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Abstract—In this paper, we consider the equivocation of finite
blocklength coset codes when used over binary erasure wiretap
channels. We make use of the equivocation matrix in comparing
codes that are suitable for scenarios with noisy channels for both
the intended receiver and an eavesdropper. Equivocation matrices
have been studied in the past only for the binary erasure wiretap
channel model with a noiseless channel for the intended recipient.
In that case, an exact relationship between the elements of
equivocation matrices for a code and its dual code was identified.
The majority of work on coset codes for wiretap channels only
addresses the noise-free main channel case, and extensions to
noisy main channels require multi-edge type codes. In this paper,
we supply a more insightful proof for the noiseless main channel
case, and identify a new dual relationship that applies when two-
edge type coset codes are used for the noisy main channel case.
The end result is that the elements of the equivocation matrix for
a dual code are known precisely from the equivocation matrix
of the original code according to fixed reordering patterns. Such
relationships allow one to study the equivocation of codes and
their duals in tandem, which simplifies the search for best and/or
good finite blocklength codes. This paper is the first work that
succinctly links the equivocation/error correction capabilities of
dual codes for two-edge type coset coding over erasure-prone
main channels.

I. INTRODUCTION

Since the development of the wiretap channel model in the
1970’s by Wyner [1], cosets of linear block codes have been
known to provide a convenient structure for implementing
physical-layer security coding. Many types of secrecy codes
have been discovered for an array of wiretap channel variants,
and most of them are built from structures similar to the coset
coding approach [2]–[4]. Parameters of linear block codes,
such as generalized Hamming weights [5], were shown to
be capable of predicting a coset code’s ability to achieve
secure communication, particularly over the wiretap channel of
type II [6], and rank properties of generators and parity-check
matrices were later shown to quantify the security precisely
over the original wiretap channel model with binary erasure
channels [7]–[10].

Although many wiretap codes have been designed to achieve
information theoretic security in the asymptotic blocklength
regime (e.g., [2], [11]), there has been some recent interest in
optimal coset coding structures with fixed code size parame-
ters [12], [13]. Consider the wiretap channel model in Fig. 1.
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Fig. 1. Wiretap channel model.

Here we see a user named Alice trying to communicate a
secret message M to a user named Bob in the presence of
an eavesdropper named Eve. The message M is encoded to
produce a length-n binary codeword Xn, which is received by
Bob through the main channel as Y n and decoded to form an
estimate of the message M̂ . Eve also receives the transmission
through the wiretap channel as Zn. The goal of the encoder
function is to satisfy the following two constraints:

• Pr(M 6= M̂) < δr, (a reliability constraint for Bob),
• I(M ;Zn) = H(M) − H(M |Zn) < δs, (a security

constraint for Eve),

where δr and δs can be set to any desired level. The equivo-
cation

E = H(M |Zn), (1)

is considered the most fundamental information theoretic
quantification of secrecy [1] (which is often presented in terms
of the leakage I(M ;Zn) [14]). In order to identify the best
finite blocklength codes for binary erasure wiretap channel
models, the equivocation has been recently linked to properties
of the code’s generator matrix in [7], [9] for the noiseless main
channel case, and in [8], [10] for the binary erasure main
channel case.

In [13], the equivocation matrix was first used as a con-
venient tool with which to study finite blocklength wiretap
codes based on coset coding, and additional properties of these
matrices were later identified in [15]. The equivocation matrix
outlines explicitly the exact equivocation for all possible
revealed-bit patterns to a receiver when the code is fixed,
and hence allows one to calculate the average equivocation
in (1), or the worst-case equivocation given a fixed number of
revealed bits to an eavesdropper, as for the wiretap channel of
type II. Comparison of small wiretap codes is easily made with
equivocation matrices, and this tool allows one to efficiently
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search for properties of best codes of a fixed size when code
properties can be linked to properties of entries in the matrix.

Some of the more interesting properties of these matrices
to date are those that link the equivocation matrices of codes
with those of their dual codes for the noiseless main channel
variant of the binary erasure wiretap channel [13]. This paper
augments that result with a simplified and more insightful
proof, and then highlights a new dual relationship for two-edge
type coset codes, suitable for error correction/secrecy coding
over the wiretap channel model with binary erasure channels
for both the main and wiretap channels. The results prove that
the dual code equivocation matrix, and hence the dual code’s
equivocation, is fixed and known with reference only to the
equivocation matrix of the original code.

