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Flesh encodes a variety of haptic information including deformation, temperature, vibration, and damage stimuli
using a multisensory array of mechanoreceptors distributed on the surface of the human body. Currently, soft
sensors are capable of detecting some haptic stimuli, but whole-body multimodal perception at scales similar to
a human adult (surface area ~17,000 square centimeters) is still a challenge in artificially intelligent agents due to
the lack of encoding. This encoding is needed to reduce the wiring required to send the vast amount of informa-
tion transmitted to the processor. We created a robotic flesh that could be further developed for use in these agents.
This engineered flesh is an optical, elastomeric matrix “innervated” with stretchable lightguides that encodes haptic
stimuli into light: temperature into wavelength due to thermochromic dyes and forces into intensity due to me-
chanical deformation. By exploiting the optical properties of the constitutive materials and using machine learning,
we infer spatiotemporal, haptic information from light that is read by an image sensor. We demonstrate the capa-
bilities of our system in various assemblies to estimate temperature, contact location, normal and shear force,
gestures, and damage from temporal snapshots of light coming from the entire haptic sensor with errors <5%.

INTRODUCTION

In living beings, the haptic system, often called touch, has been de-
fined as the ability of the individual to sense the world adjacent to
them by use of their body (I). Temperature, contact, pressure, damage,
vibration, shear, and so on are felt simultaneously as intertwined,
encoded qualities of the agent’s interaction with an external object
(2, 3). The flesh is the organ that encodes the stimuli from the
agent-object interface as a common language using an embedded,
multisensory array of mechanoreceptors. Furthermore, this encod-
ing is directly responsible for creating salience (4-7) and meaning
through interactions with objects in the environment (8). For our
purposes, salience is given by the object’s distinguishing physical
properties (e.g., density, stiffness, etc.), and meaning is the agent’s
interpretation of these qualities (e.g., warm or cold, hard or soft,
and safe or threatening). Encoding of multimodal stimuli is needed
to reduce the amount of data transmitted over the finite number of
connections physically allowed and still retain the richness of infor-
mation communicated from lower perceptual levels (i.e., mechano-
receptors) to higher ones (i.e., the brain).

This information encoding is lacking in embodied, artificially
intelligent (AI) agents (i.e., robots). At present, most sensing systems
are activated individually and read sequentially. Although there are
multimodal, haptic, rigid sensors (9-13), we focus on soft sensors
because, as they are pressed, they spread across and conform to a
surface and capture more information about the object. Most of these
sensors measure stimuli separately: mechanical strain for force pre-
diction (14-18) or electrical conductivity for temperature estima-
tion (19, 20). Optical techniques, which simultaneously transmit
wavelength and intensity information, provide a natural pathway to
output rich, intertwined data required for the agent to understand
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touch (e.g., temperature, pressure, location, damage, etc.). Previous
work presented systems that encode mechanical deformation in light
intensity using stretchable fiber optics in an elastomeric matrix (21-24).
In a similar way, Van Meerbeek et al. (25) has shown that fiber op-
tics can be read in parallel by using an image sensor. Another type
of haptic system is a class of vision-based sensors [e.g., GelSight (26),
Digit (27), and others that are similar (28-34)] that consist of an
elastomer gel on top of a camera that sees the deformation of the gel
when in contact with an object. These systems encode haptic stimuli
into an image to acquire very high-resolution measurements of
shape and contact forces; however, they are still measuring only
mechanical deformation and tend to be impractical for large surfaces
and complex geometries.

We created a soft, optical, sensing system, called robotic flesh,
that encodes haptic stimuli into light. This system allows for parallel
reading of multiple points on the flesh where each point carries
physically concurrent, multimodal, haptic information. We take inspi-
ration from mammals, where the encoding is based on the simultaneous
activation of a high-density distribution of mechanoreceptors, free
nerve endings, and cells embedded in soft tissue [~58 units cm > in
the human palm (35)]. In our system, a multilayered soft composite
encodes haptic information in light: temperature in wavelength and
pressure in intensity. Randomly or uniformly distributed nerves
(i.e., stretchable optical fibers) sample light from remote locations
in the flesh and send this information to a complementary metal-
oxide semiconductor (CMOS) image sensor chip connected to a
computer. The use of waveguides allows our system to scale to cover
large surfaces (the whole body of the robot) and keep the rigid elec-
tronics [image sensor, light-emitting diodes (LEDs)] compact, thus
increasing the useful sensing area. The cross section of the fiber
bundles and the area of the CMOS image sensor limit the number
of fibers that can be placed in the body. The optimization of the
system, therefore, must be made toward sensory density in the flesh
and available resources for the electronics in the agent.

To make sense of this haptic information, we use machine learning
(ML), because it is an effective tool for state estimation in model-free
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sensory systems such as ours. By using this architecture, our system
can sense contact location, pressure, shear, gestures, temperature,
and damage purely on the basis of interaction of light with its con-
stituting materials. From our tests, the robotic flesh has a touch
positional accuracy of 1.25 mm, a force estimation with a mean ab-
solute error (MAE) of 0.32 N, and a temperature estimation MAE of
1.12°C in the range of 15°C < T < 60°C. In addition, it has the ability
to differentiate between at least three different gestures composed
of shear and normal forces and can detect direct physical damage.
Furthermore, after being cut once, the flesh continues to operate
with 23% decrease in force sensitivity at 10 N on average over three
samples (see the “Experimental procedure for material characteri-
zation in assembly 0” section in Materials and Methods).

RESULTS

System design

Hardware

The robotic flesh is based on a multilayered architecture of elastomer
materials (elastic modulus ranging from 0.5 MPa < E < 1.0 MPa)
with optical properties that allow for multimodal sensing. The flesh
is innervated with stretchable optical fibers that sample light and
project it onto an optoelectronic sensor (CMOS, OmniVision OV2710,
sensitive area = 5.86 mm by 3.28 mm, electronics board size = 35 mm
by 35 mm; Fig. 1A). Its structure from top to bottom consists of a
stack of elastomer layers: coating A, coating B, thermochromic (color
transient at low, 31°C, and high, 45°C, temperature), transmission,
and coating B embedded with optical fibers.

