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We use magnetohydrodynamic levitation as a means to create a soft, elastomeric,
solenoid-driven pump (ESP). We present a theoretical framework and fabrication of a
pump designed to address the unique challenges of soft robotics, maintaining pumping
performance under deformation. Using a permanent magnet as a piston and ferrofluid
as a liquid seal, we model and construct a deformable displacement pump. The magnet
is driven back and forth along the length of a flexible core tube by a series of solenoids
made of thin conductive wire. The magnet piston is kept concentric within the tube by
Maxwell stresses within the ferrofluid and magnetohydrodynamic levitation, as viscous
lift pressure is created due to its forward velocity. The centering of the magnet reduces
shear stresses during pumping and improves efficiency. We provide a predictive model
and capture the transient nonlinear dynamics of the magnet during operation, leading
to a parametric performance curve characterizing the ESP, enabling goal-driven design.
In our experimental validation, we report a shut-off pressure of 2 to 8 kPa and run-out
flow rate of 50 to 320 mL�min21, while subject to deformation of its own length scale,
drawing a total of 0.17 W. This performance leads to the highest reported duty point
(i.e., pressure and flow rate provided under load) for a pump that operates under defor-
mation of its own length scale. We then integrate the pump into an elastomeric chassis
and squeeze it through a tortuous pathway while providing continuous fluid pressure
and flow rate; the vehicle then emerges at the other end and propels itself swimming.

magnetohydrodynamic levitation j soft displacement pump j fluid–structure interaction j viscous flow j
soft robotics

1. Introduction

A large number of soft robots use fluidic elastomer actuators (FEAs) powered by pumps
(e.g., refs. 1–17). These pumps, the hearts of soft robots, are typically electrically
powereddisplacement pumps due to their availability, efficiency, performance curves,
and control simplicity. An example of a typical electrically powered displacement
pump is the BTC IIS (Parker-Hannifin), which is rigid and bulky. When used, these
types of pumps necessitate centralizing them, routing the pressurized fluid via long
channel lengths to the actuator locations, and use valving to control when they are
pressurized, as evident in characteristic works, such as Tolley et al. (10) and Aubin et al.
(18).
The use of pumps with mechanical properties more similar to FEAs would allow for

the decentralization and distribution of displacement pumps across the volume of soft
robots. The benefits of this approach would be numerous: 1) The number of pumps in
one machine could be increased for faster and more forceful robots; 2) they could be
placed in closer proximity to actuators for improved efficiency; 3) the number of valves
could potentially be reduced for smaller form factors; and 4) most importantly, the
beneficial compliance of soft robots would be maintained.
In this regard, there are several promising and elegant examples of pumps made

entirely of compliant materials for use in soft robots, such as those of Cacciucolo et al.
(19) and Diteesawat et al. (20). Other examples (13, 21–28) offer the potential for effi-
cient, distributed fluidic actuation or analogous approaches to soft displacement and
rotary pumps (13, 29–42), and, while they all incorporate soft materials or could be
envisioned as a viable pumping solution for soft robotic application; none report per-
formance under deformation, limiting their practical application. Thus, there still
remains an important need for a compliant displacement pump that offers high flow
rates, q = O(102) mL�min�1, and pressures, p = O(105) Pa, at a system duty point
(i.e., system and pump-curve intersection) compatible with human-scale FEA systems,
O(10�1 to 100) m. Further, scalable and continuous performance under quasistatic or
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dynamic deformation should also be a feature of this pump to
facilitate technology transfer.
The major challenge facing the development of a deformable

displacement pump is the need to maintain a seal under defor-
mation. This means maintaining a separation between the high
and low potential fluid while providing a physical gap, on the
order of the local curvature, between adjacent interacting com-
ponents (e.g., an impeller or piston, or equivalent within the
housing, to avoid mechanical jamming). In our work, we use
ferrofluids to manage this gap. Therefore, of special relevance
to this work is research regarding ferrofluids’ use as the medium
in making a fluidic seal in either journal bearings (43–47) or
other rigid applications; for example, refs. 48–53, to name just
a few. In addition, examination of rigid ferrofluid-based pumps,
such as refs. 54–59, exemplifies the inherent limitations in
extending the notion of a fluidic seal to the displacing compo-
nent being made entirely of liquid— i.e., making a liquid piston
or vane—whereby relying on cohesion forces (i.e., surface tension)
to generate appreciable pressure gradients Δp = O(100) kPa, and,
as these are inversely related to gap width, we have to operate in
gap regimes that are too narrow for utility, resulting in very low
flow rates less than q = O(10�1) mL�min�1.
This paper explores an approach to making soft robotic

hearts, whereby the traditional concept of ferrofluid gap man-
agement is extended to loosely fitted magnetic cores that act as
pistons and are centered by leveraging magnetohydrodynamic
lubrication. The ferrofluid coating centers the core as it moves
along the flexible tube and forms a seal, bridging over a speci-
fied physical gap of C = 0.25 mm, selected as such to allow
the magnetic core in our system to travel without jamming as
the pump takes on a radius of curvature of its own length scale,
Rc ≤ 100 mm. Further, we provide the scaling laws for the mag-
netohydrodynamic lubrication mechanism in such systems with
respect to pressure, flow rate, size, and radius of curvature, thus
proposing a scalable principle mechanism for future advances in
soft-pump technology.
While the field of hydrodynamic lubrication has been stud-

ied extensively over the years, with or without magnetic force
involvement, the nonlinear nature of the physics governing
such systems caused prior efforts to avoid explicit dynamic solu-
tions of the lubrication-layer thickness evolution over time.
Therefore, these efforts usually set the lubrication layer as cons-
tant (60, 61), or consider time not as an independent variable,
but, rather, as an input parameter, setting eccentricity and rate
of change as constant (62, 63), resulting in a static problem
governed by an elliptical equation. Others use planar configura-
tions (61, 64), focus on experimental and numerical examina-
tion (61, 64, 65), or a combination of the above.
In this paper, we present an approximate explicit solution of

the predictive model for our soft robotic heart that uses pertur-
bation theory to capture the nonlinear dynamics of magnetohy-
drodynamic lubrication in a nonplanar configuration. We then
experimentally demonstrate that this elastomeric solenoid-
driven pump (ESP) can maintain continuous performance
under large deformation—i.e., up to 30% in axial strain and a
radius of curvature of its own length scale—as well as supply
the design rules to correlate physical parameters to the desired
deformation (for main text nomenclature, see SI Appendix,
section A.1, Table S1).
In Fig. 1, we provide a visualization of novelty; we show the

proposed ESP operating at the largest duty point yet reported
for pumps that continue to operate while deformed (for litera-
ture comparison details, see SI Appendix, section A.2, Table S2).
Last, we provide the insight and scaling laws required to produce

a goal-driven design of this pump system, tailored to soft robot-
ics’ unique challenges.

