
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

StructADMM: Achieving Ultrahigh Efficiency in
Structured Pruning for DNNs

Tianyun Zhang , Shaokai Ye, Xiaoyu Feng, Graduate Student Member, IEEE, Xiaolong Ma ,

Kaiqi Zhang, Zhengang Li, Jian Tang , Fellow, IEEE, Sijia Liu , Member, IEEE,

Xue Lin , Member, IEEE, Yongpan Liu , Senior Member, IEEE,

Makan Fardad , and Yanzhi Wang, Member, IEEE

Abstract— Weight pruning methods of deep neural net-
works (DNNs) have been demonstrated to achieve a good
model pruning rate without loss of accuracy, thereby alleviating
the significant computation/storage requirements of large-scale
DNNs. Structured weight pruning methods have been proposed
to overcome the limitation of irregular network structure and
demonstrated actual GPU acceleration. However, in prior work,
the pruning rate (degree of sparsity) and GPU acceleration are
limited (to less than 50%) when accuracy needs to be maintained.
In this work, we overcome these limitations by proposing a
unified, systematic framework of structured weight pruning for
DNNs. It is a framework that can be used to induce different
types of structured sparsity, such as filterwise, channelwise,
and shapewise sparsity, as well as nonstructured sparsity. The
proposed framework incorporates stochastic gradient descent
(SGD; or ADAM) with alternating direction method of multipli-
ers (ADMM) and can be understood as a dynamic regularization
method in which the regularization target is analytically updated
in each iteration. Leveraging special characteristics of ADMM,
we further propose a progressive, multistep weight pruning
framework and a network purification and unused path removal
procedure, in order to achieve higher pruning rate without
accuracy loss. Without loss of accuracy on the AlexNet model,
we achieve 2.58× and 3.65× average measured speedup on
two GPUs, clearly outperforming the prior work. The average
speedups reach 3.15× and 8.52× when allowing a moderate
accuracy loss of 2%. In this case, the model compression for
convolutional layers is 15.0×, corresponding to 11.93× measured
CPU speedup. As another example, for the ResNet-18 model on
the CIFAR-10 data set, we achieve an unprecedented 54.2× struc-
tured pruning rate on CONV layers. This is 32× higher pruning
rate compared with recent work and can further translate into

Manuscript received March 24, 2020; revised August 12, 2020;
accepted November 24, 2020. This work was supported by the National
Science Foundation under Award CAREER CMMI-1750531, Award
ECCS-1609916, Award CCF-1919117, Award CNS-1909172, and Award
CNS-1704662. (Tianyun Zhang and Shaokai Ye contributed equally to this
work.) (Corresponding author: Yanzhi Wang.)
Tianyun Zhang, Kaiqi Zhang, Jian Tang, and Makan Fardad are with

the Department of Electrical Engineering and Computer Science, Syracuse
University, Syracuse, NY 13244 USA.
Shaokai Ye, Xiaoyu Feng, and Yongpan Liu are with the Department of

Electronic Engineering, Tsinghua University, Beijing 100084, China.
Xiaolong Ma, Zhengang Li, Xue Lin, and Yanzhi Wang are with the

Department of Electrical and Computer Engineering, Northeastern University,
Boston, MA 02115 USA (e-mail: yanz.wang@northeastern.edu).
Sijia Liu is with the IBM Cambridge Research Center, Cambridge,

MA 02141 USA.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TNNLS.2020.3045153.
Digital Object Identifier 10.1109/TNNLS.2020.3045153

7.6× inference time speedup on the Adreno 640 mobile GPU
compared with the original, unpruned DNN model. We share
our codes and models at the link http://bit.ly/2M0V7DO.

Index Terms— Alternating direction method of multipliers
(ADMM), deep neural networks (DNNs), hardware acceleration,
weight pruning.

I. INTRODUCTION

DEEP neural networks (DNNs) utilize multiple functional
layers cascaded together to extract features at multiple

levels of abstraction [1]–[6] and are thus both computationally
and storage intensive. As a result, many studies on DNN model
compression are underway, including weight pruning [7]–[11],
low-rank approximation [12]–[14], and low displacement rank
approximation (structured matrices) [15]–[17]. Weight pruning
can achieve a high model pruning rate without loss of accu-
racy. An early work [7], [8] adopts an iterative weight pruning
heuristic and results in a sparse neural network structure.
It can achieve 9× weight reduction with no accuracy loss on
AlexNet [1]. This weight pruning method has been extended
in [9], [11], and [18]–[23] to either use more sophisticated
algorithms to achieve a higher weight pruning rate or to obtain
a fine-grained tradeoff between a higher pruning rate and a
lower accuracy degradation.
Despite the promising results, these general weight pruning

methods often produce nonstructured and irregular connec-
tivity in DNNs. This leads to degradation in the degree
of parallelism and actual performance in GPU and hard-
ware platforms. Moreover, the weight pruning rate is mainly
achieved through compressing the fully connected (FC) lay-
ers [7], [8], [18], which are less computationally inten-
sive compared with convolutional (CONV) layers and are
becoming less important in state-of-the-art DNNs such as
ResNet [24]. To address these limitations, recent work [10],
[25] have proposed to learn structured sparsity, including
sparsity at the levels of filters, channels, filter shapes, and
layer depth. These works focus on CONV layers and actual
GPU speedup is reported as a result of structured spar-
sity [10]. However, these structured weight pruning methods
are based on fixed regularization techniques and are still quite
heuristic [10], [25]. The weight pruning rate and GPU acceler-
ation are both quite limited. For example, the average weight

2162-237X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on January 14,2022 at 19:46:26 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2475-6414
https://orcid.org/0000-0003-3753-7648
https://orcid.org/0000-0003-4418-0114
https://orcid.org/0000-0003-2817-6991
https://orcid.org/0000-0001-6210-8883
https://orcid.org/0000-0002-4892-2309
https://orcid.org/0000-0003-4643-0535

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

pruning rate on CONV layers of AlexNet is only 1.5× without
any accuracy loss, corresponding to 33.3% sparsity.
In this work, we overcome this limitation by proposing

a unified, systematic framework of structured weight prun-
ing for DNNs, named StructADMM, based on the powerful
optimization tool alternating direction method of multipliers
(ADMM) [26], [27] shown to perform well on combinatorial
constraints. It is a unified framework for different types of
structured sparsity, such as filterwise, channelwise, and shape-
wise sparsity, as well as nonstructured sparsity. It is a system-
atic framework of dynamic ADMM regularization and masked
mapping and retraining steps, guaranteeing solution feasibility
(satisfying all constraints) and providing high solution quality.
It achieves a significant improvement in weight pruning rate
under the same accuracy, along with fast convergence rate. In
the context of deep learning, the StructADMM framework can
be understood as a smart and dynamic regularization technique
in which the regularization target is analytically updated in
each iteration.
Beyond the above single-step, one-shot ADMM framework,

we observe the opportunity of performing further weight
pruning from the results. This is due to the special property
of L2-based ADMM regularization process. This observation
suggests a progressive, multistep model compression frame-
work using ADMM. In the progressive framework, the pruning
result from the previous step serves as an intermediate result
and starting point for the subsequent step. It has an additional
benefit of reducing the search space for (structured) weight
pruning within each step. The detailed procedure and hyper-
parameter determination process have been carefully designed
toward ultrahigh weight pruning rates.
During the postprocessing procedure, we find that after

model retraining, some weights become less contributing to the
network performance. To take advantage of this characteristics,
we propose a novel algorithm to detect and remove the
redundant weights that slip away from ADMM (structured)
weight pruning. Also, we are the first to discover the unused
path in a structured pruned DNN model and design an effective
optimization framework to further boost compression rate as
well as maintain high network accuracy.
We conduct extensive experiments on StructADMM

framework using the ImageNet, CIFAR-10, MNIST, and
UCF-101 data sets, using AlexNet, VGGNet, ResNet-
18/ResNet-50, MobileNet-V2, and LeNet-5 DNN models.
For acceleration evaluation, we have tested on two NVIDIA
GPUs (NVIDIA 1080Ti and Jetson TX2), Intel i7-6700K
CPU, as well as the Qualcomm Adreno 640 mobile GPU
in Samsung Galaxy S10 smartphone. We have validated
significant benefits of StructADMM in both weight pruning
rates and actual system accelerations, with respect to the
original DNN model and a large collection of prior work.
For example, without accuracy loss on the AlexNet model
(with over 2% accuracy enhancement in baseline accuracy),
we achieve 2.58× and 3.65× average measured speedup on
two GPUs, which clearly outperforms the GPU acceleration
of 49% reported in SSL [10]. The speedups reach 3.15×
and 8.52× when allowing a moderate accuracy loss of 2%.
In this case, the model compression for CONV layers is 15.0×,

corresponding to 11.93× CPU speedup. As another example,
for the ResNet-18 model on the CIFAR-10 data set, we achieve
an unprecedented 54.2× structured pruning rate on CONV
layers when a two-step, progressive framework is utilized. This
is 32× higher pruning rate compared with recent work or over
100× fewer number of actual weight parameters considering
the difference of original DNN. It can further translate into
7.6× inference time speedup on the Adreno 640 mobile GPU
compared with the original, unpruned DNN model.
An early version of this work appeared in [28]. In this

article, we expand our contributions on the following aspects.

1) Our early version [28] only focus on nonstructured
pruning and evaluates the performance on LeNet-5 and
AlexNet. In this article, we propose a unified frame-
work for different types of structured sparsity such as
filterwise, channelwise, and shapewise sparsity, as well
as nonstructured sparsity. Also, we evaluate the per-
formance on a variety of models, such as VGG-16,
ResNet, and MobileNet. Also, we focus on the actual
inference time speedup in various platforms achieved
by our structured pruning method.