Light is emitted by an LED into the optically clear (I*I, " ~ 80%;
fig. S1A) transmission layer (silicone gel; Gelest Inc., Oe39, n = 1.39;
fig. S1B) that disperses light throughout the body. The two coating
B layers of silicone rubber (Wacker Inc., M4601, n = 1.41; fig. S1B)
sandwich the transmission and thermochromic layers. Above the
upper coating B, a coating layer of low transmission (coating A;

Fig. 1. Overview of the elastomeric, optoelectronic, robotic flesh. (A) Schematic showing the functional layers
and components of the robotic flesh in an arm capable of feeling touch, damage, and heat. (B) ML architecture that
estimates contact location, force, and temperature and identifies cut and gestures by analyzing color and intensity of

light transmitted by optical stretchable fibers through the robotic flesh.
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black-dyed Wacker M4601, I*I,”" ~ 100%; fig. S1A) covers the
structure to keep ambient light from entering the system. We in-
cluded upper coating B to prevent light in the transmission and
thermochromic layers from being absorbed by the black pigment in
coating A. We chose the M4601 elastomer for coating B because it
had been used previously as cladding material for stretchable fibers
(21). A more appropriate material choice in the future would be
minimally absorbing and have a lower index of refraction than the
transmission layer. The thermochromic layers change color with
temperature; we accomplished this effect by combining a silicone gel
(Gelest Inc., Oe39) with commercially available pigments (blue-to-
colorless 31 and red-to-colorless 45, Atlanta Chemical Engineering
Inc.) that transition from colored to clear at 31° and 45°C respec-
tively. These thermochromics are made of microencapsulated Leuco
dyes that undergo a first-order phase transition in response to tem-
perature changes (36-38). We used two layers so that we could mea-
sure a continuous range of temperatures 10°C < T < 80°C. Uniformly
distributed stretchable optical fibers (d = 0.5 mm, CrystalTec, Yunze
Inc., Korea) sample light from within the transmission layer through
the bottom coating B onto the CMOS image sensor. These fibers
have high transmittance (I*I,”' ~ 95%; see the “Transmission and
refraction of each material” section in the Supplementary Materials;
fig. S1A) and a higher index of refraction (n = 1.54; fig. S1B) than
the coating B so light is trapped because of total internal reflection.
This architecture of soft, functional elastomers allows the robotic
flesh to have similar mechanical properties and distributed sensing
capabilities to porcine skin over the compressive strain range 0 <y
< 0.24 (see the “Compression” section in the Supplementary Materials;
fig. S1C) and minimize the need for excess rigid wiring and solid-
state electronics in the system. Additional design choices are discussed
in the “Design considerations” section in Materials and Methods.
Software

Designing an estimator based on first principles to predict the state
of the robotic flesh from measurements of light is challenging and
not scalable because of the complexity
of the interactions of light with the mate-
rials including reflection, refraction, trans-
mission, coupling, and losses. Hence,
we chose to use a ML approach because
it is a well-known tool for state estima-
tion of systems with complex dynamics
(25, 39) such as ours. An additional
benefit of customizing ML models for
each specific system is that they account
for variability and fabrication defects. The
overall system architecture for learning
(Fig. 1B) follows the classic supervised
learning framework where it uses ob-
servations (input) and ground truth data
(annotation label) pulled from the training
dataset Dy, to infer a model. It includes two
subsystems: training and predicting. The
training subsystem consists of a feature
extraction and a model selection mod-
ule. The feature extractor (fig. S2) pulls
meaningful information from the image
coming from the image sensor by captur-
ing a red-green-blue (RGB) image frame
(1280 pixels by 720 pixels by 3 pixels),
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downsampling it by 50%, and filtering the frame with a previously
acquired mask (fig. S3) to extract circular regions of interest correspond-
ing to each waveguide; then, the mean RGB intensities of each region
of interest are stored as features. The model selector trains various
models using different supervised learning algorithms (e.g., support
vector machine and random forest) and then chooses the one that per-
forms the best on the basis of the accuracy score {TocE2IIe £ Tuence tlve)
Y \ total
for classification and MAE (% D1 [ypredicted = Yactual | ) for regression eval-
uated on the validation dataset, Dy,. Additional performance metrics
were used to choose the models including precision, recall for the
classifiers, and inference run time for the classifiers and regressors (see
the “ML testing in assembly 2” section in Materials and Methods).
Last, the predicting subsystem uses the learned model to estimate the
state (e.g., contact location, temperature, force, etc.) of the system
online on the basis of the chromaticity and light intensity distribu-
tion from the waveguides.

Material characterization

We characterized the optical response to primitive haptic stimuli:
temperature, force, and damage using a single 3 cm-by-3 cm section
of our robotic flesh with one embedded waveguide (assembly 0,
Fig. 2A; see the “Fabrication of the robotic flesh” and “Experimental
procedure for material characterization in assembly 0” sections in
Materials and Methods). In Fig. 2B, we show that the intensity of
light sampled by a waveguide increases with respect to the applied
force (0 N < F < 25.2 N) at room temperature. This phenomenon
likely happens because, as the sample becomes locally narrower due
to the indentation, light rays bounce more often along the walls
(gel-coating interface), thus increasing the chances of a ray entering

a fiber. Our ray optics simulation (fig. S4; see the “Geometrical optics
simulation” section in the Supplementary Materials) validates our
hypothesis, showing an increase in intensity at increasing forces ex-
erted by an indenter centered on the top of the fiber. We observed
similar intensity dependence on force over all temperatures that we
measured (0°C < T < 80°C; fig. S5).