2. Materials and Methods

Fig. 2 presents the studied configuration of an elastically compliant soft robot
heart, the ESP. In Fig. 2A, we show a three-dimensional (3D) section cut and pre-
sent our system’s fundamental physical quantities at work. By applying current to
the solenoid coil, we generate a magnetic field B

*

coil, attracting a rigid permanent
magnetic core of field B

*

m, and driving it at velocity u
*

mag via the dipole–dipole
interaction. This core (interchangeably denoted the “magnetic piston core”) is
sheathed with a layer of ferrofluid (FerroTec EFH1), in which hydrodynamic lubri-
cation generates viscous pressure p by the forward motion, centering the core
and preventing contact with the walls, addressed in detail in Section 4.1.

Fig. 2B presents the experimental workbench setup used to measure the
pump-performance curve outside a robotic system. We show the ESP connected
to fluid reservoirs: one at the inlet and one at the outlet. The outlet tubing is fit-
ted with a flowmeter (Renesas, catalog no. FS2012-1020-NG), a pressure sensor
(Honeywell, catalog no. SSCDANN030PAAA5), and a Precision Flow-Adjustment
Valve (McMaster-Carr) providing back-pressure load. Workbench peripheral com-
ponents standing in for the robotic system include: a microcontroller unit (MCU)
(Arduino Uno) and Keithley 2400 direct-current power supply, providing the
required 0.17 W (1 V and 0.17 A). Pump-assembly dimensions are (width ×
length × height) = (40 × 71 × 8) mm, and it is made of silicone urethane elas-
tomer SIL 30 (CARBON, Inc.) with an elastic modulus of E = 1.8 MPa. Fig. 2 B,
Inset illustrates the pump’s internal structure, featuring seven solenoids of wire
density N[windingm�1]= 5,760 threaded over the core tube, magnet end stop-
pers, inlet and outlet joints, and four unidirectional flow valves. For more details,
see SI Appendix, section A.3.

In Fig. 2 C–E, we illustrate the role of the four integrated flow valves, creating
unidirectional flow from inlet to outlet as the magnetic core piston is cycled back
and forth along the core tube. Red cross-marks denote which valves are at closed
state, and red and blue fluid lines indicate high and low pressure, respectively.

Particular attention is given to the dimensioning of rigid components within
our system, i.e., ball bearings, solenoid coils, and the magnetic piston core. The
ball bearings (used for the unidirectional valves) add no constraint on the sys-
tem’s elastic compliance, being in a loose fit of their own length scale (dball ≈
3.5 mm). Conversely, the pump’s ability to maintain continuous performance
under elastic deformation is restricted by the solid magnet piston core and the
number of solenoids, limiting bending deformation, as would a vertebra. First,
we set the pump’s operational envelope and require continuous operation under
deformation of its own length scale; we thus set the limit for the radius of curva-
ture to be Rc ≈ 100 mm; see illustration in Fig. 2F. We then select the magnetic
piston core to match the overall scale of the pump assembly, namely, a commer-
cially available N52 Neodymium magnet with a diameter of dm = 2rm = 4 mm
and a length l = 6.315 mm, in accordance with which we determine the length
of the solenoid coils lc ¼ l. Having established the piston-core dimensions and
curvature limits, we can then determine the gap required, C = 0.25 mm, and,

Fig. 1. Shut-off (max pressure, no flow) vs. run-out (max flow, no back-
pressure) performance of comparable state-of-the-art systems. Visualiza-
tion of novelty, largest work-point reported to date for pumps that operate
under large deformations (of its own length scale). All other pump technol-
ogies in its performance order-of-magnitude are nondeformable pumps.
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Fig. 2. Illustration of the ESP configuration used in both modeling and experiments. (A) A 3D model with key components and physical quantities. (B) Work-
bench setup used in the acquisition of experimental data. B, Inset illustrates an exploded view of the internal structure of an ESP with key top-level compo-
nents. (C) Cross-section view of ESP; the black frame indicates the focus of Fig. 3. (D and E) Cross-section view of ESP in operation. Snapshots of magnetic
core right and left heading strokes with an indication for the state of the one-directional valves; red and blue fluid lines indicate high and low pressure,
respectively. (F) Illustrative image of our designed ESP under deformation (bending) showing the loosely fitted magnetic core jamming upon exceeding the
design-intended limit for the radius of curvature Rc ≈ 100 mm, thus emphasizing the particular importance of a goal-driven design for rigid components in
our system. (G) Visualization of pump potency, generating a free jet, with flow rate measured at q ≈ 320 mL�min�1.
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respectively, the diameter of the enveloping tube inner wall dw = 2rw = 4.5 mm.
For a detailed discussion on bending strain relation to geometric parameters, see
Section 5 and SI Appendix, section A.4.

3. Experiment Procedure

Using our benchmark setup (Fig. 2B), we characterize pump
performance at both the deformed and free states. We start the
system from rest with the flow regulator fully closed and initi-
ate the MCU supplying 1V and 0.17 A to the solenoid train.
We then set the nominal solenoid relay period to τr ≈ 0.019 s,
i.e., the activation period of a solenoid in a sequence. Based on
the viscous-elastic characteristic time scale t � ∼ πlμ=ε2κf (see
derivation in Section 4.1), we calculate the system achieving
steady state after a time scale of the order t* ≈ 0.113 s. To
ensure that we have achieved steady state prior to collecting
data, we allow the system 1 min to stabilize. We then take
pressure-sensor readings, evaluate flow rate using both a flow-
meter and by collecting the outlet spillage for 2 min in a
1,000-mL glass beaker, and normalize for water density at
room temperature. Repeating this process for 20 measuring
points, differentiated by incrementally increasing flow rate
using the flow regulator, we generate the pump-performance
curve. Experimental data for all plots in this work represent
one-sigma certainty acquired over seven experiments per pump
and five separate pumps tested.
Fig. 2G offers a visual indication of the pump’s potency, gener-

ating a free jet with a flow rate measured at q = 320 mL�min�1.
We report continuous performance in the order of p = O(1) kPa
and q = O(102) mL�min�1 over a range of elastic deformation
up to a radius of curvature of the pump’s length scale. For a
detailed discussion of scaling laws for geometry, deformation, and
performance, please refer to Sections 4 and 5.

