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The metabolome of Mexican cavefish
shows a convergent signature
highlighting sugar, antioxidant, and
Ageing-Related metabolites
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Abstract Insights from organisms, which have evolved natural strategies for promoting
survivability under extreme environmental pressures, may help guide future research into

novel approaches for enhancing human longevity. The cave-adapted Mexican tetra, Astyanax
mexicanus, has attracted interest as a model system for metabolic resilience, a term we use to
denote the property of maintaining health and longevity under conditions that would be highly
deleterious in other organisms (Figure 1). Cave-dwelling populations of Mexican tetra exhibit
elevated blood glucose, insulin resistance and hypertrophic visceral adipocytes compared to
surface-dwelling counterparts. However, cavefish appear to avoid pathologies typically associ-
ated with these conditions, such as accumulation of advanced-glycation-end-products (AGEs)
and chronic tissue inflammation. The metabolic strategies underlying the resilience properties

*For correspondence:
medjk@comcast.net (JKM);
nro@stowers.org (NR)

These authors contributed
equally to this work

Present address: ‘fNewman of A. mexicanus cavefish, and how they relate to environmental challenges of the cave environ-
University, Wichita, United ment, are poorly understood. Here, we provide an untargeted metabolomics study of long- and
States; SUniversity of Miinster, short-term fasting in two A. mexicanus cave populations and one surface population. We find

Minster, Germany that, although the metabolome of cavefish bears many similarities with pathological conditions

Competing interest: The authors ~ Such as metabolic syndrome, cavefish also exhibit features not commonly associated with a
declare that no competing pathological condition, and in some cases considered indicative of an overall robust metabolic
interests exist. condition. These include a reduction in cholesteryl esters and intermediates of protein glycation,
and an increase in antioxidants and metabolites associated with hypoxia and longevity. This work
suggests that certain metabolic features associated with human pathologies are either not intrin-
sically harmful, or can be counteracted by reciprocal adaptations. We provide a transparent pipe-
line for reproducing our analysis and a Shiny app for other researchers to explore and visualize
our dataset.

Funding: See page 21

Preprinted: 28 October 2020
Received: 08 October 2021
Accepted: 27 April 2022
Published: 15 June 2022

Reviewing Editor: Dario
Riccardo Valenzano, Leibniz

. ' .
Institute on Aging, Germany Editor's evaluation

Medley et al., study A. mexicanus, an extreme-adapted organism with important connections to
human health. The authors test metabolic responses in this natural model of elevated blood glucose
and extensive body fat deposits, conditions generally expected to predispose to a higher risk for
Commons Attribution License, metabolic syndrome and higher frailty. The work is rigorous and will provide an important refer-
which permits unrestricted use ence for future studies aimed at dissecting the mechanistic basis underlying metabolic shifts in this
and redistribution provided that ~ Uniquely attractive model. The authors also provide an open and accessible window into their data
the original author and source and analyses by sharing a Shiny app.

are credited.

© Copyright Medley, Persons
et al. This article is distributed
under the terms of the Creative

Medley, Persons et al. eLife 2022;0:e74539. DOI: https://doi.org/10.7554/eLife.74539 10f 25


https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.74539
mailto:medjk@comcast.net
mailto:nro@stowers.org
https://doi.org/10.1101/2020.10.27.358077
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

e Llfe Research article

Biochemistry and Chemical Biology | Evolutionary Biology

Introduction

Metabolism plays a central role in many cellular processes, and its dysregulation is a hallmark of many
disease states, including cancer, obesity, and diabetes. Recent work (Cirulli et al., 2019) has shown
that certain health effects, particularly cardiovascular disease, can be predicted from metabolic signa-
tures prior to clinical manifestations. This suggests that metabolic dysregulation has causal influence
over the disease state of an organism, and conversely disease may be preventable via metabolic
intervention (Rubino et al., 2016).

An evolutionary system with particularly extreme changes in metabolic regulation is the Mexican
tetra, Astyanax mexicanus, which has undergone considerable physiological and behavioral changes
to colonize a number of subterranean caves in the Sierra de El Abra region of Mexico. Cavefish have
evolved a suite of metabolic phenotypes to cope with the cave environment, including lower meta-
bolic rate, increased appetite, fat storage, and starvation resistance (Aspiras et al., 2015; Hiippop,
1986, Xiong et al., 2018). Cavefish are also insulin resistant, hyperglycemic, and exhibit increased
caloric intake (Riddle et al., 2018), a feature often associated with decreased longevity. A notable
genomic feature in Pachén and Tinaja cavefish is a mutation in the insulin receptor (Riddle et al., 2018)
that, in humans, is linked to Rabson-Mendenhall (RM) syndrome, a form of severe insulin resistance
that causes many developmental abnormalities and typically progresses to ketoacidosis (Longo et al.,
1999). Nevertheless, cavefish do not appear to suffer any of the adverse effects of RM, lack advanced
glycation end products (AGEs) (Riddle et al., 2018) normally associated with hyperglycemia, and live
long, healthy lives without ill-effects of metabolic disease (Riddle et al., 2018). A. mexicanus may
provide natural solutions to overcome the challenges associated with adverse metabolic conditions
(Krishnan and Rohner, 2019).

From an evolutionary standpoint, survival in the cave environment requires resistance to long
periods of nutrient deprivation. This, in turn, leads to storage of excess energy in fat and glycerol,
which are themselves potentially harmful to the host organism. We hypothesize that survival in the cave
environment thus requires multiple, counterbalancing evolutionary changes and that the combined
effect of these changes is to make cavefish resilient to a variety of metabolic conditions, of which
starvation and triglyceride / sugar accumulation are discrete examples.

We thus sought to characterize the metabolic signature of resilience by examining the metabolome
of Pachdn and Tinaja cavefish (two recently derived cave populations) compared to surface-dwelling
populations using untargeted mass spectrometry (MS) of primary metabolites and lipids. We charac-
terized the response of energetically important tissues (the liver, muscle, and brain) of each population
in short/long-term fasted, and fed conditions. We demonstrate that metabolite profiles in Pachdn
and Tinaja cavefish are more similar to each other than surface fish in each feeding state / tissue
combination, highlighting the role of parallel evolution in shaping the metabolome of cavefish. We
identify metabolic signatures and metabolites exhibiting the most pronounced regulatory changes
within each tissue, population, and feeding state. We constructed inter-population and inter-feeding
state comparisons and fit separate statistical models to each case (Figure 7—figure supplement 1).
Cavefish exhibit many similarities with metabolic syndrome, but also differ from these conditions in
terms of antioxidants, metabolites associated with cellular respiration / the electron transport chain,
and unexpectedly reduced levels of cholesteryl esters.

Our results lay the groundwork to explore the mechanistic roles of metabolites and pathways in the
nutrient availability-related adaptations of cavefish and suggest that natural evolutionary systems may
offer insights into metabolic function by showing how disease states can be altered or counterbal-
anced under a genetic background more suited to a different set of parameters governing metabolic
state.

In order to aid others in reproducing our analysis, we have provided a pipeline to reproduce all
major figures and results on this paper that are derived from our metabolomics dataset at https://www.
stowers.org/research/publications/libpb-1699 (ftp://odr.stowers.org/LIBPB-1699). We also provide a
shiny app at https://cavefin.shinyapps.io/shiny to allow others to explore and visualize our dataset.