2) We propose a progressive, multistep framework for DNN
compression, which can be used for both structured
pruning and nonstructured pruning. It notably improves
the pruning rate, e.g., it increases the pruning rate on
AlexNet from 21× achieved by single-step ADMM [28]
to 31×.

3) We propose network purification and unused path
removal step for structured pruning, which further
increases the pruning rate without accuracy loss.

The rest of this article is organized as follows. Section II
discusses the related works. Section III briefly introduces the
background of ADMM. The proposed unified framework for
DNN weight pruning is investigated in Section IV. Section V
illustrates our proposed methods to increase the pruning rate.
Section VI discusses how to set hyperparameters and the
effectiveness of our proposed framework. We compare the
experiment results of our proposed method with state-of-
the-art weight pruning methods for structured and nonstruc-
tured pruning in Sections VII and VIII, respectively. Finally,
Section IX concludes this article.

II. RELATED WORK

A. General, Nonstructured Weight Pruning

The early work by Han et al. [7], [8] achieved 9× reduction
in the number of parameters in AlexNet and 13× in VGG-16.
However, most reduction is achieved in FC layers, and 2.7×
reduction achieved in CONV layers will not lead to an over-
all acceleration in GPU [10]. Extensions of iterative weight
pruning, such as [18] (dynamic network surgery), [9] (NeST),
and [29], use more delicate algorithms such as selective weight
growing and pruning. However, the weight pruning rates on
CONV layers are still limited, e.g., 3.1× in [18], 3.23× in [9],
and 4.16× in [29] for AlexNet with no accuracy degradation.
This level of nonstructured weight pruning cannot guarantee
GPU acceleration. In fact, our StructADMM framework can
achieve 16.1× nonstructured weight pruning in CONV layers

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on January 14,2022 at 19:46:26 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: StructADMM: ACHIEVING ULTRAHIGH EFFICIENCY IN STRUCTURED PRUNING 3

of AlexNet without accuracy degradation; however, only minor
GPU acceleration is actually observed.

B. Structured Weight Pruning

To overcome the limitation in nonstructured, irregular
weight pruning, SSL [10] proposes to learn structured sparsity
at the levels of filters, channels, filter shapes, layer depth, and
so on. This work is one of the first with actually measured
GPU accelerations. This is because CONV layers after struc-
tured pruning will transform to a full matrix multiplication in
GPU (with reduced matrix size). However, the weight pruning
rate and GPU acceleration are both limited. The average
weight pruning rate on CONV layers of AlexNet is only 1.5×
without accuracy loss. The reported GPU acceleration is 49%.
Besides, another work [25] achieves 2× channel pruning with
1% accuracy degradation on VGGNet.

C. Other Types of DNN Model Compression Techniques

There are many other types of DNN model compres-
sion techniques. Weight quantization leverages the inherent
redundancy in the number of bits for weight representa-
tion. Many of the prior works [30]–[36] are directed at
quantization of weights to binary values, ternary values,
or powers of 2 to facilitate hardware implementations, with
acceptable accuracy loss. The state-of-the-art techniques [37],
[38] adopt an iterative quantization and retraining frame-
work, with some degree of randomness incorporated into
the quantization step. This method results in less than
3% accuracy loss on AlexNet for binary weight quantiza-
tion [38]. Furthermore, knowledge distillation leverages the
idea that a smaller student model can absorb knowledge
from the larger teacher model [39]–[42], low-rank approx-
imation using single-value decomposition (SVD) [12]–[14],
and low-displacement rank approximation using structured
matrices, such as circulant matrices [15], [43] and Toeplitz
matrices [16], [17]. These techniques result in a regular
network structure, but in general a lower pruning rate and
larger accuracy degradation compared with parameter pruning.
We point out that these compression techniques are compatible
with ADMM and will be the topic of future investigations
orthogonal to this work.
Besides the works we mention above, there are also several

representative recent works in this field. Yu et al. [44],
Li et al. [45], and He et al. [46] defined metrics to mea-
sure the importance of the weights, and they prune the
weights that are less important according to their metrics.
Zhuang et al. [47] and Yang et al. [48] defined optimization
targets to generate sparse DNNs, and they set the optimization
target as a regularization term when they train the DNNs.
In these methods, the authors decide the importance of weights
on a static model or setting a static optimization target as the
regularization term. However, in our method, the regularization
targets are updated dynamically during the training procedure.
This is the major difference between our method and these
methods. Note that there are also recent works use dynamically
updated approaches in the training to prune DNNs, such as
C-SGD [49] and CNN-FCF [50]. C-SGD trains several filters
to collapse into a single point in the parameter hyperspace and

then remove the identical filters. CNN-FCF defines dynami-
cally updated binary scalars to constraint the filters and remove
the filters corresponding to 0-valued scalars after convergence.
Both of the two methods focus only on filter pruning on DNNs,
but our framework is unified for different kinds of structured
pruning, as well as nonstructured pruning.

III. BACKGROUND OF ADMM
ADMM was first introduced in the 1970s, and theoretical

results in the following decades are collected in [26]. It is a
powerful method for solving regularized convex optimization
problems, especially for problems in applied statistics and
machine learning. Moreover, recent works [51], [52] demon-
strate that ADMM is also a good tool for solving nonconvex
problems, potentially with combinatorial constraints since it
can converge to a solution that may not be globally optimal
but is sufficiently good for many applications.
ADMM is based on decomposing an optimization problem,

which is difficult to solve directly, into two subproblems
that can be solved separately and efficiently. For example,
the optimization problem

min
x

f (x) + g(x) (1)

lends itself well to the application of ADMM if f (·) is differ-
entiable and g(·) is nondifferentiable but has some structure
that can be exploited. Common instances of g are the �1 norm
and the indicator function of a constraint set. To prepare it for
the application of ADMM, the above problem is first rewritten
as

min
x

f (x) + g(z)

s.t. x = z.

Next, via the introduction of the augmented Lagrangian,
the above optimization problem can be decomposed into
two subproblems in x and z [26]. The first subproblem is
minx f (x) + q1(x), where q1(·) is a quadratic function of
its argument. Since q1 is differentiable and convex, the com-
plexity of solving this problem (e.g., via gradient descent) is
the same as that of minimizing f . The second subproblem is
minz g(z) + q2(z), where q2(·) is a quadratic function of its
argument. In problems where g has some special sturcture,
for instance, if it is a regularizer in (1), then exploiting the
properties of g allows this problem to be solved analytically.
More details regarding the application of ADMM to the weight
pruning problem will be demonstrated in Section IV.

IV. UNIFIED STRUCTADMM FRAMEWORK FOR

STRUCTURED PRUNING

A. Problem Formulation of Structured Pruning

Consider an N-layer DNN in which the first M layers are
CONV layers and the rest are FC layers. The weights and
biases of the i th layer are, respectively, denoted by Wi and
bi . Assume that the input to the DNN is x. Every column
of x corresponds to a training image, and the number t of
columns determines the number of training images in the input
batch. The input x will enter the first layer and the output of
the first layer is calculated by

h1 = σ(W1x + b1)

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on January 14,2022 at 19:46:26 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

where h1 and b1 have t columns and b1 is a matrix with
identical columns. The nonlinear activation function σ(·) acts
entrywise on its argument and is typically chosen to be the
ReLU function [53] in state-of-the-art DNNs. Since the output
of one layer is the input of the next, the output of the i th layer
for i = 2, . . . , N − 1 is given by

hi = σ(Wihi−1 + bi).

The output of the DNN corresponding to a batch of images is

s = WNhN−1 + bN .

In this case, s is a k × t matrix, where k is the number of
classes in the classification and t is the number of training
images in the batch. The element si j in matrix s is the score
of the j th training image corresponding to the i th class. The
total loss of the DNN is calculated as

f ({W1, . . . , WN }, {b1, . . . , bN }) = −1

t

t∑
j=1

log
esy j j∑k
i=1 e

si j

+ λ

N∑
i=1

‖Wi‖2F
where the first term is cross-entropy loss, y j is the correct
class of the j th image, and the second term is L2 weight
regularization.
Hereafter, for simplicity of notation, we write {Wi }Ni=1,

or simply {Wi} instead of {W1, . . . , WN }. The same notational
convention applies other variables or parameters. The training
of a DNN is a process of minimizing the loss by updating
weights and biases. If we use the gradient descent method,
then the update at every step is

Wi = Wi − α
∂ f

({Wi }Ni=1, {bi }Ni=1

)
∂Wi

bi = bi − α
∂ f

({Wi }Ni=1, {bi }Ni=1

)
∂bi

computed for i = 1, . . . , N, where α is the learning rate.
In this article, our objective is to implement structured

pruning on DNNs. In the following discussion, we focus on
the CONV layers because they have the highest computation
requirements. More specifically, we minimize the loss func-
tion subject to specific structured sparsity constraints on the
weights in the CONV layers, i.e.,

min
{Wi },{bi }

({Wi }Ni=1, {bi }Ni=1

)
s.t. Wi ∈ Si , i = 1, . . . , M (2)

where Si is the set of Wi with a specific “structure.”
Next, we introduce constraint sets corresponding to different
types of structured sparsity. Nonstructured, irregular spar-
sity is also included in the framework. The suitability for
GPU acceleration is discussed for different types of sparsity,
and we finally introduce the proper combination of struc-
tured sparsity to facilitate GPU accelerations. The details
of different types of structures will be discussed later in
Section IV-C.
In problem (2), the constraint is nonconvex and combinato-

rial. As a result, this problem cannot be solved directly by sto-
chastic gradient descent (SGD) methods [54] (or ADAM [55]).
However, the property that Wi satisfies certain combinatorial

“structures” allows us to integrate the ADMM framework with
SGD to effectively solve this problem.