4. Analysis

Providing the theoretical framework for our experimental sys-
tem, we present two separate models for two separate governing
mechanisms in the system. Together, these provide insight and
predict the system’s dynamic behavior. The first is the single-
phase lubrication layer: We calculate the friction and pressure
inside the fluid-seal domain using lubrication theory. Integrat-
ing with the force-balance equations, we correlate back-pressure
Δp, downstream effective flow velocity um, and electromagnetic
actuating force f b (Eq. 1.11). The model assumes um ¼ umag ,
where umag is the effective average velocity of the magnet dur-
ing operation. Furthermore, it is assumed that the product of
um and core tube-inner cross-section gives us the pumped flow
rate q mL�min�1 vs. pressure Δp kPa—predicting the nonlinear
inverse relation of the pump’s performance curve.
The second provides the mechanism correlating the above-

mentioned prediction with our experiments, where the actual
magnet velocity umag ¼ z0=τr is held constant, fixing the sole-
noid relay time actuation τr . We are then left to reason the
means by which a constant velocity-driven positive displace-
ment pump provides a varying flow rate. We utilize the equation-
based modeling capabilities of COMSOL Multiphysics 5.5 (SI
Appendix, section A.7) and show the emergence of Taylor–Saffman
instability—i.e., viscous fingers—with a unique stable devel-
oped pattern emerging in the presence of the system’s restoring
magnetic force. We thus show how an effective flow-rate “leak”
dependent on back-pressure Δp is maintained past the liquid
seal to enforce mass conservation.

4.1. Lubrication Theory Modeling, Prediction of the Nonlinear
Inverse Relation of Pressure to Flow Rate. We begin by formu-
lating the predictive model characterizing the steady state and
dynamic performance of an ESP. It consists of a cylindrical core
tube, inside of which is a levitated magnetic core coated with fer-
rofluid. This coating provides a seal capable of maintaining its
integrity as the pump deforms during operation and the viscous
pressures required for magnetohydrodynamic levitation to prevent
the solid–fluid piston from jamming during operation. Fig. 3A
illustrates the axial cross-section of the proposed system. Fig. 3 B
and C illustrates the magnet axial degrees of freedom; the sole-
noid wire is omitted for visual clarity.

In order to gain insight into the performance of an ESP sys-
tem and the results presented here, we aim to model both the
magnet dynamics during a stroke in the reciprocating cycle
(Fig. 4 A and B) and the performance curve describing the
pump performance fully (Fig. 4C). Based on the effective
downstream fluid velocity um set to be the average magnet for-
ward velocity umag , and knowing core tube-inner cross-section,
we can calculate the pumped flow rate q mL�min�1 vs. pressure
Δp kPa.

We define vector variables using bold letters, direction vec-
tors by hat notation, nondimensional variables by capital let-
ters, characteristic values by an asterisk, and respective nth
order-of-magnitude by a superscript ðnÞ. We define the small
parameter ε¼ C=l , where C and l are the magnet–wall gap at
the concentric position and the magnet length, respectively.
We limit axial eccentricity by the ferrofluid gap λðtÞ ≤ C , as

well as angular misalignment
�
αðtÞl

�
=2 ≤ C ; we set tube

radial and axial deformation due to fluid pressure to be negligi-
ble, and, finally, both tube and magnetic core do not rotate
about their axis. We consider the one-phase flow of ferrofluid
seal in the narrow gap between the magnetic piston and the
bounding tube wall as the magnet is driven forward. We
assume the ferrofluid to be Newtonian and incompressible,
and, by way of lubrication approximation (63), we formulate
our governing equations for mass ∇ � u¼ 0, and momentum
conservation, in terms of the Stokes equation ∇p ¼ μ∇2u. We
define a moving, gap curvilinear cylindrical frame ð~̂r , θ̂, ẑÞ cen-
tered at the magnet center of mass, where we define the curvi-
linear gap coordinate ~r to range from ~r ¼ 0 at the magnetic
core surface (respective to cylindrical rm in Fig. 3A) to ~r ¼ h at
the enveloping tube inner wall (respective cylindrical rw in Fig.
3A). We then set our system’s boundary and initial conditions:
The magnetic core translates axially urð~r ¼ 0,θ, z , tÞ ¼ � ∂h

∂t ,
but does not rotate uθð~r ¼ 0,θ, z , tÞ ¼ �ω ¼ 0, as the magnet
is driven forward at uzð~r ¼ 0,θ, z , tÞ ¼ um; the enveloping
tube (i.e., core tube) is at rest urð~r ¼ h,θ, z , tÞ ¼ 0,
uθð~r ¼ h,θ, z , tÞ ¼ 0, uzð~r ¼ h,θ, z , tÞ ¼ 0, and the entire sys-
tem starts from rest urð~r ,θ, z , t ¼ 0Þ ¼ 0,uθð~r ,θ, z , t ¼ 0Þ ¼ 0,
uzð~r ,θ, z , t ¼ 0Þ ¼ 0. Last, we limit for small tilt angles
αðtÞ≪ 1 as C ≪ l and solve to obtain in dimensional form a
special case of the Reynolds equation,

� ∂hð0Þ

∂t
¼ � 1

12μ
∂
∂z

∂pð0Þ

∂z

�
hð0Þ

�3
� �

þ um
2
∂hð0Þ

∂z
, [1.1]

relating the ferrofluid viscous pressure field pð0Þðθ, z , tÞ with
magnet radial position via gap height hð0Þðθ, z , tÞ. Solving
for viscous pressure pð0Þ with pð0Þðθ, z ¼ l=2, tÞ ¼ Δppump
and pð0Þðθ, z ¼�l=2, tÞ ¼ 0, we then provide an explicit form
for pressure and axial velocity profiles as dependent on the
movement of the magnet inside the encapsulating core tube,
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pð0Þðθ, z , tÞ ¼ 12cosθ�
1þ λðtÞcosθ

