

Separate Epithelial RNA 0.79 0.06 -0.08 0.03 10
Separate Stromal RNA 0.86 0.02 -0.02 0.05 16
Early fusion 0.88 0.05 0 0 17

Late fusion 0.81 0.05 -0.07 0.06 17
Cooperative learning 0.93 0.02 0.05 0.05 47

The first two columns in the table show the mean and standard deviation (std) of the area under the receiver operating characteristic curve
(AUROC) on the test set across different splits of the training and test sets; the third and fourth column show the AUROC difference
relative to early fusion; the last column shows the average number of features selected. The methods include (1) separate RNA expression
of epithelial samples: the standard lasso is applied on the epithelial gene expression only; (2) separate RNA expression of stromal samples:
the standard lasso is applied on the stromal gene expression only; (3) early fusion: the standard lasso is applied on the concatenated data
of RNA expression of epithelial and stromal samples; (4) late fusion: separate lasso models are first fit on epithelial RNA expression
and stromal RNA expression independently and the predictors are then combined through linear least squares; (5) cooperative learning
(Algorithm 1). The average of the selected p values is 0.3 for cooperative learning.

This leads to an iteratively reweighted least squares (IRLS)
algorithm:

e Outer loop: Update the quadratic approximation using
the current parameter 6, and 0;, i.e. update the working
response z and the weight matrix W.

o Inner loop: Letting

e wi2x wi?z s W'/ b= 0.
“\-vex vz )07 o )P \e. )
[15ho

solve the following problem 431
1, o~
J(02,02) = 5|12 = XBII” + Xel0al1 + A:[|0z]1,  [16]
which is equivalent to Eq. (14).

Some extensions

Paired features from different views. One can extend cooper-
ative learning to the setting where a feature in one view is
naturally paired with a feature in another view. For example,
if the jth column X; of X is the gene expression for gene j,
while Zj, is the expression of the protein k£ for which gene j
codes. In that setup, we would like to encourage agreement
between X;0,; and Z10.;. This pairing need not exist for all
features, but can occur for a subset of features.

Looking back at our objective function Eq. (4) for two
views in the linear case, we add to this objective a pairwise
agreement penalty of the form

P2 Z (X025 — Zi0.5)?

J,keP

[17]

where P is the set of indices of the paired features.

This additional penalty can be handled easily in the op-
timization framework. For the direct algorithm (Algorithm
1), we simply add a new row to X and g for each pairwise
constraint, while the one-at-a-time algorithm (Algorithm 2)
can be similarly modified.

Modeling interactions between views. In our general objec-
tive function Eq. (1), we can capture interactions between
features in the same view, by using methods such as random

8 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

forests or boosting for the learners fx and fz. However, this
gramework does not allow for interactions between features in
different views. Here is an objective function to facilitate such
interactions:

min E[%(y —Ix(X)— fz(Z) — fxz(X, Z))2

+ 2(0x(X) = f2(2)) + F(X.2)]. 18]

_r
2(1-p)
where fxz (X, Z) is a joint function of X and Z, including for
example, interactions between the features in each view.

The solution to Eq. (18) has fixed points:

_ Yy (1-p)fz(2) [fxz(X,Z)
Ix(X) = E[ler_ (1+p)  14p ‘X}’
_ y 1-pfx(X) fxz(X,Z)
J2(2) = E{1+p7 (1+;) - Xf—kp ‘Z]’
Ix2(X,2) = E[0-p-fx(X) - f2(2)IX, 2] (19]

When p = 0, from Eq. (18) the solution reduces to the additive
model fx(X)+ fz(Z2)+ fxz(X,Z). As p — 1, the joint term
fxy — 0 and we again get the late fusion estimate as the
average of the marginal predictions fx(X) and fz(Z). To
implement this in practice, we simply insert learners such as
random forest or boosting for fx, fz and fxz. The first two
use only features from X and Z, while the last uses features
from both.

Discussion

In this paper, we introduce a new method called cooperative
learning for supervised learning with multiple set of features,
or “data views”. The method encourages the predictions from
different data views to align through an agreement penalty. By
varying the weight of the agreement penalty in the objective,
we obtain a spectrum of solutions that include the commonly-
used early and late fusion methods. The method can choose the
degree of agreement (or fusion) in an data-adaptive manner.

Cooperative learning provides a powerful tool for multi-
omics data fusion by strengthening aligned signals across
modalities and allowing flexible fitting mechanisms for dif-
ferent modalities. The effectiveness of our methodology has
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implications for improving diagnostics and therapeutics in an
increasingly multiomic world.

