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Abstract

Leaf number and leaf emergence rate are phenotypes of interest to plant breeders,
plant geneticists, and crop modelers. Counting the extant leaves of an individual plant
is straightforward even for an untrained individual, but manually tracking changes
in leaf numbers for hundreds of individuals across multiple time points is logisti-
cally challenging. This study generated a dataset including over 150,000 maize and
sorghum images for leaf counting projects. A subset of 17,783 images also includes
annotations of the positions of individual leaf tips. With these annotated images,
we evaluate two deep learning-based approaches for automated leaf counting: the
first based on counting-by-regression from whole image analysis and a second based
on counting-by-detection. Both approaches can achieve root of mean square error
(RMSE) smaller than one leaf, only moderately inferior to the RMSE between
human annotators of between 0.57 and 0.73 leaves. The counting-by-regression
approach based on convolutional neural networks (CNNs) exhibited lower accuracy
and increased bias for plants with extreme leaf numbers which are underrepresented
in this dataset. The counting-by-detection approach based on Faster R-CNNs (region
based convolutional neural networks) object detection models achieve near human
performance for plants where all leaf tips are visible. The annotated image data
and model performance metrics generated as part of this study provide large scale
resources for the comparison and improvement of algorithms for leaf counting from

image data in grain crops.

1 | INTRODUCTION

Plant development, unlike that of many vertebrates, incorpo-
rates the potential for substantial plasticity in organ numbers.

Abbreviations: CNNs, convolutional neural networks; DAP, days after
planting; MSE, mean square error; QTL, quantitative trait locus; R-CNN,
region based convolutional neural networks; RMSE, root mean square error.

Different varieties of the same species may produce different
numbers of leaves prior to flowering (Allen et al., 1973; Kim
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et al., 2017). Two genetically identical clones may produce
different numbers of leaves prior to flowering when grown
in different environments (Brooking et al., 1995; Tollenaar &
Hunter, 1983). Variation in both the total number of leaves
produced, the rate at which leaves are produced and the phyl-
lochron, or the rate in thermal time at which leaves appear are
associated with a wide range of agricultural plant properties.
For example, in maize, the number of leaves is correlated with
plant height, flowering time, and moisture at harvest (Allen
etal., 1973). In switchgrass, a larger number of leaves, indica-
tive of a long duration of vegetative growth prior to repro-
ductive transition, is highly correlated to the biomass yield
(Van Esbroeck et al., 1997). In potato, the number of green
leaves has been used as indicator to determine drought resis-
tant and susceptible varieties (Deblonde & Ledent, 2001). In
perennial ryegrass, the number of leaves was used as a cri-
terion for determining defoliation time (Fulkerson & Slack,
1994). Many crop growth models also incorporate both leaf
emergence rate and mature leaf number as crucial parameters
which must be determined when these models are fit to new
crops or new varieties of existing crops (Hammer et al., 2010;
He et al., 2012; Lizaso et al., 2003; Truong et al., 2017). As a
result, counting the number of leaves on a given plant is a task
frequently undertaken by plant biologists, plant breeders, and
agronomists.

However, manually counting leaves can be time consuming
and logistically challenging. This is particularly true for large
studies where hundreds of genotypes are being evaluated,
each with many replicates (e.g., QTL mapping, genome-wide
association study, breeding trial evaluations, etc.). Leaves pro-
duced early in development can senesce and be undetectable
by maturity (Figure la and b). As a result, multiple mea-
surements throughout development are necessary not only to
track leaf appearance rates but also to have an accurate final
count of the total leaves produced. These challenges have lim-
ited the number of studies identifying genetic variants influ-
encing the number of leaves or leaf appearance rates (Cao
et al., 2016; Hasan et al., 2016; Li et al., 2016; Méndez-Vigo
etal.,2010). The same challenges also hinder the development
and deployment of genotype-specific crop growth models (He
et al., 2012; Technow et al., 2015; Yang et al., 2021). These
logistical hurdles have motivated the exploration of automated
or semi-automated solutions to plant phenotyping (Araus &
Cairns, 2014; Fernandez et al., 2017; Furbank & Tester, 2011;
Zhou et al., 2019). Advances in automated plant imaging have
produced large plant image datasets (Feldman et al., 2017;
Liang et al., 2017; Zhang et al., 2017). However, developing
and deploying the most effective algorithms to allow the auto-
mated counting or scoring of the number of leaves from raw
images of plants is an ongoing challenge within the plant phe-
notyping community.

A range of deep learning-based approaches have been pro-
posed in recurring plant phenotyping workshops, conferences,
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Core Ideas

* Automated leaf counting in maize was previously
limited by annotated training data.

* Two deep learning approaches both achieve near
human accuracy in counting leaves.

* There is an ongoing need to extend image datasets
with phenotypically extreme plants.