B. Proposed StructADMM Framework

To apply the ADMM framework, we define indicator func-
tions to incorporate combinatorial constraints into the objec-
tive function and define auxiliary variables that allow us to
decompose the optimization problem into two subproblems
that individually can be solved effectively. In what follows,
we elaborate on these steps.
Corresponding to every set Si , i = 1, . . . , M , we define the

indicator function

gi(Wi) =
{
0, if Wi ∈ Si

+∞, otherwise.

Furthermore, we incorporate auxiliary variables Zi , i =
1, . . . , M with the restriction that Zi = Wi . The original
problem (2) is then equivalent to

min
{Wi },{bi }

f
({Wi}Ni=1, {bi }Ni=1

) +
M∑
i=1

gi(Zi)

s.t. Wi = Zi , i = 1, . . . , M. (3)

The augmented Lagrangian [26] of problem (3) is defined
by

Lρ

({Wi}Ni=1, {bi }Ni=1, {Zi }Mi=1, {�i }Mi=1

)
= f

({Wi }Ni=1, {bi }Ni=1

) +
M∑
i=1

gi(Zi)

+
M∑
i=1

tr[�T
i (Wi − Zi)] +

M∑
i=1

ρi

2
‖Wi − Zi‖2F

where ‖·‖F denotes the Frobenius norm, {�i }Mi=1 are the dual
variables, and the penalty parameters {ρi}Mi=1 are positive. With
the scaled dual variable Ui = (1/ρi)�i for i = 1, . . . , M ,
the augmented Lagrangian can be equivalently rewritten as

Lρ

({Wi }Ni=1, {bi }Ni=1, {Zi}Mi=1, {�i }Mi=1

)
= f

({Wi}Ni=1, {bi }Ni=1

) M∑
i=1

gi(Zi)

+
M∑
i=1

ρi

2
‖Wi − Zi + Ui‖2F −

M∑
i=1

ρi

2
‖Ui‖2F .

ADMM consists the following iterations for k =
0, 1, . . . , [26], [56]:{

Wk+1
i

}N
i=1,

{
bk+1
i

}N
i=1

:= argmin
{Wi },{bi }

Lρ

({Wi}Ni=1, {bi }Ni=1,

{Zk
i }Mi=1, {Uk

i }Mi=1

)
(4){

Zk+1
i

}M

i=1 := argmin
{Zi }

Lρ

({
Wk+1

i

}N
i=1,

{
bk+1
i

}N
i=1,

{Zi }Mi=1

{
Uk

i

}M
i=1

)
(5)

Uk+1
i := Uk

i + Wk+1
i − Zk+1

i for i = 1, . . . , M (6)

until for i = 1, . . . , M , both of the following conditions are
satisfied:∥∥Wk+1

i − Zk+1
i

∥∥2
F

≤ εi ,
∥∥Zk+1

i − Zk
i

∥∥2
F

≤ εi . (7)

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on January 14,2022 at 19:46:26 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: StructADMM: ACHIEVING ULTRAHIGH EFFICIENCY IN STRUCTURED PRUNING 5

Fig. 1. Illustration of filterwise, channelwise, and shapewise structured
sparsity from left to right.

In order to solve the overall pruning problem, we need to
solve subproblems (4) and (5). More specifically, problem (4)
can be formulated as

min
{Wi },{bi }

f
({Wi}Ni=1, {bi}Ni=1

) +
M∑
i=1

ρi

2

∥∥Wi − Zk
i + Uk

i

∥∥2
F

(8)

where the first term in the objective function of (8) is the
differentiable loss function of the DNN, and the second term
is a quadratic regularization term of the Wi ’s, which is
differentiable and convex. As a result, (8) can be solved by
SGD. Although we cannot guarantee the global optimality of
the solution, it is due to the nonconvexity of the DNN loss
function rather than the quadratic term enrolled by our method.
On the other hand, problem (5) is given by

min
{Zi }

M∑
i=1

gi(Zi) +
M∑
i=1

ρi

2

∥∥Wk+1
i − Zi + Uk

i

∥∥2
F
. (9)

Note that gi(·) is the indicator function of Si , and thus, this
subproblem can be solved analytically and optimally [26]. For
i = 1, . . . , M , the optimal solution is

Zk+1
i =
Si

(
Wk+1

i + Uk
i

)
(10)

where
Si (·) is the Euclidean projection of Wk+1
i + Uk

i onto
Si . The set Si is different when we apply different types
of structured sparsity. We will discuss how to implement
the Euclidean projection to different types of structures in
Section IV-C.

C. Solutions of Different Types of Structured Sparsity and
Discussion

The collection of weights in the i th CONV layer is a 4-D
tensor, i.e., Wi ∈ RAi×Bi×Ci×Di , where Ai , Bi ,Ci , and Di are,
respectively, the number of filters, the number of channels in
a filter, the height of the filter, and the width of the filter,
in layer i . In what follows, if X denotes the weight tensor in
a specific layer, let (X)a,:,:,: denote the ath filter in X, (X):,b,:,:
denote the bth channel, and (X):,b,c,d denote the collection of
weights located at position (:, b, c, d) in every filter of X, as
shown in Fig. 1.
1) Filterwise Structured Sparsity: When we train a DNN

with sparsity at the filter level, the constraint on the weights
in the i th CONV layer is given by

Wi ∈ Si := {X | the number of nonzero filters in X

is less than or equal to αi }.

Here, nonzero filter means that the filter contains some
nonzero weight. To solve subproblem (10) with such con-
straints, we first calculate

Oa = ∥∥(
Wk+1

i + Uk
i

)
a,:,:,:

∥∥2
F

for a = 1, . . . , Ai . We then keep αi elements in (Wk+1
i +

Uk
i)a,:,:,: corresponding to the αi largest values in {Oa}Ai

a=1 and
set the rest to zero.

2) Channelwise Structured Sparsity: When we train a DNN
with sparsity at the channel level, the constraint on the weights
in the i th CONV layer is given by

Wi ∈ Si := {X | the number of nonzero channels in X

is less than or equal to βi}.
Here, we call the bth channel nonzero if (X):,b,:,: contains
some nonzero element. To solve subproblem (10) with such
constraints, we first calculate

Ob = ∥∥(
Wk+1

i + Uk
i

)
:,b,:,:

∥∥2
F

for b = 1, . . . , Bi . We then keep βi elements in (Wk+1
i +

Uk
i):,b,:,: corresponding to the βi largest values in {Ob}Bi

b=1 and
set the rest to zero.

3) Filter Shapewise Structured Sparsity: When we train a
DNN with sparsity at the filter shape level, the constraint on
the weights in the i th CONV layer is given by

Wi ∈ Si := {
X | the number of nonzero vectors in

{X:,b,c,d}Bi ,Ci ,Di
b,c,d=1 is less than or equal to θi

}
.

To solve subproblem (10) with such constraints, we first
calculate

Ob,c,d = ∥∥(
Wk+1

i + Uk
i

)
:,b,c,d

∥∥2
F

for b = 1, . . . , Bi , c = 1, . . . ,Ci , and d = 1, . . . , Di . We then
keep θi elements in (Wk+1

i + Uk
i):,b,c,d corresponding to the θi

largest values in {Ob,c,d }Bi ,Ci ,Di
b,c,d=1 and set the rest to zero.

4) Nonstructured, Irregular Weight Sparsity: When we train
a DNN with nonstructured weight sparsity, the constraint on
the weights in the i th CONV layer is

Wi ∈ Si := {X | the number of nonzero elements in X

is less than or equal to γi}.
To solve subproblem (10), we keep γi elements in Wk+1

i + Uk
i

with largest magnitudes and set the rest to zero.

5) Combination of Structured Sparsity to Facilitate GPU
Acceleration: Convolutional computations in DNNs are com-
monly transformed to matrix multiplications by converting
weight tensors and feature map tensors into matrices [57],
named general matrix multiplication (GEMM). Filterwise
sparsity corresponds to row pruning, whereas channelwise
and filter shapewise sparsity correspond to column pruning
in GEMM. The GEMM matrix maintains a full matrix with
a number of rows/columns reduced, thereby enabling GPU
acceleration. This is shown in Fig. 2, in which Wn,m,k means
the kth element in the mth channel of the nth filter. In the
results, we will use row pruning to represent the results
of filterwise sparsity in GEMM and use column pruning
to represent the results of channelwise and filter shapewise
sparsity.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on January 14,2022 at 19:46:26 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. Illustration of 2-D weight matrix for GEMM (left) and rowwise and columnwise sparsity (right).

D. Masked Retraining Step

For very small values of εi in (7), ADMM needs a large
number of iterations to converge. However, in many applica-
tions, such as the weight pruning problem considered here,
a slight increase in the value of εi can result in a significant
speedup in convergence. On the other hand, when ADMM
stops early, the weights to be pruned may not be identically
zero, in the sense that there will be small nonzero elements
contained in Wi . To deal with this issue, we first perform the
Euclidean projection to guarantee that the structured pruning
constraints are satisfied. Next, we mask the zero weights
and retrain the DNN with nonzero weights using training
sets (while keeping the masked weights 0). In this way, test
accuracy (solution quality) can be partially restored. Note that
the convergence is much faster than training the original DNN
since the starting point of the retraining is already close to the
point, which can achieve the original test/validation accuracy.