Our experimental design aimed to (a) characterize the response of the A. mexicanus metabolome
to different feeding states in energetically expensive tissues and (b) utilize comparisons across popu-
lations and feeding states to identify metabolites conserved in cavefish populations. Food scarcity is
one of the cave's harshest evolutionary pressures. Cavefish have specialized feeding strategies and
fat metabolism that helps them thrive in the cave environment (Jeffery, 2020, Aspiras et al., 2015;
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Figure 1. Metabolic resilience — survivability under a variety of extreme conditions. Certain populations of cavefish have adaptations that cause
increased appetite (Aspiras et al., 2015) and increased fat accumulation (Xiong et al., 2018) (in cases where nutrients are plentiful, such as in lab-
raised populations). These same populations also exhibit robust health and longevity (Riddle et al., 2018; Xiong et al., 2018) and do not suffer
ill-effects due to high levels of visceral fat and hyperglycemia, both of which are features of most cave populations. However, visceral fat accumulation
in cave populations is highly dependent on nutrient availability and is not displayed in wild-caught specimens (Krishnan et al., 2020). Thus, cavefish
paradoxically appear to tolerate both extremely low and extremely high levels of triglycerides, glucose, and other energy storage metabolites. We
argue that these differences can be reconciled under a hypothesis whereby the cave environment selects not for resistance to nutrient deprivation
per se, but rather resilience to a variety of nutrient availability states (such as seasonal floods). Survival under such challenging conditions ostensibly
favors the ability to tolerate extreme metabolic states, including not only starvation but also high levels of potentially deleterious metabolites such as
triglycerides and reactive oxygen species (ROS). We find evidence for elevated antioxidant levels and altered cholesterol / cholesteryl ester homeostasis
in cavefish, suggesting that cavefish may use these mechanisms to offset potentially harmful metabolites and tolerate a broad range of metabolic

conditions.

Hiippop, 1986; Xiong et al., 2018). We raised age-matched offspring of Surface (river) fish, and
Pachdn and Tinaja cavefish morphs originating from two independent cave colonizations. To under-
stand how the cavefish metabolome adapts to ecologically relevant food challenges, we separated
Surface, Pachén and Tinaja populations into three different groups at 4 months: 30 day fasted, 4 day
fasted, and “Refed” (fed at 3 hr prior to collection after 4 days without food) (Figures 1 and 2). We
also show RNA-Seq validation (Figure 6—figure supplement 1, Figure 6—figure supplement 2,
Supplementary file 1-table s2) of the main themes observed from the metabolomic data.
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Figure 2. Experimental setup for each tissue and metabolite category. Pachén, Tinaja, and surface A. mexicanus
fry were raised for 4 months and then separated evenly into fasted (30-day) and non-fasted groups. At 4 days

prior to collection, non—fasted fish were again divided into two groups (6 fish each) and either fasted for the

remaining 4 days (first group) or fasted for 4 days and refed 3 hr prior to collection (second group). Thus, six fish
were obtained for each of the following conditions: 30-day fasting, 4-day fasting, and 4-day fasting followed by

re—feeding.

Results

Our untargeted metabolomics study yielded a total of 174 identified metabolites linked to KEGG
(Kanehisa and Goto, 2000) / HMDB (Wishart et al., 2018) IDS and 483 identified lipids linked to
LIPIDMAPS IDS. We examined the effect of normalizing identified peak values by the total sum of
peaks (MTIC) and by sample weight (Fig supplement 2) and found that mTIC is more robust to varia-
tions in sample weight. Hence, we employed mTIC-normalized data for the remainder of the analysis.
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Figure 3. Global trends in lipid and primary metabolite data. To visualize overall patterns in the metabolome of different experimental groups, we
performed principal component analysis (PCA) first on all lipids and primary metabolites (A,B), then on individual categories thereof (C,D). Samples tend
to cluster primarily by tissue of origin, in line with studies from mammals (Ma et al., 2015). Shading is by population (B) or feeding state (C). Categorical
breakdown of primary metabolites (C) and lipids (D) reveals that cavefish tend to cluster closer to one another than to surface. (E) Legend for C and D.

Figure 3A/B shows that metabolites cluster primarily by tissue, in line with previous studies in
mammals (Ma et al., 2015). Figure 3C/D shows how clustering patterns depend strongly on the chem-
ical classification of identified metabolites. Some lipid and primary metabolite categories show a clear
separation between different populations (e.g. carbohydrates, Figure 3C, and glycerophospholipids,
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Figure 4. Extreme alterations to sugar metabolites in cave vs surface populations. To show differences in cavefish sugar metabolism, we selected

5- and 6-carbon sugars, sugar phosphates, and uronic acids (oxidized forms of sugars that form building blocks of proteoglycans). The row axis shows
metabolites within each of these classes, and the column axis shows different populations (short range, labels at bottom), feeding states (medium-
range, labels at top) and tissues (long-range, labels at topmost point). Color indicates the mTIC-normalized peak intensity for the average of six
biological replicates. Red indicates the maximum value for a given row (i.e. across all populations, tissues, and feeding states), whereas navy blue (the
bottom of the color bar) corresponds to a peak intensity of zero, not to the minimum value. Thus, dark cells correspond to very little / zero intensity,
as opposed to simply corresponding to the minimum intensity within the row. Given that mTIC intensities are ‘semi—quantitative’, red values thus

correspond to the most abundant group for a given metabolite, and navy blue corresponds to lack of abundance.

Figure 3D, across most tissues), whereas other categories have a less pronounced change (amino
acids in the brain, Figure 3C, and fatty acyls in most tissues). In order to quantify separation of feeding
states as a function of population and metabolite category, we used a supervised machine learning
method based on orthogonal projection of latent structures (O-PLS, Figure 7—figure supplement 3).
We then used O-PLS to remove ‘orthogonal’ variation (Trygg and Wold, 2002) from each metabolite
category and fit a Bayesian logistic regression model to the de-noised data (Supplemental Methods).

In general, the metabolome of all three populations shows a large degree of similarity within a
given tissue (Figure 7—figure supplement 4), highlighting the influence of evolutionarily conserved

functions of individual tissues.

Sugar phosphate metabolism

Given the overall similarity at the tissue level for most classes of metabolites (Figure 7—figure supple-
ment 4), phenotypic differences are likely to be linked to a relatively small subset of the metabolome.
We sought to identify metabolites that could be responsible for the drastic change in phenotype of
cave populations. Sugars and sugar phosphates are important energy metabolites and hence candi-
dates for adaptations related to resistance to nutrient deprivation. This class of metabolites displays
a dramatic change during short- and long-term fasting, particularly in the liver (Figure 4). Transcrip-
tomics data from multiple studies by our group also displays an overall trend toward upregulation of

sugar metabolism in cavefish (Figure 6—figure supplement 1).

Hepatic glucose production is derived from gluconeogenesis and glycogenolysis, the latter relying
on stored glycogen, which is quickly exhausted during fasting (Han et al., 2016), indicating that
hepatic gluconeogenesis likely plays a role in sustaining survival under long-term nutrient deprivation
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in A. mexicanus. Surprisingly, surface fish also show stable (albeit generally lower) sugar levels in the
liver under different feeding states (Figure 4), indicating that sugar production in the liver may be
driven by overall demand rather than supply. This may point to a shift from oxidative to sugar-based
metabolism as an energy source in energetically expensive tissues. Cavefish possess a larger amount
of body fat (Xiong et al., 2018; Aspiras et al., 2015), and hence have a larger pool of glycerol
to serve as a substrate for gluconeogenesis. We find that both cave populations exhibit decreased
levels of glycerol in the 30-day fasted state, particularly in Tinaja (Supplementary file 1), indicating
increased consumption of this intermediate as a substrate for gluconeogenesis may be the source of
increased sugar / sugar phosphate abundance in cave populations.

Regardless of the substrates leading to sugar metabolite accumulation, it is clear that a large
difference exists between cave and surface populations within this class of metabolites. However, the
specifics of this alteration to sugar metabolism appear to be population-specific, with Tinaja showing
a large increase in sugar phosphates and Pachdn showing an increase in unphosphorylated sugars
respectively in short/long-term fasted states in comparison to surface (Figure 4).

Other tissues show a mixed response, with muscle displaying increased levels of most sugar phos-
phates in Pachdn but decreased levels of fructose-1-phosphate in both cave populations with respect
to surface. The brain displays low levels of sugar / sugar phosphate metabolites overall but possesses
increased sugar metabolite abundance in cave populations for certain metabolites and feeding states
(Supplementary file 1).

While the levels of most simple sugars and sugar phosphates are increased in cavefish with respect
to surface, the levels of gluconic acid and glucoronic acid show the opposite pattern (Figure 4).
Gluconic acid and glucoronic acid belong to uronic acids, a class of sugar acids that are major building
blocks of proteoglycans. It has previously been observed that A. mexicanus cave morphs lack advanced
glycation end products (Riddle et al., 2018), which are a defining feature of diabetes and are normally
associated with chronic hyperglycemia in humans. Altered metabolism of sugar acids in cavefish may
play a role in inhibiting excessive protein glycation and the adverse health effects thereof.