and research articles (Aich & Stavness, 2017; Dobrescu et al.,
2019; Giuffrida et al., 2018; Madec et al., 2019. Many of these
approaches were developed and validated using image and
ground truth data from rosette plants (Giuffrida et al., 2016;
Kuznichov et al., 2019). Rosette plants are defined by a shared
leaf architecture where leaves are arranged in a compact cir-
cular pattern along the stem with substantially reduced stem
elongation between leaves (Figure 1c). The focus on rosette
plants is likely a result of the popularity of A. thaliana, a plant
genetic model which belongs to the Brassicaceae, a family of
plants including many species which grow in a rosette fashion.
For plants exhibiting a rosette leaf architecture, it is frequently
possible to collect images of the majority of non-occluded
leaves from a single top-down view in a short period of time
using relatively simple imaging systems (Bell & Dee, 2019;
Giuffrida et al., 2016; Minervini et al., 2016; Scharr et al.,
2014). Giuffrida and co-workers proposed and validated a uni-
fied deep network which could predict leaf numbers across
multiple species which share a rosette-style leaf architecture
(Giuffrida et al., 2018). For the majority of species of mono-
cots, leaves are sessile with the blade of the leaf directly join-
ing the stem. Maize, wheat, and rice, three monocot crops
in the grass family — Poaceae — have elongated internodes
between sessile leaves which emerge following alternating
phyllotaxy. These crop species also provide roughly half of
all calories consumed by humans around the globe (Tester &
Langridge, 2010). Leaf counting has been shown to be prac-
tical in sorghum when using depth cameras to reconstruct
3D models of individual plants (McCormick et al., 2016;
Xiang et al., 2019). However, only limited work has been
conducted in leaf counting from 2D images of grain crops
such as maize and sorghum (Pound et al., 2017; Zhou et al.,
2020), potentially because of the lack of large, annotated, pub-
lic training datasets for them. Unlike rosette plants, counting
leaves from top-down images is not practical in these species
(Figure 1d). Instead, the leaves of grasses are generally
counted when viewed from the side, which reduces the inci-
dence of occlusion.

In this study, we assembled a maize image dataset using
a non-invasive high throughput plant phenotyping platform,
consisting of a large greenhouse where plants are grown on
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FIGURE 1 Challenges in tracking the number of leaves in plants. Leaves produced early in development can senesce and die over the lifetime

of the plant, becoming undetectable at maturity. (a) A maize plant at 32 d after planting (DAP with eight visible leaves. (b) The same maize plant at

34 DAP. The top three leaves have all lengthened significantly, while the bottom leaf (indicated in red ovals) has senesced and is no longer visible,

resulting in only seven visible leaves for this older plant. (c) Illustration of the rosette leaf architecture exhibited by an Arabidopsis plant in a

top-down photo with all leaves visible. (d) Top-down photo of the same maize plant shown in panels a and b. Leaf occlusion in Panel d is more

severe than in panel ¢

conveyor belts and an imaging system where plants are pho-
tographed from multiple angles using a range of cameras
with different imaging modalities (Gaillard et al., 2020; Ge
et al., 2016). A set of 122,290 RGB images of maize plants,
consisting of 10 images per plant per day from 923 unique
plants representing 342 unique maize genotypes, were col-
lected as part of two experiments conducted in 2018 and 2019.
A parallel sorghum dataset of 27,770 images, consisting of
five images per plant per day, was collected from 343 unique
plants representing 295 unique sorghum genotypes. The posi-
tion and classification of individual leaf tips in a subset of
these images were annotated by humans using the Zooni-
verse citizen science/crowd sourcing platform. Leaf counting
approaches employing convolutional neural networks (CNN’s)
trained for regression and Faster R-CNNs (region based con-
volutional neural networks) object detection models trained
for leaf tip detection were evaluated. The release of raw data

including leaf tip position and condition annotations, as well
as the initial performance estimates of different models pro-
vide the community a benchmark to test against when seeking
future improvements in automated leaf counting for grasses
and grain crops.

2 | MATERIALS AND METHODS

2.1 | Image acquisition and annotation

Maize image data was taken from two separate experiments
conducted at the University of Nebraska-Lincoln’s Green-
house Innovation Center (Lat., 40.83; Long., —96.69) in 2018
and 2019. In the first experiment, 256 lines from the Buckler-
Goodman inbred association panel (Flint-Garcia et al., 2005)
were planted on 23 July 2018. In the second experiment, 255
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lines from the Buckler-Goodman inbred association panel and
33 lines from the Germplasm Enhancement of Maize project
(Pollak, 2003) were planted on 25 Mar. 2019. Maize kernels
were sown in 2.4 gallon pots with Fafard germination mix sup-
plemented with 1 cup (236 mL) of Osmocote plus and 1 table-
spoon (15 mL) of Micromax Micronutrients per 2.8 cubic feet
(80 L) of soil. The target photoperiod was 14:10 with supple-
mentary light provided by light-emitting diode (LED) growth
lamps from 07:00 to 21:00 each day. The target temperature
of the growth facility was between 24—-26°C. After growing
in the greenhouse for 28 d in the first experiment and 38 d
in the second experiment, all the plants were moved to a high
throughput phenotyping facility equipped with a plant convey-
ing system and different kinds of imaging chambers (Gaillard
et al., 2020; Ge et al., 2016). The conveyor belt transferred
each pot to a set of imaging chambers once every 2 or 3 d
for imaging, and to a watering station each day. At the water-
ing station plants were weighed and watered back to a target
weight to ensure all plants were growing in a good condition.
In the imaging chamber, each plant was rotated 36 degrees
nine times, and an image was captured for each stop. There-
fore, a total of 10 photos with 0°, 36°, 72°, 108°, 144°, 180°,
216°,252°,288°, and 324° viewing angles were captured for
each plant on the same day (Figure Sla). Plants were pho-
tographed from 28 to 73 days after planting (DAP) in the 2018
experiment, and 38 to 70 DAP in the 2019 experiment. These
imaging time periods covered both late vegetative growth and
flowering stages for the majority of genotypes in the popula-
tion. A total of 122,290 maize images were acquired from the
two experiments and each image had a resolution of 2,454 x
2,056 pixels. All the images described above are now freely
accessible, see Data Availability Statement.

Sorghum image data was taken from a previously published
image dataset (Miao et al., 2020). This dataset consisted of
27,770 images collected from 343 unique sorghum plants rep-
resenting 295 inbred lines from the sorghum association panel
(Casa et al., 2008). Images were photographed from 26 July
26 to 31 Aug. 2017 over a period of 37 d spanning vegeta-
tive and reproductive development for the majority of geno-
types in the population. In contrast to 10 viewing angles in
the maize dataset, on each imaging date sorghum plants were
photographed from only five different viewing angles includ-
ing 0°, 36°, 72°, 108°, and 144°.