For temperature characterization, we measured light from 450 < A <
750 nm, which corresponds to the spectrum of where the CMOS
image sensor is sensitive. The spectrum sampled by the waveguide
shows an expected shift in wavelength corresponding to a color
change of the thermochromic gels due to temperature (movie S1). In
Fig. 2C, we show the normalized intensity ((Xrx; + Xox; + sz,-)*lzrang@q),
where x; is intensity count, versus temperature (0°C < T'< 90°C) in red
(550 nm <A < 750 nm), green (500 nm < A < 650 nm), and blue (450 nm <
A <550 nm) ranges corresponding to the RGB regions of a standard
CMOS image sensor (40). We did this summation across five forces
between 0N < F < 252N, and we see that the temperature dependency
of the flesh is independent of force, allowing us to decouple the two
measurements. From the graph, we infer the functional range, where
the change of color is more apparent, between 15°C < T < 60°C.

In soft systems such as ours, damage such as cuts could lead to
sensitivity reduction, untrustworthy measurements, or the complete
loss of perception. Therefore, damage detection is important to pro-
vide causal information for the robot to, for example, reject measure-
ments from faulty portions of the sensor, learn from the dangerous
experience, or avoid further damage. As shown in Fig. 2D, a cut
(width = 0.1 mm, length = 2 cm, and depth = 1 cm) made by a blade
can be identified by a characteristic signature in the intensity time
series. This signature consists of an up-peak followed by a particularly

Fig. 2. Sensor characterization to various haptic stimuli. (A) Experimental setup used to characterize the response of a robotic flesh sample with one fiber (assembly
0) to changes in (B) force at room temperature (22°C) and (C) temperature at various indentation forces. (D) Response of the sample to a blade cut of 20 mm length and
10mm depth. (E) Testbed (assembly 1) with 36 fibers used to characterize the response to shear and pressing. (F) Differential intensity at various forces for shear and
pressing of an applicator centered at segment ¢3. (G) Heatmaps showing the light intensity change of the fibers for shear and pressing at 10 and 35 N with dotted sym-
metry lines for calculating differential intensity and a white dotted box to show the placement of the applicator. (H) Receptive field of a fiber for pressing at 20 N.
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large down-peak (below the steady-state intensity). From observing
a video of the cut (movie S2), we see that the up-peak corresponds
to the point when the first layer of the flesh ruptures and the down-
peak happens when the blade starts coming out of the flesh. The
instantaneous decrease in intensity during cutting is explained by
the interference of the sharp object (such as a knife) with the light
rays inside the flesh. The permanent decrease in sensitivity after
cutting is explained by the presence of cracks in the optical layers.
Even after a large cut, the flesh can sense touch, albeit with decreased
force sensitivity. The intensity of light (1 = redﬂgfw sensed
afterthecutdecreasedby1 — Ap?fs‘gne = ] e bidnalaal ()3
for the same indentation force (10 N).

Because a monolithic volume of elastomer allows for continuum
displacement of its surface and propagation of this stress and strain
to its subsurface, we chose to use this robotic flesh to measure both
normal and shear force input. We evaluated pressing and shearing
using a 7 cm-by-7 cm testbed of our robotic flesh with 36 wave-
guides uniformly distributed (assembly 1, Fig. 2E; 0.73 fibers cm}
see the “Fabrication of the robotic flesh” and “Experimental proce-
dure for material characterization in assembly 1” sections in Mate-
rials and Methods). This array is important because we observe
shear primarily by changes in light intensity patterns across the
flesh surrounding the applicator. In Fig. 2F, we show the differential
intensity of light sampled by the fibers across varying symmetry
lines (i.e., horizontal and vertical) aligned at the center of the appli-
cator for pressing and shear forces at room temperature (fig. S6A
shows the experimental setup; see the “Experimental procedure for
material characterization in assembly 1” section in Materials and
Methods). The differential intensity is defined as the difference in
the sums of the signals on each side of the symmetry line minus
the ones on the other side (for horizontal symmetry: abs(%;,,li, —
Lo sombivonom) @and for vertical symmetry: abs(Z i Lingn = Zjeljien))-
Figure 2G shows the heatmaps of the light intensity changes (I —
Isteady states Steady state: Fgpear = O N, Fyress = 0 N, I € [0,255]) from the
fibers surrounding the applicator at 10 and 35 N (see fig. S6, B and
C, for other forces). As seen in Fig. 2F, only shear produces an in-
creasing differential intensity in the shear direction (vertical sym-
metry) with increasing force. We suspect that this effect occurs as
depicted in a simplified system with two fibers shown in fig. S6D. As
we shear (in this case, to the right), the indenter gets farther from
the fiber opposite to the shear direction (fiber A), and it gets closer
to the fiber in the shear direction (fiber B). The rays, therefore, are
more likely to enter the receptive field of fiber B than fiber A as we
have seen in the simulation (fig. S4). From the heatmap of the press-
ing, we see that the intensities of the fibers directly below or close to
the applicator (b2-d4) show an increase in intensity with increasing
force in accordance with Fig. 2B; the fibers far from the applicator
see a decrease in intensity, suggesting that shadows are cast on these
fibers. Unexpectedly, the fibers closer to the edge of the applicator
see a higher change of intensity than the fiber directly below. This
happens potentially because of the presence of corners that could
direct more rays into the lightguide because of the larger variety of
angles compared to a flat surface.

To characterize the receptive field of a single fiber, we calculated
the normalized intensity change (KK = A?nlm; Al = I = Iteady state
and Alyay = I — Isteady states Lot intensity when pressing directly above
the fiber) of the light sampled by a specific fiber when pressed with
F =20 N (Fig. 2H; see fig. S7A for other forces). We performed this
procedure at locations from 88=0 to 25 mm, where 33 is the

Inaxyeorecue — Ibaselinebefore cut
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distance from the center of the fiber end to the center of the circular
indenter (d = 5 mm), at angles 0°, 90°, 180°, and 270° (see the
“Experimental procedure for material characterization in assembly
1” section in Materials and Methods). We show that | kx| decreases
as we move radially away from the center of the fiber. We define {
as the maximum distance at which a press can be read from a fiber
(§ =685, when | kK| <0.1). For assembly 1, the minimum readable
signal is at { = 10 mm where | kx| = 0.074 (averaged over all forces
measured in all angle directions; fig. S7B). Therefore, to ensure that
there are no immeasurable zones, fibers should be located within 28 =
20 mm apart from each other in any direction. This distance could
change depending on the system characteristics such as the intensity
of the LEDs, sensitivity of the CMOS image sensor, diameter of the
fiber, thickness of the optical layers, and geometry.