Ascorbate

A highly unexpected and unexplained feature of our analysis is the abundance of vitamin C, particu-
larly in its oxidized form dehydroascorbic acid (DHAA), across all tissues in cave populations (Figure 5).
Ascorbic acid (AA), the reduced, active form, is also more prevalent in muscle tissue. DHAA can
be recycled back to AA using reducing cofactors such as NADH and NADPH, which can in turn be
regenerated from the pentose phosphate pathway and TCA cycle using simple sugars (which cavefish
possess in great abundance). For this reason, vitamin C content in food labeling is usually reported
as the sum of AA and DHAA (Wilson, 2002). Thus, cavefish possess a larger total ‘pool’ of vitamin C
(including interconvertible oxidized and reduced forms, Figure 5).

Many cavefish populations exhibit increased appetite and carry an allele of the melanocortin 4
receptor that predisposes them to hyperphagia (Aspiras et al., 2015). The increased appetite could
cause cavefish to consume more overall food, which could be responsible for the AA/DHAA increase
in the refed state. However, this does not pertain to the 30-day fasted state, where AA/DHAA levels
are also elevated across all tissues. There is widespread consensus that teleosts, like humans, lack
the ability to produce AA endogenously due to the absence of gulonolactone oxidase, which cata-
lyzes the final step in AA biosynthesis (Ching et al., 2015). In humans, this enzyme is a pseudogene,
whereas in teleosts the gene is absent entirely, thought to be lost in the distant evolutionary past.
Thus, the additional AA/DHAA supply likely comes from selective reuptake in the kidney, a process
that also occurs in humans to conserve AA/DHAA, or it may be produced by commensal microbiota
in cavefish. Trace amounts of AA/DHAA in the feed used in the aquatics facility used to house the
fish in this experiment may recirculate throughout the water filtration system and be redistributed to
all tanks, including those housing fish in the fasted groups. Nevertheless, it remains that even in the
case of circulating trace amounts of AA/DHAA, cavefish appear to exhibit selective retainment of AA/
DHAA in larger quantities.

The advantages of AA conservation in adaptation to an environment where prolonged starvation is
common are self-evident. AA is involved in collagen formation, and its deficiency leads major loss of
integrity of connective tissue. Thus, the ability to retain what little ascorbate is present in underground
cave environments would confer an enormous survival advantage to fish.
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Figure 5. The cave and surface fish metabolome highlights differences in antioxidant availability and oxidative metabolism. To analyze changes in

redox metabolism in cave populations, we compared the abundance of potent antioxidants and redox-linked metabolites. Metabolites are plotted

as mTIC-normalized peak intensities (A,B,C, error bars indicate 2.5/97.5 percentiles). Asterisks indicate significance at the 0.05 level according to an
O-PLS / Bayesian logistic regression (Methods) for Pachén vs surface, Tinaja vs surface, and Pachén vs Tinaja. (A) Ascorbate (vitamin C) is a potent
antioxidant and essential nutrient. Vitamin C exists as the reduced form ascorbic acid (AA) and oxidized form dehydroascorbic acid (DHAA), which

can interconverted by cellular processes. (B) Glutathione, another antioxidant, is significantly increased in the liver and brain under 30-day fasting.
Alpha-ketoglutarate is a tricarboxylic acid cycle (TCA) intermediate that has been linked to longevity in nematodes and mice (Chin et al., 2014; Asadi
Shahmirzadi et al., 2020). (C) Nicotinamide is a precursor to NAD+ synthesis via a salvage pathway, and increased in the liver but decreased in other

tissues in cavefish. Orotic acid is a metabolite that causes fatty liver disease in rats when added to a chow diet.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Metabolome analysis heatmaps.

Figure supplement 2. Metabolome analysis heatmaps.

Another factor that could influence the AA/DHAA ratio is the effect of insulin resistance and hyper-
glycemia on the GLUT family of transporters, particularly GLUT4 in adipose/muscle tissue (Wilson,
2002; Huang and Czech, 2007). DHAA competes with glucose for transport across the membrane by
GLUT4, whereas AA is taken up by Na* transporters. GLUT4 activity is dependent on membrane trans-
location and this process is dysregulated in diabetes (Jaldin-Fincati et al., 2017). This combination of
elevated blood sugar and insulin resistance suggests that GLUT4 could be less active in cavefish and
cause DHAA to accumulate in the extracellular space. AA/DHAA have also been reported to influence
C-reactive protein levels (Ford et al., 2003) and protein glycation (Franke et al., 2013), prompting
further investigation into A. mexicanus as a model of diabetes-related resilience. Finally, Pachén cave-
fish possess a reduction in neutrophils, one cell type which are normally involved in the uptake of AA
and reduction to DHAA, compared to surface (PeuB3 et al., 2020).
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Adaptation to hypoxic conditions

Energy metabolism in most organisms can be viewed as a balance between oxidative processes
(cellular respiration via oxidative phosphorylation and the electron transport chain) and sugar metab-
olism, and the relative contributions of these two processes can have important physiological conse-
quences, as in the well-known Warburg effect in cancer. A. mexicanus cave morphs have considerably
upregulated sugar metabolism (Figure 4), and also display decreased levels of several products of
oxidative metabolism. One important metabolite in this category that displays differences in cave
populations is a-ketoglutarate (a-KG), which has increased abundance in the liver in all feeding states
and in the brain in certain feeding states in both cave populations. a-KG supplementation has been
linked to lifespan extension in C. elegans (Chin et al., 2014) and mice (Asadi Shahmirzadi et al.,
2020). Furthermore, uronic acids, the oxidative products of simple sugars, are significantly reduced
in the liver of both cave populations (Figure 4, Supplementary file 1), suggesting that cave fish
are characterized by decreased reliance on oxidative metabolism and increased reliance on sugar
metabolism.

Obesity and inflammation-related metabolites

Chronic inflammation of adipose tissue is a common feature of obesity and can often lead to insulin
resistance and eventually type 2 diabetes (Paschoal et al., 2020). Cave populations of A. mexicanus
have been previously reported to exhibit pronounced insulin resistance (Riddle et al., 2018), but do
not accumulate advanced glycation end products and do not appear to have diminished longevity.

In order to compare the metabolome of A. mexicanus cave populations to the known metabolic
signatures of obesity (Cirulli et al., 2019), we calculated changes in lipid categories (the coarsest
abstraction used in LipidMaps), classes (a more detailed partitioning scheme used in LipidMaps), and,
within free fatty acids specifically, the degree of saturation. The metabolome displays a remarkable
overlap with the proinflammatory signature associated with obesity that, in humans, leads to insulin
resistance. This signature consists of Aspiras et al., 2015 the elevation of saturated fatty acids (SFAs)
in muscle in most feeding states, which have a direct and pronounced proinflammatory effect in
mammals through the recruitment of macrophages (Glass and Olefsky, 2012), although the impor-
tance of fatty acid release in insulin resistance is disputed (Morigny et al., 2019; Karpe et al., 2011,
Xiong et al., 2018) abundance of ceramides in muscle in all feeding states, which are known direct
mediators of insulin signaling (Glass and Olefsky, 2012). Indeed, the only feeding state for which
skeletal muscle did not display increased SFA abundance was 30-day fasting, which could simply indi-
cate the exhaustion of free SFA pools. Additionally, palmitate, a precursor of ceramide biosynthesis
(Glass and Olefsky, 2012), is elevated in muscle in all feeding states. Sphingoid bases are significantly
more abundant in muscle in all feeding states, suggesting generally upregulated sphingolipid biosyn-
thesis in cave populations.