The remainder of the paper is organized as follows. Sec-
tion II provides details regarding the communication model,
and sets up the definitions and notation for the paper. The dual
relationships for the noiseless main channel and the noisy main
channel cases are then stated with proof in Section III. Finally
examples are given in Section IV and the paper is concluded
in Section V.

II. PROBLEM SETUP

In this section, we first establish basic notation for the paper.
Capital letters denote random variables (including random
vectors) and matrices, calligraphic letters represent alphabets
for their associated random variables, lower case letters denote
realizations of random variables, and superscripts indicate the
length of vectors. All vectors are row vectors, and all codes
are binary. By J1, βK, we mean the set of consecutive integers
from 1 to β, where β ≥ 1. The set Rn is comprised of all
subsets of J1, nK, and is used to represent all possible revealed-
bit patterns over n transmitted bits. To be clear, J1, nK\r will
be used to indicate the indices of the erased bits over a binary
erasure channel, while the set r contains the indices of those
bits that are not erased (i.e., revealed). Note that the backslash
in J1, nK\r indicates the set difference operation, and is often
read delete. We indicate erasures in received signals yn and
zn with the symbol ‘?’ when they occur. Finally, sets used as
subscripts on matrices indicate submatrices that include only
the columns indexed in the set, i.e., Hr is the submatrix of H
comprised of only the columns with indices in the set r.

A. Channel Models

The channel models assumed in this paper are variants of
the basic wiretap channel model of Fig. 1. The messages to
be encoded by Alice are chosen uniformly from the alphabet
M = Fk2 , the set of all possible binary vectors of length k.
The encoder function is such that Xn ⊂ Fn2 . The wiretapper’s
channel is always a binary erasure channel (BEC) with erasure
probability εw ∈ [0, 1], so that Zn = {0, 1, ?}n. The main
channel is also a BEC with erasure probability εm ∈ [0, 1]
meaning Yn = Zn. When we deal with the noiseless main
channel case, then εm = 0 and Y n = Xn. When we consider
the noisy main channel case, then εm ∈ (0, 1]. All erasure
channels erase bits independently.

B. General Coset Coding

We adopt a general framework for the encoding operation,
where k message bits are always encoded into codewords of
blocklength n making the coding rate R = k/n. The encoder
can use the n− k bits of coding overhead to aid in reliability
or secrecy as desired. The number of overhead bits assigned
to reliability is α, while the number of overhead bits assigned
to secrecy is l, and

n = k + α+ l. (2)

Notice that traditional error-control codes have l = 0, while
binary coset codes for the noiseless main channel case set
α = 0. The more interesting set of codes that can both correct
errors and keep secrets have both l and α greater than zero.

The basic structure for codes that can both correct errors
and keep secrets was first outlined in [2], and later used
in [16], [17] for secrecy codes based on two-edge type
low-density parity-check (LDPC) codes. Matrix dimensions
in these previous works were identified using the rates of
codes and subcodes, mainly since the codes were analyzed
asymptotically in the blocklength. Since we consider fixed
(and even small) codes in this paper, we are free to adopt
a more straightforward notation using k, α, and l as defined
above. Let C be an (n, l) linear block code with l×n generator
matrix G and (n− l)×n parity-check matrix H . Then define
the (n− α)× n matrix

G∗ =

[
G′

G

]
, (3)

where G′ is a k × n matrix comprised of rows from Fn2 such
that G∗ has full row rank. The parity-check matrix for C is
comprised of two pieces so that

H =

[
H∗

H ′′

]
, (4)

where H∗ is α × n and forms a basis for the dual space of
the rowspace of G∗. The submatrix H ′′ has dimensions k×n.
Note that GHT = 0 and G∗(H∗)T = 0 as indicated by the
definitions above. Alice’s encoder function then calculates a
codeword according to the expression

xn =
[
m m′

]
G∗ =

[
m m′

] [G′
G

]
(5)

= mG′ ⊕m′G, (6)

where m′ is an l-bit auxiliary message chosen uniformly from
Fl2. Thus, mG′ chooses the coset of C, and m′G chooses the
specific codeword from that coset uniformly at random.