As images with different viewing angles for the same plant
captured on the same day share the same leaf number, only
the image with the 108° viewing angle was uploaded to the
crowd sourcing platform Zooniverse for annotation. All the
leaves in each image were grouped to three classes: (a) leaves
with visible healthy leaf tip; (b) leaves with visible but dam-
aged or cut leaf tip; (c) leaves with leaf tips that are not vis-
ible due to occlusions. For the first two classes where leaves
had visible leaf tips, annotators were asked to click corre-
sponding leaf tip positions. For leaves whose leaf tips were

MIAO ET AL.

not visible, annotators were asked to click anywhere in the
leaf (Supplemental Figure S2). The total number of leaves in
each image was calculated as the sum of the number of anno-
tations for each of these three classes. We estimate it took
approximately 132 total person hours to complete all anno-
tations for 12,229 maize images and 5,554 sorghum images.
Annotation for this project was conducted primarily by paid
undergraduate researchers. All the annotation results includ-
ing the coordinates of tip positions and the leaf numbers have
been deposited in FigShare (See Data and Code Availability
Statement).

2.2 | Image processing

All images were preprocessed by being cropped to a maxi-
mum bounding rectangle containing all plant pixels as shown
in Figure S1b. Removing uninformative parts in the image
such as imaging chamber frames and the bottom pot increased
plant portion in the image, which made it easier for deep learn-
ing models to learn plant related features. A pixel was classi-
fied as a plant pixel if the pixel value in the green channel was
larger than 130. This cutoff was set after manually checking
the performances of various threshold values on images across
different genotypes and time points. Among the 10 images
collected from a single maize plant on the same day, the two
images where the distance between the furthest left and fur-
thest right plant pixel was greatest were included in the ‘best
views’ category and the other eight images were treated as
‘other views’ for downstream analyses (Figure S1b).

The preprocessed images were split to training, validation,
and testing images at the genotype level, rather than at the
plant or image level. This practice was adopted to avoid issues
of data leakage which can occur when very similar images
appear in both training and testing processes (Samala et al.,
2020). All images from a set of 50 maize inbred lines gen-
erated as part of this study were set aside as testing data for
evaluating the final accuracy of models. Image data for the
remaining 292 lines were split for five-fold cross-validation
with five sets of training and validation data. The first two sets
contain all images from 233 inbred lines in training dataset
and all images from 59 maize inbred lines in the validation
dataset. The remaining three sets contain all images from 234
and 58 inbred lines in training and validation dataset respec-
tively.

2.3 | Training and evaluation of CNNs and
faster R-CNNs

Two sets of maize CNNs were trained in this study: CNNs
trained on all 10 viewing images, and CNNs trained only
on the best viewing images (Figure S1). In each case, five
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models were trained through five-fold cross-validation. All
the CNNs were trained using transfer learning by fine tun-
ing a pre-trained Resnet18 model (He et al., 2016) to fit cus-
tomized maize images for leaf counting tasks. The pre-trained
Resnet18 model adopted in this study was trained on the
1,000-class ImageNet dataset (Russakovsky et al., 2015) with
1,000 output features in the last fully connected layer. In order
to adapt the model to the task of leaf counting, the number of
output features was set to 1 representing one estimated leaf
number for each input image. All the preprocessed images
were resized to 224 X 224 pixels as the input image size dur-
ing training evaluating CNNs. In addition, two types of image
transformation approaches were applied on the input train-
ing images. The first transformation approach changes input
images by horizontally flipping images randomly with a given
probability of 0.5. The second transformation approach ran-
domly changes the brightness, contrast and saturation of the
input images. The mean square error (MSE) was used as the
loss function considering leaf counting as a regression prob-
lem. The stochastic gradient descent optimizer was used with
the ‘learning rate’ set to 0.001 and ‘momentum’ set to 0.9.
The maximum epoch was set to 500 and the early stopping
was applied during the training with the ‘patience’ argument
set to 50. This setting means that training will stop early if the
overall MSE fails to improve for 50 continuous epochs. In this
case the model with the smallest loss value will be saved and
used for downstream evaluations.

A set of sorghum CNN models were also trained through
transfer learning based on the CNNss trained on the best view
maize image dataset. However, a different transfer learning
strategy was adopted. Instead of fine tuning all the pre-trained
weights, only the weights in the last fully connected layer
were retrained using the best viewing sorghum images. All the
sorghum images went through the same prepossessing steps
as the maize images, including the removal of uninformative
portions of each image. Sorghum images were also split on
the genotype level to avoid data leakage, with all best view
images from 250 sorghum lines used for training and all best
viewing images for the remaining 44 lines used for testing.
The hyperparameters for retraining sorghum models were the
same as in training maize models.