In contrast to proinflammatory metabolites, omega-3 fatty acids (w -3 FAs) such as DHA and EPA
have protective effects against inflammation (Paschoal et al., 2020; Glass and Olefsky, 2012; Oh
et al., 2010). These molecules bind to the GRP120 receptor on macrophages and adipocytes, and the
activated receptor then modulates the activity of PPARy and ERK (Paschoal et al., 2020, Oh et al.,
2010). »-3 FAs are less abundant in the liver under 4-day fasting and are generally not upregulated
in most feeding states and tissues. Thus, -3 FAs do not appear to offset for the proinflammatory
signature of cavefish SFA and ceramide signatures, suggesting that cavefish possess an alternate
compensatory mechanism to prevent chronic tissue inflammation. Overall, cavefish appear to exhibit
many metabolic similarities with obesity and health conditions associated with it.

However, this is not a universal trend. Cirulli et al. report a strong association between urate
levels and BMI, likely due to insulin resistance interfering with uric acid secretion in the kidney Cirulli
et al., 2019. In contrast, cavefish appear to have significantly reduced levels of uric acid in muscle,
and in other tissues levels are comparable with surface except for a small but significant increase in
Pachén liver during fasted states. Mannose, which is associated with obesity and insulin resistance
(Cirulli et al., 2019), was abundant in the Pachén liver in all feeding states, but was reduced in Tinaja
compared to surface fish.

Finally, cholesteryl esters and cholesterol in some feeding states (Table Supplementary file 1), were
less abundant in cave populations. Using a previously published gene expression dataset (Krishnan
et al., 2022), we investigated factors that might influence levels of cholesteryl esters. Cholesteryl
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Figure 6. Parallel evolution in cavefish exhibits profound alteration of cholesterol / cholesteryl ester metabolism.
Cavefish possess a significant reduction in certain long-chain fatty acid cholesteryl esters (A-C) and cholesterol
itself (D), particular in peripheral tissues (muscle). Values on the y-axis are mTIC-normalized peak intensities

for each lipid species. Asterisks indicate significance at the 0.05 level according to an O-PLS / Bayesian logistic
regression (Methods) for Pachén vs surface, Tinaja vs surface, and Pachén vs Tinaja.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Metabolic themes of A. mexicanus cave adaptation revealed by three independent RNA-
Seq experiments.

Figure supplement 2. Profile of sugar / energy metabolism-related gene expression.

ester transfer protein (CETP), which transports cholesterol in / out of lipoproteins, is downregulated
in both Pachén and Tinaja compared to surface fish (Figure 7—figure supplement 5), suggesting
a potential causal relationship between lower cholesteryl ester levels in cave populations and this
important carrier protein. A human variant of CETP associated with decreased serum levels of the
protein and larger low-density lipoprotein (LDL) and high-density lipoprotein (HDL) particle sizes has
been linked to exceptional longevity (Barzilai et al., 2003). The LDL / HDL cholesterol ratio, mediated
in part by CETP (Christison et al., 1995), is a major contributor to risk of atherosclerosis and coronary
heart disease (Brousseau et al., 2004). The reliance on triglycerides as an energy source in cavefish
may increase the risk of arterial disease by providing an abundance of free fatty acids and other lipids.
Cholesteryl esters, in particular, are formed from esterification of a fatty acid and cholesterol, are a
major constituent of foam cells in atherosclerotic lesions (Ghosh et al., 2010; Yu et al., 2013), and, for
certain lipid species, show a large difference in abundance between cavefish and surface (Figure 6).
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Inhibition of CETP has been shown to reduce cardiovascular risk, ostensibly by altering the parti-
tioning of cholesteryl esters between LDL and HDL (Barter and Rye, 2012). Indeed, lipid homeostasis
in zebrafish exhibits strong similarities with human (Fang et al., 2014), and zebrafish express CETP
whereas other model organisms such as mice do not. This raises the question of whether CETP and
its cholesteryl ester substrates may be a locus under selection in cavefish to offset the risks associated
with increased visceral fat.

Large differences in CETP expression suggest that lipid homeostasis may be regulated differently
between cave and surface populations. Lipoproteins, in the form of HDL, IDL, LDL, VLDL, and chylo-
microns contribute to and regulate lipid homeostasis.

In summary, lipid metabolism in A. mexicanus represents a hub of evolutionary activity which
clearly separates surface and cave populations. Cavefish must balance increased demands on energy
storage with counter-adaptations to protect against pro-inflammatory and atherogenic metabolites.
We observe elevated levels of most energy metabolites, with the notable exception of cholesterol
and cholesteryl esters, and cavefish have a larger (V)LDL/HDL ratio as compared to surface fish. LDL
and VLDL have higher triglyceride content as compared to HDL (Cox and Garcia-Palmieri, 2011) and
VLDL is a substrate for lipoprotein lipase (Freeman and Walford, 2016), which liberates free fatty
acids from triglycerides. LDL/VLDL may thus be important for energy metabolism in cavefish, and
hence selective pressure may contribute to the higher (V)LDL/HDL ratio in this population.

Resistance to nutrient deprivation

In order to determine the basis of cavefish adaptation to low-nutrient environments, we sought a
statistical test that would be sensitive to metabolites that change significantly between refed and
short/long-term fasted states and insensitive to metabolites that remain relatively stable across
feeding states. We further hypothesized that certain metabolites may have an important role in cave
adaptation. Pachén and Tinaja represent independently derived populations, and we reasoned that a
test for parallel adaptation should be selective for metabolites that show the same differential feeding
state response pattern across cave populations (e.g. differentially increased in both Pachén and Tinaja
fasted states relative to surface). In order to construct this test, we fitted a Bayesian GLM (Gelman
et al., 2008) to a linear combination (P + T)/2 — S of O-PLS-filtered z-score values (see Materials and
methods), where P stands for Pachdn, T stands for Tinaja, and S stands for surface. We used this test
to identify metabolites that might have a role in the fasting response of cavefish, that is metabolites
that are differentially abundant in cave populations in the fasted versus refed state (Pachén and Tinaja
are assigned equal weight), and generally show the opposite pattern in surface. Figure 7 shows the
results of this test for 30-day fasting vs. refeeding (A, which corresponds to the most extreme experi-
mental groups), and the two other possible comparisons between feeding states (B/C).

Sugar metabolites do not appear to exhibit a strong differential feeding state response. However,
long-chain fatty acids such as palmitate and stearate (Figure 7C) do show differential abundance
between long- and short-term fasting, suggesting that cavefish may rely on increased usage of fat
stores in long-term fasting. Furthermore, analysis of the 30-day fasting response in cavefish liver high-
lights orotic acid (OA, Figure 7A), an intermediate in pyrimidine synthesis that has been implicated
in fatty liver condition (Standerfer and Handler, 1955). OA is suppressed in all feeding states in cave
populations, but exhibits a sharp spike in refed surface fish (Figure 5).

Starvation has detrimental effects on an organism in many ways. One detrimental effect is the
depletion of antioxidant substances and the resulting oxidative stress through increasing levels of
reactive oxygen species (ROS) (Furne and Sanz, 2017). Studies that focus on the impact of food
deprivation on oxidative stress in fish show that prolonged starvation decreases the capacity of fish to
ameliorate oxidative stress (Furne and Sanz, 2017). Glutathione is a major antioxidant that detoxifies
ROS and thereby prevents cellular damage from oxidative stress (Pompella et al., 2003). Cavefish
face prolonged periods of nutrient deprivation in their natural environment (Aspiras et al., 2015).
Adaptation to the cave environment may have led to changes in glutathione metabolism in cavefish
to protect against oxidative stress under prolonged fasting. Indeed, in an earlier study we were able
to demonstrate that cavefish show an increased expression of genes that are involved in the metab-
olism of glutathione, which is indicative of an increased stress level compared to surface fish in their
natural habitat (Krishnan et al., 2020).Here, we can confirm that these trends in gene expression are
accompanied by elevation of reduced glutathione in the liver and brain (Figure 5, Supplementary
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Figure 7. Parallel adaptive metabolic signature in response to food deprivation in cave populations. To identify metabolites linked to adaptations
promoting survival in a nutrient-limited environment shared between cave populations, we fit an O-PLS / GLM statistical model to the response to
fasting, that is the difference between 30-day fasting and refeeding for Pachén, Tinaja, and surface populations. Specifically, we fitted a Bayesian GLM
(see Methods) to the linear combination (P + T)/2 — S, with P, T, and S referring to the normalized z-scores for each Pachén, Tinaja, and surface
sample respectively. Coloring in the figure indicates metabolites increased (red) or decreased (blue) in both cave populations in 30-day fasting (i.e.
‘up’ refers to metabolites that are increased in Pachén and Tinaja in the 30-day fasted state with respect to surface), and color intensity corresponds to
logio p-value, with lighter colors indicating less significant p-values and darker colors indicating more significance. The most significant 20 differentially
abundant metabolites (regardless of direction) in each tissue for both cave populations with respect to surface are displayed. An asterisk (*) indicates
significance at the 0.05 level.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Schematic depiction of comparisons used for fitting GLM parameters.