E. Overall Illustration of Our Proposed Framework

We take the weight distribution of every (convolutional
or FC) layer on LeNet-5 as an example to illustrate our
systematic weight pruning method. The weight distributions
at different stages are shown in Fig. 3. The subfigures in the
left column show the weight distributions of the pretrained
model, which serves as our starting point. The subfigures in the
middle column show that after the convergence of ADMM for
moderate values of εi , we observe a clear separation between
weights whose values are close to zero and the remaining
weights. To prune the weights rigorously, we set the values
of the close-to-zero weights exactly to zero and retrain the
DNN without updating these values. The subfigures in the right
column show the weight distributions after our final retraining
step. We observe that most of the weights are zero in every
layer. This concludes our weight pruning procedure.
As mentioned before, the computation time for the ADMM

procedure is similar to the training of the original DNN,
and the single retraining step converges much faster than the
original training. Consequently, the total computation time of
our method is less than training the original DNN twice, which
is much faster than the iterative pruning and training method
in [7]. An overall illustration of our proposed StructADMM
framework is shown in Algorithm 1, and the initialization of
{Z0

i } and {U0
i } will be discussed in Section VI-A.

Algorithm 1 Overall Illustration of Our Proposed Struc-
tADMM Framework

Input: Pretrained model
Initialize {Z0

i } and {U0
i }

Set j = 0 and k = 0.
Set T as the number of iterations of ADMM
Set β as the number of epochs in every iteration of ADMM
for k ≤ T do

for j ≤ β do
Solve problem (8) using one epoch of SGD or ADAM

end for
Update {Zk+1

i } according to (10)
Update {Uk+1

i } according to (6)
if Condition (7) is satisfied then
Break for loop

end if
end for
Perform the Euclidean projection according to (10) to guar-
antee that the structured pruning constraints are satisfied.
Then mask the zero weights and retrain the DNN with the
non-zero weights.

V. METHODS TO IMPROVE PRUNING RATE

A. Progressive DNN Weight Pruning

The first motivation of the progressive framework is that
during the implementation of the single-step weight pruning
framework, we observe that there are a number of unpruned
weights with values very close to zero. The reason is the L2

regularization nature in the ADMM regularization step, which
tends to generate very small, nonzero weight values even when
they are not pruned. As the remaining number of nonzero
weights is already significantly reduced during weight pruning,
simply mapping these small-value weights to zero will result
in accuracy degradation. On the other hand, this motivates us
to perform weight pruning in a multistep, progressive manner.
The weights that have been pruned in the previous step will
be masked and only the remaining, nonzero weights will be
considered in the subsequent step.
The second motivation of the progressive framework is

to reduce the search space for weight pruning within each
step. After all, weight pruning problems are essentially com-
binatorial optimizations. Although recently demonstrated to

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on January 14,2022 at 19:46:26 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: StructADMM: ACHIEVING ULTRAHIGH EFFICIENCY IN STRUCTURED PRUNING 7

Fig. 3. Weight distribution of every (convolutional or FC) layer on LeNet-5. The subfigures in the left column are the weight distributions of the pretrained
DNN model (serving as our starting point); the subfigures of the middle column are the weight distributions after the ADMM procedure; the subfigures of
the right column are the weight distributions after our final retraining step. Note that the subfigures in the last column include a small number of nonzero
weights that are not clearly visible due to the large number of zero weights.

generate superior results on this type of problems [58], [59],
ADMM-based solution still has a superlinear increase of
computational complexity as a function of solution space.
As a result, the complexity becomes very high with ultrahigh
compression rates (i.e., very large search space) beyond what
can be achieved in prior work. The progressive framework,
on the other hand, can mitigate this limitation and reduce the
total training time (to 2× or slightly higher than the training
time of the original DNN).
A similar approach that masking the zero weights in the

model generated from the previous iteration of pruning has
been applied in [7] and [21], but our motivation is different
from these works. The magnitude-based pruning method is
used in [7] and [21], this method is heuristic, and the pruning
rate has to be iteratively increased to avoid accuracy loss.
One step of our ADMM-based method can achieve a much
higher pruning rate than the iterative magnitude-based pruning
method without accuracy loss. Also, our major purpose of
using a progressive method is to reduce the search space in
each step to achieve an ultrahigh pruning rate.

Also, masking the zero weights is not necessary for our
method to reduce the search space. In our experiment, we find
that even if we do not mask the zero weights pruned in each
step when we start a new step, the value of the unimpor-
tant weights still keeps close to zero. This is because the
ADMM-based regularization term prevents these unimportant
weights to move away from zero. In conclusion, if we start
from a model that is already pruned, the search space for our
ADMM-based method is being reduced no matter if we mask
the zero weights or not. We choose to mask the zero weights
to make the training more rigorous.
Fig. 4 shows our proposed progressive DNN weight prun-

ing method on the StructADMM framework. The single-step
ADMM-based weight pruning is performed multiple times,
each as a step in the progressive framework. The pruning
results from the previous step serve as intermediate results
and starting point for the subsequent step. Through exten-
sive investigations, we conclude that a two-step progressive
procedure will be in general sufficient for weight pruning,
in which each step requires approximately the same number of

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on January 14,2022 at 19:46:26 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. Illustration of our proposed progressive DNN weight pruning method
on the StructADMM framework.

training epochs as original DNN training. Further increase in
the number of steps or the number of epochs in each step will
result in only marginal improvement in the overall solution
quality (e.g., 0.1%–0.2% accuracy improvement).

B. Network Purification and Unused Path Removal

After ADMM-based structured weight pruning, we propose
the network purification and unused path removal step for
further weight reduction without accuracy loss. First, as also
noticed by prior work [25], a specific filter in layer i is
responsible for generating one channel in layer i + 1. As a
result, removing the filter in layer i (in fact removing the batch
norm results) also results in the removal of the corresponding
channel, thereby achieving further weight reduction. Besides
this straightforward procedure, there is a further margin of
weight reduction based on the characteristics of ADMM regu-
larization. As ADMM regularization is essentially a dynamic,
L2-norm-based regularization procedure, there are a large
number of nonzero, small weight values after regularization.
Due to the nonconvex property in ADMM regularization, our
observation is that removing these weights can maintain the
accuracy or even slightly improve the accuracy occasionally.
As a result, we define two thresholds, a column-wise threshold
and a filterwise threshold, for each DNN layer. When the L2

norm of a column (or filter) of weights is below the threshold,
the column (or filter) will be removed. Also, the corresponding
channel in layer i + 1 can be removed upon filter removal in
layer i . Structures in each DNN layer will be maintained after
this purification step.

VI. DISCUSSION

A. Discussion on Hyperparameter Determination and
Initialization

A very critical question is how to determine the hyperpa-
rameters, in a highly efficient and reliable manner. We need
to determine both the target overall pruning rate and specific
pruning rate for each layer, both required in the ADMM-based
solution. On AlexNet, the pruning rate in each layer for
nonstructured pruning and structured pruning is shown in the
prior work iterative pruning [7] and SSL [10], respectively.
A simple but effective hyperparameter determination method
is as follows. We set the target overall pruning rate in the
first ADMM-based weight pruning step to be around 1.5×
compared with what can be achieved (without accuracy loss)
in prior work. The target overall pruning rate in the second
step will be doubled compared with the first step or even
further increased if there is still a margin of improvement.
The per-layer pruning rate will be inherited from the results
in prior work and increased proportionally. According to our

experiments, the above heuristic generates consistently higher
pruning rates than prior work without accuracy loss. We also
test the sensitivity of the pruning rate in each layer when the
total pruning rate (or sparsity) is fixed. When the total column
sparsity for conv2-5 on AlexNet is 79.2%, we try a unified
sparsity (79.2% for every layer in conv2-5) and different
sparsity (details will appear in Table I), the experiment for
unified sparsity only has 0.1% more accuracy loss, which
means that when the total pruning rate (or sparsity) is fixed,
the distribution of pruning rate in each layer is not sensitive
on AlexNet, a unified sparsity also works well.
For other DNNs such as ResNet-18 and ResNet-50, we do

not have a prior knowledge of the pruning rate in each layer,
and it is complicated to decide different pruning rates in each
layer since there are lots of layers in these DNNs. Thus,
we use a unified pruning rate for all the layers, we start from
2× pruning rate and progressively increase it in every step.
Our experiment results demonstrate that we achieve a higher
overall pruning rate compared with prior work by using a
unified pruning rate for all the layers. For people without
expert knowledge on a DNN, we recommend them first set
a small unified pruning rate (such as 2×) for all the layers
and then use the progressive pruning method to increase the
pruning rate until they observe accuracy loss.
For the hyperparameters αi , βi , θi , and γi discussed in

Section IV-C, they are derived by the shape and desired
sparsity of the i th layer. For example, in filterwise structured
pruning, αi equals the number of filters in the i th layer that
multiplies the desired sparsity in the i th layer.
For nonconvex problems in general, there is no guarantee

that ADMM will converge to an optimal point. ADMM can
converge to different points for different choices of initial val-
ues {Z0

i } and {U0
i } and penalty parameters {ρi } [26]. To resolve

this limitation, we set the pretrained model {Wp
i , bp

i }, a good
solution of min

{Wi },{bi }
f ({Wi }, {bi}), to be the starting point when

we use SGD to solve problem (8). We initialize Z0
i by keeping

the li elements of Wp
i with the largest magnitude and set the

rest to be zero. We set U0
1 = · · · = U0

N = 0. For problem (8),
if the penalty parameters {ρi} are too small, the solution will
be close to the minimum of f (·) but fail to regularize the
weights, and the ADMM procedure may converge slowly
or not converge at all. If the penalty parameters are too
large, the solution may regularize the weights well but fail to
minimize f (·), and therefore, the accuracy of the DNN will
be degraded. In actual experiments, We start from smaller ρi

values, say ρ1 = · · · = ρN = 1.5 × 10−3, and gradually
increase with ADMM iterations. This coincides with the
theory of ADMM convergence [58], [59]. It in general takes
8–12 ADMM iterations for convergence, corresponding to
100–150 epochs in PyTorch, a moderate increase compared
with the original DNN training.