A pre-trained Faster R-CNN object detection model (Ren
et al., 2015) with Resnet50 architecture as the backbone was
adopted to detect both healthy and damaged leaf tips in maize
RGB images. The backbone was pre-trained on the ImageNet
dataset and used as fixed feature extractor in Faster R-CNN.
The Faster R-CNN model was pre-trained on the COCO 2017
instance dataset, which includes 91 “stuff categories” includ-
ing person, vehicles, fruits, and animals. To fit our leaf tip
dataset, the output number of classes was set to three rep-
resenting healthy leaf tip, damaged leaf tip, and background
classes. Five object detection models were trained through
five-fold cross-validation with the same splitting strategy used
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for CNNs, but only the directly annotated images were con-
sidered because the leaf tip positions were only annotated in
these images. Each leaf tip coordinate indicated by (X, y) in
a directly annotated image were converted to a bounding box
coordinate (x-15, y-15, x+15, y+15) with a 30 x 30 square
centered around the leaf tip. The images used for both train-
ing and testing are the original plant photos without cropping
as shown in Figure S1a. The stochastic gradient descent opti-
mizer was used during training with the ’learning rate’ set
to 0.001, 'momentum’ set to 0.9 and ‘weight decay’ set to
0.0005. The maximum epoch was set to 200 and early stop-
ping was applied when both the average precision and average
recall were converged. The object detection model was eval-
uated in the directly annotated images from the 50 genotypes
set aside as held out test data. The number of leaves estimated
by the model was the sum of all the detected leaf tips with a
classification score higher than 0.5.

Three metrics were adopted in this study to evaluate model
performances: the square of the correlation coefficient (%),
the root mean square error (RMSE), and the agreement rate
defined by the proportion of perfect predictions. A perfect pre-
diction was called when the difference between ground truth
and prediction was less than 0.5 so rounding would produce
the same predicted integer value for leaves as reported ground
truth. The mean and standard deviation of each metric were
calculated from the five-fold cross-validation for the eventual
model comparisons. The code for training and evaluating both
CNN models and Faster R-CNN models implemented using
the PyTorch framework has been deposited on GitHub (See
Data and Code Availability Statement).

3 | RESULTS & DISCUSSION
3.1 | Assessment of the leaf annotation
dataset

Ten images for a maize plant were photographed from 10 dif-
ferent viewing angles each day (Supplemental Figure Sla).
Ground truth leaf numbers should not vary among images
of the same plant taken on the same day, however apparent
leaf numbers may vary as a result of differences in occlusion
among images taken from different perspectives. The viewing
angles of 108° and 288° were identified as the most straight-
forward to annotate, with leaves tending to have compara-
tively fewer occlusions or crossovers among leaves than other
viewing angles. The images taken from the viewing angle
of 108° were selected for the manual annotation. Annotators
were asked to divide leaves into three categories: (a) leaves
where the leaf tip was not visible (e.g. out of frame or occluded
by another leaf); (b) leaves where the leaf tip was visible but
mechanically damaged or cut; and (c) leaves where the leaf tip
was visible and healthy (Supplemental Figure S2). The total
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(d)

Human annotation errors on leaf counting: (a) Concordance in leaf number annotation between independent annotations of the

same image by different observers. Dark blue points represent observations from larger numbers of distinct images while light blue points represent

observations from smaller numbers of distinct images. The total tested images, square of the correlation coefficient (r%), root of mean square error

(RMSE), and the agreement rate are shown in the upper left corner. The best linear regression line is shown in red and the equation for that line is

given in the bottom right. (b) An example of an image where two observers disagreed on the identification of a new leaf emerging from the whorl of a

maize plant (red arrow). Selected positions of leaf tips for one observer are indicated with red circles and the other with blue squares. (c) An example

of an image where two observers disagreed about the annotation of a senescing and potentially damaged leaf (red arrow). (d) An example of an image

where one observer identified a partially occluded or overlapping leaf which was missed by a second observer (red arrow). () An example of a plant

where phyllotaxy has shifted for upper leaves, making it difficult to annotate from any one side viewing angle. Images for panels b--e were cropped to

aid viewing at a reduced figure size. Annotations which were made outside of the cropped portion of the image included in the figure are not shown

number of leaves for each annotated image was calculated by
summing up all three leaf categories. The calculated number
of leaves for the annotated image was also assigned to the
other nine images with different viewing angles but captured
for the same plant on the same day. Details of the annotation
process and the definition of each of the three categories are
provided in the methods section. Annotated leaf numbers for
maize plants in this dataset ranged from 3 to 20 with reduced
representation at both extremes (Supplemental Figure S3A).
All images and annotations are being released, but in the anal-
yses below, we focus only on images of plants with between
4 and 15 leaves with each category containing at least 3,000
images of plants (Supplemental Figure S3A).

A subset of 1,768 images were shown to two or more
human observers. In 72% of cases where an image was seen
by two observers, both observers agreed on the total num-
ber of leaves (RMSE = 0.71) (Figure 2a). Inconsistencies
between observers were more common in images with larger
total numbers of leaves. Manual follow-ups using the posi-
tional information recorded as part of the annotation process
found that observer disagreements were primarily explained
by three issues: (a) differences when a new leaf, emerging
from the top of the whorl, was included in the leaf count for the
plant as shown in Figure 2b; (b) differences whether senesc-
ing or severely damaged leaves at the base of the stalk were

still included in the leaf count for the plant (Figure 2¢); and (c)
partially occluded leaves which were missed by one observer
but not another as shown in Figures 2d and e. Among assign-
ments to the three different classes of leaves — healthy leaf
tip, damaged leaf tip, and non-visible leaf tip — the one error
we observed frequently was that at least some human annota-
tors tended to annotate leaves which extended out of frame as
healthy leaf tips rather than the non-visible leaf tips.

Data leakage can occur when an annotated image dataset
includes individual images sharing many common features
and common labels and these images are randomly partitioned
into training and testing datasets. Data leakage can result in
CNNss with overly optimistic prediction accuracy, i.e., the esti-
mated results from CNNs are impossible to achieve in real
world scenarios (Samala et al., 2020). At least two potential
sources of data leakage exist in this leaf number/leaf position
dataset. Firstly, this dataset includes images of the same plant
collected only several days apart. These images will tend to
look much more similar to each other than random pairs of
images, and tend to contain plants with close or identical num-
bers of leaves. Secondly, variation in leaf numbers is under
genetic control (Cao et al., 2016; Li et al., 2016). The dataset
employed here includes images of multiple plants from the
same genotype. Images of different, genetically identical indi-
vidual plants will tend to be more similar to each other than



MIAO ET AL.

images from random unrelated individual plants, and will be
more likely to share close or identical numbers of leaves at the
same stage in development. To avoid problems of data leak-
age, we elected to conduct data splitting at the genotype level,
rather than splitting at the level of individual images or indi-
vidual plants when preparing data for training and testing (see
Methods).