Robotic flesh haptic characterization

We characterized the sensing capabilities of our flesh using an
11 cm-by-7.5 cm testbed that includes 28 uniformly distributed
waveguides (assembly 2; fig. S8; 0.34 fibers cm ™ see the “Fabrication
of the robotic flesh” section in Materials and Methods) by measuring
the positional accuracy of single- and multitouch pressing, spatial
resolution for single pressing, classification accuracy for gesture iden-
tification, accuracy of cut detection, and error for force and tem-
perature estimation.

The estimation of contact location was framed as a ML classifi-
cation problem where a model trained on labeled data ({X, Y}, x €
X, x = [ay, .., ay], a;: mean intensity of fiber iand y € Y: ID of indented
segment s) assigns a unique label y €Y to the input data x. Figure 3
(A to C) shows the confusion matrix of the predicted versus the
ground truth labels for the testing dataset D, where the color corre-
sponds to the classification accuracy. For single-touch location on a
77-square grid using a circular indenter (d = 1 cm), the classifica-
tion accuracy is 1.00 (Fig. 3A). For multitouch location on a nine-
square grid using the same indenter, the classification accuracies are
1.00, 1.00, and 0.98 for single, double, and triple touch, respectively
(Fig. 3B). We evaluated the resolution I'y;, of single-touch location
in 16 segment grids (16, 4, 2, and 1 cm®) with corresponding indent-
ers of d = 10, 5, 2.5, and 1.25 mm; smaller indenters were not used
because they would puncture the flesh. The classification accuracies
are 1.00, 1.00, 1.00, and 0.99 from largest to smallest indenter, re-
spectively (Fig. 3C). These data show that we can identify the position
of pressing on a grid with at least 1.25-mm cell spacing. In an indirect
comparison, the human hand can identify two simultaneous pressings
as individual contacts when 2.2 mm apart at the index fingertip (41).

For gesture estimation, we used a classifier that takes a set of
features of the monochrome mean intensity time series using a 500-ms
sliding window (42) (see the “ML testing in assembly 2” section in
Materials and Methods). The model identifies the absence of touch
(steady state, SS) and three distinct gestures that were performed
manually on the flesh: pinching, sliding, and twisting that include
normal and shear forces. Figure 3D shows the confusion matrix with
an accuracy of 1.00 for all the classes.

Force and temperature estimation were framed as a regression prob-
lem where the model estimates a continuous value (w € R) based on
the input x. In Fig. 3E, we show the absolute error of the force estimation
for a single touch between 0 < F < 16 N using an indenter (d = 1 cm).
The MAE is 0.32 N across the entire range, defining the force reso-
lution of our system. In comparison, humans are able to distinguish
two subsequent forces at a difference of 0.18 N at the fingertip (43).
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Fig. 3. Results of the estimations of haptic stimuli on a rectangular testbed. Schematic showing the test spaces and the normalized confusion matrices for the esti-
mation of (A) single-touch location; (B) multitouch location for single, double, and triple touch; (C) single-touch location at different indenter diameters to evaluate reso-
lution; and (D) gesture identification. (E) MAE distribution for force estimation. (F) Example of temperature estimation. (G) MAE distribution for temperature estimation.
Dashed lines show the averaged MAE in the given range. (H) Normalized intensity change of the closest fibers to a cut versus depth of cut exerted with a blade (width=1.1 cm).

SD (n=10 cuts) is shown in gray.

For temperature, we use 77 regressors in parallel to estimate the
local temperature of each segment (a = 1.00 cm?) of the flesh. The
ground truth temperature was acquired by using a thermal camera
(FLIR Inc., TG165). Figure 3F shows the ground truth, estimation,
and error heatmaps along with the thermal image of the robotic flesh
after touching a flexible heater (see the “ML testing in assembly 2”
section in Materials and Methods; fig. S9). We quantify these results
in Fig. 3G where we show the distribution of the absolute error versus
quasi-static surface temperature (0 < T < 80°C) for each segment.
From these data, we validate that our system performs better in the
range 15 < T < 60°C with an average error of 1.12°C, consistent with
the measurement of color change versus temperature in Fig. 2C. The
other ranges 0 < T'< 15°C and 60 < T < 80°C experience an averaged
MAE of 3.90° and 5.41°C, respectively. Lower errors could be achieved
by using a combination of thermochromic dyes with transition tem-
peratures uniformly distributed along the desired range.

We exerted cuts on the flesh at various depths using a blade to
cause damage to the robotic flesh (width = 11 mm and thickness =
0.1 mm; fig. S10A; see the “Damage characterization in assembly 2”
section in Materials and Methods). In Fig. 3H, we show the aver-
age O\I/erIIO cuts (fig. S10B) of the normalized intensity change
(L Y51 = R+G+B I intensity of the ith closest fiber) for the
first! closest fiber, the second to fifth closest fibers, and the sixth to
ninth closest fibers to the center of the cut (fig. S10C). A cut produces
an intensity drop in the closest fibers to it; a larger drop is evidenced

Barreiros et al., Sci. Robot. 7, eabi6745 (2022) 8 June 2022

at the first closest fiber and the intensity decreases as the radial dis-
tance to the fiber increases. We can also infer that the minimum cut
that can be identified is at 2-mm depth. We point out that a very shallow
cut and a very hard pressing can create similar levels of intensity drop
although in different fibers; however, we believe that a more so-
phisticated algorithm that detects features in the time series (as
in the gestures estimator) could pick up the characteristic signa-
ture of cut.