�3

∂λðtÞ
∂t

μ

ε2
z2

2l 2
� 1
8

� �

þ Δppump
z
l
þ 1
2

� �
, [1.2]

uð0Þz ð~r , θ, z , tÞ ¼ 1
2

12cosθ�
1þ λðtÞcosθ

�3

∂λðtÞ
∂t

z þ l ε2

μ
Δppump

0B@
1CA

~r 2 � h~r
l 2ε2

� �
� um

~r
h
� 1

� �
,

[1.3]

and the characteristic scale for pressure p� ∼ μum=l ε2 and kine-
matics of the ferrofluid field ε ∼ C=l ∼ C=rm ∼ u�r =um. The
observed pressure scaling implies very large pressures of the
order Oð1=ε2Þ generated by any deviation from the concentric
position of the magnet λ and its temporal transients ∂λ=∂Tν,
dominating the restoring mechanism and balancing the destabi-
lizing back-pressure Δp acting to bring the magnet in contact
with the wall, stalling the pump under Coulombic friction. For
more details, see SI Appendix, section A.5.
Next, we address the force-balance equations governing our

system’s nonlinear dynamics in leading order. The magnet
force-balance equations detail the dynamic balance of Maxwell
stress terms, as are the result of dipole–dipole interaction

between magnet and solenoid, with those from viscosity, grav-
ity, and the rheology, with the latter resulting from the ferro-
fluid held by the magnetic field of the permanent magnet,

Ẑ : f ð0Þ
b,2!1,z|fflfflffl{zfflfflffl}

Magnetic dipole

Maxwell force

þ ∫ 2π
0 ∫ l=2

�l=2μ
∂uð0Þz

∂~r

� �����
~r¼0

dz l εdθ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Circumferential friction pressure drop

� maz|{z}
External system
acceleration

force, z � axis

� πðlεÞ2Δp|fflfflfflfflffl{zfflfflfflfflffl}
Pressure drop
across piston

¼ 0, [1.4]

~̂r : f ð0Þ
b,2!1,~r|fflfflfflffl{zfflfflfflffl}

Magnetic dipole
Maxwell force

þ
�
∫ 2π
0 ∫ l=2

�l=2 � pð0ÞcosðθÞdz lεdθ
�
cosðβÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Axial viscous pressure lift
force

þ κf lελðtÞ|fflfflfflffl{zfflfflfflffl}
Ferrofluid
elastic
force

� ma~r|{z}
External system
acceleration

force, ~r � axis

þ γμumC|fflfflffl{zfflfflffl}
Center � of
�pressure
force

¼ 0, [1.5]

where μ and κf are the ferrofluid’s effective dynamic viscosity
and linear spring coefficient, and γ is the center-of-pressure
coefficient that relates the forward velocity to the destabilizing
normal force in the ~r direction exerted on the levitated mag-
netic piston, which acts as an inverted pendulum.

A

B

C
Fig. 3. System geometry, including section
views for visual clarity. (A) System axial cross-
section with the magnetic core axially cen-
tered (Control Volume denoted by C.V.). (B)
Illustrating angular deviation of the magnetic
core from a coaxial position. (C) Illustration of
respective parallel deviation. For plates B and
C, the solenoid coil surrounding the core tube
was omitted for visual clarity.
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For simplicity, we formulate f b,2!1, the force applied by the
solenoid (marked by index 2) on the permanent magnet
(marked by index 1), using Ampere’s model (66–73) to formu-
late the magnet–solenoid interaction. We assume the leading-
order contribution is attributed to a point-like dipole–dipole
interaction, with negligible correction resulting from mutual
induction and magnet geometry (SI Appendix, section A.5.2).
We then formulate the magnetic dipole Maxwell force,

f b,2!1|fflffl{zfflffl}
Force by the magnetic

field of 2 acting on 1

¼ � 3μ0μrm1,zNlc I πr2ow

4π
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C 2λ2 þ ~z ðtÞ2
q �4

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Force scalar magnitude

C 3λ3 � 4Cλ ~z ðtÞ2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 2λ2 þ ~z ðtÞ2

q �3

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
~̂r

, 0|{z}
θ̂

,
3 ~z ðtÞC 2λ2 � 2~z ðtÞ3� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C 2λ2 þ ~z ðtÞ2
q �3

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ẑ

0BBBBBB@

1CCCCCCA,

[1.6]

where μ0 = 4π × 10�7 N�A�2 is the permeability of free space;
μr [1] the relative permeability of the ferrofluid; m1,z A�m2 the
permanent magnet magnetic moment; N[winding m�1] wire-
coiling density or the number of windings per unit length,
assuming all are a single-layer winding; I A the current running
through the coil; and lc m the length of a single solenoid coil.

Under the above assumptions, of downstream fluid velocity
um equals averaged magnet forward velocity umag , actuation
periodicity can be related to dipole–dipole actuation distance as
a function of time by the sawtooth wave function,

~z ðtÞ ¼ umτr 1� A
2
þ A

π
Arctan Cot

π t
τr

� �� �� �
; [1.7]

where τr is the solenoid relay period time, which is the period
for the successive coil actuation, and A [1] the temporal coordi-
nate strain coefficient constraining an upper limit for the mag-
netic force during actuation in the proposed simplified model
(SI Appendix, section A.5.2). Substituting [1.2], [1.3], [1.6],
and [1.7] into our force balances Eqs. 1.4 and 1.5, setting
Δppump ¼ Δp, thus requiring force equilibrium between pump
and external load; last, applying scaling arguments for magnet
length Z ¼ z=l , gap coordinate R ¼ ~r=C , time normalized by

