Time-division TCP for
Reconfigurable Data Center Networks

Shawn Shuoshuo Chen®, Weiyang Wang!*, Christopher Canel”
Srinivasan Seshan?, Alex C. Snoeren?, Peter Steenkiste’
Carnegie Mellon Universityo, MIT!, UC San Diego2

ABSTRACT

Recent proposals for reconfigurable data center networks
have shown that providing multiple time-varying paths
can improve network capacity and lower physical latency.
However, existing TCP variants are ill-suited to utilize avail-
able capacity because their congestion control cannot react
quickly enough to drastic variations in bandwidth and latency.
We present Time-division TCP (TDTCP), a new TCP vari-
ant designed for reconfigurable data center networks. TDTCP
recognizes that communication in these fabrics happens over
a set of paths, each having its own physical characteristics
and cross traffic. TDTCP multiplexes each connection across
multiple independent congestion states—one for each distinct
path—while managing connection-wide tasks in a shared fash-
ion.Itleverages network support to receive timely notification
of path changes and promptly matchesitslocal view to the cur-
rent path. We implement TDTCP in the Linux kernel. Results
on an emulated network show that TDTCP improves through-
put over both traditional TCP variants, such as DCTCP and
CUBIC, and multipath TCP by 24-41% without requiring sig-
nificant in-network buffering to hide path variations.

CCS CONCEPTS

» Networks — Transport protocols; Network protocol
design; Data center networks;

KEYWORDS

Data Center, Congestion Control, Transport Protocol

ACM Reference Format:

Shawn Shuoshuo Chen, Weiyang Wang, Christopher Canel,
Srinivasan Seshan, Alex C. Snoeren, Peter Steenkiste. 2022.
Time-division TCP for Reconfigurable Data Center Networks. In
ACM SIGCOMM 2022 Conference (SIGCOMM °22), August 22-26,
2022, Amsterdam, Netherlands. ACM, Amsterdam, Netherlands,
17 pages. https://doi.org/10.1145/3544216.3544254

This work is licensed under a Creative Commons Attribution International 4.0 License.

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9420-8/22/08.
https://doi.org/10.1145/3544216.3544254

19

1 INTRODUCTION

Data center networks face the task of connecting a large
number of end hosts over a high bandwidth, low latency fab-
ric. Most data center networks are based on the popular Clos
topology and provide the “big-switch” abstraction of a single
full-bisection network. However, this approach is reaching
its limit as the number of hosts increases and switching chip
manufacturers contend with the slowdown of Moore’s Law.
Optical circuit switch (OCS)-based reconfigurable data center
networks (RDCNs) are a promising solution to bridge the
widening gap between bandwidth supply and demand. Com-
pared to statically wired topologies [16, 24, 37, 38], RDCNs
dynamically allocate the available network resources over
time, providing greater scalability at lower cost and energy
consumption. However, reconfigurable networks introduce
unique challenges to existing transport layer protocols.

While TCP congestion control is designed to optimize
data transfers between end points with competing traffic, it
assumes that the channel between them is relatively stable
in terms of bandwidth and latency. In the context of RDCN,
however, this assumption does not hold. In hybrid electri-
cal/optical networks, the path between a pair of hosts may
alternate rapidly between a fast optical network and a slower
electrical network, with orders-of-magnitude differences in
bandwidth and/or latency. Even in proposals that are purely
optical [29], indirect forwarding—where packets hop across
several hosts when a direct link is unavailable—creates drastic
latency changes. Our experiments show that existing TCP
variants are unable to take full advantage of the additional
capacity provided by these RCDN technologies. Because
TCP infers network state and updates its congestion model
iteratively on the timescale of multiple RTTs, senders cannot
converge to the current path conditions before the network
reconfigures again in highly dynamic RCDNs.

To exploit the full potential of RDCNs, we present
Time-division TCP (TDTCP), a new variant of TCP designed
specifically for reconfigurable networks. We build on the
insight thatin RDCNSs, aslong as the network moves crisply be-
tween distinct configurations, it suffices to operate efficiently
in each configuration separately; the full algorithm is then
a piecewise function of individual models. In other words, in

*Equal contribution.

https://doi.org/10.1145/3544216.3544254
https://doi.org/10.1145/3544216.3544254
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

TDTCP, we multiplex independent network states over time,
much like how MPTCP [41] multiplexes subflows over space.
Unlike MPTCP, however, in TDTCP only one subflow is active
ata given time. As the network moves from one configuration
to the next, senders switch between network models.

While this overall approach may seem straightforward,
we must solve several challenges before TDTCP is a complete
protocol. First, in today’s RDCNs, the duration in which a
single optical configuration is in place is on the order of a
few RTTs, leaving little time for the host to react to the new
network environment. We address this issue by leveraging
the fact that the top-of-rack (ToR) switches to which end
hosts connect are directly involved in reconfiguring the
network fabric. Therefore, we enlist ToR switches to directly
notify their attached hosts when paths change. This signaling
enables end hosts to view the reconfigurable network not as a
single fabric, but rather as a series of time-division networks
(TDNs) that transition periodically.

Second, when the network reconfigures, in-flight packets
may not belong entirely to one TDN or the other. For
example, data packets may traverse a different TDN than
their ACKs, or a decrease in latency may reorder packets.
Careful accounting is required to disambiguate transient
reordering from true loss and credit the appropriate TDN,
preventing unnecessary retransmissions. TDTCP tracks the
sequence space associated with each TDN and uses heuristics
and selective acknowledgments to avoid severe performance
penalties during TDN transitions.

Finally, implementing TDTCP in a modern operating
system kernel is challenging because the congestion control
state is tightly integrated into the networking stack. We
identify the subset of CUBIC congestion control state that
must be duplicated across TDNs and optimize the TDN
switching process to ensure end hosts are promptly notified
of network transitions. We show that our open-source
implementation in Linux kernel 5.8 scales to 100 Gbps and
supports reconfigurations on microsecond timescales.

Using our prototype, we evaluate the performance of
TDTCP against existing TCP variants in the kernel as well
as MPTCP and reTCP [32], an RDCN-specific approach
that requires extensive switch support. Results show that
long-lived flows achieve better throughput under TDTCP:
24% higher than single-path CUBIC and DCTCP in one
representative RDCN setting, and 41% higher than MPTCP.
Additionally, TDTCP matches the throughput performance
of reTCP while exhibiting lower switch buffer occupancy and
does not rely on active switch buffer management.

This paper makes three contributions:

e Our measurement study on an emulated RDCN
identifies TCP’s shortcomings: single-path variants
react too slowly to changing conditions, but multipath

20

S. Chen, et al.
ocs ocs®
EPS EPS
|ers| [Eps| - |EPS]| | !
ToR | [ToR | [ToR | “ToR
Host1 Host1 Host1 Host1
Host2 Host2 Host2 Host2
HostN HostN HostN HostN

Figure 1: A hybrid, demand-oblivious RDCN topology.
The OCS network provides temporary high-bandwidth
links that supplement the EPS network.

TCP is crippled by flow control stalls. We learn that a
new TCP should leverage predictable reconfigurations
to model TDNs separately and use a subflow scheme
that bridges the gap between single and multipath TCP.

e We present the design of Time-division TCP, which
maintains a separate congestion control state corre-
sponding to each TDN but uses a unified sequence
number space to (1) simplify loss recovery and
bookkeeping across reconfigurations and (2) minimize
the need for receiver-side changes.

e We present a full-featured implementation of TDTCP in
Linux kernel 5.8, including performance optimizations
that support aggressive reconfiguration frequencies
and modern (e.g., 100-Gbps) link rates.

[This work does not raise any ethical concerns.]

2 MOTIVATION

The underlying technology in optical networks—such as
MEMS mirrors [9]—necessitates the use of communication
circuits, so switches must periodically reconfigure to
guarantee all-to-all connectivity at scale. Such designs are
known as reconfigurable data center networks (RDCNs). In
this section, we first give an overview of how RDCNss differ
from electrical packet-switched networks and then explore
why these differences yield poor TCP performance. We leave
a full description of RDCN variants to §6.