Figure supplement 2. Effect of normalization scheme on peak intensity distribution.

Figure supplement 3. Classifier performance shows which categories of primary metabolites are most salient in the starvation response.

Figure supplement 4. Relative composition for primary metabolites and lipid classes shows metabolome profile for different tissues, populations, and
feeding states.

Figure supplement 5. CETP, but not HMG-CoA reductase homologs, show identical or reduced expression in surface fish.

file 1). We did not observe a significant increase of glutathione in the surface fish in the fasted states
(Figure 5, Supplementary file 1).

Guided by these observations, we further attempted to characterize the role of altered antioxi-
dant and cholesterol metabolism in cavefish. In particular, we hypothesized that cavefish resilience to
widely varying nutrient levels is driven by a robust antioxidant system that prevents the accumulation
of ROS under conditions of stress (e.g. induced by fasting).

To test this hypothesis, we examined ROS state in the liver under a subset of our original fasting
experiment using similarly aged fish. ROS accumulation has been shown to cause lethal levels of
cell damage in flies, but such damage can be prevented via oral administration of antioxidants or
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Figure 8. ROS levels in refed / fasted liver via DHE staining. Pachén cavefish and surface fish were fasted for 30 days and livers were removed and
stained with dihydroethidium (DHE), a blue-fluorescent dye that fluoresces red when oxidized and serves as an indicator of the presence of superoxide
radicals. While we did not detect a significant difference in baseline staining in fish refed after 4 days of fasting, cytoplasmic ROS in Pachén was
significantly (Kruskal-Wallis test) decreased in Pachén with respect to surface as measured by DHE staining (A). Nuclear differences were not detected
among any groups (B). (C-F): Arbitrarily selected images of DHE (left) and DAPI (right) staining for Pachén with 4-day fasting followed by refeeding

(C), surface with 4-day fasting followed by refeeding (D), Pachén with 30-day fasting (E), and surface with 30-day fasting (F). All images are available at
https://www.stowers.org/research/publications/libpb-1699.

over-expression of antioxidant-producing enzymes (Vaccaro et al., 2020). This caused us to ask
whether naturally elevated antioxidant levels in cavefish might protect against starvation-induced ROS
accumulation. We reasoned that the most extreme changes are observed between 30-fasted and
4-day fasted +refed groups, and that given the similarity in Pachon and Tinaja antioxidant profiles,
one cave population would be sufficient for validation. We thus repeated the fasting experiment using
only 30-day fasted and 4-day fasted +refed groups, and using only Pachén and surface populations.
Using dihydroethidium (DHE) staining, we examined different populations and feeding states for
ROS level. While liver sections of fasted / refed fish did not show differences in cytoplasmic / nuclear
localization of DHE (Figure 8B-E), a quantitative analysis showed that, under 30-day fasting, juvenile
Pachon cavefish exhibit lower levels of ROS in cytoplasm as compared to surface under the same
conditions (Figure 8A), supporting the hypothesis that elevated antioxidants in cavefish may have a
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protective effect by neutralizing active ROS and may have arisen as an adaptation allowing cavefish
to tolerate ROS produced by long periods of nutrient deprivation. We did not observe significant
differences in DHE nuclear intensity for either the cytoplasm or the nucleus, suggesting that 30 days
of fasting may not be sufficient to produce salient differences in the nucleus for juvenile fish. The
known resilience properties of antioxidants may also help explain the metabolic resilience of cavefish
by providing a buffer against different forms of stress.

Cavefish thus exhibit decreased ROS abundance in the liver in 30-day fasted conditions, which
correlates with the trend we observed in glutathione. Analysis of three separate transcriptomic exper-
iments conducted by our group also points to important changes in key genes, such as glutathione
S-transferase, being consistently upregulated in cavefish (Figure 6—figure supplement 1, Supple-
mentary file 1-Table S2). Combined with the findings presented here, this suggests that response
oxidative stress is indeed an important factor in cavefish physiology.

Antioxidant levels in cavefish may have evolved as a strategy to allow cavefish to tolerate variation
in nutrient availability, as a means of controlling inflammation caused by deleterious energy metabo-
lites, as a way of inhibiting atherogenesis, or several of these effects.

Discussion

A. mexicanus has been advanced as a model of resilience under ostensibly pathological conditions
including hyperglycemia, diabetes (Krishnan and Rohner, 2019), and insulin resistance (Riddle
et al., 2018). Here, we have provided a large, untargeted study of the metabolome of A. mexicanus
surface fish and two cave populations in order to investigate the molecular underpinnings of these
adaptations.

We were particularly interested in the role of metabolism in cave adaptation of the two A. mexi-
canus cavefish populations in this study: Pachén and Tinaja. This suggests that parallel adaptation to
cave environments requires satisfying certain common metabolic needs that are an inherent part of the
niche. The obvious candidate for this evolutionary conflux is adaptation to a low-nutrient environment.
However, metabolic strategies for survival in such environments are not currently well-understood. We
found that drastic alterations in energy metabolism, together with shifts in mediators of redox metab-
olism and ascorbate, an essential vitamin which is lacking in the cave environment, constitute a major
feature of cave adaptation in these populations.

Cavefish appear to have substantially altered sugar metabolism, and exhibit higher levels of sugars
and sugar phosphates. However, the opposite trend occurs for uronic acids, which are the oxidized
forms of simple reducing sugars and can be formed enzymatically or non-enzymatically. This incongru-
ency can be resolved by noting the overall trend to decreased reliance on oxidative metabolism (and
enzymes that catalyze oxidative processes) and increased reliance on sugar metabolism. This trend
stems from sugars and sugar phosphates, antioxidants such as ascorbate and glutathione, and a-KG
(which has been shown to inhibit the electron transport chain in C. elegans). Due to drastic fluctuation
in oxygen level in the subterranean niche, cavefish may rely on a shift from oxidative to predominantly
sugar-derived energy metabolism, as compared to their surface-dwelling cousins. Reduction in uronic
acids, which are derived from sugars using oxidative processes, can thus be seen as part of this trend.
However, the specific reduction of uronic acids in particular may have an additional survival benefit
for cavefish by inhibiting protein glycation and thus preventing accumulation of advanced glycation
end products. Further investigation is required to fully understand the evolutionary and physiological
implications of these metabolic changes.

Further work is required to establish the extent of hypoxic conditions in A. mexicanus evolution.
However, we also find that certain redox-related metabolites, including a-KG, glutathione, and ascor-
bate, all exhibit distinctive abundance patterns in cavefish. These patterns may be in response to
hypoxia, poor nutrient conditions, differences in metabolic rate, or some other aspect of the cave
niche.

Our data indicate that upregulation of glucose and long-chain fatty acid production is a common
feature shared by Pachén and Tinaja cave populations, suggesting that certain cave habitats do require
considerable changes in energy metabolism. Pachén and Tinaja likely have a greater reliance on fat
stores for locomotion, as evidenced by increased SFA content in muscle in fasting and refeeding.
The decrease of w-3 FAs during fasting (Supplementary file 1) coupled with the increase of palmi-
tate (Supplementary file 1) in long- vs short-term fasting suggests that cavefish metabolism may be
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preferentially biased toward storing caloric intake as energy-rich saturated fatty acids. Whether cave-
fish possess adaptations to counteract the deleterious effects of high body fat, such as suppression of
orotic acid (a metabolite implicated in steatosis in the liver), requires further investigation.