%

A B

C D

Fig. 4. Numerical, experimental, and theoretical results of magnet dynamics and pump-performance curve. (A) The time evolution of magnet eccentricity
from an initial concentric position (at λ¼ 0Þ for different values of ψ ¼ γμum=κf ¼ γμz0=κf τr , by varying the relay time period τr . Presented is a quantitative
comparison between the numerical solution (dashed black lines) of the exact expression [1.8] and its explicit leading-order asymptotic approximation [1.9]
in solid lines. (B) Comparison of theoretical (pale blue) and experimental (black) minimal relay time τr,min. In pale blue is the solution to Eq. 1.10 under speci-
fied conditions for minimal relay time. The horizontal dashed line represents the distance between one solenoid to the next (z0 � ~z(t))/A = 6.315 mm; the
intersecting vertical dashed line informs magnet’s minimal travel time. The solid black line indicates the experimental approximation of relay time based on
pump run-out, τr,min,exp = 0.0188 ± 0.0007 s; error is determined based on flow-sensor specifications. (C) Comparison of theoretical (solid lines) and experi-
mental pump-performance curves at unstrained state, with (dashed pale blue) and without (dashed red) the ferrofluid coating. Marked thresholds indicate
pump run-out and shut-off. (D) Experimental characterization of pump efficiency defined η¼ ðfluid powerÞ=ðSolenoid input powerÞ ¼ pqss=VsI, with peak effi-
ciency of η ≈ 12:5% reached at qss ≈ 225 mL�min�1 (corresponding to a back-pressure Δp ≈ 6 kPa when intersected with C). Error bands for C and D indicate
a 68% confidence (one SD) in the mean based on seven experiments over five separate pumps. Disp., displacement.
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effective downstream fluid velocity Tν ¼ t=t �ν ¼ umt=l , gap
height H ¼ h=C , fluid field pressure P ¼ p=p�, and velocities
Uz ¼ uz=um, Uθ ¼ uθ=u�r , and Ur ¼ ur=u�r , with the measure
of eccentricity λ intrinsically nondimensional thus remains
unchanged. We obtain a nondimensional leading-order force
balance in the ~r axis detailing the transient of magnet position
during pumping operation,

t �

t �ν

� � �
2λ2ðTνÞ þ 1

�
�
1� λ2ðTνÞ

�5=2

∂λðTνÞ
∂Tv|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Axial viscous pressure lift
force term

þ λðTνÞ|fflffl{zfflffl}
Ferrofluid
elastic

force term

� ϱ|{z}
System

acceleration
force term

þ ψ|{z}
Center � of
�pressure
force term

¼ 0,

[1.8]

with resulting characteristic scales for viscous-elastic time scale
t � ∼ πlμ=ε2κf , the kinematic time scale t �ν ∼ l=um, and two non-
dimensional numbers ϱ¼
ðradial acclerationÞ=ðElastic forcesÞ ¼ ma~r =κf C and ψ ¼
ðDestabilizing pressureÞ=ðElastic forcesÞ ¼ γμum=κf . Using sin-
gular asymptotic expansion, we obtain an approximate explicit
solution in leading-order (SI Appendix, section A.5.3),

λðTνÞ ≈
ðϱ� ψÞ eϱTν

t�ν
t�
	 


þTν
t�ν
t�
	 


� eTνψ
t�ν
t�
	 
� �

ϱeTνψ
t�ν
t�
	 


þ eϱTν
t�ν
t�
	 


þTν
t�ν
t�
	 


� ψeTνψ
t�ν
t�
	 
 : [1.9]

Good agreement is evident in predicting the magnet position’s
time evolution between the numerical solution of [1.8] and the
leading-order explicit approximation [1.9] (Fig. 4A).
The z axis provides us with the pressure to flow-rate relation

and subsequent performance curve for ESPs,

β
1

~Z
4ðTνÞ|fflfflfflfflffl{zfflfflfflfflffl}

Magnetic dipole
Maxwell force

term

� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� λ2ðTνÞ

p|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Viscous friction
pressure drop

term

� ζ|{z}
System

acceleration
force term

� 2ΔP|ffl{zffl}
Pressure drop
across piston

term

¼ 0;

[1.10]

along with respective nondimensional numbers β = (max-
well force)/(viscous force)= 3μ0μrm1,zNlc I πr2owτr=2π

2 z40μl and
ζ ¼ ðInertial forceÞ=ðviscous forceÞ ¼ maz=μumπl .
Eqs. 1.8–1.10 give rise to three key results. The first, with

viscous friction pressure drop governed by the axial position of
the magnetic piston: By manipulating the viscous-elastic time
scale such that t � ≫ τd ¼ 2ðn� 1Þτr , where n is the number of
coils in the pump, we can postpone the steady-state—i.e., max-
imal axial displacement—for the duration of intermediate
continuous operation, reducing energy losses to dissipation. Second,
by limiting for Δp ¼ 0 and λðtÞ ! 0, we simulate the absence of
a destabilizing force. We then substitute um ¼ ∂~z=∂t ,
az ¼ ∂2~z=∂t 2, ~z ðtÞ ¼ z0 � Að∂~z=∂tÞt , and m ¼ ðmm þmw),
where mm is the mass of the magnet and mw ¼ mw,pump þmw,tubing
being the pump internal fluid mass and setup tubing fluid mass,
respectively; if we then reinstitute scaling arguments and solve
for τr , we obtain a numerical estimate for minimal relay time
τr ,min required to travel the distance z0 from solenoid to solenoid
(SI Appendix, Fig. S4B). From it, an assessment for max flow
rate possible by our system qmax ¼ ðz0=τr ,minÞπðrm þC Þ2 can
then be derived. Above this limit, the magnet strips off the
solenoid-train due to viscous shear stresses and inertia, inhibiting
magnet acceleration. Third, and most importantly, solving [1.

10] for Δp, substituting um ¼ q=πr2w and [1.9], and then reinsti-
tuting scaling arguments, we obtain the pump-pressure evolution
ΔpðtÞ. Integrating over a single pumping duty cycle period τd
and averaging over time, we obtain the pump-performance curve
Δp,DC ,

Δp,DC ¼ � μl
C 2

ΩðqÞ|ffl{zffl}
Curve slope

þ 2π2μ0μrτrm1,zNlc Ir2ow
Al 2τd z40 ε2

1

2A arctan cot πτd
τr

� �� �
� πðA � 2Þ

� �3 �
1
8π3

0B@
1CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Shut�off pressure, maximum pressure at q¼0

� maz
2πC 2|fflffl{zfflffl}

Acceleration

component

,

[1.11]

with the slope ΩðqÞ governing the form-function of the perfor-
mance. The full form of the leading-order solution is provided
in SI Appendix, section A.5.4. However, it is of particular inter-
est to examine the asymptotic limit when t�=t�ν ≪ 1, for

which ΩðqÞ ∼ q=πr2w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
ða~r mπr2w � γCμqÞ=C κf πr

2
w|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}¼λss

�2
s

,

where λss is the steady-state eccentric position of the magnetic
piston, informing qualitative insights into parameters’ relations
to performance-curve steepness.