2.1 Hybrid demand-oblivious RDCNs

In this paper, we consider hybrid, demand-oblivious RDCNS.
As illustrated in Figure 1, such networks are hybrids because
they consist of both electrical packet switches (EPSes) and
optical circuit switches (OCSes). Each ToR is connected to
several upstream EPSes as well as one or more OCSes. The
EPS and OCS networks are isolated from each other.
Time-division multiplexing. When forwarding a
packet, a ToR chooses either the EPS network or the OCS
network. We assume that for a given destination, only one
network is in use at a time: if a circuit exists, then the optical

TDTCP for Reconfigurable Data Center Networks

network is chosen, otherwise the ToR falls back to the packet
network. During its lifetime, a flow may traverse either the
packet network, the optical network, or both, depending on
timing and flow duration. From a sender’s perspective, this
is a time-division multiplexed path, which is conceptually in-
between a single path and true multipath routing. We refer to
each discrete network state as a time-division network (TDN).

Different network characteristics. The packet and
optical networks have different bandwidth and end-to-end
latency due to their physical characteristics and network
architectures. EPS networks typically use 10-400 Gbps
links, while OCS links have the potential to be an order
of magnitude greater than that [26, 30]. Traversing an
EPS topology may take 100 ys with queuing, whereas the
end-to-end OCS latency can be shorter because it includes
fewer intermediate switches, does not queue inside the
network, and only the destination switch decodes packets.

Stable characteristics within a TDN. Compared to the
orders-of-magnitude differences across TDNs, within a TDN
conditions are relatively stable: subject to background traffic,
the bandwidth, latency, and loss rate on a path oscillate
within a comparatively small range.

Predictable TDN pattern. OCSes follow a schedule
that consists of several independent configurations, which
we refer to as days, each of which individually provide
connectivity to a disjoint subset of ToR pairs. The full
schedule is known as a week. Between two days, there is
a blackout period we call a night during which no packets
can be sent while the optical network reconfigures. The
term demand-oblivious refers to how the configurations are
generated [27]: the complete schedule provides full-mesh
connectivity over a week that can accept any traffic demand.

Frequent path switches. To keep overall utilization
high, the optical network must maintain a high duty cycle,
defined as the ratio of uptime to downtime. Related work [32]
assumes a 9:1 duty cycle, so a state-of-the-art reconfiguration
time of 20 s [26] yields a circuit day of 180 ps, striking a
balance between frequent reconfiguration (to serve all rack
pairs often) and stability (to give flows time to converge).
Assuming an RTT of ~40 us, a circuit day is on the order of
five RTTs. This is a concern since TCP receives congestion
feedback and adjusts its rate on the timescale of RTTs, so
a short circuit day means that common TCP variants like
CUBIC and DCTCP may not have enough time to adapt to
path characteristics before switching paths again.

2.2 Measuring TCP performance in RDCNs

TCP is the dominant transport protocol in data centers, so
it is important to understand TCP’s performance on hybrid
demand-oblivious RDCNs. In this section, we investigate
the performance of two representative, widely-used TCP

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

(V]
§ 800
1S
o9 /1
29 600 ! — optimal
a X ‘ cubic
e 5 400 1 — mptcp2f
- Q i 1 — packet onl
8 E 200 P y
O 3
[T [[
a 0. P P P
o 0 1000 2000 3000 4000
Time (us)

Figure 2: Sequence graph of TCP variants running in
hybrid RDCN for 3 optical weeks.

variants, single-path TCP CUBIC [19] and multipath TCP
(MPTCP) [35, 41]. Our measurement and analysis addresses
the following questions: Can TCP take full advantage of RDCN
capacity? Why or why not?

We conduct all experiments using the Etalon RDCN emula-
tor [32]. Specific testbed parameters are described in §5.1. We
run CUBIC and MPTCP flows in the RDCN topology depicted
inFigure 1. The open-source MPTCP implementation does not
support our intended use: pinning one subflow (index 0) to the
packet network and one subflow (index 1) to the optical net-
work. Hence, we extended MPTCP with a prototype tdm_schd
scheduler that steers packets between two subflows according
to the RDCN schedule. For example, when the packet network
is active, tdm_schd sends all packets to subflow 0, which is
pinned to the packet network, and vice versa.

Figure 2 shows the throughput! of single-path TCP CUBIC
and MPTCP in the form of a sequence-number graph. To
remove startup and transient effects, results across thousands
of optical weeks are averaged to create this visualization. The
shaded regions show when the optical path is active while
the unshaded regions correspond to the packet network.
The slope of a sequence number curve gives the throughput.
For example, for the optimal curve—which is computed
analytically and assumes that a flow uses all available
bandwidth—the slope is steeper in shaded regions than
in unshaded ones, as one would expect due to the higher
bandwidth of the optical network. On the other hand, the
packet only curve specifies the best-case performance when
the end host uses only the packet network. It has a constant
slope equal to the rate of the packet network.

Both single-path TCP CUBIC and MPTCP fall far below
the optimal line, showing that neither takes full advantage of
the RDCN bandwidth. While their sequence number curves
in the packet network (unshaded) are parallel to the optimal
line, their curves in the optical network (shaded) are shallow
and only slightly better than in the packet network. MPTCP’s
performance is lower than that of CUBIC, despite the fact
that it has been made RDCN-aware, likely because of the

ISee Appendix A.3 for an analysis of in-network queuing.

21

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

overhead of subflow management and the reinjection of lost
segments that could not be ACKed before a path change.

Single-path TCP CUBIC has two shortcomings that
contribute to its sub-optimal performance. First, it assumes a
single path with conditions that change relatively slowly, but
this assumption does not hold in RDCNs. After a path change,
single-path TCP must spend multiple RT Ts probing the path
to converge to a new state that is appropriate for the new
bandwidth and RTT, which can differ by orders of magnitude.
Given the short duration of each optical day (=5 RTTs in this
example), there is insufficient time for single-path TCP to
ramp up. Second, it is ignorant of the cyclic, deterministic
RDCN schedule; instead, it must rediscover each change and
adapt using mechanisms designed for traditional networks.

MPTCP’s low throughput is caused by the fact that the
connection is frequently stalled due to the strict isolation
between the two subflows. Packets sent on one subflow may
not be acknowledged for a while if the receiver is blocked
from sending on that subflow because the corresponding
TDN is not active. This means that the sender stalls until
MPTCP’s connection-level reinjection mechanism [36]
attempts to retransmit the unacknowledged packets from
one subflow on the other—currently active—subflow. This
retransmission also introduces additional overhead.

In summary, our investigation reveals three findings: (1)
TCP should model the characteristics of each TDN separately,
(2) TCP should leverage the repeated, deterministic RDCN
schedule to speed up congestion control convergence, (3)
MPTCP-style independent subflows are not suitable for the
RDCN environment where only one path is active at a time.

3 DESIGN

In light of the lessons learned above, there is certainly
room for improvement. We hereby ask the question: how
can we improve TCP performance in a network with fast
and periodic changes in path characteristics? Taking a
first-principles approach, we believe the answer is a new
Time-division TCP (TDTCP) designed specifically for such
use cases. Since these networks have multiple paths with
different characteristics, we need a TCP variant that can
handle all of these paths efficiently, but in an interleaved—as
opposed to simultaneous—fashion. TDTCP takes advantage
of the best of both worlds—leveraging building blocks and
concepts from both single-path TCP and MPTCP. In this
section, we explore our design decisions for TDTCP.

3.1 Per-TDN state variables

A time-division multiplexed path, with distinctive traits
setting itself apart from a stable single path, should be treated
like distinct paths. Particularly, TDTCP should model the path
characteristics of different TDNs independently. Traditional

22

S. Chen, et al.

single-path TCP lacks the ability to distinguish its own operat-
ing states in different TDNs. Upon a path change, traditional
single-path TCP has no accumulated state information about
the new TDN; all of its state is modeling the previous TDN.
Instead of invalidating this model, it tries to reconverge with
samples taken in the new TDN. For instance, using TCP’s
standard exponentially weighted moving average technique
to merge bandwidth estimates for two different TDNs results
in a value that is too large for the packet TDN and too small
for the optical TDN. A natural fix is to maintain independent
copies of internal state and dynamically swap them in when
the relevant TDN is active. These sets are kept isolated so
that samples from different TDNs do not pollute each other.