Such a code is often called a two-edge type code since
a basic message-passing decoder using H is comprised of
edges corresponding to both H∗ and H ′′. This basic structure
is portrayed in Fig. 2, where the edges in the Tanner graph
correspond to parity-check equations from either H∗ or H ′′

as labeled. Bob’s decoder is then comprised of two steps.
First, the decoder attempts to recover as many erased bits
as possible, perhaps using message passing over the parity
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Fig. 2. Tanner graph for decoding two-edge type secrecy codes over a BEC.
Circles and squares represent variable nodes and check nodes, respectively.
The dotted lines correspond to error correction, and solid lines correspond to
parity-check equations that form the mapping from codeword to syndrome.

checks defined by only H∗ [18]. The output of this result is
X̂n, an estimate of the transmitted codeword Xn. Assuming
full recovery of the codeword, the decoder then calculates the
syndrome

s = xn(H ′′)T = mG′(H ′′)T ⊕m′G(H ′′)T (7)

= mG′(H ′′)T , (8)

since H ′′ is part of H and GHT = 0. Notice that G′(H ′′)T

forms a bijective mapping between m and s. In [9], [10], it
was shown that G′ and H ′′ can be chosen so that G′(H ′′)T is
the k × k identity, and therefore, s = m for ease in decoding
at Bob.

To better show how the two-edge type decoder works,
consider the following, where xn is any codeword. Let us
calculate

xnHT =
[
m m′

] [G′
G

] [
(H∗)T (H ′′)T

]
, (9)

=
[
mG′(H∗)T mG′(H ′′)T

]
⊕[

m′G(H∗)T m′G(H ′′)T
]
, (10)

=
[
0α mG′(H ′′)T

]
=
[
0α s

]
, (11)

where 0α is a 1× α row vector of zeros. Notice now that xn

is a codeword if and only if xn(H∗)T = 0α (i.e., H∗ is for
error correction), and H ′′ allows the bijective mapping back
to the message (i.e., H ′′ allows one to identify the coset of
the codeword).

C. Equivocation Matrices

In [10], it was shown that

H(M |Zn = zn) = H(M)− rankG∗r(zn) + rankGr(zn)

= k − rankG∗r(zn) + rankGr(zn), (12)

where r(zn) = {i|zi 6= ?}. Notice that the value of the
revealed bits (either ones or zeros) in zn is not important when
calculating the exact equivocation at the eavesdropper since the
expression is only a function of the pattern of revealed bits.

This allows us to simplify the equivocation expression in (1)
to

E = H(M |Zn) =
∑
r∈Rn

p(r){H(M |r)}

=
n∑
µ=0

(1− εw)µεn−µw︸ ︷︷ ︸
p(r)

∑
r∈Rn:|r|=µ

k − rankG∗r + rankGr︸ ︷︷ ︸
H(M |r)

.

(13)

This means that we only need to know the number of patterns
of size µ that maintain e bits of equivocation for µ ∈ J0, nK
and e ∈ J0, kK to calculate (1).

An equivocation matrix [13], [15] is a (k + 1) × (n + 1)
matrix A, where the (e, µ)th entry of the matrix ae,µ is equal
to the number of revealed-bit patterns of size µ that maintain
e bits of equivocation for µ ∈ J0, nK and e ∈ J0, kK. We start
indexing at (0, 0) in the bottom left corner to maintain the
structural similarities between the matrix and H(M |Zn) as a
function of µ.

III. DUAL RELATIONSHIPS FOR EQUIVOCATION MATRICES

The purpose of this paper is to identify links between
equivocation matrices for codes and their dual codes, and
thereby establish relationships between the equivocation (1)
for the two codes. The definition of a dual code, however,
is different for the α = 0 case (for designing codes when
the main channel is noiseless) and the α > 0 case (for
designing codes that allow Bob to correct erasures). For all
cases considered in the paper, we assume l > 0, meaning
we always dedicate at least one bit of overhead for causing
confusion at the eavesdropper.

A. Noiseless Main Channel Case

For the noiseless main channel case, let us examine the
code construction in Section II-B and point out some sim-
plifications. For this case, α = 0 since Y n = Xn, and the
entire overhead in the code can be assigned to secrecy, i.e.,
l = n− k. Thus, G∗ is n× n, H∗ is empty, and the first step
in the decoder (i.e., correcting errors) is not needed at Bob’s
receiver. Notice that (12) reduces to

H(M |r) = k − |r|+ rankGr, (14)

since G∗ must have full column rank [10].
For this case, let C be an (n, n− k) linear block code with

parity check matrix H and generator matrix G. Also consider
the (n, k) dual code of C and call it C⊥ with generator matrix
H and parity-check matrix G. Let ae,µ denote the number
of revealed-bit patterns with µ revealed bits leading to an
equivocation of e bits when coset coding with C. Also let a⊥e,µ
denote the number of revealed-bit patterns with µ revealed bits
leading to an equivocation of e bits when coset coding with
C⊥ (i.e., when G takes the role of H , H takes the role of G,
and the n × n generator for the dual code is constructed by
adding rows to H to form a full-rank n × n matrix). Notice
that when the dual code is used, the coding rate is (n− k)/n.
The entire coding overhead is used for secrecy in both cases,
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meaning k bits for the dual code and (n − k) bits for the
original code.