Demonstration of haptic sensing in a human-scale forearm
We designed a forearm (assembly 3; fig. S11) to showcase the scal-
ability of the system to larger embodiments and its flexibility to
be shaped in more complex geometries. The forearm consists of a
three-dimensionally (3D) printed, rigid lattice that serves as the
structural support (bone) for the robotic flesh and a conduit for the
optical waveguides. We were able to thread 120 waveguides
(0.53 fibers cm ™ of bone surface) limited by the sensing area of the
CMOS image sensor; although the fibers were manually placed to
make it somewhat uniformly distributed, the mapping from the
fiber location in the coating B layer to the image sensor is random.
We cast the elastomeric layers of the robotic flesh following the
same procedure as that for assemblies 1 and 2 (see the “Fabrication
of the robotic flesh” section in Materials and Methods). For sensing
evaluation, we divided the surface of the forearm into 59 segments
and used two acrylic rings to hold it in place (Fig. 4A).
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To demonstrate simultaneous online estimation of touch loca-
tion and force, we randomly selected eight segments and captured
training data. We acquired the training dataset by manually indent-
ing the segments using a metal rod (d = 5 mm) with forces ranging
from 0 < F < 20 N in steps of 1.0 N, 20 times. The indenter was
connected to a load cell (Sparkfun Electronics Inc.; 5-kg TAL220B
load cell) for ground truth recordings. We then trained a model for
touch location and another for force and used them in parallel for
estimation. For testing, we pressed four segments in a random se-
quence and recorded a video showing the poking location (movie
S7) and force estimation in a graphic reconstruction of the forearm
(Fig. 4A and movie S8). We also show the time series for ground
truth and force estimation for one segment (Fig. 4B and movie S8).
We evaluated the location and force estimations on the testing data-
set, obtaining 97% positional accuracy and MAE = 0.24 N, respec-
tively. We recorded a video of our script working in real time,
showing the waveguide signals and the cut identification for the fore-
arm when damaged with a scalpel (Fig. 4C and movie S10). Damage
was detected by simply looking at drops in the intensity signal
greater than 10% in at least four fibers or a large drop, more than
40%, in at least one fiber. This pattern is consistent with the results
from the cut experiment in Fig. 3H. For temperature, we selected a
region of the forearm (Fig. 4D and movie S9) and divided it into a

Fig. 4. Demonstration of the proposed robotic flesh in a human-scale forearm. Images showing the test space
and a screenshot of the visualization for various tests. (A) Location and force estimation of touch. (B) Estimated force
and ground truth reading from a force gauge of an indenter pressing on segment 0. (C) Identification of cuts made
with a scalpel. Gray boxes show the start and end of a cut. (D) Temperature ground truth, estimation, and error of a
sequence (101.7 s) corresponding to the cooling down of the forearm after being heated with a heat gun. The heat-
map shows the visualization of a 6-by-5 matrix of temperatures with linear interpolation.

Barreiros et al., Sci. Robot. 7, eabi6745 (2022) 8 June 2022

6-by-5 grid. We then acquired a training dataset (n = 624) for tem-
peratures from 20 < T < 75°C by using a flexible heater and Peltier
plate. For testing, we heated the region with a heat gun for about 60 s,
and, while the flesh cooled down, we captured a sequence of ther-
mal images and saved the frames for 101.7 s at a sampling rate of 15
frames min~! (movie $9). We show a comparison of ground truth to
estimated temperature and the error for frames sampled every ~19 s
(Fig. 4D). From these data, we successfully predict the temperature
with a MAE of 2.39°C.

DISCUSSION
We developed a robotic flesh that can encode rich, multisensory,
and haptic stimuli into the color and intensity of propagating light
rays by exploiting the optical properties of the constitutive materi-
als. We sampled light from within the flesh using stretchable optical
waveguides that serve as nerves to transport information toa CMOS
image sensor to be processed at a higher perceptual level (i.e., brain).
Light is interpreted by a supervised learning model to estimate tem-
perature, location, pressure of touch, gestures, and even damage
perceived in parallel from proximal and distal regions of the body.
Our robotic flesh is able to identify a single-touch location with spa-
tial resolution 'y, = 1.25 mm (T, length of a square segment) at 5 N,
at least three simultaneous pressings
with 97.8% accuracy, force estimation
with an error of +0.32 N over a range of
0 < F< 16 N, cut detection with a mini-
mum depth of 2 mm, three distinct ges-
tures that include normal and shear forces
(i.e., pinching, sliding, and twisting), and
temperature with an error of +1.12°Cin
the range of 15°C < T < 60°C.

The characteristics of our system are
a step forward in artificial haptic per-
ception, albeit we are currently far from
the abilities of human flesh, including the
ability to sense high-frequency vibration
[5 to 150 Hz, Meissner corpuscles; 20 to
1000 Hz, Pacinian corpuscles (44)], iden-
tify static and dynamic contact, and detect
rapid changes in temperature (45, 46).
Despite this large gap, there are many ways
to improve our system. Spatial resolu-
tion for touch location, temperature, and
damage estimation could be increased by
embedding a greater number of wave-
guides and optimal allocation of them
at the cost of a larger or multiple image
sensors and fabrication complexity. Sug-
gested by the high accuracy for three
simultaneous touches, we believe that
we could estimate multitouch location
for more points if the training dataset is
extended to those cases. Temperature sens-
ing can be enhanced by optimizing the
number of thermochromic layers and their
geometry for the desired range and reso-
lution. Furthermore, higher thermal con-
ductivity of the coatings (A and upper B)
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and thermochromic layers would result in faster thermal equilibri-
um of the system (47-50), thus allowing rapid temperature changes
to be detected. Damage could be accumulated without losing sensi-
tivity by using self-healing elastomers, but this is still an active area
of research (51-53). The ability of the system to detect high-frequency
force changes is limited by the sampling rate of the CMOS image
sensor and computer processing speed. A specialized image sensor
that is faster [e.g., On Semiconductor, LUPA3000 series, 485
(3 megapixels) to 2653 fps (307 kilopixels)] and a faster processor
may permit sensing of vibration. A more sensitive image sensor
could allow for longer waveguides, or less powerful LEDs. In addi-
tion, an extra sensor channel (e.g., microphone array and photodiodes)
could be embedded in the structure of the system to detect quickly
changing stimuli. Currently, we use the mean intensity of the region
corresponding to each waveguide as features for the learning models.
A higher number of sampled points in the frame could increase the
sensitivity and resolution of the sensor and allow for other sensing
modes (e.g., slip).