TCP models path state using many different internal vari-
ables. We group these into three categories according to their
main functions and for brevity only list a few of the variables
themselves. “Pipe” variables suchas pkts_out,lost_out,and
retx_out are used to estimate the number of bytes in flight,
lost, and retransmitted, respectively. This gives TCP a sense
of how full the “pipe” is. Congestion control variables such
as cwnd, ssthresh, and ca_state are used to control how
many more bytes are allowed into the network and whether
the sender should slow down. Delay/RTT variables such as
srtt, rttvar, and mdev are used to track the path latency.
All three categories of path state variables require per-TDN
copies to make TDTCP truly model each TDN separately.

In stable state, each per-TDN set of variables closely tracks
its corresponding TDN. When the network path changes,
TDTCP swiftly replaces the variables in use with another
set tracking the new TDN. The new set of variables already
contains a snapshot view of the new TDN when it was last
active. After the replacement, TDTCP continues to operate on
the new TDN as if it has just resumed from a checkpoint. In
principle, variables of inactive TDNs should not be modified
when that TDN is inactive to avoid unexpected state corrup-
tion. However, there are certain key exceptions that require
updates to the state of inactive TDNs. These exceptions
are to handle reordering scenarios and to make sure that
when the inactive TDN becomes active again, it is modeled
accurately. As a simple example, suppose that a packet is sent
on TDN 0 and its ACK returns on TDN 1. TDTCP needs to
decrease the in-flight count for TDN 0 even though TDN 1 is
active. This ensures that when TDN 0 becomes active again,
TDTCP has accurate knowledge about the in-flight packets.
In addition to the above state variables, TDTCP also tags
each packet and ACK with a TDN ID and keeps track of it
throughout the lifetime of the packet. TDTCP can find out
on which TDN a particular packet is sent by examining this
field. This information enables some heuristics for managing
cross-TDN reordering and spurious retransmissions. We
discuss reordering scenarios in more detail in §3.4.

TDTCP for Reconfigurable Data Center Networks

3.2 TDN change notification

By modeling path states separately, TDTCP implicitly
requires the ability to promptly determine when network
transitions occur. Instead of relying on in-band notifications
like packet marks (e.g., ECN [12]) or iteratively probing the
path, TDTCP relies on an out-of-band hint to decide when
to use which set of states. Given that all switches in the
RDCN know when the path change will happen and what
the new path will be, it is reasonable to have the switches
at the network edge, i.e., ToRs, propagate this information
to the end hosts using proactive notifications. We employ
a dedicated Internet Control Message Protocol (ICMP) [34]
packet to carry this notification. We prefer this alternative
to an in-band signal—such as piggybacking the notification
in packet headers—because our out-of-band ICMP approach
avoids potentially deferring the notification indefinitely in
the absence of a continuous flow of packets. The ICMP packet
simply carries an integer index indicating which network path
is currently active. We refer to this path index as the TDN ID.
One major concern is whether TDTCP can obtain the
most up-to-date TDN ID in a timely fashion, as this governs
TDTCP’s operating efficiency. For example, if a packet-to-
optical TDN change notification arrives at the sender when
the optical day is about to end, then TDTCP will miss the
opportunity to send at higher speeds. Vice versa, TDTCP
could experience excessive packet drops if it continues
to send at the optical bandwidth after the network has
transitioned into a packet TDN. While the delivery latency
differs network-by-network, our design of ToR-generated
notifications should keep it generally low since ToRs and end
hosts are located within the same rack. In §5.4, we evaluate
several optimizations that further minimize this latency.

3.3 Sequence numbering

TDTCP maintains a single, connection-level sequence number
space despite viewing each TDN independently. This decision
contrasts with MPTCP’s two-level design for its subflows.
Three reasons lead to this design decision: (1) flow control
stalls that occur due to ACK delays after a switch, (2) it does not
require inter-subflow coordination to facilitate loss recovery,
and (3) only minimal receiver-side modifications are needed.

Before we discuss the benefits of TDTCP’s single sequence
number design, let us summarize why MPTCP uses a separate
sequence number space for each path. MPTCP benefits from
this design in two ways. First, MPTCP assumes multiple paths
that operate (if one ignores potentially shared bottlenecks)
completely independently, thus using full-fledged TCP
connections as subflows is a natural fit. Second, and perhaps
more pragmatically MPTCP sought to keep each subflow
compatible with various Internet middleboxes. Subflows with

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

23

discontinuous sequence numbers may be incorrectly identi-
fied by middleboxes and blackholed or reordered. Fortunately,
such universal compatibility is not a design requirement for
TDTCP. Data center operators have significant control over
network functions, and we assume they can make whatever
changes may be necessary to support TDTCP, as they have
for DCTCP and other recent TCP variants.

Avoiding flow control stalls after a TDN switch. As
we observe in §2.2, MPTCP has poor performance after a
TDN switch because of flow control. The reason is that ACKs
for packets sent over the old TDN right before the switch
may be stuck in the send queue of the receiver, since they
must transmitted over the same TDN as the data packets they
acknowledge. It is only after the packets have been reinjected
over the active TDN that transmission can continue. With
a single uniform sequence number space packets receive on
one TDN can be ACKed on another TDN, and they naturally
contribute to the overall sequence-space progress and drive
transmission forward regardless of the currently active TDN.

Coordination. TDTCP’s single sequence number space
eliminates the need for inter-subflow coordination. MPTCP
requires a scheduler to serve as the central point of coordi-
nation. It makes a decision on which subflow to use when
sending out a packet. In TDTCP, the active TDN is dictated by
the network: there is only one TDN available at any point in
time. If one TDN is slowed due to packet loss, it may block the
progress during other TDNs due to the shared sender buffer.
MPTCP employs connection-level reinjection to work around
this situation by remapping lost segments onto another
subflow [36]; TDTCP’s design avoids this unnecessary
implementation complexity and performance overhead.

Receiver processing. MPTCP’s two-level sequence num-
ber space design requires runtime translation between data se-
quence number and subflow sequence number. This means the
receiver also needs extensive modifications. However, with
a single uniform sequence number space, no receiver-side
modification is needed to support TDTCP sequencing. The
major downside of TDTCP’s single sequence space and simple
receiver behavior is cross-TDN reordering. We describe the
impact of this phenomenon and how it can be mitigated below.

3.4 Packetreordering

Since the days of Reno, TCP has employed a fast-recovery
mechanism to ameliorate the impact of packet loss. Specif-
ically, segments deemed lost due to the receipt of three
consecutive dupACKs are queued for immediate retransmis-
sion. This time-tested heuristic builds upon an assumption
that no longer holds true in RDCNs: that a network path only
slightly reorders packets, if at all. In fact, most reordering
seen in RDCNss is cross-TDN reordering, where packets and
their corresponding ACKs traverse TDNs with different

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

high latency network low latency network

send recv send recv
PKT PRT
123
123 PKT
PKT 456
456
ACK
456
ACK
456
ACK
ACK 123
123
(a) (b)

Figure 3: Cross-TDN reordering scenarios. Time
proceeds from top to bottom; arrows represent TDTCP
segments transmitted between sender and receiver.

latencies. Cross-TDN reordering does not signal loss; ACKs
are simply delayed due to increased path latency. If TDTCP
were to continue following TCP Reno’s fast-retransmit
heuristics, it would spuriously retransmit a large number
of packets at each TDN transition (indeed, over 100 in our
setting according to measurements in §5.3).

Cross-TDN reordering. Occurrences of cross-TDN
reordering can be grouped into two categories: data
reordering and ACK reordering. Figure 3 shows examples?
of each: scenario (a) corresponds to data reordering, and
scenario (b) represents ACK reordering. Every horizontal
slot in Figure 3 represents a unit of time ¢. One-way delays
of the high-latency (yellow) network and low-latency (green)
network are 5¢ and ¢, respectively. Consecutive slots of
identical color represent the active duration of a TDN. For
example, in scenario (a), the active TDN switches every 3t.
We label each data segment and its corresponding ACK with
individual sequence numbers for clarity. (In practice TDTCP
continues to use payload-byte-based sequence numbering
and cumulative acknowledgments.)

