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Abstract—The performance and structure of wiretap codes are
analyzed in the limit of large code size and very low- or very
high-rate codes. Under these conditions, code performance may
be calculated using the properties of subspaces of the available
code space. Using this technique, a code defined by a generator
matrix with a uniform distribution of nonzero columns is proven
to be locally optimal.

I. INTRODUCTION

Wiretap codes have been explored now for several decades
as a mechanism for secure and reliable data transmission over
communication channels with eavesdroppers [1], [2], [3], [4],
[5]. The performance limits of wiretap codes in the limit of
large blocklength are well understood [6], [7], [8]. A recent
line of inquiry has focused on optimal finite blocklength
wiretap codes. In this regime, the codes operating over the
type-II wiretap channel are analyzed by, e.g., generalized
Hamming weights [9], [10], while over the binary erasure
wiretap channel (BEWC) combinatoric analysis techniques are
applied to the problem of designing best codes [11], [12], [13],
[14], [15]. In this work, we study an intermediate class of
codes with large blocklength but extremely high or low rates
operating over the BEWC. Under these conditions, simplifying
analytical assumptions permit the code’s performance to be
expressed in terms of subspaces of the code’s generator matrix.
The paper is organized as follows. Section II provides back-

ground material on coset code construction over binary erasure
wiretap channels. The extreme-rate analysis is provided in
Section III, and the main results of the paper are given in
Section IV.

II. COSET CODE BACKGROUND

The wiretap channel used in this paper is the binary erasure
wiretap channel of Wyner. In this channel, a message is
encoded and sent by the transmitter. It is then received via
a perfect channel by a legitimate receiver and received via a
binary erasure channel (BEC) by an eavesdropper. The usual
form of secrecy coding for this type of channel is called coset
coding and involves expanding the original k-symbol message
to an n-symbol codeword. This is done by creating a base
(n, n�k) linear block code C defined by generator matrix G,
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then assigning each possible message m to one of the cosets
of C. This may be accomplished in practice by defining an
auxiliary generator matrix G

0 which is linearly independent
relative to G. A random (n � k)-bit auxiliary message m

0 is
then appended to the message m, and the resulting vector is
multiplied by the matrix G

⇤, which is formed by the vertical
concatenation of G and G

0. The final codeword x is given by

x =
⇥
m m

0⇤

G

0

G

�
. (1)

To calculate the eavesdropper’s equivocation H(M |Z), the
equivocation for a given value z of Z is averaged over all
possible values of z. An important result arising from [12]
is that the equivocation may be calculated based on the set,
denoted r(z), of revealed bit positions of the codeword z, as

H(M |Z = z) = H(M)� |r(z)|+ rank(Gr(z)), (2)

whereGr(z) is the submatrix ofG formed by concatenating the
columns of G which are indexed by the set r(z). It is assumed
throughout this work that the message is uniformly distributed
across the 2k possibilities and, therefore, H(M) = k.

The message equivocation of a given coset code depends
on the particulars of the code and the erasure probability ✏

of the BEC. Calculating the expected message equivocation
involves determining the equivocation and probability of each
possible erasure pattern r(z) received by the eavesdropper, as
shown in (2). This information is commonly summarized in
an equivocation matrix. For a given (n, k) coset code with
(n� k)⇥n generator G, the equivocation matrix A is a (k+
1)⇥ (n+ 1) matrix with elements defined by

Ai,j = |{r : |r(z)| = j � 1, k �H(M | r(z)) = i� 1}|. (3)

III. ANALYTICAL METHODS AND DEFINITIONS

In this work, we consider codes for which the codeword
size n is much greater than either the message size k or the
random vector size n � k. Specifically, we utilize one of the
following assumptions:

n � 2n�k (4)

n � 2k. (5)
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Because of the relationships between a coset code and its
dual [13], the analyses which follow from assumptions (4) and
(5), referred to as the “high-rate assumption” and the “low-
rate assumption”, respectively, are analogous. The analysis in
the remainder of this work is performed in terms of the high-
rate assumption. In this configuration, the generator matrix G

consists of a few rows and many columns.