The following lemma is partially from [13] and establishes
the dual relationship for this case. We improve the lemma
here with an additional statement, and provide a cleaner, more
insightful proof.

Lemma 1. When coset coding with C,

rankGr = rankHJ1,nK\r − k + |r| (15)

for all r ∈ Rn, and therefore, ae,µ = a⊥e+µ−k,n−µ.

Proof. Let us consider the equivocation with respect to H ,
and point out that

ŝ = znHT = xnr (Hr)
T ⊕ znJ1,nK\r(HJ1,nK\r)

T , (16)

since the revealed bits across a binary erasure channel are guar-
anteed to be without error. The vector znJ1,nK\r is comprised
of n − |r| ‘?’ symbols, and the number of unique solutions
possible for ŝ is 2rankHJ1,nK\r . Thus,

H(M |r) = rankHJ1,nK\r. (17)

Combining (17) with (14) establishes (15). It is now straight-
forward to apply (15) to the case when C⊥ is used for coset
coding to show that for every r ∈ Rn that gives equivocation
e with |r| = µ when coding with C, there exists a unique
pattern of size n−µ, namely J1, nK\r, that gives equivocation
e+ µ− k when coding with C⊥.

B. Binary Erasure Main Channel Case

When the main channel is assumed to be an erasure channel,
we require the full construction outlined in Section II-B with
no simplifications. Let C denote the (n, l) binary linear block
code with generator G and parity-check matrix H as outlined
above. We also require a specific choice of G′ to fully define
G∗, and a decomposition of H into H∗ and H ′′.

In this case, it becomes trickier to define a dual code since
the performance of the code relies on the choice of G′ as well
as G. We require H∗ to be orthogonal to both G and G′, but
H ′′ only to be orthogonal to G. In this case, we can find a
valid construction if we define the dual code to be the code
formed by letting G and H∗ interchange roles, and G′ and
H ′′ interchange roles. The original code has a coding rate of
k/n, with α bits of overhead assigned to error control and l
bits of overhead assigned to securing the message. The dual
code with this construction also has a coding rate of k/n, but
with l bits of overhead assigned to error control and α bits of
overhead assigned to security.

Once again, let ae,µ denote the number of revealed-bit
patterns with µ revealed bits leading to an equivocation of
e bits when coset coding with the original code, and let a⊥e,µ
denote the number of revealed-bit patterns with µ revealed bits
leading to an equivocation of e bits when coset coding with
the dual code. In this case, a new dual relationship exists as
outlined in the following lemma.

Lemma 2. When coset coding with the original code con-
struction, then

k−rankG∗r+rankGr = rankHJ1,nK\r−rankH∗J1,nK\r (18)

for all r ∈ Rn, and therefore, ae,µ = a⊥k−e,n−µ.

Proof. Once again, let us consider the equivocation with
respect to H , and point out that

znHT = xnr (Hr)
T ⊕ znJ1,nK\r(HJ1,nK\r)

T , (19)

= xnr
[
(H∗r )

T (H ′′r )
T
]

⊕ znJ1,nK\r

[
(H∗J1,nK\r)

T (H ′′J1,nK\r)
T
]

(20)

=
[
0α ŝ

]
, (21)

where ŝ is an estimate of the syndrome. Let

a = xnr (H
∗
r )
T (22)

b = xnr (H
′′
r )
T . (23)

Then,

znJ1,nK\r

[
(H∗J1,nK\r)

T (H ′′J1,nK\r)
T
]
=
[
−a ŝ− b

]
, (24)

for fixed a and b. The vector znJ1,nK\r is comprised of n− |r|
‘?’ symbols, and the number of unique solutions possible
for ŝ is 2rankHJ1,nK\r−rankH∗J1,nK\r , since the total number
of solutions without the error-control constraints would be
2rankHJ1,nK\r , but the error-control constraints reduce the
exponent by rankH∗J1,nK\r. Thus,

H(M |r) = rankHJ1,nK\r − rankH∗J1,nK\r. (25)

Combining (25) and (12) establishes (18). It is now straight-
forward to apply (18) to the case when the dual code is used
for coset coding to show that for every r ∈ Rn that gives
equivocation e with |r| = µ when coding with the original
code, there exists a unique pattern of size n − µ, namely
J1, nK\r, that gives equivocation k − e when coding with the
dual code.