Data reordering typically happens when the last few seg-
ments of a sending episode enter the network after the new
TDN becomes active. In scenario (a), segments 4-6 are sent
later but arrive before segments 1-3, causing reordering at the
receiver. The receiver acknowledges segments 4-6 and 1-3 in
the order they are received. The arrival of ACKs 4-6 before 1-3
would be interpreted by TCP Reno as a loss event, causing the
sender to enter fast recovery mode and retransmit spuriously.

In scenario (b), the receiver sends out ACKs in the expected
order. However, half of the ACKs are transported by a
different TDN with lower latency. ACKs 4-6 end up arriving
at the sender before ACKs 1-3. Unlike data reordering, ACK
reordering is largely harmless because the latter ACKs carry
a higher acknowledgment number than the former ACKs.

2See Appendix A.1 for more reordering scenarios.

24

S. Chen, et al.

i[] ACKed pkt 3
11 unACKed TDN 0 pkt !
i[] (S)ACKed TDN O pkt:
{1} unACKed TDN 1 pkt |

snd_una

,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 4: An example of relaxed reordering detection.

Following TCP’s cumulative ACK semantics, upon receiving
ACKs 4-6, the sender assume segments 1-6 have all been
received, which implicitly nullifies the in-flight ACKs 1-3.
When ACKs 1-3 arrive, they are simply discarded.

Relaxed detection. In order to avoid frequent spurious
retransmission, TDTCP relaxes the triple dupACK heuristic
with the help of per-TDN state and SACK support [11].
Whenever TDTCP detects a gap in the sequence number
space, it first inspects the associated TDN IDs of all segments
falling in the missing sequence range and compares them
with a TDN change pointer. The TDN change pointer tracks
the final sequence number of the previous TDN/the first
sequence number of the new TDN. When packets in the
“hole” have a different TDN ID than the ACK(s) that triggered
the heuristics, the sender suspects cross-TDN reordering. As
aresult, TDTCP does not consider such segments to be lost
and retransmits only those with a matching TDN ID (if any).
TDTCP also updates the per-TDN congestion state machine
associated with the lost segments; TDNs with retransmissions
will enter the recovery state. For cases where lost segments
with a different TDN ID are true tail losses (i.e., the last
segments of a prior TDN really were dropped by the network),
TDTCP relies on RACK-TLP [7] to recover efficiently.

Figure 4 illustrates TDTCP’s relaxed reordering detection
heuristic. When (pink) segments sent over TDN 1 are
acknowledged before outstanding (blue) segments from TDN
0, SACK marks the successfully acknowledged segments
and invokes fast recovery. All segments between the
snd_una pointer and the highest SACKed sequence number
(dashed rectangles) might be lost and potentially need to
be retransmitted. However, TDTCP inspects the associated
TDN IDs of these packets and compares them with the TDN
change pointer. (Dashed blue) segments from TDN 0 are
ignored since they belong to a different TDN and their ACKs
are very likely just delayed. Only one (dashed pink) segment
belonging to TDN 1 is confirmed as a true loss, which will
be retransmitted. TDN 0 remains in Open state and is allowed
to continue sending at full speed; TDN 1, on the other hand,
enters Recovery state due to the loss.

TDTCP for Reconfigurable Data Center Networks

3.5 Fairness, generality, and limitations

Fairness. TDTCP does not propose a new congestion control
algorithm (CCA). Rather, it simply implements one of the
available CCAs in each TDN. In principle, TDTCP could use
multiple, different CCAs within a single flow. In our current
implementation, however, CUBIC is used in all TDNs. We
expect CCAs used within each TDN to have similar fairness
properties as their single-path siblings, over a long period of
time. Short-term anomalies could however exist. An in-depth
investigation regarding fairness across TDNs and disparate
CCAs remains as future work.

Generality. Though hybrid, demand-oblivious RDCNs
are the motivation for our work, TDTCP is designed to be
generic so that it can service a variety of use cases. The
fundamental assumption TDTCP makes is that the network
fabric moves between a fixed set of internally-coherent
network conditions, where each condition is likely to
reappear during the lifetime of a connection. Satellite-based
communications appear to be another good use case for
TDTCP: Satellite signal coverage has a periodic strong-weak
pattern as satellites orbit the earth. Satellite links are used
if a strong signal can be detected. When the signal falls
weak, fiber links between ground stations are often used as
a backup [22]. At any time, only one link is selected. TDTCP
is particularly suitable for a network with this pattern.

Limitations. The main limitation of TDTCP is its
operating regime. TDTCP is only useful when the network
conditions change with a certain frequency. Consider two
extreme cases: (1) TDNs change every a few hours, (2) TDNs
change every few nanoseconds. In case 1, a regular single-
path TCP performs well because few connections will ever
experience a change in TDN, and those that do can amortize
any performance degradation over a very long period of time.
In case 2, traditional TCP variants can perform near-optimally
because nanosecond-level TDN changes will appear similar
to per-packet load balancing. Without loss of generality,
TDTCP is most suitable to operate in networks where the
periods between TDN changes are 1-100x path RTT.

4 IMPLEMENTATION

We have implemented TDTCP in Linux 5.8 kernel with 11,798
lines of C code changes. The code is open source and available
at https://github.com/shuoshuc/TDTCP. In this section,
we describe a few implementation-specific considerations.
More details can be found in the source code, accompanying
comments and corresponding documentation.

4.1 Packet format

TDTCP defines three types of packets for its operation. An
ICMP packet is used for path change notifications. A TCP
handshake option is used to negotiate and establish TDTCP

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

0 123456789 0 123456789 0 123456789 0 1

B s e s T S e s S o Tk T ARy

| Type=7 | Code=0 | Checksum

dot-d-t-t-t-t-t-t-t-t-t-t-t-t-dt-t-F-t-d-tod-t-t-t-t-t-t-t-t-t-+-+

| Active TDN ID | (Reserved)

B s S S T e s S S T S ik Sk e ER IS
(a)

0 1234567890612345 6 78 9 06123 4 567890 1
| Kind | Length=4 |SubType| | # TDNs |
T

(b)

060123456789012345 6 78 9 06123 4 567890 1

_______________ e mm e e e e
| Kind | Length=16 |SubType| (reserved) |B|D|A|

_______________ 1
| Data TDN ID | (reserved) | ACK TDN D | (reserved) |
Fomm e o Fomm e oo R e Fommmm o +

(©)

Figure 5: TDTCP packet formats: (a) ICMP for TDN
change notification, (b) TCP option for the TD_CAPABLE
handshake, (c) TCP option of TD_DATA_ACK exchange.

connections. Another TCP option is used to inform the peer
of the TDN path taken by the packet.

As discussed in §3.2, TDTCP uses a switch-generated path
change notification to learn about RDCN schedule changes.
The active TDN ID field is carried as the first byte of the
ICMP payload. We assume the number of distinct paths in
an RDCN is no more than 256, hence allocating a single byte
in the packet. Should the use case require a larger integer,
we can easily allocate more bytes for it. Figure 5a shows the
ICMP packet format of the notification.

4.2 Connection establishment

A TDTCP-speaking end host uses TCP header options
inside of normal TCP connections. TDTCP exposes the
same application-level API as traditional TCP so it is fully
compatible with existing applications. TDTCP is also
transparent to the application layer: it does not require
multiple network interfaces nor require the applications to
make any decisions regarding path selection.

To enable hosts to establish a TDTCP connection, TDTCP
defines a new TCP option (Figure 5b) of subtype TD_CAPABLE,
indicating that the end host supports TDTCP. The option also
carries the number of TDNs observed by the end host. In our
current implementation, the two ends must both agree on the
number of TDNSs. This is to align the TDN IDs used by both
ends—a TDN ID must refer to the same network condition at
both parties. On an established® TDTCP connection, all seg-
ments carry a TCP option with subtype TD_DATA_ACK (shown
in Figure 5c) that contains the ID of the TDN on which the
segment was sent. If the segment contains data, the data TDN
ID field should be properly filled and the D bitflag set, likewise
for an ACK segment. This option is used by the TDTCP state
machines and heuristics to identify segment reordering.

3See Appendix A.2 for details on TDN management during the handshake.