A. Vector-Fraction Code Specification

When considering such a matrix, the first useful observation
is that because of the extreme width of the matrix, it is
necessary that the contents of some columns will be repeated.
In fact, the bulk of the matrix will necessarily consist of
repeated columns. This observation leads to a computational
simplification. Rather than specifying the generator matrix
element-by-element, it may be specified by listing, for each
of the 2n�k � 1 possible nonzero column vectors, the fraction
of the total columns equal to that vector. Let u 2 F(n�k)

2

denote a particular unique binary vector of size n � k, then
let b(u) represent the binary integer representation of u and
v(x) represent the binary vector expansion of the integer
x. Then define the vector q of size 2n�k � 1 where each
qx, 1  x  2n�k � 1, represents the fraction of the columns
of G equal to v(x). Thus, if n � k = 3, q3 = 0.2 indicates
that one fifth of the columns of G are equal to [0 1 1]T .

B. Equivocation Probability Matrix

This method of specifying the generator matrix naturally
suggests a new method of specifying the performance of the
corresponding coset code. Instead of reporting the equivo-
cation matrix A, it is convenient to specify an equivocation
probability matrix, denoted A. Whereas the equivocation ma-
trix expresses the number of erasure patterns of a given size
that result in a given number of bits of message information
being leaked, the equivocation probability matrix expresses the
probability, conditional on an erasure pattern of a given size,
of a given number of message bits being leaked. Symbolically,

Ai,j = Pr [k �H(M |r(z)) = i� 1 | |r(z)| = j � 1] . (6)

Thus, A is related to A in that the element values of A
equal the fraction of the total of the column elements that
are represented by the corresponding element of A.
For a given coset code defined by n, k, and q =

[q1, q2, · · · q2k�1], (4) provides a computational simplification
which enables the calculation of values in the equivocation
probability matrix. If the number of columns equal to any u

is large, the probability of any given erasure occurring in a
column equal to ui may be assumed to be equal to qb(ui) re-
gardless of the number of erasures occurring in other columns
equal to ui. That is, the number of erasures occurring in
columns equal to ui is assumed to have a Poisson distribution
rather then a binomial distribution. Using this assumption, an
expression for the i, j element of A is

Ai,j =
X

x1,x2,...,xj�1:
rank([v(x1);...;v(xj�1)])=j�i

 
j�1Y

◆=1

qx◆

!
, (7)

where x◆ 2 {0, 1, . . . , 2n�k} is the numeric representation
b(u) of one of the possible column vectors u. Thus, the sum
is over all possible size-(j � 1) collections of column vectors
which produce a matrix of rank j � i.
Calculating elements of A using this formula directly is

computationally intractable, but further simplification is pos-
sible by analysis of the subspace structure of G.

C. Subspace Structure Definitions

Let W be a vector space comprised of all the vectors in
F(n�k)
2 , where binary vector addition and scalar multiplication

are defined in the usual way.
Next, define the function ⌅(S, d) acting on a space S (equal

to W or a subspace of W ) and a scalar dimension d. This
function returns the set of all dimension-d subspaces of S. In
this work, braced superscript notation may be used to indicate
the dimension of a vector space, so for example S{d} indicates
a vector space S which has dimension d. This notation is for
clarity and may be omitted if the dimension of the vector space
is clear. The number of subspaces of dimension d

0 contained
within a space S of dimension d is given by the Gaussian
binomial coefficient

|⌅(S{d}
, d

0)| =
✓
d

d0

◆

2

=
d0�1Y

◆=0

2d � 2◆

2d0 � 2◆
=

d0�1Y

◆=0

2d�◆ � 1

2d0�◆ � 1
.

(8)
A function �(S) is also defined which acts on a space S. This
function expresses the fraction of the columns of G that lie
within S and is defined as

�(S) =
X

x:v(x)2S

qx. (9)

The final definition required for the analysis of the subspace
structure of coset codes is a recursively-defined function, de-
noted  (S, µ), which expresses the probability that a codeword
z with |r(z)| = µ revealed bits will result in a submatrix
Gr which exactly spans a space S. (For this analysis, the
terminology “exactly spans” indicates that a set of vectors
spans a space and does not span any higher-dimensional
space.) A set of columns in G will exactly span S if and
only if two criteria are satisfied: (1) all of the columns of Gr

are contained within S and (2) the columns of Gr do not all
lie within any proper subspace of S. The probability that a set
of µ revealed bits selected uniformly at random results in Gr

with columns that all lie within S is equal to �(S)µ. Using
these observations,  (S, µ) may be defined as

 (S{d}
, µ) = �(S{d})µ �

d�1X

◆=1

0

@
X

T{◆}2⌅(S{d},◆)

 (T {◆}
, µ)

1

A.