3.2 | Counting leaves by regression

Multiple deep learning based approaches have been applied
to the task of counting the number of leaves in plant images
(Dobrescu et al., 2019; Pound et al., 2017). Among them, the
CNNss that treat the leaf counting task as a regression prob-
lem are most widely deployed for the direct estimation of leaf
numbers. In this study, two different sets of training data were
used when training CNNSs to predict the correct number of
leaves based on a single image of a maize plant. The first set
of CNNs were trained using maize images with all 10 view-
ing angles in the training dataset. We acknowledge that even
for human annotators, accurately counting leaves in images
taken from some perspectives (e.g. viewing angles parallel to
the plane of phyllotaxy) will be more challenging than oth-
ers (e.g. viewing angles perpendicular to the plane of phyl-
lotaxy) (Supplemental Figure S1b). Therefore, a second set
of CNNs were trained only using those images with the best
views in the training data. The best views were the two images
where the distances between the left most and right most plant
pixel were greatest among all 10 viewing angles, whereas the
rest of eight images were treated as other views (Supplemen-
tal Figure S1b). While viewing angles 108° and 288° pro-
duced the most images classified as “best,” the best images
were selected on a plant by plant basis and for some individ-
ual plants different angles were selected as best (Supplemen-
tal Table S1). The trained CNNs were then evaluated on the
images, including all 10 viewing angles from the 50 genotypes
set aside as held out test data. However, model performance
was different when evaluated based on the testing images with
different viewing angles.

For models trained using data from all 10 viewing angles,
performance was significantly higher when evaluated using
only the best viewing images than when evaluated using data
from the other viewing images in the test data (Table 1, Sup-
plemental Table S1). Based on the greater prediction accu-
racy of CNNs when evaluating using only best viewing angle
images, the decision was made to train a second set of CNNs
employing only best viewing angle images as training data.
The performance of these new models was comparable to
the set of models trained using data from all 10 viewing
angles when evaluating them on the other viewing images
from the held out test set. However, the new CNN models
achieved a significantly greater correlation between predic-
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TABLE 1 Performance of regression convolutional neural
networks (CNNss) on leaf counting in maize
Testing Agreement
Model data r? rate RMSE
CNN1*  Other 0.79 + 0.04 0.33 + 0.02 1.28 + 0.11
views®
CNNI  Best 0.84 + 0.03 0.37 + 0.03 1.11 + 0.09
views?
CNN2®  Other 0.78 + 0.02 0.35 + 0.02 1.31 £ 0.12
views
CNN2  Best 0.87 + 0.01 0.45 + 0.01 0.96 + 0.04
views

Note. RMSE, root of mean square error.

2CNNI1: CNNs trained using all 10 viewing angle images collected from each
plant.

bCNN2: CNNGs trained using only the two best viewing angle images.

“Best views: The images taken from the two viewing angles where the distance
between the furthest left and furthest right plant pixel was greatest.

4Other views: The remaining eight images taken from other viewing angles.

tion and ground truth (+* = .87; p = .011; t-test), higher agree-
ment rate (45%; p = .031; t-test), and lower RMSE (0.96
leaves; p = .001; t-test) when tested on the best viewing
images from the held out test set (Table 1). The training time
required for models trained using best viewing images was
also much shorter than the training time required for mod-
els trained using all 10 viewing images as the number of best
viewing images was only 1/5th of all viewing images.

Outcomes for the single highest performing model, one
of the five trained using only the best viewing images, were
2 of .88, an agreement rate of 46%, and an RMSE of 0.92
(Figure 3a). For most numbers of ground truth leaves, the pre-
dictions of the CNN were not obviously biased towards pre-
dicting too many or too few leaves. However, the model did
tend to overestimate the number of leaves for plant images
with only four leaves, while tending to underestimate the num-
ber of leaves for plant images with 14 or 15 leaves (Figure 3a).
These three ground truth values (4 leaves, 14 leaves, or 15
leaves) were the least common among leaf number groups
included in our training dataset (Supplemental Figure S3A).
When excluding these three leaf number classes, the RMSE
was decreased to 0.88 from 0.92 leaves, although this was
still higher than the RMSE observed among human annota-
tors (0.72 leaves) among the same leaf number classes (Sup-
plemental Figures S4, 2A).

3.3 | Application of maize models to
sorghum

Maize and sorghum share similar plant architectures prior to
flowering. Untrained observers can struggle to tell the differ-
ence between vegetative stage maize and sorghum plants, and
even trained observers will struggle at the seedling stage. We
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Distribution of predictions and errors for counting-by-regression approach in maize: (a) Relationship between predicted leaf

number and human annotated number of leaves among the best viewing images for the single best performing convolutional neural networks trained

using the best viewing images. The equation of the best linear regression, square of the correlation coefficient (%), root of mean square error

(RMSE), and the agreement rate are indicated in the bottom right corner. Dashed lines indicate the median predicted leaf number values for images

with each different number of leaves identified by human annotators. Cases where the median value for images of plants with a given number of

leaves diverges from the annotated number of leaves by >0.5 leaves are indicated in red, all other cases indicated in black. (b) Distribution of error