Furthermore, cooperative learning could be extended to the
semi-supervised setting when we have additional matched data
views on unlabeled samples. The agreement penalty allows
us to leverage the signals in the matched unlabeled samples
to our advantage. In addition, when we have missing valueg,
in some data views, the agreement penalty also allows us tes
impute one view from the other(s). Lastly, the method can be
easily extended to binary, count and survival data.

Materials and Methods

Cooperative learning with more than two data views. When we
have more than two views of the data, X; € R"*P1 X5 €
RMXP2 . X € RMXPM | the population quantity that we want
to minimize becomes

M
min E [%(y - Z_l me (Xm))z

+ 80D U (Xm) = Ix,, (X )? |- [20]

m<m/’

We can also have different weights on the agreement penalties for
distinct pairs of data views, forcing some pairs to agree while others
not. In addition, we can incorporate prior knowledge in determining
the relative strength of the agreement penalty for each pair of views.

As with two views, this can be optimized with an iterative
algorithm that updates each fx, (Xm) as follows:

_ Y
P (Xm) = E[1 (M —1)p
(1 - p) Zm’;&m me/(Xm/

)
- - Xm|. [21
S ! w]- t2)
As in the two-view setup above, the fitter E(-|Xp,) can be tailored
to the data type of each view.

For regularized linear regression with more than two views, the
objective becomes

M
1
J(01,62,....00) = Jlly = Y Xonm| [P+
m=1

M
P
£y (Xl = X8 )| 4+ Y - AmllOml 1 [22)
m<m’ m=1

This is again a convex problem. The optimal solution can be
found by forming augmented data matrices as before in Eq. (6) and

Eq. (7).
Let
X1 X Xnm—1 XM
—vpX1  pX2 .. 0 0
—/pX1 0 VPX -1 0
g | —vrxa 0 0 VPXnm
0 —/PX2 VPX -1 0
0 7\/ﬁX2 0 \/ﬁXju
0 0 —/PXnm-1  PXM
- T 4 T
g=(y o© 0) ,B=(01 6 On) . 23]
then the equivalent problem to Eq. (22) becomes
) M
318 = XBIP+ D Al 1. [24]

m=1

With M views, the augmented matrix in Eq. (23) has n+ (]2\/[) -n
rows, which could be computationally challenging to solve.
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455 Alternatively, the optimal solution 0},0},...,0;\/[ has fixed

Boints
O = Lasso(X, Y5, Am),
- Yy (1 - p) Zm’;ﬁm Xm’gm’ [25]
where y;,, = —
14+ (M -1)p 1+ (M-1)p

This leads to an iterative algorithm, where we successively solve
each subproblem, until convergence. For a large number of views,
this can be a more efficient procedure than the direct approach
in Eq. (24) above. We include simulation studies on cooperative
learning for more than two views in SI Appendix Section 3.

Simulation procedure for cooperative regularized linear regression.
The simulation is set up as follows. Given values for parameters
Ny Pa, Pz Pus Su, ta, tz, Bu, o, we generate data according to the fol-
lowing procedure:
1. z; € R™ distributed i.i.d. MVN(0,I,) for j =1,2,...
2. zj € R™ distributed i.i.d. MVN(O, I,) for j = 1,2,...,p..
3. For i =1,2,...,pu (pu corresponds to the number of latent
factors, pu < pz and py < p2):
(a) u; € R™ distributed i.i.d. MVN(0, s21I,,);
(b) =i =z + to *us;
(¢) zi = zi +tz *xu;.
4 X = [$17$21 . '7$Pz]7 Z = [2’17227. . -72Pz}'
5. U = [u1,u2,...,Up, ], Yy = UBy + € where e € R™ distributed
i.i.d. MVN(0,021,).
There is sparsity in the solution since a subset of columns of X
and Z are independent of the latent factors used to generate y.

s Pz -

Relation to existing approaches. We have mentioned the close con-
nection of cooperative learning to early and late fusion: setting
p = 0 or 1 gives a version of each of these, respectively. There
are many variations of late fusion, including the use of stacked
generalization to combine the predictions at the last stage (30).