(10)
Using these definitions, a number of results may be obtained

related to the subspace structure of coset codes. These results
are presented below.
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IV. RESULTS

Lemma 1. The probability of Gr(z), defined by z : |r(z)| = µ

revealed bits, exactly spanning a subspace S is expressible as

 (S{d}
, µ) =

dX

◆=1

0

@c◆(d)
X

U{◆}2⌅(S,◆)

�(U{◆})µ

1

A, (11)

where the c◆(d) are a series of constants which depend on d.

Proof. Begin with (10). Because of the recursive nature of
this formula, the value �(U)µ for every subspace U

{d0} of
dimension 1  d

0  d will appear in the calculation of
 (S{d}

, µ). Because all the terms in (10) are either of the
form �(U)µ or of the form  (U, µ), after the full expansion
of every instance of each  (U, µ) term, only �(U)µ terms will
remain, with each U being a subspace of S. Additionally, by
symmetry, the term �(U{d0})µ for every such subspace U

{d0}

of dimension d
0 appears the same number of times. Thus, the

final expansion may be expressed by finding the sum of the
�(U{d0})µ terms for every U of dimension d

0, multiplying by
a constant that depends only on d and d

0 = ◆, and summing
this result for every d

0 = 1, ..., d, as expressed in (11).

Lemma 2. The elements Ai,j of the equivocation probability

matrix may be expressed as

Ai,j =
n�kX

◆=1

0

@�◆(j � i, n� k)
X

S2⌅(W,◆)

�(S{◆})j�1

1

A (12)

for j > 1, where �◆(d,) are a series of constants which

depend on d = j � i and  = n� k.

Proof. Combining the definition of the equivocation proba-
bility matrix (6) with (2), the elements of the equivocation
probability matrix may be expressed as

Ai,j = Pr[rank(Gr(z)) = j � i | |r(z)| = j � 1]. (13)

The submatrix Gr(z) has rank j � i if and only if the
|r(z)| = µ columns of Gr(z) exactly span one (and only
one) dimension-j � i subspace S

{j�i} of W . Because the
probabilities of spanning any S

{j�i} are disjoint across all
the S

{j�i} 2 ⌅(W, j � i), the probability that Gr(z) has rank
j � i is equal to the probability of Gr(z) exactly spanning a
subspace S{j�i}, summed across all the S{j�i} 2 ⌅(W, j�i).
Because  (S{j�i}

, i�1) represents this probability, combining
(13) with (11) yields

Ai,j =
X

S2⌅(W,j�i)

j�iX

◆=1

0

@c◆(j � i)
X

T{◆}2⌅(S,◆)

�(T {◆})i�1

1

A. (14)

As in Lemma 1, the final expansion of (13) consists entirely
of multiples of �(T {◆})i�1 for various T {◆} of various dimen-
sions ◆. Also as in Lemma 1, the T {◆} include all the subspaces
of W of dimension ◆, and the instances of �(T {◆})i�1 occur
in the same frequency for any given ◆. Therefore, (13) may be
converted to the form of (12) with the �◆(j�i, n�k) given by

�◆(d,) =

✓


d

◆

2

c◆(d)

✓
d

◆

◆

2

/

✓


◆

◆

2

. (15)

Lemma 3. The expected message equivocation loss

E[H(M) � H(M | |r(z)| = µ)], denoted L(µ) for a given

number µ > 0 of revealed codeword bits may be expressed as

L(µ) =
n�kX

◆=1

0

@C◆(µ, n� k)
X

S2⌅(W,◆)

�(S{◆})µ

1

A, (16)

where the C◆(µ,) are a series of constants which may depend

on µ and  = n� k.

Proof. The expected equivocation loss for a given number
of revealed bits may be calculated from the equivocation
probability matrix as

L(µ) = E[H(M)�H(M| |r(z)|=µ)] =
µ+1X

i=1

(i� 1)·Ai,µ+1

=
µ+1X

i=1

(i� 1)·
n�kX

◆=1

0

@�◆(µ� i+ 1, n� k)
X

S2⌅(W,◆)

�(S{◆})µ

1

A.