(difference between human observation and predicted number of leaves) for the same single best performing model shown in panel a. The absolute

difference of less than 0.5 indicated by the blue bars was used for the calculation of agreement rate

TABLE 2 Performance of CNNs on leaf counting in sorghum
images
How maize
model was Agreement
used r? rate RMSE
Directly 0.54 + 0.04 0.35 + 0.03 1.14 + 0.05
Transfer 0.64 + 0.04 0.39 + 0.02 1.06 + 0.06
learning

Note. RMSE, root of mean square error.

generated annotations for a published set of sorghum images
which were collected using the same automated imaging facil-
ity employed to generate the maize images described above
(Miao et al., 2020). In the sorghum data, only five images
were collected from five side viewing angles instead of 10 in
the maize data. The sorghum dataset annotated in this study
exhibited a narrower distribution of leaf numbers than the
annotated maize images (Supplemental Figure S3B). At least
500 images were available of sorghum plants with between
6 and 13 leaves, and images of plants with these numbers of
leaves were employed below. Models trained using best view-
ing maize images and directly applied to sorghum exhibited
a decline in performance relative to the performance of those
same models in maize across all three metrics (Table 2). The
r* between annotated and predicted leaf numbers decreased
to 0.54 from 0.87, the agreement rate decreased to 35% from
45%, and the RMSE increased to 1.14 from 0.96. The decline
in 72 is likely explained in part by the reduced variability in
leaf numbers among plants in the sorghum image dataset rel-

ative to the maize dataset (Supplemental Figure S3B). How-
ever, this difference cannot explain the decline in the agree-
ment rate or the increase in the RMSE. A second approach was
evaluated where a subset of the annotated sorghum data was
employed to retrain the last fully connected layer of the same
adopted maize models. This transfer learning based approach
resulted in small but significant improvements in all three
evaluations of model performance. The mean RMSE of the
new models through transfer learning was only 1/10th of a
leaf less accurate in sorghum than the original models were in
maize (Table 2).

3.4 | Counting leaves by detection

Human beings possess and employ at least two mechanisms
for counting objects: subitizing, the near instantaneous recog-
nition of object numbers for set of one through four, and a
slower counting based mechanism for larger quantities (Trick
& Pylyshyn, 1994). The regression-based approach described
above is, in some ways, more analogous to subitizing as it
seeks to determine the complete number of leaves present in
the image at once. The counting-by-regression approach is
sensitive to the number of images representing each potential
number of leaves a plant can have, with biased performance
for rarer and more extreme leaf numbers (Figure 3a, Supple-
mental Figure S4). An alternative approach to leaf counting
is to implement counting-by-detection models (Buzzy et al.,
2020; Xu et al., 2018) built on top of object detection frame-
works (Redmon et al., 2016; Ren et al., 2015). Compared to a
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FIGURE 4

13

Representative leaf tip detection results. (a) Example of a plant with perfect detection, all annotated leaf tips are correctly
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identified. Undamaged leaf tips detected by the model indicated in red, damaged leaf tips detected by the model indicated in blue. The values above

each bounding box indicate the classification confidence score assigned by the faster region based convolutional neural networks model. (b) An

example of a plant where multiple leaves were missed by the object detection model either because the leaf tip itself is out of frame (red arrows) or

because the leaf tip is occluded behind another leaf of the same plant from this viewing angle (purple arrow). (c) Example of a plant where two

erroneous leaf tips were detected by the object detection model. One erroneous detection is centered on a tassel branch (red arrow), although the

majority of tassel branches are not misclassified as leaves. The second erroneous detection is centered on a husk leaf associated with a developing ear

on this particular maize plant (purple arrow)

single number as the label for each training image in building
CNNs, Object detection models are trained using annotations
of bounding boxes around objects of interest.

In order to create bounding boxes centering on leaf tips
as training data for leaf tip detection, the annotated coor-
dinates of each leaf tip were expanded by 15 pixels in
each direction resulting in a 30 X 30 pixel bounding box
centered on each annotated leaf tip. The resulting bounding
box annotations were employed to train a set of Faster R-CNN
object detection models through five-fold cross-validation
using the same splitting strategy employed above in maize.
Each Faster R-CNN model employed the Resnet50 archi-
tecture as a backbone and was pre-trained on the ImageNet
dataset (He et al., 2016; Ren et al., 2015; Russakovsky et al.,
2015). All object detection models were trained on the bound-
ing box annotations with intact and damaged leaf tips as two
distinct objects. During the training process, model perfor-
mance was evaluated using standardized metrics: Average
precision and recall for the purpose of stopping training pro-
cess early to avoid over fitting. Final trained models were eval-
uated using the same metrics used in evaluating CNNs by
comparing the leaf numbers annotated by humans and pre-
dicted numbers of leaves by summing all detected leaf tips by
object detections models. The testing images are in the subset
of the directly annotated images for the 50 held out genotypes.