A major limitation of our work is the need for large datasets for
training that is time consuming and might not be scalable in certain
cases. We believe that by using our robotic flesh in an embodied Al
agent, more sophisticated training algorithms can be used to reduce
the amount of data provided by the designer. For example, curriculum
learning (54), where basic skills are learned first and others are built
upon them, could reduce the size of the training dataset required
(e.g., learning the spatial component of temperature could be sim-
plified by first learning to estimate touch location). Another exam-
ple would be to use reinforcement learning in combination with our
robotic flesh, which could form the basis of an embodied agent that
can learn by itself to feel touch without supervision by touching its
own body in the real world or in simulation (55).

In the future, the use of a whole-body robotic flesh for an em-
bodied Al agent could allow it to recognize the boundaries of its own
body by exploiting the confluent multimodal haptic data. In addition,
the ability to perceive damage could lead to self-preservation behaviors
that are crucial to endure long-term and autonomous missions.

MATERIALS AND METHODS

Design considerations

Layer thickness

Every layer should be as thin as possible other than the following
considerations. The transmission and thermochromic layers com-
bined need to match the LED size. The thermochromic layer should
be thick enough so the color change is notable. The coating A should
be thick enough so it blocks environmental light. Bottom coating B
should be thick enough so sharp bends in the fibers are avoided thus
reducing losses. Optimization of the layer thicknesses opens the
possibility for other fabrication methods such as stencil printing.
This method could allow for reduced curing time and a more com-
pact integration of the waveguides because they can be directly printed
in the robotic flesh. By doing so, the resulting device could be wrapped
around the body of a robot.

Edges

Edges are necessary to input light from the LEDs into the flesh;
however, no edge should remain open to the environment because
ambient light could disturb the measurements. For example, in
assembly 0, edges are covered with the LED flexible printed circuit
board; in assemblies 1 and 2, edges are covered by the side faces of
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the mold; and in assembly 3, edges are covered by a top and bottom
plate (fixtures A and B in fig. S11). A potential improvement to the
system is to clad the edges (#edge < Mtransmission layer)- Such cladding
will allow the light rays to bounce back into the system, thus in-
creasing the intensity of light within the flesh.

Fabrication of the robotic flesh

We manufactured the robotic flesh by casting thermoset elastomers
into 3D-printed molds. For material characterization, we designed
a 3 cm-by-3 cm sample (assembly 0; Fig. 2A) and a 7 cm-by-7 cm
testbed (assembly 1; Fig. 2E). For haptic characterization, we designed
an 11 cm-by-7.5 cm testbed (assembly 2; fig. S8). Last, we demon-
strated the results in a human-scale forearm (assembly 3; fig. S11).

Figure S8 shows the manufacturing process of assembly 2, which
is representative of the method used for assemblies 0, 1, and 3. Two
support molds and a rectangular housing (fig. S8A) were 3D printed
using the Carbon UMA 90 resin. The bottom mold includes holes
to align stretchable waveguides (d = 0.5 mm; CrystalTec, Yunze
Inc., Korea) to the sensing area of the CMOS image sensor. The top
mold serves as a fixture to keep the waveguides in place while casting
the silicone rubber. The housing includes four holes at the corners
where high-intensity white LEDs (SZLEDCOLOR SK6812 5050
0.2 W for assemblies 1 and 2 and Betlux BL-HP20A 3 W for assem-
bly 3) were press-fitted (fig. S8A). We first threaded 28 stretchable
waveguides through the holes of the bottom mold, the housing, and
the top mold. We then cast and degassed a 7-mm-thick layer of sil-
icone rubber (Wacker M4601; coating B) in a vacuum chamber at
101 kPa (14.64 psi) for 10 min (fig. S8B). We then place it in a con-
vection oven for 4 hours at 80°C. After curing the first layer, we re-
moved the top and bottom support molds and trimmed both ends
of the waveguides leaving the image-sensor side flush and the trans-
mission side ~2 mm above the surface. We then cast a 6-mm-thick
layer of silicone gel (Gelest Inc.; OE39 for assemblies 0, 2, and 3; see
the “Note on fabrication of assembly 1” subsection), degassed, and
heat cured it with the aforementioned settings. Similarly, we cast,
degassed, and cured layers of blue and red thermochromic elasto-
mer, silicone rubber (coating B), and black-dyed silicone rubber
(coating A) of layer thicknesses 1.5, 1.5, 0.5, and 0.5 mm, respectively.
The thermochromic silicone gels were prepared by mixing silicone
gel (Gelest, Inc.; Oe39 for assemblies 0, 2, and 3; see the “Note on
fabrication of assembly 1” subsection) with 0.5 weight % (wt %) red
(Atlanta Chemical Engineering Inc.; red-colorless-45C), and 0.5 wt
% blue (Atlanta Chemical Engineering Inc.; blue-colorless-31C)
thermochromic pigments using a centrifugal mixer (Thinky ARE-310)
at 2000 rpm for 60 s. Coating A was prepared by mixing 1 wt %
concentration of black dye (Smooth-On Inc; Silc Pig Black) in M4601
silicone using a centrifugal mixer at 2000 rpm for 60 s. Figure S8C
shows the thicknesses of each layer of the flesh.