(17)

Changing the order of summation yields the form specified in
(16), with the C◆(µ) given by

C◆(µ,) =
µX

i=1

((i� 1) · �◆(µ� i+ 1,)), (18)

or by eliminating the zero-valued case of i = 1 and shifting
the index of summation by 1,

C◆(µ,) =
µ�1X

i=1

(i · �◆(µ� i,)). (19)

Theorem 4. The expected message equivocation loss

E[H(M)�H(M | |r(z)| = µ)] for a given number µ > 0 of

revealed codeword bits is equal to

L(µ) = µ� (n� k) +
n�k�1X

�=1

0

@K�

X

S2⌅(W,n�k��)

�(S)µ

1

A. (20)

Where the K� are a series of constants which do not depend

on µ or n� k.

Proof. The constants C◆(µ,) of (16) and (18) depend on
the �◆(d,) of (12) and (15), which in turn depend on the
c◆(d) of (11). To find the value of the coefficients c◆(d), a
first step is to count the number of times that a dimension-d0
subspace is encountered during the summations specified in
the expansion of (10). For each instance of a call to �(U{d0})
for a dimension-d0 subspace U{d0}, a “path” ✓ may be specified
as a set of integers ✓i 2 ✓, d

0  ✓i  d, ✓i+1 < ✓i, which
indicates the dimension ✓i of each call to  (T {✓i}, µ), starting
with ✓1 = d and ending with ✓|✓| = d

0. Next, let ⇥d,d0

represent the set of all valid paths which start with d and
end with d

0. (Note that if d = d
0, there is exactly one path
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✓, of size one, in ⇥d,d0 . Also note that if d = d
0 + 1, there

is exactly one path ✓, of size two, in ⇥d,d0 .) For each path
✓ 2 ⇥d,d0 , the number of times �(U{d0}) is encountered for
any subspace U

{d0} 2 ⌅(S{d}
, d

0) is equal to the product of�✓i�1

✓i

�
2
for each 1 < i  |L|. Because the sign of summation

alternates with each successive recursive call to  (T, µ), the
sign of any given �(U{d0}) encountered via path ✓ during the
expansion of (10) is positive if |✓| is even and negative if |✓|
is odd. It is useful to represent the product over such a path
set by a function ⌘(d, d0) defined as

⌘(d, d0) =
X

✓2⇥d,d0

(�1)|✓|+1 ·

0

@
|✓|Y

j=2

✓
✓j�1

✓j

◆

2

1

A . (21)

Finally, because each c◆(d) in (11) is multiplied by the
sum of all dimension-◆ subspaces U

{◆} of S, the number of
instances of �(U{◆}) for all dimension-◆ subspaces must be
divided by the number

�d
◆

�
2
of dimension-◆ subspaces of S{d}.

Using these steps, the c◆(d) may be expressed as

c◆(d) = ⌘(d, ◆)/

✓
d

◆

◆

2

. (22)

Combining this expression with (15) yields

�◆(d,) =

✓


d

◆

2

⌘(d, ◆)/

✓


◆

◆

2

, (23)

and combining this equation with (19) yields

C◆(µ,) =
µ�1X

i=1

✓
i ·
✓



µ� i

◆

2

⌘(µ� i, ◆)/

✓


◆

◆

2

◆
. (24)

Several observations can help to simplify the computation
of (24). First, from the definition of the Gaussian binomial,�n�k
µ�i

�
2
= 0 if i < µ � (n � k), so the index of summation

only need start at µ� (n� k). Next, by the definition of ⌘(·),
if µ� i < ◆, then ⌘(µ� i < ◆) = 0, so the index of summation
may end at µ� ◆. (24) then becomes

C◆(µ,) =
µ�◆X

i=µ�

✓
i ·
✓



µ� i

◆

2

⌘(µ� i, ◆)/

✓


◆

◆

2

◆
, (25)

and making the substitution i = j + µ�  gives

C◆(µ,) =
1�
◆

�
2

�◆X

j=0

✓
(µ�+j)·

✓


� j

◆

2

⌘(�j, ◆)

◆
. (26)

Another simplification arises due to the fact that the ⌘(·)
function has the property that

⌘(d, d0) =

8
<

:

1 if d = d
0

�
d�1P
i=d0

�d
i

�
2
⌘(i, d0), if d > d

0
.

(27)

The C◆(µ,) of (26) may then be divided into two cases. First,
in the case that ◆ =  = n� k, it is easy to verify that

C(µ,) = µ� . (28)

Second, in the case that ◆ <  = n� k, the first (j = 0) term
in the summation of (26) can then be split out and transformed
using (27) to yield

C◆:◆<(µ,) =
�◆X

j=1

(µ� + j) ·
� 
�j

�
2
⌘(� j, ◆)

�
◆

�
2

�
�1X

i=◆

(µ� )
�
i

�
2
⌘(i, ◆)

�
◆

�
2

.