Unlike the CNN based counting-by-regression approach
where the number of leaves in an image could be general-
ized to other images taken of the same plant at the same time,
training object detection required information on the position
of each leaf tip. As a result, training data consisting solely

TABLE 3 Performance of Faster R-CNNs on leaf counting in
maize
Agreement
Testing data r? rate RMSE
Directly 0.78 = 0.01  0.43 + 0.01 1.33 + 0.04
annotated
Directly 0.88 + 0.01 0.56 + 0.03 1.00 + 0.06

annotated - all
tips visible

Note. R-CNNs, region based convolutional neural networks; RMSE, root of mean
square error.

of directly annotated images collected from genotypes in the
training set. Evaluation of performance was conducted using
two subsets of the held out test data. The first subset con-
sisted of all directly annotated images collected from plants
belonging to genotypes in the held out test dataset. The sec-
ond included only the subset of the images in set one where
human annotators reported that all leaf tips were in frame
and not occluded. When evaluated across all directly anno-
tated images in the held out test set, object detection models
achieved an average 72 of .78, an agreement rate of 43% and
an RMSE of 1.33 (Table 3). Manual examination of images
where the predicted number of leaves was less than the anno-
tated number of leaves revealed that the majority of missing
detections resulted from leaves which were either out of frame
or occluded by other leaves (Figure 4b). The latter problem
— occlusion of leaves by other leaves — is likely unavoidable
in 2D representations of 3D plants. However, leaf tips which
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Comparison of the performance of the best object detection model on images without leaf tip occlusions to concordance between

human annotators. (a) Relationship between predicted leaf number and human annotated leaf number among directly annotated images without leaf

tip occlusions for the single best performing object detection model. (b) Relationship between leaf number independently annotated by two different

human annotators for the images without leaf tip occlusions. The number of tested images, square of the correlation coefficient (1), root of mean

square error (RMSE), and the agreement rate are indicated in the upper left corner. The best linear regression line and the corresponding equation

were indicated in red color

are missed because the plant is wider than the imaging cham-
ber could be addressed through changes to image acquisition
(e.g. make a bigger imaging chamber for bigger plants like
mature maize). Manual examination of images where the pre-
dicted number of leaves was greater than the annotated num-
ber of leaves indicated that the two most common sources
of these errors were tassel branches being misclassified as
leaves, and the tips of ear husk leaves being detected as leaves.
Husk leaves are homologous to normal leaves in maize but tra-
ditionally not included when counting leaves in that species
(Figure 4c).

When trained object detection models were evaluated
solely on the subset of images where all leaf tips were reported
to be visible by human annotators, the performance of these
models increased substantially with a mean 72, agreement
rate, and RMSE of 0.88, 56%, and 1.0 respectively (Table 3).
The best Faster R-CNN model as part of the five-fold cross-
validation process had an 7> of .90, and agreement rate of
59.5% and an RMSE of 0.92, which is competitive compared
to human performances on the same type of testing images in
maize (Figure 5).

4 | CONCLUSIONS AND POTENTIAL
FOR FURTHER PERFORMANCE
IMPROVEMENT

For the counting-by-regression approach, a CNN trained to
output a floating point prediction of the number of leaves in
a given image performed better on images where the plane
of phyllotaxy was perpendicular to the viewing angle of the

camera (Supplemental Figure S1; Table 1). Similar challenges
were found among human annotations when the plane of
phyllotaxy was parallel to the viewing angle of the camera
(Figure 2e). We found a crude metric, the distance from the
left most to the right most plant pixel in an image was an effec-
tive approach to identify these images that are most amenable
to leaf counting. CNN models trained with all images or only
these two best viewing images per plant both exhibit better
performance on these best viewing images, matching the per-
formance they exhibited when assessed using only the sub-
set of images which were directly annotated (Table 1, Supple-
mental Table S1). There are two straightforward approaches
which could be taken to further improve model performance:
New and more optimized model architectures, and further
improvements in the size and/or accuracy of labelled train-
ing data. The first depends on more advanced models pro-
posed by machine learning experts. Records for leaf counting
accuracy of rosette plants continue to be broken as new and
better performing models and approaches are proposed and
tested (Aich & Stavness, 2017; Dobrescu et al., 2020; Ubbens
et al., 2018). The second depends on the data availability and
training of human annotators. We identified a number of com-
mon inconsistencies between different annotators (Figure 2b
and c) which could be incorporated into training for subse-
quent rounds of annotation of images from maize, sorghum
and other grain crop species.

However, the counting-by-regression approach to predict-
ing the number of leaves from CNNs faces another challenge
which is somewhat harder to address. For many quantita-
tive genetic and breeding applications the extremes of any
phenotypic distribution will be of greatest interest, yet a key
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drawback of the CNN based counting-by-regression approach
is that performance declined for plants with the smallest or
largest numbers of leaves in our dataset (Figure 3a, Supple-
mental Figure S4). From a computational perspective, this
issue can be easily addressed by collecting more images of
plants with these numbers of leaves and including them in the
dataset. Biologically this approach presents additional chal-
lenges. Images of plants with fewer leaves can be collected
by starting imaging earlier in development. However, after
accounting for the senescence of juvenile leaves, only a small
subset of maize genotypes in our study will carry 14+ leaves
at any given time point. Additional replication of these geno-
types could be included but this would create a bias in the
training data with high leaf number plants belonging to a small
number of genotypes which exhibit additional genetically
controlled differences in appearance. Alternatively, data could
be generated using photoperiod sensitive tropical maize lines
grown under long day conditions which prolong vegetative
development, resulting in the production of greater numbers
of leaves (Stevenson & Goodman, 1972). Yet this approach
could again mean that genetically and phenotypically distinct
lines could represent different portions of the potential range
of the total number of leaves observable in maize. Although
temperate maize is less photoperiod sensitive than tropical
maize, growing existing genotypes under differing photope-
riod regimes is another potential alternative approach to gen-
erating a greater diversity of plant images for phenotypic
extremes of leaf number. In silico approaches to augment-
ing training image datasets are another potential option which
would be explored. Synthetic training data generated using
procedural models has been evaluated for leaf counting in
both arabidopsis (Ubbens et al., 2018) and maize (Miao et al.,
2019). Approaches to generating synthetic training data using
generative models such as Variational Autoencoders (VAEs)
and the Generative Adversarial Networks (GANs) also show
promise (Giuffrida et al., 2017; Goodfellow et al., 2014;
Kingma et al., 2013; Shete et al., 2020). Another approach
to mitigate this issue would be to experiment with other
loss functions. In the future studies, sample weighting could
be introduced into the loss function, i.e., assigning a higher
weight in the loss function for the extremely small and large
leaf number classes (Ling et al., 2011).