B. Discussions and Illustration of Effectiveness

The proposed StructADMM is different from the conven-
tional utilization of ADMM, i.e., to accelerate the convergence
of an originally convex problem [26], [27]. Rather, we propose
to integrate the ADMM framework with SGD. Aside from

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on January 14,2022 at 19:46:26 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: StructADMM: ACHIEVING ULTRAHIGH EFFICIENCY IN STRUCTURED PRUNING 9

Fig. 5. Comparison of our method and other methods on nonstructured
pruning rate of the overall AlexNet model.

recent mathematical optimization results [58], [59] illustrat-
ing the advantage of ADMM with combinatorial constraints,
the advantage of the proposed StructADMM framework can
be explained in the deep learning context as described next.
The proposed StructADMM (8) can be understood as

a smart, dynamic L2 regularization method, in which the
regularization target Zk

i − Uk
i will change judiciously and

analytically in each iteration. On the other hand, conventional
regularization methods (based on L1, L2 norms, or their
combinations) use a fixed regularization target, and the penalty
is applied on all the weights. This will inevitably cause accu-
racy degradation. In contrast, StructADMM will not penalize
the remaining, nonzero weights as long as there are enough
weights pruned to zero. For an illustration, Fig. 5 shows the
comparison results (Top-5 accuracy loss versus overall pruning
rate) on the nonstructured pruning of the whole AlexNet
model. Methods to compare include iterative pruning, two
regularizations with retraining, and proximal gradient descent
(PGD) [60]. We use the same hyperparameters in Struc-
tADMM as baseline regularizations and PGD for fairness.
It is clear that StructADMM outperforms the others, while
regularization-based methods even result in lower performance
than [7] because they will penalize all the weights.
We can clearly observe the performance ranking of these

techniques from Fig. 5. The proposed progressive frame-
work outperforms all other methods. The second is one-shot
ADMM-based pruning. The third is iterative pruning and
retraining heuristic. Also, the last is fixed regularizations and
PGD. We know that fixed regularizations and PGD suffer from
penalizing all weights even if they are not pruned, thereby
resulting in notable accuracy degradation.

VII. EXPERIMENT RESULTS FOR STRUCTURE PRUNING

In this section, we evaluate the proposed StructADMM
framework, based on the ImageNet, CIFAR-10, MNIST,
and UCF-101 [63] (activity detection) data sets, using
the AlexNet [1], VGGNet [5], ResNet-18/ResNet-50 [24],
MobileNet-V2 [64], and LeNet-5 [65] DNN models. We focus
and compare on the CONV layer structured pruning results,
including combined filter (row) and column pruning, and
filter-only pruning, for a fair comparison with prior work.

In our experiment, the pruning rate is defined based on
sparsity.
Due to the compatibility of StructADMM with DNN train-

ing, directly training a DNN model using the framework
achieves the same result as using a pretrained DNN model.
When a pretrained DNN model is utilized, we limit the
number of epochs in the single-step ADMM or one single
step in the progressive framework to be 120, similar to the
original DNN training in PyTorch and much lower than the
iterative pruning heuristic. In fact, for ImageNet data set,
we adopt a single-step ADMM-based solution. This is to
illustrate that StructADMM can outperform prior work even
with the similar time of original DNN training. For other data
sets, we adopt the progressive solution. This is to illustrate how
much StructADMM can outperform prior work given enough
training time.
Besides the enhancement in pruning rates compared with

prior work, we also aim to investigate the actual inference
time speedups in various platforms, as well as the effect of
different structured pruning techniques (filter/row pruning and
column pruning) and combinations. Will a combination of
filter and column pruning schemes run faster than filter pruning
alone? To answer this question, we have conducted extensive
speedup testings on two GPU nodes, the high-performance
NVIDIA GeForce GTX 1080Ti and the low-power NVIDIA
Jetson TX2, as well as the Intel I7-6700K Quad-Core CPU.
For mobile devices, we also measure the inference time of the
pruned models using the latest Qualcomm Adreno 640 GPU
in Samsung Galaxy S10 smartphone.
The training of sparse DNN models is performed in

PyTorch [66] using NVIDIA 1080Ti, 2080Ti, and Tesla
P100 GPUs. The comparisons on GEMM computation effi-
ciency and acceleration use batch size 1, which is typical
for inference [7], [10], [14]. The original DNN models and
structured sparse models use cuBLAS on GPU and Intel
Math Kernel Library (MKL) on CPU. For mobile phone
acceleration, our mobile DNN acceleration framework is a
compiler-assisted, strong framework by itself. For the original
ResNet-50 on ImageNet, it achieves 48-ms inference times,
incorporating the Winograd algorithm for acceleration. These
results, as starting points, outperform current mobile DNN
acceleration frameworks, such as TensorFlow-Lite [67] and
TVM [68].
Our models are shared at the link http://bit.ly/2M0V7DO.

A. Experiment Results on Models Using ImageNet Data Set

First, we compare our method with the two configurations
of the SSL method [10] on AlexNet/CaffeNet. The first has
no accuracy degradation (Top-1 error 42.53%) and average
sparsity of 33.3% on conv2–conv5.We note that the 1st CONV
layer of AlexNet/CaffeNet is very small with only 35k weights
compared with 2.3M in conv2–conv5 and is often not the
optimization focus [10], [14]. The second has around 2%
accuracy degradation (Top-1 error 44.66%) with total sparsity
of 84.4% on conv2–conv5. The first configuration focuses on
column sparsity only. The second configuration focuses on a
combined row (filter) and column sparsity.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on January 14,2022 at 19:46:26 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE I

COMPARISON OF OUR METHOD AND SSL METHOD ON COLUMN SPARSITY WITHOUT ACCURACY LOSS
ON ALEXNET/CAFFENET MODEL FOR IMAGENET DATA SET

TABLE II

COMPARISON OF OUR METHOD AND SSL METHOD ON COLUMN AND ROW SPARSITY WITH LESS
THAN 2% ACCURACY LOSS ON ALEXNET/CAFFENET FOR IMAGENET DATA SET

Table I shows the comparison of our method with the first
configuration of SSL. We generate a configuration with no
accuracy degradation compared with the original model (the
original model of our work is higher than that in SSL). We
can achieve a much higher degree of sparsity of 79.2% on
conv2–conv5. This corresponds to 4.8× weight pruning rate,
which is significantly higher compared with 1.5× pruning in
conv2–conv5 in [10].
We test the actual GPU accelerations using two GPUs:

GPU1 is NVIDIA 1080Ti and GPU2 is NVIDIA TX2. The
acceleration rate is computed with respect to the corresponding
layer of the original DNN executing on the same GPU and
same setup. One can observe that the average acceleration
of conv2–conv5 on 1080Ti is 2.58×, whereas the average
acceleration on TX2 is 3.65×. These results clearly outperform
the GPU acceleration of 49% reported in SSL [10] without
accuracy loss, as well as the more recent work [14]. The
acceleration rate on TX2 is higher than 1080Ti because the
latter has a high parallelism degree, which will not be fully
utilized when the matrix size GEMM of a CONV layer
is significantly reduced. Another technique cuDNN can use
implicit GEMM for better performance than cuBLAS, but we
still outperform it on the inference time without accuracy loss.
For example, we compare our result in Table I to the baseline
results with cuDNN, and our inference time with cuBLAS
is also 2.8× lower than the result with baseline cuDNN on
original, uncompressed DNN on TX2 GPU.
Table II shows the comparison with the second configuration

of SSL. With similar (and slightly higher) sparsity in each
layer as SSL, we can achieve less accuracy loss. With the same
relative accuracy loss (a moderate accuracy loss within 2%

Fig. 6. Convergence behavior of the ADMM regularization procedure for
the convolutional layers 2–5 of AlexNet.

compared with original DNN), a higher degree of 93.7%
average sparsity of conv2–conv5 is achieved, translating into
15.0× weight pruning. The actual GPU acceleration results
are also high: 3.15× on 1080Ti and 8.52× on TX2. One
can clearly see that the speedup on 1080Ti saturates because
the high parallelism degree cannot be fully exploited. The
acceleration on CPU can be higher under this setup, reaching
11.93× on average on conv2–conv5.
Fig. 6 shows the convergence behavior of ADMM regu-

larization (in StructADMM framework, single-step ADMM),
using the experiment that achieves 4.8× structured pruning
rate on AlexNet without accuracy loss. We can observe that
ADMM regularization converges in around 12 iterations. The
number of ADMM iterations is generally 9–12 for most of the

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on January 14,2022 at 19:46:26 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: StructADMM: ACHIEVING ULTRAHIGH EFFICIENCY IN STRUCTURED PRUNING 11

TABLE III

STRUCTURED PRUNING RESULTS ON RESNET-18 MODEL
FOR IMAGENET DATA SET

TABLE IV

STRUCTURED PRUNING RESULTS ON RESNET-50 MODEL

FOR IMAGENET DATA SET

test cases. In each iteration, we need around 10%–20% of the
number of epochs as original DNN training.
In addition, in Tables III and IV, we demonstrate the

structured (filter or column) pruning results on ResNet-18 and
ResNet-50 models for ImageNet data set. We compare with a
list of prior work, and these prior work focus on filter pruning
only (we do not find prior work on column pruning on these
two models). As shown in the tables, we achieve simulta-
neously a higher pruning rate (weight parameter reduction
rate) and higher accuracy compared with prior work when
only applying filter (row) pruning. Also, we can observe that
column pruning results in a higher pruning rate and/or higher
accuracy compared with filter pruning. This is because of the
higher flexibility in column pruning by modifying filter shapes.
For large-scale GPU/CPU acceleration when GEMM compu-
tation is utilized, column pruning (and potentially effective
combination with filter pruning) will be more effective than
filter pruning only.