(29)

Performing the replacement j =  � i for the index of
summation in the second sum (which also swaps the order
of the limits) and combining the sums yields

C◆:◆<(µ) =
�◆X

j=1

j ·
� 
�j

�
2
⌘(� j, ◆)
�
◆

�
2

. (30)

At this point, for any ◆ < (n� k), C◆(µ,) does not depend
on µ. Next, define the series of constants K� as

K� = C��(µ,). (31)

Expanding this definition with (30) yields

K� =
�X

j=1

j ·
� 
�j

�
2
⌘(� j,� �)
� 
��

�
2

. (32)

This expression may be simplified using the following property
of product chains of Gaussian binomials:
�x1

x2

�
2

�x2

x3

�
2
. . .
�xn�1

xn

�
2�x1

xn

�
2

=
�x1�xn

x2�xn

�
2

�x2�xn

x3�xn

�
2
. . .
�xn�1�xn

0

�
2
.(33)

Because the expansion of ⌘(d, d0) results in a sum of products
of Gaussian binomial terms, each of which consists of a chain
starting at d and ending at d0, (32) may be simplified using
(33) to yield

K� =
�X

j=1

j ·
✓

�

� � j

◆

2

⌘(� � j, 0). (34)

These constants K� do not depend on either µ or  = n� k.
Finally, the summation in (16) may be split into the last term
(◆ = n� k) and the remainder of the terms (◆ < n� k). The
last term is given by (28), while the remainder of the terms
may be transformed using the definition (31) of K� to yield
the desired equation (20).

The first few K� are: 1,�1, 3,�21, 315,�9965. The fol-
lowing pattern is immediately apparent:

K� =
��1Y

i=1

(1� 2i). (35)

This pattern has been verified for �  16, and it is conjectured
that the pattern holds for all �.

Theorem 5. Assuming (35) holds for all positive integers �,

the extreme-rate code defined by a uniform proportion of all

nonzero generator matrix columns,

q = t : ti =
1

2n�k � 1
, (36)
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is locally optimal in terms of equivocation loss.

Proof. Let the vector s =
⇥
s1 s2 · · · s2n�k�1

⇤T be a
zero-sum (

P
i si = 0) unit vector defining an offset direction

from the uniform-proportion vector t of (36). Then let ↵ =
t+ sx be a vector offset from t by magnitude x in direction
s. The derivative of L(µ) with respect to x is then

�

�x
L(µ)

����
x=0

=
n�k�1X

�=1

0

@K�

X

S2⌅(W,n�k��)

�

�x
�(S)µ

����
x=0

1

A. (37)

Recalling the definition (9) of �(·),

�

�x
�(S{d})µ

����
x=0

= µ�(S{d})µ�1 �

�x
�(S{d})

����
x=0

= µ�(S{d})µ�1
X

x:v(x)2S{d}

sx = µ(
2d � 1

2n�k � 1
)µ�1

X

x:v(x)2S{d}

sx.

(38)

Substituting (38) into (37) gives �
�xL(µ)

��
x=0

as a sum of
constant multiples of si. Because of the symmetry of the
subspaces of W , each si, 1  i < 2n�k appears the same
number of times with the same constant multipliers. However,
because

P
i si = 0, the derivative of the equivocation loss in

any direction s is zero at q = t.
The calculation of the second derivative of the equivocation

loss begins in a similar manner to that of the first derivative:

�
2

�x2
L(µ)

����
x=0

=
n�k�1X

�=1

0

@K�

X

S2⌅(W,n�k��)

�
2

�x2
�(S)µ

����
x=0

1

A. (39)

�
2

�x2
�(S{d})µ

����
x=0

= µ(µ�1)(
2d�1

2n�k�1
)µ�2(

X

x:v(x)2S{d}

sx)
2
. (40)

The expansion of the squared sum term in (40) results in (2d�
1) terms of the form s

2
i and (2d�1)(2d�2) cross terms of the

form sisj . When these terms are evaluated across all subspaces
of dimension d, a total of

�n�k
d

�
2
(2d � 1) squared terms and�n�k

d

�
2
(2d � 1)(2d � 2) cross terms are accumulated. Again

by symmetry, all squared terms occur in equal frequency, and
because all pairs of vectors are symmetric, all cross terms also
occur in equal frequency. Next, because (