4.2. Pump-Performance Curve. Characterizing the perfor-
mance of an existing system requires knowledge of four key
parameters, μ, A, κf , γ. The effective linear spring coefficient
κf and dynamic viscosity μ are material properties of the ferro-
fluid seal; they do not change with the system and are solely
governed by the material. Opposite to them, the z-axis coordi-
nate strain A [1] and the center-of-pressure coefficient γ [1] are
two nondimensional numbers that are calculated for the spe-
cific system based on the shut-off (maximum pressure, no flow)
and run-out (maximal flow, no back-pressure); these change
with the system-limit values. Below, we present theoretical and
experimental results for the given benchmark system. The
dynamic viscosity μ = 0.006 Pa�s is set constant based on the
carrier fluid. The z-axis temporal coordinate strain A ≈
0.6797[1] was derived from [1.11], substituting the shut-off
pressure and solving for A L. The effective linear spring coeffi-
cient was experimentally evaluated to be κf = 0.667 N�m�1,
and, last, the center-of-pressure coefficient γ = 2,255 [1], as
was calculated from [1.11], substituting Δp,DC ¼ Δp ¼ 0,
q ¼ qmax , and solving for γ; for more details, see SI Appendix,
section A.6.

In Fig. 4A, we plot the evolution of eccentricity λðTνÞ over
solenoid cycles Tν, in units of solenoid relay time periods, as
z0 ¼ l and um ¼ umag . Color transition from dark to light
denotes an increase in ψ value and respective steady-state flow
rate qss mL�min�1. We show in intervals of jΔλss j ¼ 0:25 how
for ψ ≪ 1, the value ψ and jλss j ¼ jλð∞Þj matches, whereas
transitioning from jλss j ≈ 0:75 to jλss j ! 1 requires a dispropor-
tionate increase in ψ and, respectively, qss , an attribute of the
exponential decay nature of λðTνÞ as it approaches its limit at
unity.

In Fig. 4B, we compare theoretical approximation to experi-
mental results for the minimal relay time of our experimental
setup. With a total accelerated mass m = (mm + mw) ≈ 0.009
kg, we solve [1.10] for τr , as discussed in the concluding
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paragraph of Section 4.1, and obtain a theoretical approximate
τr,min,Theo = 0.0182 s. Good agreement is seen compared with
the experimental minimal relay time τr,min,exp = 0.0188 ±
0.0007 s at pump run-out; this relay time corresponds to a
maximal pumping duty cycle—i.e., the frequency of the mag-
net to completing an entire pumping cycle fd = 1/τd ≈ 4.4 ±
0.16 Hz—at which the maximal flow rate of qmax ≈ 320 mL/
min is obtained. For more details, see SI Appendix, section A.6.
In Fig. 4C, we focus on the pump-performance curves at an

unstrained state. We present the experimental data with
(dashed pale blue) and without (dashed red) the ferrofluid coat-
ing, showcasing the fluidic seal’s merit, without which the
pump is rendered useless. Further, reasoning the form of the
performance curve with ferrofluid, we observe how as flow rate
increase from qss ≈ 50 mL�min�1 (respective to ψ ≈ 1), to qss =
qmax ≈ 320 mL�min�1 (respective to ψ ≈ 6:8Þ, the diminishing
incremental increase in λ to unity compounded with the singu-

larity of the curve slope ΩðqÞ∝1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� λ2ss

q
result in a nonlinear

increase in curve gradient, reasoning the form of the perfor-
mance curve. In addressing the particular case of pump perfor-
mance without ferrofluid, we examine the asymptotic limit
when t �=t �ν ≫ 1, owing to t � !∞ as κf ! 0. In this limit,
the resulting performance-curve slope is ΩðqÞ ∼ qγ=μπr2w , dem-
onstrating a constant slope governed by the center-of-pressure
coefficient γ [1]. We reevaluate γ = 0.2 [1] and A ≈ 0:26 for
the no-ferrofluid case (for more details, see SI Appendix, section
A.6) and generate the respective predictive model. Good agree-
ment is evident between model prediction (solid lines) and
experimental results (dashed lines) evaluating system-
performance curves.
Last, in Fig. 4D, we experimentally evaluate pump efficiency

η¼ ðfluid powerÞ=ðSolenoid input powerÞ ¼ pqss=VsI , where Vs

V and I A are the voltage and current measured at the

solenoid’s inlet, respectively. We show the current system
attains a peak efficiency of η ≈ 12:5% at qss ≈ 225 mL�min�1

and respective back-pressure Δp ≈ 6 kPa.
Several insights and design guidelines emerge from the good

agreement between experimental results and the explicit approxi-
mation of Eq. 1.11: The characteristic scale β¼ ðmaxwell forceÞ=
ðviscous forceÞ ¼ 3μ0μrm1,zNlc I πr2owτr= 2π2 z50μl governs
design-parameter requirements from the individual solenoid coils,
such as β≫ 1 is a sufficient condition to ensure that the pump
does not stall under the back-pressure generated by the embodied
system it drives. ζ ¼ ðInertial forceÞ=ðviscous forceÞ ¼ maz=μumπl
and ϱ¼ ðradial acclerationÞ=ðElastic forcesÞ ¼ ma~r =κf C indi-
cate system susceptibility to external accelerations, and as long as
ζ≪ 1 and ϱ≪ 1 are maintained, any applied external accelera-
tions to the embodied system will have no appreciable effect on
pump performance. The Maxwell pressure����ð2π2μ0μrτrm1,zNlc Ir2ow=Al

2

τd z40 ε
2Þ 2A arctan cot πτd

τr

� �� �
� πðA� 2Þ

� ��3
� 1=8π3

� �����
establishes a clear relation between ESP parameters inform-
ing parameters to optimize pump pressure, based upon
system, material, and geometric restrictions. Finally, the
asymptotic pump-performance slope

ΩðqÞe q=πr2w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðða~r mπr2w�γCμqÞ=C κf πr2wÞ2

q
qualitatively

indicates parameters’ relation to curve steepness. To conclude,
we thus offer a complete set of guidelines for the design of ESPs
using goal-oriented principles.