B. Experiment Results on Models Using CIFAR-10 Data Set

Tables V–VII show the structured pruning results on
ResNet-18, VGG-16, and MobileNet-V2 models, respectively,
on the CIFAR-10 data set. We compare with a list of prior
work (these prior work focus on filter pruning only). As a two-
step, progressive ADMM framework is utilized, we achieve a
higher performance gain compared with prior work. As our fil-
ter pruning already outperforms prior work, a further increase
in pruning rate can be achieved through a combination of filter
and column pruning. With a proper combination, a significant
improvement over prior work can be achieved. As shown
in Table V, the structured pruning rate 54.2× is 32× higher
compared with prior work AMC [46] and NISP [44] or over
100× higher considering the difference of the original DNN
(these prior work use a larger DNN ResNet-50 or ResNet-56),
with even higher accuracy.
For Tables V and VI, the amount of FLOPs reduction and

measured mobile inference time (using Adreno 640 mobile
GPU with OpenCL code generation from a custom-optimized

TABLE V

STRUCTURED PRUNING RESULTS (ALONG WITH END-TO-END MOBILE
INFERENCE TIME) ON RESNET-18 (RESNET-50 IN PRIOR WORK AMC
AND RESNET-56 IN PRIOR WORK NISP) FOR CIFAR-10 DATA SET

TABLE VI

STRUCTURED PRUNING RESULTS (ALONG WITH END-TO-END MOBILE

INFERENCE TIME) ON VGG-16 MODEL FOR CIFAR-10 DATA SET

compiler) are also presented. We can observe that the
amount of FLOPs reduction is also highly effective using the
proposed StructADMM framework. Besides, the end-to-end
mobile inference time is significantly reduced to even beyond
real-time requirement. We can also observe the benefit of
combined filter and column pruning (than filter pruning only)
in mobile execution acceleration, although the inference accel-
eration rate is not exactly proportional to FLOPs reduction.
The latter is because of I/O overheads and the Winograd
algorithm applied to the original, unpruned neural network.
Recent work [69] points out an intriguing aspect of struc-

tured weight pruning. When one trains from scratch based
on the structure (without weight values) of a pruned model,
we can often retrieve the same accuracy as the model after
pruning. We incorporate this “training from scratch” process
based on the results of filter pruning and combined filter
and column pruning and derive interesting results. When this
process is performed based on the result of filter pruning, it can
recover the similar accuracy. The insight is that filter pruning
is similar to finding a smaller DNN model, and in this case,
the main merit of StructADMM framework is to discover such
DNN model (our method still outperforms prior work in this
case). On the other hand, when this process is performed based
on the result of combined structured pruning, the accuracy
cannot be recovered. For example, the accuracy is only 91.9%
based on the ResNet-18 pruning results, while the combined
structured pruning yields 93.8% accuracy. The underlying
insight is that the combined pruning is not just training a
smaller DNN model, but with adjustments of filter/kernel
shapes. In this case, the pruned model represents a solution
that cannot be achieved through performing DNN training
only, even with detailed structures already given. In this case,
the StructADMM framework will be more valuable due to
the importance of pruning from a full-sized DNN model as a
starting point.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on January 14,2022 at 19:46:26 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE VII

STRUCTURED PRUNING RESULTS ON MOBILENET-V2 MODEL
FOR CIFAR-10 DATA SET

TABLE VIII

COMPARISON OF OUR METHOD AND SSL METHOD ON FILTERWISE AND

CHANNELWISE STRUCTURED SPARSITY ON THE LENET-5
MODEL FOR MNIST DATA SET

TABLE IX

COMPARISON OF OUR PROPOSED METHOD AND THE SSL METHOD

ON SHAPEWISE STRUCTURED SPARSITY ON THE LENET-5
MODEL FOR MNIST DATA SET

TABLE X

STRUCTURED PRUNING RESULTS ON THE 3-D RESNET-18 MODEL

FOR UCF-101 DATA SET

C. Experiment Results on LeNet-5 Model for MNIST Data
Set

For the LeNet-5 model, we implement our experiments for
MNIST data set. Table VIII shows the comparison of our pro-
posed method and SSL method on filterwise and channelwise
structured sparsity, and Table IX shows the comparison on
shape-wise structured sparsity. In both cases, our proposed
method can achieve higher test accuracy on the same pruning
rate compared with the SSL method. The average accuracy
gain of our method is above 0.1%, which is notable in the
MNIST data set.

D. Experiment Results on ResNet Model for UCF-101 Data
Set

In order to demonstrate the broader application of our pro-
posed method, we implement our method on (3D-convolution)
ResNet-18 [70] for UCF-101 data set [63] (for activity detec-
tion). We compare with the PGD method. The results are
shown in Table X, and we achieve higher accuracy compared
with PGD on the same pruning rate.

TABLE XI

COMPARISONS OF WEIGHT PRUNING RESULTS ON THE ALEXNET
MODEL FOR IMAGENET DATA SET

TABLE XII

COMPARISONS OF WEIGHT PRUNING RESULTS ON THE VGG-16 MODEL
FOR IMAGENET DATA SET

VIII. EXPERIMENT RESULTS FOR

NONSTRUCTURED PRUNING

We evaluate our method for nonstructured pruning on
AlexNet and VGG-16 for ImageNet data set. Since we
propose a progressive, multistep weight pruning framework,
we achieve a higher pruning rate than the single-step ADMM
method in the early version of our work [28] on AlexNet.
We also achieve a much higher pruning rate compared with
other prior work.
Table XI presents the weight pruning comparison results on

the AlexNet model between our proposed method and prior
work. Our weight pruning results clearly outperform the prior
work, in which we can achieve 31× weight reduction rate
without loss of accuracy. Our progressive weight pruning also
outperforms the single-step ADMM weight pruning in [28]
that achieves 21× compression rate.
Table XII presents the comparison results on VGG-16.

These weight pruning results we achieved clearly outperform
the prior work, consistently achieving the highest sparsity
in the benchmark DNN models. On the VGG-16 model,
we achieve 30× weight pruning with comparable accuracy
with prior work, while the highest pruning rate in prior work
is 19.5×. We also achieve 34× weight pruning with minor
accuracy loss.
In summary, the experimental results demonstrate that our

framework applies to a broad set of representative DNN
models and consistently outperforms the prior work. It also
applies to the DNN models that consist of mainly convolu-
tional layers, which are different from weight pruning for prior
methods. These promising results will significantly contribute
to the energy-efficient implementation of DNNs in mobile and
embedded systems and on various hardware platforms.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on January 14,2022 at 19:46:26 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: StructADMM: ACHIEVING ULTRAHIGH EFFICIENCY IN STRUCTURED PRUNING 13

IX. CONCLUSION

In this article, we proposed a unified, systematic framework
of structured weight pruning for DNNs. It is a unified frame-
work for different types of structured sparsity, such as filter-
wise, channelwise, shapewise sparsity, as well as nonstructured
sparsity. By incorporating SGD with ADMM, our framework
updates regularization target analytically in each iteration.
Based on ADMM, we further propose a progressive weight
pruning framework and a network purification and unused
path removal procedure, in order to achieve higher pruning
rate without accuracy loss. In our experiments, we achieve
2.58× and 3.65× measured speedup on two GPUs without
accuracy loss. The speedups reach 3.18× and 8.52× on GPUs
and 10.5× on CPU when allowing a moderate accuracy
loss of 2% and reaches 7.6× on the Adreno 640 mobile
GPU. Our pruning rate and speedup clearly outperform prior
work.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[2] G. Hinton et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE Signal
Process. Mag., vol. 29, no. 6, pp. 82–97, Nov. 2012.

[3] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 20, no. 1, pp. 30–42,
Jan. 2012.

[4] V. Mnih et al., “Playing atari with deep reinforcement learning,” 2013,
arXiv:1312.5602. [Online]. Available: http://arxiv.org/abs/1312.5602

[5] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014, arXiv:1409.1556. [Online].
Available: https://arxiv.org/abs/1409.1556

[6] K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, “Deep
supervised learning for hyperspectral data classification through con-
volutional neural networks,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp. (IGARSS), Jul. 2015, pp. 4959–4962.

[7] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 1135–1143.

[8] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” in Proc. Int. Conf. Learn. Represent., 2016.

[9] X. Dai, H. Yin, and N. K. Jha, “NeST: A neural network synthesis tool
based on a grow-and-prune paradigm,” IEEE Trans. Comput., vol. 68,
no. 10, pp. 1487–1497, Oct. 2019.

[10] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2016, pp. 2074–2082.

[11] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient con-
volutional neural networks using energy-aware pruning,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 5687–5695.