Last, we assembled the testbed by securing a CMOS image sen-
sor (ELP USBFHDO1 module with OmniVision OV2710) above a
fan (for cooling the CMOS) and then layered the robotic flesh atop
the optoelectronic assembly (fig. S8D). Environmental temperature
changes could cause the CMOS to drift in intensity; thus, thermal
isolation of the sensing element or in-chip temperature compensa-
tion is desired to ensure decoupling between temperature and force
measurements.

Molding, when done manually, could be time consuming. How-
ever, it is a well-established industrial process suitable to fabricate
consumer products at scale and has been optimized for production
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time, defects, and variability (56, 57). For reference, table S1 shows
the approximate time that was used to fabricate assembly 2.

Note on fabrication of assembly 1

Because of material unavailability at the time, we manufactured as-
sembly 1, Gelest Inc.; Oe39 (n = 1.39, Shore hardness 5A) was re-
placed with SmoothOn Inc. Solaris (n = 1.41, Shore hardness 15A)
in the transmission and thermochromic layers. Solaris has a higher
hardness, resulting in a stiffer overall flesh. It also has a higher index
of refraction but, on the basis of how the system work, we did not
expect nor see any difference in the encoding.

Experimental procedure for material characterization
inassembly 0

We prepared a 3 cm-by-3 cm-by-1 cm robotic flesh sample with
one waveguide in its center. We illuminated the sample by a white-
light LED (SK6812 5050, 0.2 W) placed in contact with its back surface
(fig. S1E). Then, we aligned the end of the waveguide to the probe of
a spectrometer (Ocean Optics USB 2000+) to measure the spec-
trum of light.

In addition, we created a test setup that can heat, cool, and in-
dent the surface of the sample while recording temperature and force.
The test setup includes an aluminum fixture (fig. S1E) that encloses,
from top to bottom, a Peltier plate for cooling (Adafruit Inc., Thermo-
electric cooler ID: 1335, 12 V), a resistive flexible heater (Adafruit
Inc., Electric heating pad, ID: 4308, 3.2 W), and thermocouple
(Adafruit Inc., Type-K, ID: 270). The heater and cooler were con-
nected to individual power supplies that control its temperature, and
the thermocouple was connected to a logger (MYPIN TA6-SNR
PID) for data visualization. To apply forces to the sample, we used a
linear actuator (Actuonix Inc., P16-S, 12 V) with an indenter (circu-
lar cross section = 1 cm) attached to a force gauge (Adafruit Inc.;
load cell, 10 kg; ID: 270).

Force

We first heated or cooled the sample until it reached a stable tem-
perature in a range of 0°C < T < 80°C. We then indented it up to a
force, F=25.2 N, in five steps.

Temperature

We heated or cooled the sample to temperatures ranging from
0° < T'<90°C, while a force was applied in the range of ON < F< 252 N.
Damage

We recorded the time series of light intensity at the red, green, and
blue peaks of the spectrum (630, 519, and 466 nm, respectively) for
a sequence of (i) three indentations at F = 10 N, (ii) a knife cut
(width = 0.1 mm, length = 20 mm, and depth = 10 mm), and (iii)
three indentations at 10 N (movie S2). We repeated this experiment
across three different samples and manually annotated the time se-
ries based on the video recordings with labels corresponding to the
phases of cut: (i) blade in and (ii) blade out.

Experimental procedure for material characterization
inassembly 1

We prepared a 7 cm-by-7 cm robotic flesh testbed with 36 wave-
guides uniformly distributed. We divided the surface in six-by-six
segments with centers corresponding to the location of the fiber
ends (Fig. 2E). The other ends of the fibers were guided to rest on
top of a CMOS image sensor located at the center of the assembly.
Pressing and shear

We fabricated an applicator of 2 cm by 2 cm with a 0.3-mm-thick
rubber surface (same material as coating A) to ensure high-friction
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contact and no slippage with the flesh surface (fig. S6A). For the
pressing experiment, we attached the applicator to a digital force
gauge (Nextech Inc., DFS 1000) in the normal force direction and
centered it at segment c3. We then pressed on the flesh at forces
from 0 < F < 35 N in steps of 5 N and recorded the average of the
monochromatic pixel intensities corresponding to the circular regions
of each fiber (similar to fig. S2). Each measurement was repeated
10 times with ~2-s interval time between two separate trials (inter-
trial time).

For the shear experiment, we mounted the applicator on an alu-
minum rod (r = 5 mm) as shown in fig. S6A and applied grease at
the interface to reduce friction. We centered the applicator at the
center of segment c3 and connected it to the aforementioned force
gauge along the shear direction. We then indented the applicator
into the flesh at 1 mm and sheared the flesh at forces from 0 < F< 35N
in steps of 5 N. Under these conditions, no slippage was observed.
We recorded the intensities with the same procedure as for pressing.
Each measurement was repeated 10 times with ~2-s intertrial time.

Figure S6 (B and C) shows the averaged heatmaps over the
10 measurements for the change of light intensity of the fibers at various
pressing and shear forces. The applicator profile is shown in white
dotted lines, and the shear direction is shown with a white arrow.
Receptive field
We attached a circular indenter (d = 5 mm) to a digital force gauge
(Nextech Inc., DFS 1000) and centered it at segment d4. We then
pressed the flesh with forces from 0 < F < 20 N at distances in the
radial axis from 0 to 25 mm from the fiber end in steps of 5 mm and
at polar angles from 0 to 270° in steps of 90°. We recorded the inten-
sity of light sampled by the fiber with the same procedure as for
pressing and shear. Each measurement was repeated 10 times with
~2-s intertrial time.

Figure S7A shows a polar scatter plot of the averaged normalize
intensity changes over the 10 measurements at 5-, 10-, or 20-N
force. In the plot, positive values show an increase in light intensity
and negative values show a decrease in intensity from the intensity
value at a poke centered directly on top of the fiber (shown as a blue
circle). Figure S7B shows the absolute normalized intensity change
averaged over 0°, 90°, 180°, and 270° angles versus radial distance
measured from the center of the fiber. The SD over the 10 measure-
ments is shown in gray.