In summary, A. mexicanus troglomorphic populations share many metabolic similarities with known
pathological conditions such as obesity, but also display important differences which may help to
explain their resistance to negative effects of these pathologies. We also found important differences
in ascorbate, which is known to serve diverse physiological roles, nicotinamide, which is a precursor to
NAD? synthesis and hence is related to oxidative metabolism, a-ketoglutarate, which has been impli-
cated in longevity in C. elegans (Chin et al., 2014). We have shown via ROS staining that Pachon cave-
fish do possess lower levels of superoxide radicals in the liver after 30 days of fasting. This confirms
that increased antioxide levels in cavefish do indeed correlate with physiological state, and suggests
that selection in cave environments favors resistance to oxidative stress. Whether selective pressure is
driven chiefly by starvation resistance, or whether it is a mechanism to offset oxidized LDL and other
harmful metabolites is an open question.

A. mexicanus cave populations clearly exhibit altered lipoprotein composition and expression of
CETP, an important component of lipid homeostasis. Together with increased abundance of antioxi-
dants, this may contribute to the ability of cavefish to withstand high triglyceride levels.

Finally, in order to make our data and methods maximally available to other researchers, we
have implemented a transparent pipeline that can be used to regenerate all main figures and tables
presented here. We have also used the structured data library ObjTables (Karr et al., 2020) to provide
machine-readable, semantically accurate representations of the results presented here.

This study provides a large, untargeted metabolomics and lipidomics study of A. mexicanus surface
and cave morphs. However, there are limitations to our approach. Our analysis was based on juvenile,
pre-sexually mature fish. We chose this developmental time point under the hypothesis that evolu-
tionary changes in metabolism would tend to act early to respond to the selective pressure of the cave
environment and positive juvenile fish for robust starvation resistance. However, an age of 5 months
does not necessarily coincide with seasonally-correlated food shortages, and hence manifestations of
starvation adaptations may not occur until a later developmental stage. We also did not examine a
fasting duration of greater than 1 month, despite the potential for longer periods of nutrient depriva-
tion in cave environments.

Conclusion

Our goals for this study were (Aspiras et al., 2015) to provide a comprehensive untargeted study of
primary metabolites and lipids in A. mexicanus, an extreme-adapted organism with important connec-
tions to metabolic disease, (Xiong et al., 2018) examine the molecular basis for low-nutrient adap-
tation in cave-dwelling subpopulations, and (Riddle et al., 2018) identify metabolic changes that
might explain A. mexicanus longevity in the face of a phenotype with properties linked to metabolic
syndrome.

Our findings show that the adaptation to a low nutrient environment in A. mexicanus is linked to
extreme changes in sugar and fat metabolism, and that increased reliance on these energy sources in
the liver provides for the needs of the organism during nutrient availability fluctuations.

All in all, our results highlight the role of A. mexicanus as an evolutionary example of extreme
metabolism and suggest important roles for certain metabolites in fish and other species.

Materials and methods

Experimental model and subject details

Surface morphs of Astyanax mexicanus were reared from offspring of Mexican surface fish collected in
the Rio Choy. Pachén and Tinaja morphs were reared from fish originating from the Pachén and Tinaja
caves. A total of 18 fish from each population were used in experiments. Sex was not determined due
to difficulties in determining sex in juvenile A. mexicanus fish. This study was approved by the Institu-
tional Animal Care and Use Committee (IACUC) of the Stowers Institute for Medical Research under
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protocol 2019-084. Animals were euthanized according to an IACUC-approved euthanasia protocols
based on American Veterinary Medical Association (AVMA) guidelines using Tricaine mesylate. The
method currently in use has been updated to reflect 2020 AVMA guidelines and uses 30 min of oper-
cular movement cessation unless a secondary method is employed.

Method details
Fish husbandry

All Astyanax are housed in glass fish tanks on recirculating aquaculture racks (Pentair, Apopka, FL)
with a 14:10 LD photoperiod. Each rack system is equipped with mechanical, chemical, and biolog-
ical filtration and UV disinfection. Water quality parameters are monitored and maintained daily as
described in previous studies (Xiong et al., 2018; PeuB3 et al., 2020). Fish were fed once per day
with mysis shrimp and twice per day with Gemma diet. Gemma feed is Protein 59%; Lipids 14%,; Fiber
0.2%; Ash 14%; Phosphorus 1.3%; Calcium 1.5%; Sodium 0.7%; Vitamin A 23,000 1U/kg; Vitamin
D3 2,800 1U/kg; Vitamin C 1000 mg/kg; Vitamin E 400 mg/kg. Health examinations of all fish were
conducted by aquatics staff twice daily. Astyanax colonies are screened biannually for ectoparasites
and endoparasites and no pathogens were present at the time of this study. Fish treatment and care
was approved by the Institutional Animal Care and Use Committee (IACUC) of the Stowers Institute
for Medical Research. NR's institutional authorization for use of Astyanax mexicanus in research is
2019-084.

Feeding regimen and tissue collection

Age-matched offspring of Surface, Pachén, and Tinaja populations were reared in similar densities at
23 °Cin 14:10LD cycles as described previously. Fish were the result of a group mating event within
populations. Fish were housed only with members of their population for their entire lives. At 4 months
(Tinaja), 4 months and 1 day (Pachén), 4 months and 2 days (Surface), fish of each population were
separated into two tanks. 12 fish were separated and starved for 30 days until tissue collection. The
12 fish were maintained on regular feeding schedules until 4 days prior to tissue collection when food
was withheld from each population’s regular feeding tank. The mass (g) and length (cm) of each fish
was recorded at separation. All efforts were made to equalize mass and length distributions in each
cohort. On the evening before tissue collection, 6 fish from the 4-day starved tank were separated
and placed into three, 3L-tanks. Tanks were divided down the middle such that all 6 fish (2 in each
tank) were housed individually. Singly housed fish were refed for 3 hr with 10 mg of Gemma 500 on
the morning of the dissection day for each population. Dissection occurred at 5 months (October 5th,
2019; Tinaja), 5 months and 1 day (October 6th, 2019; Pachdn), 5 months and 2 days (October 7th,
2019; Surface). Fish were re-fed in intervals between 8:30am and 12:00pm. At each 3 hr time point,
a re-fed fish, a 4-day starved fish, and a 30-day starved fish was euthanized in MS-222. To reduce
variability between populations dissected on subsequent days, all dissections took place between
11:30-3pm and were handled identically. Prior to dissection, the final mass and length were recorded
for each fish. The liver, muscle, and brain were dissected and placed in 1.5 mL plastic tubes. Tissues
were flash frozen on liquid nitrogen, transferred to dry ice and stored at =80 °C. Samples were shipped
to West Coast Metabolomics Center on dry ice overnight for analysis.

Sample preparation

Samples were prepared using the Matyash protocol (Matyash et al., 2008). This procedure allows
efficient extraction of lipids in a non-polar methyl tert-butyl ether (MTBE) layer, and extraction of
primary metabolites in the polar water/methanol layer (Fiehn, 2016; Cajka and Fiehn, 2014). From
each sample, 4.1 mg of frozen liver or brain tissue (+/-0.3 mg) or 10.1 mg of muscle tissues (+/-0.3 mg)
was weighed and placed into 1.5 mL Eppendorf tubes. Samples were ground prior to extraction using
beads with a Spex Sample Prep GenoGrinder with stainless steel 2-3 mm beads for 30 s. 975 pL of ice
cold, 3:10 (v/v) MeOH/MTBE +QC mix/CE (22:1) extraction solvent was added to each homogenized
sample. Samples were vortexed for 10 s and shaken for 5 min at 4 °C. A total of 188 pL room tempera-
ture LC/MS water was added and samples vortexed for 20 s, then centrifuged for 2 min at 14,000 rcf.
The upper organic phase was transferred to two separate tubes (350 pL each) for lipidomics (CSH)
analysis. The bottom aqueous phase was transferred to two additional tubes (110 pL each) for primary
metabolism (GC-TOF) analysis. One tube from each phase was reserved as a backup, the other tube
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was dried down completely using centrivap. Both were kept at —20 °C until ready for analysis. As an
additional step prior to GC-TOF analysis, samples were resuspended in 500 pL of degassed, -20°C
mixture of acetonitrile (ACN): isopropanol (IPA): water (H20) (3:3:2, v/v/v). Samples were vortexed for
10 s and then centrifuged at 14,000 rcf for 2 min. A total of 450 pL of supernatant was transferred to
a new tube and concentrated to complete dryness using a Labconco Centruvap cold concentrator.