[12] M. Denil et al., “Predicting parameters in deep learning,” in Proc. Adv.
Neural Inf. Process. Syst., 2013, pp. 2148–2156.

[13] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus,
“Exploiting linear structure within convolutional networks for effi-
cient evaluation,” in Proc. Adv. Neural Inf. Process. Syst., vol. 2014,
pp. 1269–1277.

[14] W. Wen, C. Xu, C. Wu, Y. Wang, Y. Chen, and H. Li, “Coordinating fil-
ters for faster deep neural networks,” 2017, arXiv:1703.09746. [Online].
Available: https://arxiv.org/abs/1703.09746

[15] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choudhary, and S.-F.
Chang, “An exploration of parameter redundancy in deep networks with
circulant projections,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 2857–2865.

[16] V. Sindhwani, T. Sainath, and S. Kumar, “Structured transforms for
small-footprint deep learning,” in Proc. Adv. Neural Inf. Process. Syst.,
2015, pp. 3088–3096.

[17] L. Zhao, S. Liao, Y. Wang, Z. Li, J. Tang, and B. Yuan, “Theoretical
properties for neural networks with weight matrices of low displace-
ment rank,” in Proc. 34th Int. Conf. Mach. Learn., vol. 70, 2017,
pp. 4082–4090.

[18] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
DNNs,” in Adv. Neural Inf. Process. Syst., 2016, pp. 1379–1387.

[19] X. Dong, S. Chen, and S. Pan, “Learning to prune deep neural networks
via layer-wise optimal brain surgeon,” in Proc. Adv. Neural Inf. Process.
Syst., 2017, pp. 4860–4874.

[20] D. Molchanov, A. Ashukha, and D. Vetrov, “Variational dropout spar-
sifies deep neural networks,” in Proc. 34th Int. Conf. Mach. Learn.,
Volume 70, 2017, pp. 2498–2507.

[21] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” 2018, arXiv:1803.03635. [Online]. Available:
http://arxiv.org/abs/1803.03635

[22] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via geometric
median for deep convolutional neural networks acceleration,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 4340–4349.

[23] C. Louizos, M. Welling, and D. P. Kingma, “Learning sparse neural
networks through L0 regularization,” 2017, arXiv:1712.01312. [Online].
Available: http://arxiv.org/abs/1712.01312

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[25] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 1389 –1397.

[26] S. Boyd, “Distributed optimization and statistical learning via the alter-
nating direction method of multipliers,” Found. Trends Mach. Learn.,
vol. 3, no. 1, pp. 1–122, 2010.

[27] M. Hong and Z.-Q. Luo, “On the linear convergence of the alternating
direction method of multipliers,” Math. Program., vol. 162, nos. 1–2,
pp. 165–199, Mar. 2017.

[28] T. Zhang et al., “A systematic DNN weight pruning framework using
alternating direction method of multipliers,” in Proc. Eur. Conf. Comput.
Vis. (ECCV), 2018, pp. 184–199.

[29] H. Mao et al., “Exploring the regularity of sparse structure in convo-
lutional neural networks,” 2017, arXiv:1705.08922. [Online]. Available:
http://arxiv.org/abs/1705.08922

[30] E. Park, J. Ahn, and S. Yoo, “Weighted-entropy-based quantization
for deep neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 5456–5464.

[31] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental net-
work quantization: Towards lossless CNNs with low-precision weights,”
2017, arXiv:1702.03044. [Online]. Available: http://arxiv.org/abs/1702.
03044

[32] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of
deep convolutional networks,” in Proc. Int. Conf. Mach. Learn., 2016,
pp. 2849–2858.

[33] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 4820–4828.

[34] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
Imagenet classification using binary convolutional neural networks,” in
Proc. Eur. Conf. Comput. Vis. New York, NY, USA: Springer, 2016,
pp. 525–542.

[35] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in Proc. Adv. Neural Inf. Process. Syst.,
2016, pp. 4107–4115.

[36] A. Ren et al., “ADMM-NN: An algorithm-hardware co-design frame-
work of dnns using alternating direction methods of multipliers,” in Proc.
24th Int. Conf. Architectural Support Program. Lang. Operating Syst.,
2019, pp. 925–938.

[37] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in Proc.
Adv. Neural Inf. Process. Syst., 2015, pp. 3123–3131.

[38] C. Leng, Z. Dou, H. Li, S. Zhu, and R. Jin, “Extremely low bit neural
network: Squeeze the last bit out with ADMM,” in Proc. 32nd AAAI
Conf. Artif. Intell., 2018, pp. 3466–3473.

[39] C. Bucilua, R. Caruana, and A. Niculescu-Mizil, “Model compression,”
in Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2006, pp. 535–541.

[40] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge
in a neural network,” 2015, arXiv:1503.02531. [Online]. Available:
http://arxiv.org/abs/1503.02531

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on January 14,2022 at 19:46:26 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[41] L. Zhang, J. Song, A. Gao, J. Chen, C. Bao, and K. Ma, “Be your own
teacher: Improve the performance of convolutional neural networks via
self distillation,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 3713–3722.

[42] L. Zhang, Z. Tan, J. Song, J. Chen, C. Bao, and K. Ma, “SCAN:
A scalable neural networks framework towards compact and efficient
models,” in Proc. NeurIPS, 2019, pp. 4027–4036.

[43] C. Ding et al., “CirCNN: Accelerating and compressing deep neural
networks using block-circulant weight matrices,” in Proc. 50th Annu.
IEEE/ACM Int. Symp. Microarchitecture, Oct. 2017, pp. 395–408.

[44] R. Yu et al., “NISP: Pruning networks using neuron importance score
propagation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 9194–9203.

[45] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. Peter Graf, “Prun-
ing filters for efficient ConvNets,” 2016, arXiv:1608.08710. [Online].
Available: http://arxiv.org/abs/1608.08710

[46] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “AMC: AutoML
for model compression and acceleration on mobile devices,” in Proc.
ECCV. New York, NY, USA: Springer, 2018, pp. 815–832.

[47] Z. Zhuang et al., “Discrimination-aware channel pruning for deep neural
networks,” in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 875–886.

[48] H. Yang, W. Wen, and H. Li, “Deephoyer: Learning sparser
neural network with differentiable scale-invariant sparsity measures,”
in Proc. Int. Conf. Learn. Represent., 2020. [Online]. Available:
https://openreview.net/forum?id=rylBK34FDS

[49] X. Ding, G. Ding, Y. Guo, and J. Han, “Centripetal SGD for pruning
very deep convolutional networks with complicated structure,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 4943–4953.

[50] T. Li, B. Wu, Y. Yang, Y. Fan, Y. Zhang, and W. Liu, “Compressing con-
volutional neural networks via factorized convolutional filters,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 3977–3986.

[51] R. Takapoui, N. Moehle, S. Boyd, and A. Bemporad, “A simple effective
heuristic for embedded mixed-integer quadratic programming,” Int.
J. Control, vol. 93, no. 1, pp. 2–12, 2017.

[52] C. Leng, H. Li, S. Zhu, and R. Jin, “Extremely low bit neural net-
work: Squeeze the last bit out with ADMM,” 2017, arXiv:1707.09870.
[Online]. Available: http://arxiv.org/abs/1707.09870

[53] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. ICML, 2013, vol. 30,
no. 1, p. 3.

[54] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proc. COMPSTAT. New York, NY, USA: Springer, 2010,
pp. 177–186.

[55] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” 2014, arXiv:1412.6980. [Online]. Available:
http://arxiv.org/abs/1412.6980

[56] S. Liu, M. Fardad, E. Masazade, and P. K. Varshney, “On optimal
periodic sensor scheduling for field estimation in wireless sensor net-
works,” in Proc. IEEE Global Conf. Signal Inf. Process., Dec. 2013,
pp. 137–140.

[57] S. Chetlur et al., “CuDNN: Efficient primitives for deep learning,” 2014,
arXiv:1410.0759. [Online]. Available: http://arxiv.org/abs/1410.0759

[58] M. Hong, Z.-Q. Luo, and M. Razaviyayn, “Convergence analysis of
alternating direction method of multipliers for a family of nonconvex
problems,” SIAM J. Optim., vol. 26, no. 1, pp. 337–364, 2016.

[59] S. Liu, J. Chen, P.-Y. Chen, and A. Hero, “Zeroth-order online alternating
direction method of multipliers: Convergence analysis and applications,”
in Proc. Int. Conf. Artif. Intell. Statist., vol. 2018, pp. 288–297.

[60] N. Parikh et al., “Proximal algorithms,” Found. Trends Optim., vol. 1,
no. 3, pp. 127–239, 2014.

[61] J.-H. Luo, J. Wu, and W. Lin, “ThiNet: A filter level pruning method for
deep neural network compression,” in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 5058–5066.

[62] C. Min, A. Wang, Y. Chen, W. Xu, and X. Chen, “2PFPCE: Two-phase
filter pruning based on conditional entropy,” 2018, arXiv:1809.02220.
[Online]. Available: http://arxiv.org/abs/1809.02220

[63] K. Soomro, A. Roshan Zamir, and M. Shah, “UCF101: A dataset of 101
human actions classes from videos in the wild,” 2012, arXiv:1212.0402.
[Online]. Available: http://arxiv.org/abs/1212.0402

[64] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L.-C. Chen, “MobileNetV2: Inverted residuals and linear bottlenecks,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

[65] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[66] A. Paszke et al., “Automatic differentiation in pytorch,” in Proc. Int.
Conf. Learn. Represent. Neural Inf. Process. Syst. Workshop, 2017.