In contrast to the CNN-based counting-by-regression
approach, the performance of the counting-by-detection
approach using leaf tip detection models was consistent
across plants with different numbers of leaves. The per-
formance of this approach was modestly poorer than the
CNN predictions across all directly annotated images, but
achieved higher agreement rates with human annotations and
comparable > and RMSE for images without hidden leaf tips
(Table 1; Table 3). For images without any hidden leaf tips,
the divergence between the annotation of different humans
looking at the same images as quantified by RMSE was only
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1/3 of a leaf better than the divergence between the best object
detection-based leaf counting model and human annotation
(Figure 5). False negative leaf detections primarily resulted
from non-visible leaf tips, while false positive detections
primarily resulted from husk leaves or tassel branches.
Including ear shoot/ear and tassel as additional features in
subsequent annotations of this or other image datasets would
allow these organs to be included as additional objects when
training object detection models. This would presumably
reduce false positive detections. Leaf occlusions as a result
of maize plants which were too large to fit entirely within the
field of view of the imaging chamber are a specific constraint
of the facility employed in this study (Ge et al., 2016), and
are best addressed at the data acquisition level rather than
data analysis. However, leaf overlap and self occlusion will
be an inherent problem whenever a 3D plant is represented
as a 2D image. A similar object detection model was recently
employed to estimate leaf number by detecting whole leaves
in maize images (Zhou et al., 2020). However, this approach
also suffers from issues with occlusion. Performance was
reported using mean + standard deviation of absolute differ-
ence between the predicted and ground truth leaf numbers
instead of RMSE. For comparison purposes we calculated
the same metric for our best performing leaf tip detection
model. The best leaf tip detection model from this study
achieved a value of (1.31 + 1.60) compared to value of
(1.60 + 1.63) reported by Zhou and coworkers. However,
this comparison should be treated with caution given the
different images used for model evaluations and differences
in training data size. By making all of our raw images
and annotations publicly available (see Data Availability
Statement) we hope to reduce the barriers to head to head
comparison of different approaches to leaf counting perfor-
mance in maize, and thus stimulate future improvements in
performance. The frequency of self occlusions is likely to
vary among genotypes as both leaf curvature and phyllotaxy
are under partial genetic control in maize (Ford et al., 2008;
Giulini et al., 2004). Leaf occlusion is therefore likely to
introduce heritable genetic error (Liang et al., 2017) if
counting-by-detection is employed to phenotype maize plants
in quantitative genetic or plant breeding projects. Transitions
to methods which incorporate 3D information (Gaillard et al.,
2020; McCormick et al., 2016; Xiang et al., 2019) and/or the
development of approaches to integrate information on leaf
tips detected in multiple images of the same plant taken from
different angles will likely be ultimately needed. A previous
study proposed an approach to detecting leaf tips in wheat
using a sliding window-based localization strategy which
also provided good performance in leaf tip detection (Pound
et al., 2017). It would be intriguing to compare the perfor-
mance of this method to the regression-based and Faster
R-CNN bounding box-based approaches evaluated here. The
sliding window-based leaf localization approach is, however,
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substantially more computationally intensive, requiring
approximately 2 min per image, relative to <1 s per image
with the Faster R-CNN model. In addition to the deep
learning-based approaches, conventional image processing-
based approaches such plant skeletonization or contour
mapping can also be potentially applied for leaf counting
(Bashyam et al., 2016; Gehan et al., 2017). However, those
approaches are largely intolerant of leaf overlap or cross over
of leaves within an image which can limit the robustness and
applications for leaf counting.

The availability of leaf counting models which can match or
exceed human performance would provide significant bene-
fits to plant breeders, plant geneticists, and crop modelers. The
number of leaves is employed as a morphological indicator in
predicting flowering time and yield (Allen et al., 1973; Van
Esbroeck et al., 1997). Many plant geneticists seek to iden-
tify the genomic regions and genes controlling natural vari-
ation in leaf number among members of the same species.
For example, a study was able to map QTL controlling vari-
ation in the number of leaves in maize from manually scor-
ing 866 inbred lines from a maize-teosinte BC,S; population
with five plants of each inbred scored in each of 2 yr, requir-
ing counting the leaves of at least 8,660 individual maize
plants (Li et al., 2016). Automated leaf scoring would enable
similar studies to incorporate more genotypes, include addi-
tional replication, or conduct a study of equivalent scale using
fewer resources. Actual automated scoring of leaf numbers,
combined with existing high throughput phenotyping facili-
ties which image plants throughout development, would make
it feasible to collect time series data for determining total leaf
number, tracking rates of leaf appearance and monitoring how
these traits vary across different genotypes, or the same geno-
type grown under different environmental conditions. Studies
of environmental stresses and genotype by environment inter-
actions in crop species can translate to agricultural applica-
tions most directly when the studies themselves are conducted
in the field. The approach described in this study for analyzing
data from individual plants photographed against an unclut-
tered background in a chamber with constant illumination.
A substantial gap remains between these models and models
which could conduct accurate leaf counting under field con-
ditions with varying illumination. Here, rosette plants again
possess a significant structural advantage as field data is both
easier to acquire when imaging from the top down relative to
the side. Top down imaging tends to place the plant against
a non-uniform but contrasting background of soil (Cao et al.,
2016). Automated approaches for collecting side view images
in the field are improving (Fernandez et al., 2017; Young et al.,
2019); side views tend to result in plants being photographed
against a non-contrasting background of other plants in the
same field.
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