4.3. Stable Patterns of Taylor–Saffman Instabilities under
Restoring Magnetic Force. Next, we analyze the second mecha-
nism governing our system, correlating the above-mentioned
prediction with our experiments. In our experimental system,

A B

C D

Fig. 5. Numerical simulation results for ferrofluid-seal dynamics. Presented snapshots examine ferrofluid-seal front evolution for the system at optimal
duty point, qss ≈ 225 mL�min�1 with respective parameters ψ ¼ 4:8 and jλssj ! 1. Ferrofluid is denoted by dark gray, pumped fluid in pale blue. (A) Examined
configuration illustration showing dimensional notation. The inner core-tube diameter (red) and magnet outer diameter (green) are visualized to clarify the
coordinate mapping in the subsequent panels. (B) The emergence of distinct viscous fingers (Saffman–Taylor instability) at t ≈ 0.011 s. (C) Snapshot of seal
front at t ≈ 0.022 s; viscous fingers complete growth prior to seal breach. (D) The seal front is kept in stable oscillations past t > O(t*) s by force equilibrium
between viscous and Maxwell force resultants. For the Finite Element Method (FEM) model used in plates A–D, see SI Appendix, section A.7.
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magnet velocity umag ¼ z0=τr is held constant, dictated by the
constant relay frequency fr ¼ 1=τr ; thus, the overall flow rate
would supposedly be maintained at qmax ¼ qmag ¼ umagπr2w .
However, flow rate q mL�min�1 decays inversely with back-
pressure Δp, as predicted by [1.11]. We now turn to investigate
and reason the means by which a constant velocity-driven posi-
tive displacement pump provides a varying flow rate q. Utilizing
the equation-based modeling capabilities of COMSOL Multi-
physics 5.5, we investigate the two-dimensional (2D) flow within
a Hele–Shaw cell with a variable height (for more details, see SI
Appendix, section A.7). Based on previous work (), we investigate
the emergence of Saffman–Taylor instability—i.e., viscous fin-
gers—along the magnet length. In Fig. 5, we present a system
illustration examining the transient evolution of the ferrofluid
seal front from both a 2D top view and 3D projection. Snap-
shots show the system at optimal duty point at qss ≈ 225
mL�min�1 respective to ψ ¼ 4:8 and jλss j ! 1; ferrofluid is
denoted in dark gray, pumped fluid in pale blue. In Fig. 5B, we
show the emergence of distinct viscous finger structures, the
Saffman–Taylor instability; in Fig. 5C, viscous fingers complete
growth prior to seal breach. Last, in Fig. 5D, we show a stable
oscillating viscous finger pattern, starting at t > O(t*) s. The pat-
tern oscillates respective to solenoid-train actuation frequency
and is maintained over time by force equilibrium between vis-
cous and Maxwell force resultant.

Through this approximate constant cross-section breach in
ferrofluid seal—pale blue extension reaching from z ¼ 0 to
z ¼ l—the ESP can maintain continuous operation under vary-
ing back-pressure without stalling.

5. Results

We now turn to demonstrate how the above model predictions
and insights emerge in an experimental setup. In Fig. 6, we show
the performance curve for an ESP system (constructed within the
limitations of our manufacturing capabilities) evolving as we pro-
gress strain conditions. In Fig. 6 A and B, we present the steady-
state performance curves under strained conditions for bending
and stretching, respectively (SI Appendix, section A.3). It is of
particular interest to examine the geometric-mechanical jamming
for pump-bending deformation. We develop a simplified geomet-
ric model to determine the bounding limit for the pump-
bending strain in relation to geometric parameters or vice versa.
Based on our experimental system design, we estimate that
mechanical jamming will occur at a bending angle ϕmax ≤ 2arc-
tan(2Ce/(l/2) ≈ 21.5°, where Ce is the effective magnet gap at
concentric position accounting for magnet rounded corners; for
more details, see SI Appendix, section A.3. We did not find an
equivalent mechanical jamming model for tensile strain since fail-
ure modes beyond 30% resulted from delamination at the seams,
resulting from manufacturing inconsistencies. In Fig. 6A, we see
that as the pump reaches a bending angle ϕ = 20°, its perfor-
mance approaches the point where the run-out and shut-off
points intersect where it would seize.

In Fig. 7, we present a conceptual vision for functionality.
Our design implements an ESP as an apparatus incorporated
into a same-scale compliant boat that is forced through an
obstruction course that includes 15% lateral contraction and
20° bends. The boat then emerges at the other end of the
course and propels itself forward via the jet generated by the
ESP (similarly to the free jet visualized in Fig. 2F).

We quantify the nondimensional strain rate to be
_E ¼ ðΔl=l0Þ=ðΔt=t �Þ ¼ Oð10�2Þ½1� and normalize based on
the viscous elastic time scale. We thus relate the strain rate to
the governing mechanisms discussed above and in Section 4,
allowing us to expand the conclusions regarding performance,
mechanical jamming, and hysteresis beyond the proposed scale
of this study. Data used to evaluate strain rate _E are is available
in SI Appendix, section A.8, Table S3.

Initially, we push the embodiment through the obstruction
course using the semirigid outlet tube as a flexible pushrod
with both inlet and outlet tubes connected. During deployment
stages Fig. 7B, (I) !(IV), we continuously log both pressure
and flow rate. In Fig. 7A, we illustrate the experimental setup;
Inset illustrates a focused top view of the embodiment structure
with top-level components. Fig. 7B shows the deployment stage
(Left): ðI Þ starting point at rest, ðII Þ squeezing through a 15%
lateral contraction, ðIII Þ 20° positive bend, and ðIV Þ 20° nega-
tive bend. During ðII Þ ! ðIII Þ, ðIII Þ ! ðIV Þ, and past ðIV Þ,
the system reverts to an unstrained state. Next, we present the
start and end positions of the self-propulsion stage (Fig. 7 B,
Right), where the system completes a swimming task, using a
free jet for propulsion (as visualized in Fig. 2G and Movie S1).
In Fig. 7C, we present the real-time performance of the ESP
during dynamic deformation. The nonhysteretic nature of the
ESP is evident upon returning to the unstrained state in sec-
tions ðII Þ ! ðIII Þ and past ðIV Þ; the pressure difference past
section ðIV Þ corresponds to change in elevation Δp = ρgh =