Primary metabolite data acquisition

Metabolite abundances were quantified by gas-chromatography, time-of-flight mass spectrometry
(GC-TOF/MS) using previously established methods (Fiehn et al., 2008). Briefly, an Agilent 6,890 gas
chromatograph (Santa Clara, CA) equipped with a Gerstel automatic linear exchange systems (ALEX)
which included a multipurpose sample dual rail and a Gerstel cold injection system (CIS) was used
with a Leco Pagasus IV time-of-flight mass spectrometer running Leco ChromaTOF software. The
injection temperature was ramped from 50 °C to a final temperature of 275 °C at a rate of 12 °C/s and
held for 3 min. Injection volume was 0.5 pl with 10 pl/s injection speed on a splitless injector with a
purge time of 25 s. The liner (Gerstel # 011711-010-00) was changed automatically every 10 samples
to reduce sample carryover. The injection syringe was washed three times with 10 pL ethyl acetate
before and after each injection. For gas chromatography, a Rtx-5Sil MS column (30 m long, 0.25 mm
i.d.) with 0.25 pm 95% dimethyl 5% diphenyl polysiloxane film was used (Restek, Bellefonte PA). The
GC column was equipped with an additional 10 m integrated guard column. 99.9999% pure Helium
with a built-in purifier was set at a flow rate of 1 mL/min. The oven temperature was held constant at
50 °C for 1 min, ramped at 20 °C/minute to 330 °C, and then held constant for 5 min. The transfer
line temperature between gas chromatograph and mass spectrometer was set to 280 °C. The mass
spectra were acquired at a rate of 17 spectra/second, with a scan mass range of 80-500 Da at an
ionization energy of =70 eV, 1800 V detector voltage, and 250 °C ion source.

Primary metabolite data processing

Raw GC-TOF MS data files were preprocessed using ChromaTOF version 4.0 without smoothing, a
3 s peak width, baseline subtraction just above the noise level, and automatic mass spectral decon-
volution and peak detection at signal/noise (s/n) levels of 5:1 throughout the chromatogram. Results
were exported with absolute spectra intensities and further processed by a filtering algorithm imple-
mented in the metabolomics BinBase database (Skogerson et al., 2011). The BinBase algorithm
(rtx5) used the following settings: validity of chromatogram (107 counts/s), unbiased retention index
marker detection (MS similarity >800, validity of intensity range for high m/z marker ions), retention
index calculation by 5th order polynomial regression. Spectra were cut to 5% base peak abundance
and matched to database entries from most to least abundant spectra using the following matching
filters: retention index window 2000 units (equivalent to about +2 s retention time), validation of
unique ions and apex masses (unique ion must be included in apexing masses and present at >3% of
base peak abundance), mass spectrum similarity must fit criteria dependent on peak purity and signal/
noise ratios and a final isomer filter. Failed spectra were automatically entered as new database entries
if signal/noise ratios were larger than 25 and mass spectral purity better than 80%. Data was reported
as peak height using the unique quantification ion at the specific retention index, unless a different
quantification ion was manually set in the BinBase administration software BinView.

Lipid data acquisition

Lipid abundances were determined by charged-surface hybrid column-electrospray ionization quad-
rupole time-of-flight tandem mass spectrometry (CSH-ESI QTOF MS/MS). For positively charged
lipids, an Agilent 6,530 QTOF mass spectrometer with resolution 10,000 was used and for nega-
tively charged lipids, an Agilent 6,550 QTOF mass spectrometer with resolution 20,000 was used.
Electrospray ionization was used to ionize column elutants in both positive and negative modes.
Compounds were separated using a Waters Acquity ultra-high-pressure, liquid-chromatography
charged surface hybrid column (UPLC CSH) C18 (100 mm length x2.1 mm internal diameter;
1.7 um particles). The conditions in positive mode were as follows: mobile phase A (60:40) acetoni-
trile:water +10 mM ammonium formiate +0.1% formic acid, mobile phase B (90:10) isopropanol:ace-
tonitrile +10 mM ammonium formiate +0.1% formic acid. The conditions in negative mode were as
follows: mobile phase A (60:40) acetonitrile:water +10 mM ammonium acetate, mobile phase B (90:10
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isopropanol:acetonitrile +10 mM ammonium acetate). 5 pL of each brain, liver, and muscle sample was
injected in negative mode. 0.5 plL of each brain and liver, and 0.25 pL of muscle samples was injected
in positive mode. In both modes, the column temperature was 65 °C, at a flow rate of 0.6 mL/min, an
injection temperature of 4 °C, and a gradient of 0 min 15%, 0-2 min 30%, 2-2.5 min 48%, 2.5-11 min
82%, 11-11.5 min 99%, 11.5-12 min 99%, 12-12.1 min 15%, and 12.1-15 min 15%. The ESI capillary
voltage was set to +3.5 and -3.5 kV, and the collision energy to 25 for positive and negative modes.
Mass-to-charge ratios (m/z) were scanned from 60 to 1200 Da and spectra acquired every 2 s. Auto-
matic valve switching was used after each injection to reduce sample carryover for highly lipophilic
compounds.

Lipid data processing

Raw lipidomic data were processed using MS-DIAL Tsugawa et al., 2015 followed by blank subtrac-
tions in Microsoft Excel and data cleanup using MS-FLO (DeFelice et al., 2017). Briefly, data were
converted to files using Abf Converter. All default parameters were used for processing of MS-DIAL
data, except for minimum peak height and width which were adjusted to the instrument. Results are
exported from MS-DIAL and a blank reduction is performed for all features which are found in at least
one sample. Blank reduction takes the maximum peak height relative to the blank average height and
the average of all non-zero peak heights for samples. Duplicates and isotopes are examined using
MS-FLO and deleted if confirmed. Peaks were annotated by manually comparing the MS/MS spectra
and the accurate masses of precursor ions to spectra in the Fiehn laboratory LipidBlast spectral library
(Kind et al., 2013). Additional peaks are manually curated from sample chromatograms. Manually
curation was confirmed by using MassHunter Quant software to verify peak candidates based on
peak shape and height reproducibility, and retention time reproducibility in replicate samples. The
data were reported as peak heights for the specific quantification ion at the specific retention time.

Quantification and statistical analysis

0.1.1 weight change and K-factor calculations
Percent weight change for each fish was calculated using formula 1. Mass and length measurements
were recorded at the beginning and end of feeding regimens.

AWH%) = (Mfinal — Minitial)/Mfinal ¥ 100, M

where m is mass. K-factor is a metric that represents both the mass and length of individuals and is
frequently used in aquaculture research to assess an animal’s physical condition (Imam et al., 2010).
K-factor for each fish was calculated at the beginning of feeding regimens (app. 4 months) and on the
day of dissection (30 days later) using the formula (c) below. Percent K-factor change was calculated
using formula (d).

K = (m/x*) x 100, @2
where x is the standard length.
AK(%) = (Kfinal — Kinitia)/Kfina1 X 100 M)

Data was first analyzed for normality using four independent methods: D’Agostino-Pearson,
Shapiro-Wilk, Kolmogorov-Smirnov, Anderson-Darling. When comparing between more than two
groups, data that passed three of four normality tests were analyzed using One-way ANOVA with
Tukey correction for multiple comparisons between all groups. Data which failed more than one
normality test, was analyzed with Kruskal-Wallis test using Dunn’s for multiple comparison correction.
The tests used in each figure are reported in the figure legends. p-values less than 0.05 are reported
and the level of significance is indicated using the * system (ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***,
p < 0.001; *** p < 0.0001).