P
i si)

2 accumulates
(2n�k�1) squared terms and (2n�k�1)(2n�k�2) cross terms
and sums to zero, the second sum in (39) becomes

X

S2⌅(W,n�k��)

�
2

�x2
�(S)µ

����
x=0

= µ(µ� 1)(
2n�k�� � 1

2n�k � 1
)µ�2·

✓
n� k

�

◆

2

✓
(2n�k�� � 1)

2n�k � 1
� (2n�k�� � 1)(2n�k�� � 2)

(2n�k � 1)(2n�k � 2)

◆

= µ(µ� 1)

✓
2n�k�� � 1

2n�k � 1

◆µ�2✓
n� k � 2

� � 1

◆

2

2n�k���1
.

(41)

Clearly if µ = 0 or µ = 1, �2

�x2L(µ) = 0. In these cases,
because L(µ) = 0 for all x, t represents a local optimum.
All that remains to show that �2

�x2L(µ) > 0 for µ � 2.

Substituting (41) into (39) and removing an always-positive
factor of µ(µ�1)

(2n�k�1)µ�2 gives

n�k�1X

�=1

✓
K�(2

n�k��� 1)µ�2

✓
n�k�2

� � 1

◆

2

2n�k���1

◆
>0, (42)

and using the expression (35) for K� and the definition (8) of
the Gaussian binomial yields

n�k�1X

�=1

 
(2n�k���1)µ�22n�k���1

��2Y

i=0

(1�2n�k�i�2)

!
>0. (43)

When considering the terms in (43), all of the terms include a
(trivial) factor of 1, all but one include a factor of (1�2n�k�2),
all but two include a factor of (1 � 2n�k�3) and so on until
only the last term includes a factor of (1 � 21). Because of
this pattern, the additive terms of the sum may be accumulated
sequentially and multiplied progressively by the terms in the
product. The result is the final term of a sequence ai(µ), 1 
i < (n� k) with a0(µ) = 0 and with the recurrence relation

ai(µ) = 2i�1(2i � 1)µ�2 + (1� 2i�1) · ai�1(µ). (44)

Consider the following expression for the ai(µ) to satisfy (44):

ai(µ) =
µ�2X

j=0

 
uµ,j

j+1Y

l=2

(2i+1 � 2l)

!
. (45)

If the uµ,j are all positive, then each ai(µ) is positive
because the product

Qj+1
l=2 (2i+1 � 2l) is composed of either

all positive terms if i > j or contains a zero term if i  j. The
function D(j, ⌫) is used to represent the coefficient of 2⌫i in
the expansion of

Qj+1
l=2 (2i+1 � 2l) and is given by

D(j, ⌫) = (�1)j�⌫2⌫
✓
j

⌫

◆

2

· 2( 1
2 (j�⌫)2+ 3

2 (j�⌫))
. (46)

Using (46) with (44) gives an equation relating the uµ,j with
factors of 2⌫i. Because this equation must hold for all i, the
coefficients of 2⌫i must equate for any ⌫. Using this procedure,
the following equation may be obtained expressing uµ,⌫ in
terms of the uµ,⌫+1, uµ,⌫+2, . . ., uµ,µ�2:

uµ,⌫=(�1)µ�⌫
✓
µ�2

⌫

◆
�

µ�2X

j=⌫+1

✓
uµ,j(�1)j�⌫

✓
j

⌫

◆

2

2
1
2 (j�⌫)(j�⌫+1)

◆
.

(47)
The recursive equation (47) is solved by

uµ,⌫ =
µ�2X

i=⌫

✓
(�1)µ�i

✓
µ� 2

i

◆
2i
✓
i

⌫

◆

2

◆
. (48)

The uµ,⌫ defined in (48) also have the property that

uµ,⌫ = uµ�1,⌫�1 + (2⌫+1 � 1)uµ�1,⌫ , (49)

which implies that if uµ,⌫ > 0 for all 0  ⌫  µ � 2, then
uµ+1,⌫ > 0 for all 0  ⌫  µ � 1. It is easy to verify that
u2,0 = 1 > 0 produces the sequence ai(2) = 1 which solves
(44), so by induction, uµ,⌫ > 0 for every µ � 2, 0  ⌫  µ�2,
which implies that every ai(µ) > 0, and the second derivative
of L(µ) is always positive for µ � 2.
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