A

B

Fig. 6. Experimental performance curves of ESP under varying strain con-
ditions. Error bands indicate a 68% confidence (one SD) in the mean based
on seven experiments over five separate pumps; plot markers represent
the experimental mean value. (A) Experimental pump performance curve
at unstrained ϕ = 0° and strained states ϕ = 10°, 20°. (B) Experimental
pump performance curve at free state ΔL¼ Δl=l0 ¼ 0¼ 0½%� and axially
stretched ΔL¼ Δl=l0 ¼ 0:15, 0:3¼ 15, 30½%�.
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1,000 × 9.81 × 0.10 ≈ 1 kPa. A real-time video of the system
navigating the course is available (Movies S5 and S6).
Last, we offer an avenue for using the ESP apparatus as a self-

sensor to estimate its strained state, defined as φ¼ ϕeqv=ϕmax ≤ 1,
and provide a warning mechanism prior to mechanical jamming.
Correcting for back-pressure from the external load, we can plot
the dynamic duty point—i.e., pressure and flow rate at a point in
time—and overlay on Fig. 6A; we can then estimate the equivalent
bending ϕeqv and calculate the strained state ratio φ, where φ¼ 1
indicates the system jamming limit. In Fig. 7C, boxed region A (q
≈ 180 mL�min�1, p ≈ 3.1 kPa) has an equivalent strain ϕeqv =
10° respective to a strained state of φ¼ 0:46, whereas regions B (q
≈ 40 mL�min�1, p ≈ 1.4 kPa) and C (q ≈ 23 mL�min�1, p ≈ 1.4
kPa) correspond with the equivalent strain ϕeqv = 20° for a strained
state of φ¼ 0:93, informing proximity to pump stalling.

6. Concluding Remarks

In this work, we tackle the leading component standing in the way
of soft robotic systems from functioning under deformation—the
pump. We present a simple, focused experimental demonstra-
tion and a theoretical framework, showing an ESP undergoing
deformations of its own length scale O(10�2) m, while generat-
ing pressures and flow rates in the order of O(105) Pa and
O(102) mL�min�1 for a power consumption of O(10�1) W.
The resulting work-point is the largest reported for pumps that
operate under large deformations (of its own length scale) with
no appreciable hysteresis.

We observe two governing physical mechanisms in these sys-
tems: magnetohydrodynamic levitation and the Saffman–Taylor
instability in the presence of a restoring magnetic force. In addition,

A

B

C

Fig. 7. Experimental setup demonstrating an ESP integrally embodied in a soft robotic apparatus. The embedded ESP endures axial and angular strain,
while providing continuous fluid pressure and flow rate before eventually emerging at the far end. It then completes a swimming task using free jet propul-
sion (see jet visualization, Movie S1). (A) Experimental setup. A, Inset illustrates a focused top view of the embodiment structure with key top-level compo-
nents. (B, Left) Deployment stage: snapshot sequence of embodiment at various stages during deployment: (I) starting point at rest, (II) lateral deformation
squeezing through a 15% contraction, (III) 20° positive bend, and (IV) 20° negative bend; during (II)!(III), (III)!(IV), and past (IV), the system reverts to an
unstrained state. (B, Right) Self-propulsion stage: start and end positions of self-propulsion postdeployment. (C) Continuous dynamic performance plotted in
real time during deformation with evaluated nondimensional strain rate _E ¼ ðΔl=l0Þ=ðΔt=t�Þ ¼ Oð10�2Þ½1�. Boxed regions A, B, and C are regions of interest,
where we use the ESP for self-sensing to estimate its strained state φ¼ ϕeqv=ϕmax ≤ 1, thus providing a warning method prior to mechanical jamming, which
occurs at φ¼ 1. Boxed region A (q ≈ 180 mL�min�1, p ≈ 3.1 kPa) has an equivalent strain of φ¼ 0:46, whereas regions B (q ≈ 40 mL�min�1, p ≈ 1.4 kPa) and
C (q ≈ 23 mL�min�1, p ≈ 1.4 kPa) correspond to a strained state of φ¼ 0:93.
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we report the characteristic scales and an explicit leading-order pre-
dictive model detailing how the proposed governing mechanism of
magnetohydrodynamic lubrication is scalable with respect to pres-
sure, flow rate, size, and radius of curvature.
Last, we elucidate a list of avenues for tailoring performance

in goal-oriented design: We show how the restoring force cen-
tering the magnetic piston and the maximal pressure generated
by the pump are inversely proportional to the magnet–wall
gap squared, evident by the characteristic pressure scale
p�∝1=C 2. We relate ferrofluid’s effective dynamic viscosity μ
and linear spring coefficient κf to the destabilizing force acting
on the magnetic piston, whereby in making ψ∝μ=κf ≪ 1, we
reduce steady-state eccentricity jλss j and, therefore, viscous fric-
tion—a leading-order source of dissipative energy loss. We
point to a criterion over the nondimensional numbers ζ and ϱ,
the inertial to viscous force ratios, such that when ζ≪ 1 and
ϱ≪ 1, external accelerations exerted on the pump will have no
appreciable effect on performance. We provide minimal crite-
ria sufficient to ensure that the pump does not stall under the
back-pressure, so long that the nondimensional number β, the
Maxwell to viscous force ratio, β≫ 1. We show the ESP appa-
ratus as a sensor to estimate its own strained state, defined
φ¼ ϕeqv=ϕmax ≤ 1, and provide a warning mechanism prior

to mechanical jamming due to excessive deformation. Last, we
inform how by manipulating the viscous-elastic time scale to
be greater than the pumping duty cycle t � ≫ τd , we can delay
the magnetic piston from stabilizing at steady-state maximal
eccentricity during operation, further reducing energy loss and
dissipation.

Combined, these provide an explicit set of scaling laws—a
toolbox to assist in goal-oriented design, a first step toward
developing a practical deformable pump that will serve as the
foundation for future advances in soft-pump technology.

Data Availability. All study data are included in the article and/or supporting
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