25

https://github.com/shuoshuc/TDTCP

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

Our current TDTCP implementation supports runtime
RDCN schedule changes, but the new number of TDNs
seen by both the sender and receiver must remain equal.
TDTCP automatically initializes a new set of state variables
upon being notified of a new TDN for the first time. We
have also implemented the ability for a host to downgrade
established TDTCP connections to regular TCP. When doing
so, only the local side is affected; the peer can continue to
send TDTCP-enabled segments but only regular ACKs will
be returned. We find this feature quite helpful for debugging.

4.3 TDN state management

Mapping per-TDN state variables from design to imple-
mentation is not entirely straightforward. Due to the way
connection state is maintained in the Linux TCP stack, there
are subtle semantic differences affecting how per-TDN state
should be managed, requiring case-by-case inspection. At
a high level, state variables fall into one of four different
classes: current TDN, all TDNs, any TDN and specific TDN.
We provide examples of each below.

Current TDN. The most common and natural semantic
is for state to be accounted entirely within the current TDN.
For example, when transmitting new data, each segment is
tagged with the current TDN ID. Relevant state variables
that track in-flight data such as packets_out should be
incremented for the current TDN only.

All TDNs. On the other hand, sometimes the state of
other TDNs must also be considered. Linux uses the variable
packets_out in its tcp_ack() function to filter out ACKs
that do not need to be processed. If packets_out is 0, the
ACK must be either stale or malicious because no data is
pending; hence, no ACK is expected. In the context of TDTCP,
packets_out must be 0 across all TDNs because an ACK can
acknowledge data sent in any TDN. This means the sum of
all per-TDN packets_out should be used to verify ACKs.

Any TDN. TDTCP retransmits lost segments at the earliest
opportunity, regardless of which TDN was used originally
to transmit them. The Linux TCP stack maintains variables
ca_state and lost_out to decide if a retransmission
should be scheduled. If ca_state is Loss or Recovery and
lost_out is non-zero, Linux prioritizes retransmitting the
lost segment(s). In the context of TDTCP, retransmission
needs to be scheduled if the above condition is true for any
TDN, which means a logical OR should be applied to the two
variables of all TDNs.

Specific TDN. In the receiving path, an incoming (cumu-
lative) ACK can acknowledge data sent over multiple TDNs.
When segments are acknowledged, their corresponding
tracking variables such as packets_out and retrans_out
must be decreased to reflect the progress. In the context of
TDTCP, we identify the set of segments being acknowledged

26

S. Chen, et al.

by scanning the retransmission queue and obtaining the
TDN ID associated with each one of them. The variables
packets_out and retrans_out are updated for the specific
TDN associated with each.

4.4 RTT estimation

RTT estimation faces the same problem asin §3.4. Regular TCP
assumes stable routing when collecting RTT measurements,
i.e., that the samples always reflect properties of the same net-
work condition. However, TDTCP may sample three distinct
conditions even with only two TDNs. Let the one-way delay of
TDNiand TDN j be denoted as %RTT,- and %RTT]-, respectively.
Type-1 samples measure RTT;, type-2 samples measure RTT;,
and type-3 samples measure 3RTT;+3RTT;. Type-3 samples
arise when a segment and its ACK traverse different TDNS.

We seek to discard type-3 samples and match type-1 and
type-2 samples to their corresponding TDNs. To achieve
this goal, TDTCP makes use of the TD_DATA_ACK option and
its local per-segment state tagging. TCP already uses the
Karn-Partridge algorithm [23] to filter out retransmitted
segments in RTT measurement; TDTCP further ignores
samples with different data and ACK TDNs. The remaining
samples are matched to the appropriate TDN based on
information in the option.

One special consideration is the timeout value used by
the retransmission timer. TDTCP only knows which TDN a
segment is sent on, but cannot predict in general upon which
TDN the corresponding ACK will return. In order to avoid
premature timeouts, our current TDTCP implementation
pessimistically assumes ACKs will return on the TDN with
largest RTT. The timeout value of a segment sent on TDN
n is based on a synthesized RTT of %RTT,,+ %RTTslowest-

5 EVALUATION

We evaluate TDTCP using our in-kernel Linux implemen-
tation on a small-scale testbed using Etalon [32], a recently
published RDCN emulator. First, we compare TDTCP
performance to leading data center TCP variants in an RDCN
setting: §5.2 shows that TDTCP achieves high throughput
and low switch-buffer occupancy for long-lived flows despite
both bandwidth and latency differences. Then, we revisit
design decisions on reordering and TDN change notification
in §5.3 and §5.4 through microbenchmarks.

5.1 Etalon testbed

Etalon is a software RDCN emulator based on the Click
modular router [25] and DPDK [13]. We configure Etalon to
emulate a simple two-rack demand-oblivious hybrid RDCN
topology, as illustrated in Figure 6.

Hardware. We use two physical servers to emulate two
racks of hosts; Etalon itself runs on a third server. We fix the

TDTCP for Reconfigurable Data Center Networks

Control Physical Physical Data
W

‘_&
ToR VOQs l s

Click (Software Switch)®
RDCN Machine

oo
i‘.

Container 16

Machine 1

Emulated Racks Emulated RDCN

Figure 6: Our Etalon deployment. The emulated packet
and circuit networks are 10 Gbps and 100 Gbps, respec-
tively. Note Etalon only emulates the RCDN, the hosts
are implemented as containers on physical machines.

source and destination of all connections in our experiments
to use hosts attached to one of these two racks. We can
emulate any scale of RDCN using this topology by pinning
flows between this pair of racks. Each server runs 16 Docker
containers [31] to emulate 16 distinct hosts residing in the
rack. All servers have two 20-core Intel Xeon E5-2680 CPUs,
128 GB of memory, a 10 Gbps NIC for the control network,
and a Mellanox ConnectX-3 40 Gbps NIC for the data network.
We use flowgrind [42] to generate cross-rack flows over
the data-plane network. Note that TDTCP is running in the
actual Linux kernel networking stack, not through emulation
or simulation; only the network itself is emulated.

RDCN configuration. In order to emulate a realistic
target RDCN, we set the path-related parameters in Etalon
according to §2.1. The number of TDNs is set to 2: TDN
0 corresponds to the EPS network and TDN 1 to the OCS
network. The bottleneck bandwidth/average RTT of TDNs
0 and 1 are 10 Gbps/100 us and 100 Gbps/40 s, respectively.
Etalon emulates two ToR virtual output queues (VOQs) for
each rack—one for each traffic direction—which can be either
static or reconfigurable at runtime. As a baseline configura-
tion, we set the VOQ size to 16 packets (with jumbo frames [38]
enabled). This is slightly larger than the packet network
bandwidth-delay product, which has been shown to be suf-
ficient for both TDNs [2]. One limitation of our testbed is the
40-Gbps hardware. In lieu of 100-Gbps network devices, we
leverage time dilation [17] to “slow down” the end hosts. As a
result, we are able to emulate a 100-Gbps network using only
5 Gbps of physical network capacity by dilating time by 20x.

We measure long-lived cross-rack flow throughput for
various TCP implementations as a function of TDN change
frequency; all 16 hosts in one source rack transfer bulk data
to their corresponding hosts in the destination rack. All
flows are configured to start at the same time and last for 40
seconds. We deploy a pre-computed static schedule (in the
fashion of RotorNet [30]) that consists of a variable number of

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

27

180-microsecond-long configurations. In every configuration,
the racks are either connected directly to one another
through the OCS (i.e., TDN 1) or to all other racks through
the packet-switched network (TDN 0). Each configuration
is separated out by a blackout (reconfiguration) period of 20
microseconds. Our experiments focus on a schedule with a 6:1
ratio of packet to optical TDNs, which naturally corresponds
to an 8-rack hybrid RDCN where each rack is directly con-
nected to the others in 1 out of every 7 OCS configurations.
TDTCP has the most advantage over other TCP variants
with ratios on this order. We leave it as future work to study
TDTCP’s performance when operating under extreme ratios.

We focus exclusively on long-lived flows because short-
lived flows are unlikely to benefit from TDTCP. For example,
RPC workloads that last a few RTTs likely only exist during
one TDN. Even flows lasting tens of RTTs would terminate
before exiting slow start in either TDN. In such cases, a larger
initial cwnd would be more helpful than TDTCP. Overall, we
do not expect TDTCP to impact on the completion time of
short-lived flows but a full treatment is outside the scope of
this paper.