ML testing in assembly 2

The model types, training algorithms, dataset sizes, and hyperpa-
rameters are summarized in table S3. The datasets were acquired
during 15 nonconsecutive days, and the models were trained using
a graphics processing unit virtual machine from Google Colab Pro
(58). We used the classifier and regressor algorithm implementa-
tions of sklearn_API (59) and its grid exploration algorithm for hy-
perparameter optimization.

Evaluation metrics

The models were evaluated using, if applicable, accuracy, precision

( true positive )) MAE, root

recall true positive
true positive + false positive | true positive + false negative

mean square error (RMSE = \/%Z(ypredicted - yacmal)z), and the
n

elapsed time to run inference on a single data point (% Y t;,t; : infer-

1
ence run time of the ith randomly selected point, n = 100). Table S4
shows the summary of the performance metrics for the trained models
evaluated on the testing dataset.
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Single-touch location and force

We divided the testbed (assembly 2) in 77 square segments of 1 cm*
(Fig. 3A). We then acquired three unique datasets: training (Dy,),
validation (Dy,), and testing (D) by poking a circular metal indenter
(d =1 cm) at forces ranging from 0 < F < 16 N in steps of 0.25 N
using a similar experiment setup as in material characterization in
assembly 0 (movie S5). The process of acquiring a data point was to
manually align the indenter at the center of the segment, press down,
record the resultant force and the segment ID, capture the image
frame, save all the values in a single data structure (i.e., segment ID,
F, frame number), then release the actuator, pause for 4 s, and re-
peat. For each force, we pressed each segment 10 times.
Multitouch location

We selected a 3 cm-by-3 cm region of the testbed (region 1, assembly 2;
Fig. 3A) and acquired Dy, Dy,, and Dy, for steady-state (no poking)
and simultaneous poking with one, two, and three circular indenters
from 0 < F< 16 N in steps of 0.5 N (Fig. 3B). This process generated
9, 36, and 84 different labels for all possible combinations for single,
double, and triple touch, respectively. The process of acquiring a data
point was similar to that shown above. For each force, we pressed
each combination of segments 10 times.

Resolution for single-touch location

We selected four overlapping regions of 4 cm by 4 cm (region 2,
assembly 2; Fig. 3A), 2 cm by 2 cm (region 2a), 1 cm by 1 cm (region
2b), and 0.5 cm by 0.5 cm (region 2¢) and divided each of them into
16 segments (Fig. 3C). We then poked each segment of regions 2,
2a, 2b, and 2c with circular indenters of section d = 10, 5, 2.5, and
1.25 mm, respectively, at F = 5 N following a similar process as
shown above. Smaller indenters (d < 1.25 mm) were not used be-
cause they puncture the first layer of the flesh at the force used in
this experiment. For each force, we press each segment in each re-
gion 30 times.

Temperature

We divided assembly 2 into 77 square segments of 1 cm” and mea-
sured their temperature at the center using a thermal camera (FLIR
Inc., TG165) for ground truth. Using FLIR Tools software, the tem-
perature at the center of each segment of the flesh is extracted. This
results in a 7-by-11 matrix of temperatures. In fig. S9, ground truth
shows the visualization of this matrix with linear interpolation. For
cooling and heating the surface of the robotic flesh, we used a resis-
tive heater and a Peltier plate. The process of acquiring a data point
was as follows: (i) Set the heater or cooler to any temperature in the
range 0 < T < 80°C, (ii) place the thermal element on top, (iii) heat
or cool for 2 min, (iv) remove it, (v) let the flesh rest for 1 s, (vi)
capture a thermal image and an image frame, (vii) save all the values
in a single data structure (i.e., thermal image and frame), pause for
~30 s of intertrial time, and then repeat. We performed 636 heat/
cool actions.

Gestures

We manually performed various gestures on the surface of the skin
with our fingers. To reduce friction between the rubber surface and
our fingers, we applied silicone oil (Sigma-Aldrich Inc., SKU: 317667;
viscosity, 5 cSt). To increase data diversity, three participants ap-
plied the gestures at various pressures and locations but in the same
orientation (as in Fig. 3D) over multiple sessions. For a single data
entry, we performed a gesture for ~2.5 s while simultaneously re-
cording the sequence of frames coming from the image sensor run-
ning at a rate of 60 fps. However, in our implementation of online
inference using the learned model, the actual processing rate is 2.07 fps
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on average, explained as follows: (i) read an image frame, 20 ms; (ii)
extract the mean intensity values, 110 ms; (iii) extract the time series
features, 350 ms; and (iv) run the inference, 1.5 ms. This pipeline,
coded in Python, was run on a laptop (Dell Inc., Intel Core i7-8650U
CPU @ 1.90 GHz, 8GB RAM). Higher frame processing rate is de-
sirable for robust gesture detection and can be achieved by the use
of a faster computer and optimized code for the feature extraction
and inference module. We captured 100 gestures for each class and
waited for ~4 s between trials.

Damage characterization in assembly 2

To systematically cut the flesh, we used a z-axis stage and a stainless
steel blade of width = 11 mm and thickness = 0.1 mm (fig. S10A).
We performed 10 cuts (fig. S10B) at depths from 0 to 14 mm by (i)
locating the blade on top of the desired cut area, (ii) lowering the z
stage to the desired cut depth, (iii) recording 10 frames from the
image sensor over 1 s, (iv) raising the z stage above the flesh surface,
(v) pausing for 2 s, (vi) lowering the stage to the next cut depth, (vii)
repeating from (iii) for all depths, and (vii) repeating from (i) for all
cut locations.

SUPPLEMENTARY MATERIALS
www.science.org/doi/10.1126/scirobotics.abi6745
Materials and Methods

Figs.S1toS11

Tables S1to S4
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