[67] [Online]. Available: https://www.tensorflow.org/mobile/tflite/
[68] T. Chen et al., “TVM: An automated end-to-end optimizing compiler

for deep learning,” in Proc. OSDI, 2018, pp. 578–594.
[69] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the

value of network pruning,” 2018, arXiv:1810.05270. [Online]. Available:
http://arxiv.org/abs/1810.05270

[70] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learn-
ing spatiotemporal features with 3D convolutional networks,” 2014,
arXiv:1412.0767. [Online]. Available: http://arxiv.org/abs/1412.0767

[71] X. Yu, T. Liu, X. Wang, and D. Tao, “On compressing deep models by
low rank and sparse decomposition,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 7370–7379.

Tianyun Zhang received the B.E. degree in
optoelectronic information engineering from the
Huazhong University of Science and Technology,
Wuhan, China, in 2015. He is currently pursuing the
Ph.D. degree with the Department of Electrical Engi-
neering and Computer Science, Syracuse University,
Syracuse, NY, USA.
His research interests include model compression

and efficient implementation for deep neural net-
works, adversarial robustness on artificial intelli-
gence, and convex and nonconvex optimization.

Shaokai Ye received the B.S. degree in computer
engineering from Saint Louis University, St. Louis,
MO, USA, in 2015, and the M.S. degree in com-
puter engineering from Syracuse University, Syra-
cuse, NY, USA, in 2018, under the supervision of
Dr. Y. Wang. He is currently pursuing the Ph.D.
degree from the École polytechnique fédérale de
Lausanne (EPFL), Lausanne, Switzerland, under the
supervision of Dr. M. Mathis.
His research interest is making AI more efficient

and robust.

Xiaoyu Feng (Graduate Student Member, IEEE)
received the B.S. degree in electronic engineering
from Tsinghua University, Beijing, China, in 2018,
where he is currently pursuing the Ph.D. degree in
electronic engineering.
His current research interest lies in neural

network compression, domain adaptation, and
energy-efficient network architecture design.

Xiaolong Ma received the M.S. degree in elec-
trical engineering from Syracuse University, Syra-
cuse, NY, USA, in 2016. He is currently pursuing
the Ph.D. degree in computer engineering with the
Department of Electrical and Computer Engineering,
Northeastern University, Boston, MA, USA, super-
vised by Dr. Yanzhi Wang.
He has published in top conference and journal

venues, including the Association for the Advance-
ment of Artificial Intelligence Conference on Artifi-
cial Intelligence (AAAI), the European Conference

on Computer Vision (ECCV), ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
Design Automation Conference (DAC), ACM International Conference on
Supercomputing (ICS), International Conference on Parallel Architectures and
Compilation Techniques (PACT), and IEEE TRANSACTIONS ON NEURAL
NETWORKS AND LEARNING SYSTEMS. His research interests include
machine learning algorithms, deep learning system design, high-performance
computing, and computer vision.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on January 14,2022 at 19:46:26 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: StructADMM: ACHIEVING ULTRAHIGH EFFICIENCY IN STRUCTURED PRUNING 15

Kaiqi Zhang received the B.E. degree in
vehicle engineering from Tsinghua University, Bei-
jing, China, in 2011, and the M.S. degree in com-
puter science from Syracuse University, Syracuse,
NY, USA, in 2018.
He is currently working as a Software Engi-

neer with Microsoft Azure, Seattle, WA, USA.
His research interests include deep learning, opti-
mization algorithm, GPU acceleration, and cloud
computing.

Zhengang Li received the B.E. degree in electronic
information engineering from Zhejiang University,
Hangzhou, Zhejiang, China, in 2017. He is currently
pursuing the Ph.D. degree in computer engineering
with Northeastern University, Boston, MA, USA,
under the supervision of Prof. Yanzhi Wang.
His current research interests include model com-

pression of deep neural networks, machine learning
algorithms, and computer vision.

Jian Tang (Fellow, IEEE) received the Ph.D. degree
in computer science from Arizona State University,
Tempe, AZ, USA, in 2006.
He is currently a Professor with the Department

of Electrical Engineering and Computer Science,
Syracuse University, Syracuse, NY, USA. He has
published over 150 papers in premier journals and
conferences. His research interests include the areas
of AI, Internet of Things (IoT), wireless networking,
mobile computing, and big data systems.
Dr. Tang is an ACM Distinguished Member.

He received the NSF CAREER Award in 2009, several best paper awards,
including the 2019 William R. Bennett Prize and the 2019 TCBD (Technical
Committee on Big Data) Best Journal Paper Award from IEEE Communica-
tions Society, the 2016 Best Vehicular Electronics Paper Award from the IEEE
Vehicular Technology Society, and best paper awards from the 2014 IEEE
International Conference on Communications and the 2015 IEEE Global
Communications Conference. He has served as an Editor for several IEEE
journals, including the IEEE TRANSACTIONS ON BIG DATA and the IEEE
TRANSACTIONS ON MOBILE COMPUTING. He served as the TPC Co-Chair
for a few international conferences, including the IEEE/ACM IWQoS 2019,
MobiQuitous 2018, and IEEE iThings 2015, the TPC Vice Chair for the
INFOCOM’2019, and the Area TPC Chair for INFOCOM 2017–2018.

Sijia Liu (Member, IEEE) received the Ph.D. degree
in electrical and computer engineering from Syra-
cuse University, Syracuse, NY, USA, in 2016.
He was a Post-Doctoral Research Fellow with

the University of Michigan, Ann Arbor, MI, USA.
He is currently a Research Staff Member with
the MIT-IBM Watson AI Lab, Cambridge, MA,
USA. His research interests include optimiza-
tion for deep learning and adversarial machine
learning.
Dr. Liu received the Best Student Paper Award

(Third Place) at ICASSP 2017 and the All-University Doctoral Prize for the
Ph.D. degree. He was among the seven finalists of the Best Student Paper
Award at Asilomar 2013.

Xue Lin (Member, IEEE) received the bachelor’s
degree in microelectronics from Tsinghua Univer-
sity, Beijing, China, in 2009, and the Ph.D. degree
from the Department of Electrical Engineering, Uni-
versity of Southern California, Los Angeles, CA,
USA, in 2016.
She has been an Assistant Professor with the

Department of Electrical and Computer Engineering,
Northeastern University, Boston, MA, USA, since
2017. Her research work has been recognized by
several NSF awards and supported by the Air Force

Research Lab, Office of Naval Research, Lawrence Livermore National
Lab, and DARPA. Her research interests include deep learning security and
hardware acceleration, machine learning and computing in cyber-physical
systems, high-performance and mobile cloud computing systems, and VLSI.
Dr. Lin received the Best Paper Award at ISVLSI 2014, the Top Paper

Award at CLOUD 2014, the Best Technical Poster Award at NDSS 2020,
the Spotlight Paper at ECCV 2020, and the First Place at the ISLPED
2020 Design Contest.

Yongpan Liu (Senior Member, IEEE) received the
B.S., M.S., and Ph.D. degrees from the Depart-
ment of Electronic Engineering, Tsinghua Univer-
sity, Beijing, China, in 1999, 2002, and 2007,
respectively.
He was a Visiting Scholar with Pennsylvania State

University, State College, PA, USA, and the City
University of Hong Kong, Hong Kong. He is cur-
rently a Professor with the Department of Elec-
tronic Engineering, Tsinghua University. He has
published over 200 peer-reviewed conference and

journal papers and developed several fast sleep/wakeup nonvolatile proces-
sors using emerging memory and artificial intelligent accelerators using
algorithm-architecture co-optimization. His main research interests include
energy-efficient circuits and systems for artificial intelligent, emerging mem-
ory devices, and Internet-of-Things (IoT) applications.
Dr. Liu’s work has received the Under 40 Young Innovators Award DAC

2017, the Micro Top Pick 2016, the Best Paper Award in ASPDAC 2017 and
HPCA 2015, and the Design Contest Awards of ISLPED 2012 and 2013.
He served as the General Chair for AWSSS 2016 and IWCR 2018, the Tech-
nical Program Chair for NVMSA 2019, and a Program Committee Member
for DAC, DATE, ASP-DAC, ISLPED, ICCD, and A-SSCC. He is also an
Associate Editor of IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN
OF INTEGRATED CIRCUITS AND SYSTEMS, IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, and IET Cyber-Physical
Systems: Theory & Applications.

Makan Fardad received the B.S. degree in electrical
engineering from the Sharif University of Tech-
nology, Tehran, Iran, in 1998, the M.S. degree in
electrical engineering from the Iran University of
Science and Technology, Tehran, in 2000, and the
Ph.D. degree in mechanical engineering from the
University of California at Santa Barbara, Santa
Barbara, CA, USA, in 2006.
He was a Post-Doctoral Associate with the Uni-

versity of Minnesota, Minneapolis, MN, USA.
He joined the Department of Electrical Engineering

and Computer Science, Syracuse University. His research interests include
modeling, analysis, and optimization of large-scale dynamical networks.
Dr. Fardad was a recipient of the National Science Foundation CAREER

Award.

Yanzhi Wang (Member, IEEE) received the B.S.
degree in electronic engineering from Tsinghua Uni-
versity, Beijing, China, in 2009, and the Ph.D.
degree in computer engineering from the University
of Southern California, Los Angeles, CA, USA,
in 2014.
His research interests include energy-efficient and

high-performance implementations of deep learning
and artificial intelligence systems, emerging deep
learning algorithms/systems, generative adversarial
networks, and deep reinforcement learning.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on January 14,2022 at 19:46:26 UTC from IEEE Xplore. Restrictions apply.