Further data processing

Processed primary metabolite data were vector normalized using mTIC. First, the sum of all peak
heights for all identified metabolites, excluding the unknowns, for each sample was calculated. Such
peak sums are called ‘mTIC’ and represent the sum of genuine metabolites (identified compounds) in
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each sample. This method avoids unidentified peaks that could represent potentially non-biological
artifacts such as column bleed, contaminants, or routine machine maintenance. mTIC averages for
each sample were compared to determine if the variance between samples was significantly different
(p<0.05). Samples were then normalized to the average mTIC ‘mTICaverage’ within populations
(Surface, Pachén, or Tinaja) and within organs (brain, muscle, or liver). For example, each biological
replicate of the Tinaja brain group was normalized to the average mTIC of all Tinaja brain replicates
regardless of feeding state. The equation (a) below was then used to normalize each metabolite (i)
of a sample (j). After normalization, data are reported as ‘relative semi-quantifications’ or normalized
peak heights.

yij (normalized) = (x;j,rq,/mTIC;) X mTIC, (4)
where x;; is the raw peak intensity for metabolite in sample j, mTIC; is the average identified

peak intensity in sample j, mTIC is the global average identified peak intensity, and y;; is the mTIC-
normalized intensity of metabolite in sample j.

Metabolite categorization

Metabolites were categorized according to their respective subclass classification in the human
metabolite database (Wishart et al., 2018) (if the subclass was absent, we instead used the superclass
of the respective metabolite). Metabolite classes with low membership were manually reassigned to
arrive at five broad metabolite categories:

o Carbohydrates and central carbon metabolites (CCM). Simple sugars such as glucose, fructose,
and various phosphates thereof, as well as core metabolites in glycolysis, gluconeogenesis, the
TCA cycle, and the pentose phosphate pathway.

e Amino acids. All amino acids and intermediates in amino acid biosynthesis and degradation.

e Fatty acids. All free fatty acids, intermediates, and metabolites involved in lipogenesis and
B-oxidation.

e Miscellaneous / secondary metabolites. Metabolites that do not fall in any of the other
categories.

e Nucleotides. All nucleotides, nucleosides, nucleobases, and byproducts / intermediates of
nucleotide metabolism.

Within each of metabolite category, we further normalized logy peak intensities using z-score
normalization prior to performing PCA, O-PLS (described below) or any supervised classification or
statistical modeling.

O-PLS

In order to remove sources of variation not useful in discriminating the feeding state of different
samples, we used O-PLS (Trygg and Wold, 2002), a technique commonly used in spectroscopy to
correct for systematic variation (Trygg and Wold, 2002). O-PLS is often applied to raw spectra in order
to eliminate the influence of background signals, but here we apply it instead to mTIC normalized
peak intensities. Our main use of O-PLS is to remove biological noise that is uncorrelated with feeding
state, such as baseline differences or trends among different populations. While z-score normalization
already removes many of these artifacts, we observed that O-PLS generally enhanced the predictive
accuracy of our PLS classifier. Given an input matrix X of n samples and m spectral features (metabolite
peak intensities in our study), and a target matrix Y of classes or measured values (here, the feeding
state), the final output of O-PLS (referred to here as X’) is again an m by n matrix consisting of X with
the systematic variation orthogonal to ¥ removed.

Characterization of feeding state responses

In order to determine which tissues and metabolite categories are most strongly implicated in Aspiras
et al., 2015 the starvation response within a given population, (Xiong et al., 2018) differences in
metabolite levels between different populations for a given feeding state, we used a simple one-
component PLS classifier trained on the output X’ of O-PLS.
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The discriminant Q? value is a metric of PLS model accuracy and is given by

2 _ 1 2 k=)
Q=1 > ok Or—3)?

However, we use a truncated version DQ*(Westerhuis et al., 2008), where yi is replaced by
¥ = max(min(y, 1), —1) and y;, is used in place of y,. This metric does not penalize the PLS model for
correct predictions that overshoot the target class label.

Using this framework, we employed a two-step model comprised of a O-PLS model followed by
a single-component PLS model to discriminate refed versus long term-starved samples. We trained
this combined model on z score-normalized log-transformed data for primary metabolites subdivided
into categories. The output of the initial-stage O-PLS model consists of the original data with a PLS
component representing ‘orthogonal’ noise removed. This de-noised data was then used to train a
one-component PLS classifier on labels representing feeding state. This results in a DQ? value for the
ability to discriminate refed versus starved states. Finally, an iterative scheme was used to randomly
permute the label indices of the input data, resulting in a distribution of DQ? values. The significance
level of the original predictive DQ? value was calculated using a two-tailed survival function of a
normal distribution fitted to the DQ? values.

|dentification of significant metabolites

We employed a logistic regression model to identify important features (metabolites, lipids and
classes thereof). We were specifically interested in marginal p-values of each individual metabolite,
hence we constructed separate single-covariate models for each metabolite or lipid. Models were
further based on different types of comparisons: (Aspiras et al., 2015) we compared different feeding
states within a given population and (Xiong et al., 2018) different populations within a given feeding
state. Logistic regression models (and GLMs in general) tend to suffer from complete separation of
observed covariates (Huang et al., 2020). This renders maximum-likelihood estimates of the model
parameters impossible. We therefore used the bayesglm function of the arm R package (Gelman
et al., 2008) to obtain estimates for model coefficients, even in the case of complete separation. The
bayesglm requires specifying a prior distribution. We found that the highly conservative default prior
corresponding to a an assumption that the response to a change in input should typically not exceed
roughly 5 on the logistic scale, or, equivalently, no typical change in input should cause a shift in
probability from 0.01 to 0.50, or 0.50-0.99 (Gelman et al., 2008) was sufficient to identify important
metabolic changes in our comparisons. However, given the conservative nature of this prior distribu-
tion, we did not perform FDR correction.

We first split the input dataset into two matrices: one containing populations as category labels
(bottom left), and one containing feeding states as category labels (upper right). We then subset each
of these into the three possible pairwise comparisons from each group, compute z-score-normalized
values within the comparison, filter the resulting matrix using O-PLS to remove orthogonal noise,
and use the bayesglm function to fit a model to the respective comparison for discriminating either
populations (within a given feeding state) or feeding states (within a given population). In each case,
the GLM consists of a single covariant corresponding to metabolite / lipid peak heights (for individual
metabolites) or classes of metabolites / lipids.

Differences between feeding states and shared metabolites

To identify metabolites that might play a role in cave adaptation, we sought to fit logistic regression to
an input capturing the difference between refed and starved samples and differences between cave
and surface populations simultaneous. We implemented this using the following formula:

x=P+DNR2-S, (5)

where P, T, and S are z-score normalized mTIC peak intensities for starved vs. refed samples. In
general, these vectors have length 12 (6 refed and 6 starved samples). A Bayesian logistic regres-
sion model was then fitted to the x vector for each metabolite as before, with each element of the
response vector labelled accordingly (starved or refed).
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ROS staining and microscopy

We repeated the original starvation experiment using 12 fish each from Pachon and surface popula-
tions. The age of fish was 138 dpf at the time of collection. Following the original fasting procedure,
six fish from each population were separated and fasted for 30 days. The remaining six fish in each
population were fasted for 4 days and refed for at least three hours on the morning of collection.
However, three fish from the surface 30 day fasted group did not survive until collection and were not
used in the experiment.

Pachon and surface fish were dissected alternately. Dissections were split across 2 days, with 3 fish
each in all four experimental groups on the first day and 3 fish each in all groups except 30-day fasted
surface on the second day. Livers were sectioned on 4% agarose gel and each section was stained with
a primary dye and DAPI. Primary dyes included dihydroethidium (DHE), MitoSox, and MitoTracker.
Sections were imaged with a ZEISS LSM 780 Laser Scanning Microscope. A Z-stack was taken at a
location with suitable cell density for each sample.

Quantitation for cytoplasmic and nuclear intensity was accomplished by first taking a 2D slice from
the middle plane. We created a threshold mask for the dye signal and DAPI using the average inten-
sity of all Z-slices (not only the middle slice) and intensity measured on the middle plane to compute
total intensity. We then took either the difference or intersection of the signal (DHE, MitoSox) and
nuclear stain (DAPI) masks depending on whether cytoplasmic or nuclear signal was desired. We then
integrated the signal and using the Kruskal-Wallis test to determine significance.
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