5.2 Bandwidth and latency difference

To understand the reasons behind TDTCP’s superior
performance we compare TDTCP with a wide variety of
common TCP variants used in data centers: single-path TCP
CUBIC and DCTCP [1], and MPTCP with two subflows, one
for each network condition. In addition, we also compare
to reTCP [32], a recently published approach to improving
single-path TCP performance in RDCNs that requires active
switch buffer management.

Figure 7 shows a side-by-side comparison of how each
TCP variant performs when an RDCN oscillates between two
conditions with differences in both bandwidth and latency.
Specifically, the shaded area shows time periods when the
source and destination racks are directly connected by the
high-bandwidth/low-latency (optical) path; otherwise the
connections are over the low-bandwidth/high-latency (elec-
trical) path. Figure 7a shows the relative sequence number
increase over time, which reflects the overall flow throughput.
The “optimal” line plots the upper bound where an idealized
TCP fully utilizes both conditions. The “packet only” line
shows the same idealized TCP using the packet network only
(i.e., it remains on the packet-switch fabric even with the op-
tical path being available). The difference between these two
lines represents the potential gain a TCP connection can cap-
ture in this RDCN by making use of the additional optical ca-
pacity. Note that the plots represent a ~4-ms period during the
experiment, not the absolute start (although both x and y axis
values are normalized to the start of the plotted period). As a
result, the performance of each variant is not necessarily equal

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

(V]
o
o5 800 | | { | — optimal
> I
o9 ! retcpdyn
o3 600 /) — tdtcp
a X 3 7} — retcp
o = 400 3 S dcgcp
°Q 3 i | — cubic
% g 200 | mptcp2f
gc 0 -1 i | | — packet only
b 0 1000 2000 3000 4000

Time (us)

()

S. Chen, et al.

w40 i i
9] N i § 1
X |1 | retcpdyn
§30 . | | { | — tdtcp
= E ! {1 ——retcp
5% | ! || — dctep
] z 5 v | =y= | — cubic
o i
S ol 4 4]

0 1000 2000 3000 4000

Time (us)
(b)

Figure 7: TCP throughput and switch buffer utilization under both bandwidth and latency difference: (a) sequence
graph of each TCP variant, (b) ToR VOQ utilization over time (capped at 16 for all but “retcpdyn”).

[0}
)
58 800 { | — optimal
3 i
5O retcpdyn
g3 600 7/ — tdtcp
a X 7, — retcp
ot 5 400 — dcacp
T i I — cubic
% g 200 mptcp2f
Qc 0 -1 i | | — packet only
&5 0 1000 2000 3000 4000

Time (us)

(@)

w40 i i
9] i !
< | | retcpdyn
§30 i | i | — tdtcp
P ! y || —retep
520 Lif] L] i/l — dctcp
S W S /! — cubic
% At [Ganes) [aand i
S % i ¥ i

0 1000 2000 3000 4000

Time (us)
(b)

Figure 8: TCP throughput and switch buffer utilization with only bandwidth difference: (a) sequence graph of each
TCP variant, (b) ToR VOQ utilization over time (capped at 16 for all but “retcpdyn”).

]
S~ . — optimal
g§ 3000 retcpdyn
Qa2 i — tdtcp
652000 L{ — retcp
F g i
T i 1 — cubic
% § 1000 mptcp2f
§C 0l P i | | — packet only
N 0 1000 2000 3000 4000

Time (us)

Figure 9: TCP throughput with only latency difference
at 100 Gbps bandwidth. (TDTCP and CUBIC perform
almost identically.)

even in the first TDN due to the state (e.g., send window and
RTT estimates) accumulated earlier in the trace (c.f. Figure 9).

TDTCP dramatically out-performs CUBIC, DCTCP, and
MPTCP, as none of the traditional variants are able to effec-
tively make use of the substantial additional capacity made
available by the optical link. The only competitive alternative
is re€TCP, but it requires sophisticated dynamic switch buffer
resizing [32] in order to be effective. The “retcpdyn” line
corresponds to a setting where the ToR enlarges its VOQ size
to 50 packets at 150 microseconds ahead of the TDN change,
and notifies reTCP to ramp up its congestion window. Thus,
reTCP is able to pre-fill the VOQ and starts bursting at high
bandwidth immediately after the TDN switch. In contrast,
reéTCP without dynamic buffer resizing (“retcp”) sees a similar

10

28

throughput to other single-path TCP variants. TDTCP, on the
other hand, does not require any buffer resizing at runtime.
In fact, Figure 7b shows that TDTCP’s VOQ utilization is the
lowest among all of the TCP variants we consider.

One pattern worth noting in TDTCP’s VOQ curve is the
spike when the RDCN transitions from high bandwidth/low
latency to low bandwidth/high latency. We refer to the spike
as the initial burst. The initial burst occurs because TDTCP is
switching to a wide-open congestion window with near-zero
inflight for the new active TDN. During the previous (optical)
TDN, no new segments were arriving at the ToR’s packet
queue while virtually all in-flight packets have been drained.
This process opens up the packet TDN’s congestion window,
hence the sender transmits a cwnd-sized burst upon receiv-
ing the TDN change notification. Techniques such as sender
pacing can help prevent the potential switch buffer overflow.

To differentiate the impact of bandwidth difference versus
latency difference on flow throughput, we repeat the same
experiments but configure Etalon with only bandwidth
difference or only latency difference at a time. Figure 8 shows
the results for an RDCN with only bandwidth differences.
Figure 8a suggests both CUBIC and DCTCP are able to
adapt to bandwidth variation alone; they only slightly
under-perform TDTCP in this setting (although MPTCP
still struggles). Interestingly, the reTCP results suggest that
dynamic buffer resizing, in the absence of latency variation,

TDTCP for Reconfigurable Data Center Networks

L0~ _————— 1.0 — ===
~ .
Vi I-l’
/ /
0.8 0.8{"

[Ty
g 1 — tdtcp L — tdtcp
/ I
‘ mptcp i mptcp
! —-- cubic . —-- cubic
064 | ‘ 0.6 —
0 10 20 30 40 0 40 80 120 160

reordering events
per optical day
(a)

packets to be retransmitted
per optical day
(b)

Figure 10: The (a) number of reordering events per day,
(b) number of packets to be retransmitted per day. Note
the y-axis does not start from 0.

can achieve near-optimal throughput. Without it, however,
reTCP falls back in line with the other variants. Figure 8b
shows that VOQ occupancy is largely unchanged in this
scenario, with TDTCP still the clear winner.

Next, we consider a setting where the two TDNs have
equal bandwidth but differing latency, such as in a multi-hop
Opera-style [29] RCDN. Figure 9 illustrates the throughput*
when link bandwidth is 100 Gbps. Because both TDNs have
identical capacity, the optimal line and packet-only line
almost overlap; the packet-only performance is slightly
higher because flows in packet-only mode do not experience
the reconfiguration blackout period. All of the buffer-filling
TCP variants see similar throughput while DCTCP—a
latency-sensitive variant—performs worse than its peers
(with MPTCP again bringing up the rear). We hypothesize
that the TDTCP approach could allow even latency-sensitive
congestion control algorithms to perform well in such RDCN
setting, but leave this topic to future work.

5.3 Reordering

At first glance, CUBIC’s performance under latency variation
is surprising, as TDTCP includes numerous heuristics (§3.4) to
avoid packet reordering that one would expect to result from
transitioning from a high-latency (packet) TDN to one with
much lower latency (optical). To understand this behavior,
we plot the number of reordering events in each optical day
and the total number of packets impacted by this reordering.
In one reordering event, multiple packets could be affected
if their sequence numbers all fall into the gap between
cumulative ACK sequence number and SACK sequence
number. The total number of affected packets is the number
of segments that will be resent as spurious retransmissions
(if the congestion window permits). The measured reorder-
ing includes both cross-TDN reordering and intra-TDN
reordering, which is an intrinsic property of the TDN itself.