IV. EXAMPLES AND DISCUSSION

The lemmas can be better understood with reference to a
set of examples. In particular, examples make the structural
relationships of the equivocation matrices between codes and
their duals more clear.

A. Example for Noiseless Main Channel Case

Let us consider coset coding for the noiseless main channel
case with n = 7, k = 3, and l = 4. We set

G =


1 0 0 0 0 0 1
0 1 0 0 0 0 1
0 0 1 0 0 1 0
0 0 0 1 1 1 0

 , (26)

with

H =

0 0 0 1 1 0 0
0 0 1 1 0 1 0
1 1 0 0 0 0 1

 . (27)
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Fig. 3. (a) Equivocation matrices for a code and its dual for the noiseless main channel case with dual relation specified in Lemma 1 outlined. (b) Equivocation
matrices for a code and its dual for the binary erasure main channel case with dual relation specified in Lemma 2 outlined.

Here G′ can be any 3 × 7 binary matrix such that G∗ is
full rank. The equivocation matrix for this code is given as
A in Fig. 3(a). When considering the dual code, G and H
interchange roles, and the full rank generator is formed by
adding any 4× 7 binary matrix to H such that the collection
of rows makes a full-rank generator. The dual case has n = 7,
k = 4, and l = 3, and the equivocation matrix for the dual
case is given as A⊥ in Fig. 3(a). The dual relation specified
in Lemma 1 is clearly highlighted in the figure in two ways.

B. Example for Erasure Main Channel Case

For the binary erasure main channel case, consider

G∗ =

[
G′

G

]
=


1 0 1 1 1 0 0
0 0 1 0 0 1 0
0 0 0 1 0 1 1
1 0 0 0 0 1 1
0 1 0 1 1 0 0

 , (28)

and

H =

[
H∗

H ′′

]
=


1 0 1 1 1 1 0
1 1 0 1 0 0 1
0 0 1 0 0 0 0
0 1 0 1 0 0 0
1 0 0 0 0 1 0

 , (29)

to define the original code. This code has n = 7, k = 3, l = 2,
and α = 2. Recall that we form the dual code by letting G
and H∗ interchange roles, and G′ and H ′′ interchange roles.
In this case, all interchanging matrices have the same size, so
the dual case also has n = 7, k = 3, l = 2, and α = 2.
The equivocation matrices for both the original code and the
dual code are given in Fig. 3(b), and the dual relation from
Lemma 2 is highlighted in the figure in two different ways.

C. Discussion

Note that the lemmas in this paper allow one to simplify
the search for good or even best codes. For example, if one
finds a code that optimizes the structure of each column of
the equivocation matrix A, then the optimal structure of A⊥

is guaranteed by Lemma 1. The result of Lemma 2 is a bit
more subtle. Here, the dual code is a code that exchanges the

number of error correcting bits and number of secrecy bits.
Thus, if C is good for secrecy, then C⊥ is good for reliability.
The relationships between A and A⊥ allow one to infer these
tradeoffs precisely after analyzing only one of the two codes.

V. CONCLUSION

In this paper, we presented relationships between equivo-
cation matrices of finite block length wiretap codes and their
duals for two cases: the binary erasure wiretap channel with a
noiseless main channel, and the binary erasure wiretap channel
with a binary erasure main channel. The result indicates that
knowledge of the equivocation matrix for one code gives exact
knowledge of the equivocation matrix for the other code.
The dual relations allow one to study codes and their duals
simultaneously using the equivocation matrix approach. This
is particularly useful in the search for best and/or good finite
blocklength codes, since the discovery of a best code for fixed
size parameters implies that the dual code is also best for
its size parameters for the noiseless main channel case, and
a specific link between secrecy and error correction is made
between the two-edge type codes used when the main channel
is prone to erasures. This marks the first work on dual relations
for multi-edge type wiretap codes.
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