Cooperative learning is also related to collaborative regression
(31). This method uses an objective function of the form

bz bz bzz
P |y — XOa||? + 22|y — 2622 + Z2(|X0: — 262 |%.  [26]

With ¢; penalties added, this is proposed as a method for sparse
supervised canonical correlation analysis. It is different from co-
operative learning in an important way: here X and Z are not
fit jointly to the target. The authors state that collaborative re-
gression is not well suited to the prediction task. We note that if
byy = bzy = bz = 1, each of ém,éz are the one-half of the least
squares (LS) estimates on X, Z respectively. Hence the overall
prediction g is the average of the individual LS predictions. This
late fusion estimate is the same as that obtained from cooperative
learning with p = 1. In addition, a related framework based on
optimizing measures of agreement between data views was also
proposed in (32), but it is different from cooperative learning in the
sense that the data views are not used jointly to model the target.

Cooperative learning also has connections with contrastive learn-
ing (18, 19). This method is an unsupervised learning technique
first proposed for learning visual representations. Without the su-
pervision of y, it learns representations of images by maximizing
agreement between differently augmented “views” of the same data
example. While both contrastive learning and cooperative learning
have a term in the objective that encourages agreement between
correlated views, our method combines the agreement term with
the usual prediction error loss and is thus supervised.

Moreover, the iteration Eq. (2) looks much like the backfitting
algorithm for generalized additive models (33). In that setting, each
of fx and fz are typically functions of one-dimensional features
X and Z, and the backfitting algorithm iterations correspond to
Eq. (2) with p = 0. In the additive model setting, backfitting is
a special case of the Gauss-Seidel algorithm (33). In cooperative
learning, each of X, Z are views with multiple features; we could
use an additive model for each view, i.e. fx(X) = Zigi(Xi)’

fz(Z) = Z‘j h;(Z;), where i and j are column indices of X and Z,

respectively. Then each of the iterations in Eq. (2) could be solved
using a backfitting algorithm, leading to a nested procedure.
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We next discuss the relation of cooperative learning to a rees
cently proposed method for multi-view analysis called sparse 1605

tegrative discriminant analysis (SIDA) (34). This method aims
to identify variables that are associated across views while also
able to optimally separate data points into different classes. Specif-
ically, it combines canonical correlation analysis and linear dis-
criminate analysis by solving the following optimization problem.
Let X3 = (wlk,...,mnk,k)T € R™XP g € RP be the data
matrix for class k, where k¥ = 1,...,K, and nj is the num-
ber of samples in class k. Then, the mean vector for class k is

A n . .
[y = i i—kl x;r; the common variance matrix for all class

is Sy = 22{:1 Z:L:l(wik — i) (xip — fir)T; the between class

covariance matrix is Sp = Zszl (i — ) (e — )T, where

N K J .
o= %Zk:l ngfr is the combined class mean vector. Assume

that we have two data views X € R"*Pz and Z € R"*P=
with centered columns, we want to find A = [a1,...,ax_1] and
B = [b1,...,bx_1] such that

max p-tr(ATSTA+ BTSEB) + (1 — p) - tr(AT S, BBT ST, A)
st. tr(ATSTA) /(K —1) =1 & tr(BTSZB) /(K —1) =1,

where S;, € RPzXPz is the sample cross-covariance matrix
between X and Z. Here, tr(-) is the trace function, and p is the
parameter that controls the relative importance of the “separation’
term and the “association” terms in the objective. While SIDA
also considers the association across data views by choosing vectors
that are associated and able to separate data points into classes, it
solves the problem in a “backward” manner, that is the features
are modeled as a function of the outcome. Cooperative learning,
in contrast, solves the problem in a “forward” manner (Y ~ X, Z),
which is more suitable for prediction.

We also note the connection between cooperative learning (re-
gression) with the standardized group lasso (35). This method is a
variation of the group lasso (36), and uses

[ X0zl2 + 1202 ||2

)

(27]

as the penalty term, rather than the sum of squared two norms.
It encourages group-level sparsity by eliminating entire blocks of
features at a time. In the group lasso, each block is a group of
features, and we do not expect each block to be predictive on its
own. This is different from cooperative learning, where each feature
block is a data view and we generally do not want to eliminate an
entire view for prediction. In addition, the standardized group lasso
does not have an agreement penalty. One could in fact add the
standardized group lasso penalty (27) to the cooperative learning
objective, which would allow elimination of entire data views.

Code and data availability. The data associated with the labor
onset study (22) can be obtained via Zenodo ( doi: 10.5281/zen-
0d0.4509768). The data associated with the DCIS study will
be made available by (26) on the Human Tumor Atlas Network
public repository. The code used to perform the study has
been deposited onto the cooperative-learning GitHub repos-
itory. An open-source R language package for cooperative
learning called multiview is available on the CRAN reposi-
tory.
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