4See Appendix A.4 for an analysis of in-network queuing,

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

11

29

[e]
o
o

o)}
o
o

/| — optimal

i/l — optimized
| — unoptimized
| — packet only

N
o
o

Expected TCP sequence
number (x1000)
N
o
o

o

0 1000 2000 3000 4000

Time (us)

Figure 11: TDTCP performance with and without all
optimizations on TDN change notification.

Figure 10 depicts the cumulative distributions of reordering
events and retransmitted packets per optical day, for 3 repre-
sentative TCP variants: CUBIC, MPTCP and TDTCP. CUBIC
does, in fact experience significant reordering and spurious
retransmission: 15 packets are retransmitted per TDN
transition at the 90th percentile and 133 at maximum. TDTCP
effectively cuts off the tail—only 7 packets are retransmitted
at the 90th percentile with a maximum of 54. Moreover, 80%
of the transitions to the optical TDN do not experience any
reordering or retransmission at all. Hence, we conclude that
CUBIC’s impressive performance is a result of the sophis-
ticated heuristics implemented in the Linux stack that are
able to maintain an appropriate congestion window and high
utilization despite significant reordering. Less finely-tuned
stacks are unlikely to perform as well. We note that MPTCP
maintains separate subflows for each of the two TDNs, so
there should be no reordering due to TDN transitions. Hence,
one can interpret the MPTCP line in these plots as a measure
of the baseline intra-TDN reordering during the experiments.

5.4 TDN change notification

Following discussions in §3.2, we analyze some TDTCP traces
andidentify the component breakdown of end-to-end notifica-
tion delivery latency. Barring the physical propagation delay,
top contributing components are ToR-side packet generation
and host-side notification processing. We list 3 concrete
optimizations below that prove effective in reducing the
component latency. These optimizations combined improve
TDTCP’s throughput by 12.7%, as demonstrated by Figure 11.

First, ToRs can use caching to minimize delay: by construct-
ing an empty ICMP packet in advance and keeping it cached
in memory, ToRs can just fill in the TDN ID and immediately
send the packet out when needed. Compared to constructing
a new packet from scratch every time, caching reduces the
delay in sending out the notification in our software switch
by 8% at the 50th percentile and 2.7x at the 99th.

Second, our initial implementation follows a “push”
model to distribute new TDN IDs: the kernel loops over all
established TDTCP flows and updates their current TDN IDs
one by one. This scales poorly and the unlucky flows which

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

see the TDN update after others get less time to send. Instead,
we change to a “pull” model where each TDTCP flow checks
a global TDN variable protected by a read-write lock when
they need to send or process incoming packets. The time to
update all TDTCP flows is reduced by 3 orders of magnitude.
Finally, using a separate dedicated network to send and re-
ceive the ICMP packets can eliminate the extra queueing delay
on a busy data plane interface with a lot of incoming/outgoing
data packets. This optimization lowers the one-way delay be-
tween sending out an ICMP packet and completion of receiver
processing by 5% at both the 50th and 99th percentiles.

6 RELATED WORK

Existing TCP variants rely on in-band signals such as packet
loss [18, 19], delay [4, 5], and explicit switch feedback [1] to
estimate a fair share of the path bandwidth. TDN changes
interfere with these signals, leading to estimates that tend
to average across TDNs rather than track individual TDNs.
TCP variants for high-speed networks ramp up more aggres-
sively [10, 19] and can recover more quickly from estimation
errors, but do not address the root of the problem. Wireless
networks, with highly-variable bandwidth and frequent
packet drops, have spurred research on modeling bandwidth
fluctuations [40] and differentiating between congestion loss
and random loss [14, 28]. RDCNs, on the other hand, can
provide certainty regarding the current network conditions,
which should in theory enable better performance.

TCP over multiple networks. MPTCP [41] is similar
in spirit to TDTCP in that it divides a connection into
multiple subflows that traverse (potentially) different paths,
such as simultaneous WiFi and cellular connections on a
mobile device. While theoretical analysis shows MPTCP
can perform optimally by leveraging the least-congested
path, our experiments show it is not well equipped to switch
rapidly between subflows when the subflows experience
periods of disconnectivity as they do in RDCN.

One recent proposal, reTCP [32], focuses specifically on
the RDCN environment and advocates for explicit support
from ToR switches, which entice senders to ramp up their
transmission rate before additional bandwidth becomes
available by dynamically increasing the size of switch buffers
in advance of circuit establishment. Furthermore, reTCP
requires ToR switches to mark packets to inform senders
when their flows traverse an optical network; senders then
react by multiplicatively increasing their congestion window.
TDTCP builds on the idea of explicit notification regarding
network conditions but eschews such elaborate switch
support. Moreover, TDTCP is general, supporting an arbitrary
number of distinct TDNs with various properties, not just the
bimodal fabric reTCP presumes. Even still, our experiments
show that TDTCP’s performance is competitive with reTCP

12

30

S. Chen, et al.

in precisely the environments for which reTCP was designed
without requiring its extensive changes to ToR switches.

RDCN technologies. Our evaluation focuses on one
particular class of RDCN, but there are many others in the
literature. In hybrid RDCNss [9, 20, 27, 39], the OCS network is
an accelerator for an existing packet network, and thus uses
the packet network to hide the OCSes’ limited connectivity.
Alternatively, OCS-only RDCNs [3, 6, 15, 21, 29, 30] do not in-
clude a separate packet network; instead, ToRs with no direct
connectivity send traffic through transit ToRs or hold traffic
until direct connectivity is restored. In either case, the number
and frequency of TDN changes can vary. In demand-aware
RDCNs [6, 9, 15, 20, 21, 26, 33], a controller collects real-time
traffic demand information and calculates a schedule that
serves the current demand. More recent demand-oblivious
RDCNs [29, 30] cycle through a set of configurations that
together provide all-to-all connectivity, avoiding runtime
calculations by using a fixed schedule. TDTCP is applicable in
either case; all that is required is that ToRs notify the senders
of the upcoming TDN when they change configurations.

7 CONCLUSION

TDTCP is a new TCP variant designed to make efficient use of
the full spectrum of recent RDCN proposals that provide time-
division multiplexed network paths between communicating
end hosts. TDTCP monitors path characteristics of different
time-division networks using independent copies of TCP
state variables, leverages switch-generated path change noti-
fications to rapidly converge to the optimal congestion state,
and relaxes TCP’s fast-recovery heuristics to avoid spurious
retransmissions when network conditions change. We have
implemented TDTCP in Linux kernel 5.8 and evaluated its per-
formance on a small-scale (emulated) RDCN testbed. Results
show that TDTCP dramatically decreases queue occupancy
within the network and outperforms traditional single-path
TCP variants such as CUBIC and DCTCP for long-lived
flows. TDTCP is competitive with reTCP, a recent proposal
targeting a particular class of RDCNs, but does not require
switches to dynamically adjust buffer sizes as reTCP does.

ACKNOWLEDGEMENTS

We thank Hugo Sadok, Anup Agarwal, Daehyeok Kim,
Stewart Grant, George Porter, George Papen, Alex Forencich
and the anonymous SIGCOMM reviewers for their useful
feedback. This material is based upon work supported by
the National Science Foundation under grants CNS-1122444,
CNS-1911104, CNS-1956095, CNS-2008624, SHF-2107244,
ASCENT-2023468, and CAREER-2144766; the Department
of Energy under the ARPA-E ENLITENED program’s LEED
and PINE projects; DARPA under the FastNICs program; the
Sloan fellowship; and gifts from Meta and Google.

—

[t

[l

=

—

—

— =

—

= =

TDTCP for Reconfigurable Data Center Networks

REFERENCES

[1] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jiten-

dra Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta,
and Murari Sridharan. 2010. Data Center TCP (DCTCP). In Pro-
ceedings of the ACM SIGCOMM 2010 Conference (SIGCOMM ’10).
Association for Computing Machinery, New York, NY, USA, 63-74.
https://doi.org/10.1145/1851182.1851192

Guido Appenzeller, Isaac Keslassy, and Nick McKeown. 2004. Sizing
Router Buffers. SIGCOMM Comput. Commun. Rev. 34, 4 (aug 2004),
281-292. https://doi.org/10.1145/1030194.1015499

Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel Cletheroe, Istvan
Haller, Krzysztof Jozwik, Fotini Karinou, Sophie Lange, Kai Shi, Benn
Thomsen, and Hugh Williams. 2020. Sirius: A Flat Datacenter Network
with Nanosecond Optical Switching. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communication on
the Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM °20). Association for Computing Machinery,
New York, NY, USA, 782-797. https://doi.org/10.1145/3387514.3406221
Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. 1994. TCP
Vegas: New Techniques for Congestion Detection and Avoidance. In
Proceedings of the Conference on Communications Architectures, Protocols
and Applications (SIGCOMM ’94). Association for Computing Machin-
ery, New York, NY, USA, 24-35. https://doi.org/10.1145/190314.190317
Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson. 2016. BBR: Congestion-Based Conges-
tion Control. ACM Queue 14, September-October (2016), 20 - 53.
http://queue.acm.org/detail.cfm?id=3022184

Kai Chen, Ankit Singla, Atul Singh, Kishore Ramachandran, Lei Xu,
Yueping Zhang, Xitao Wen, and Yan Chen. 2014. OSA: An Optical
Switching Architecture for Data Center Networks With Unprecedented
Flexibility. IEEE/ACM Transactions on Networking 22, 2 (2014), 498-511.
https://doi.org/10.1109/TNET.2013.2253120

Yuchung Cheng, Neal Cardwell, Nandita Dukkipati, and Priyaranjan
Jha. 2021. The RACK-TLP Loss Detection Algorithm for TCP. RFC
8985. (Feb. 2021). https://doi.org/10.17487/RFC8985

Mike Duckett, Jerome Moisand, Tom Anschutz, Diamantis Kourk-
ouzelis, and Peter Arberg. 2006. Accommodating a Maximum Transit
Unit/Maximum Receive Unit (MTU/MRU) Greater Than 1492 in the
Point-to-Point Protocol over Ethernet (PPPoE). RFC 4638. (Sept. 2006).
https://doi.org/10.17487/RFC4638

Nathan Farrington, George Porter, Sivasankar Radhakrishnan,
Hamid Hajabdolali Bazzaz, Vikram Subramanya, Yeshaiahu Fain-
man, George Papen, and Amin Vahdat. 2010. Helios: A Hybrid
Electrical/Optical Switch Architecture for Modular Data Cen-
ters. SIGCOMM Comput. Commun. Rev. 40, 4 (aug 2010), 339-350.
https://doi.org/10.1145/1851275.1851223

Sally Floyd. 2003. HighSpeed TCP for Large Congestion Windows.
RFC 3649. (Dec. 2003). https://doi.org/10.17487/RFC3649

Sally Floyd, Jamshid Mahdavi, Matt Mathis, and Dr. Allyn Romanow.
1996. TCP Selective Acknowledgment Options. RFC 2018. (Oct. 1996).
https://doi.org/10.17487/RFC2018

Sally Floyd, Dr. K. K. Ramakrishnan, and David L. Black. 2001. The
Addition of Explicit Congestion Notification (ECN) to IP. RFC 3168.
(Sept. 2001). https://doi.org/10.17487/RFC3168

Linux Foundation. 2022. Data Plane Development Kit (DPDK). (2022).

http://www.dpdk.org
Cheng Peng Fu and S.C. Liew. 2003. TCP Veno: TCP enhance-
ment for transmission over wireless access networks. IEEE

Journal on Selected Areas in Communications 21, 2 (2003), 216-228.
https://doi.org/10.1109/JSAC.2002.807336

[15] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil Devanur,

Janardhan Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche,

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

Houman Rastegarfar, Madeleine Glick, and Daniel Kilper. 2016.
ProjecToR: Agile Reconfigurable Data Center Interconnect. In
Proceedings of the 2016 ACM SIGCOMM Conference (SSIGCOMM ’16).
Association for Computing Machinery, New York, NY, USA, 216-229.
https://doi.org/10.1145/2934872.2934911

[16] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and
Sudipta Sengupta. 2009. VL2: A Scalable and Flexible Data Center
Network. In Proceedings of the ACM SIGCOMM 2009 Conference on Data
Communication (SIGCOMM *09). Association for Computing Machinery,
New York, NY, USA, 51-62. https://doi.org/10.1145/1592568.1592576

[17] Diwaker Gupta, Kenneth Yocum, Marvin McNett, Alex C. Snoeren,
Amin Vahdat, and Geoffrey M. Voelker. 2006. To Infinity and
Beyond: Time-Warped Network Emulation. In 3rd Symposium on
Networked Systems Design & Implementation (NSDI 06). USENIX
Association, San Jose, CA. https://www.usenix.org/conference/
nsdi-06/infinity-and-beyond-time-warped-network-emulation

[18] Andrei Gurtov, Tom Henderson, Sally Floyd, and Yoshifumi Nishida.
2012. The NewReno Modification to TCP’s Fast Recovery Algorithm.
REC 6582. (April 2012). https://doi.org/10.17487/RFC6582

[19] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: A New
TCP-Friendly High-Speed TCP Variant. SIGOPS Oper. Syst. Rev. 42, 5
(jul 2008), 64-74. https://doi.org/10.1145/1400097.1400105

[20] Daniel Halperin, Srikanth Kandula, Jitendra Padhye, Paramvir Bahl,
and David Wetherall. 2011. Augmenting Data Center Networks with
Multi-Gigabit Wireless Links. In Proceedings of the ACM SIGCOMM 2011
Conference (SIGCOMM ’11). Association for Computing Machinery,
New York, NY, USA, 38-49. https://doi.org/10.1145/2018436.2018442

[21] Navid Hamedazimi, Zafar Qazi, Himanshu Gupta, Vyas Sekar, Samir R.
Das, Jon P. Longtin, Himanshu Shah, and Ashish Tanwer. 2014. FireFly:
A Reconfigurable Wireless Data Center Fabric Using Free-Space Optics.
In Proceedings of the 2014 ACM Conference on SIGCOMM (SIGCOMM
’14). Association for Computing Machinery, New York, NY, USA,
319-330. https://doi.org/10.1145/2619239.2626328

[22] Yannick Hauri, Debopam Bhattacherjee, Manuel Grossmann, and
Ankit Singla. 2020. "Internet from Space" without Inter-Satellite Links.
In Proceedings of the 19th ACM Workshop on Hot Topics in Networks
(HotNets °20). Association for Computing Machinery, New York, NY,
USA, 205-211. https://doi.org/10.1145/3422604.3425938

[23] P.Karn and C. Partridge. 1987. Improving Round-Trip Time Estimates
in Reliable Transport Protocols. In Proceedings of the ACM Workshop
on Frontiers in Computer Communications Technology (SIGCOMM
’87). Association for Computing Machinery, New York, NY, USA, 2-7.
https://doi.org/10.1145/55482.55484

[24] John Kim, Wiliam J. Dally, Steve Scott, and Dennis Abts.
2008. Technology-Driven, Highly-Scalable Dragonfly Topol-
ogy. SIGARCH Comput. Archit. News 36, 3 (jun 2008), 77-88.
https://doi.org/10.1145/1394608.1382129

[25] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans
Kaashoek. 2000. The Click Modular Router. ACM Trans. Comput. Syst.
18, 3 (aug 2000), 263-297. https://doi.org/10.1145/354871.354874

[26] He Liu, Feng Lu, Alex Forencich, Rishi Kapoor, Malveeka Tewari,
Geoffrey M. Voelker, George Papen, Alex C. Snoeren, and George
Porter. 2014. Circuit Switching under the Radar with REACToR. In
Proceedings of the 11th USENIX Conference on Networked Systems Design
and Implementation (NSDI'14). USENIX Association, USA, 1-15.

[27] He Liu, Matthew K. Mukerjee, Conglong Li, Nicolas Feltman, George
Papen, Stefan Savage, Srinivasan Seshan, Geoffrey M. Voelker,
David G. Andersen, Michael Kaminsky, George Porter, and Alex C.
Snoeren. 2015. Scheduling Techniques for Hybrid Circuit/Packet
Networks. In Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies (CONEXT ’15). Association

https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/1030194.1015499
https://doi.org/10.1145/3387514.3406221
https://doi.org/10.1145/190314.190317
http://queue.acm.org/detail.cfm?id=3022184
https://doi.org/10.1109/TNET.2013.2253120
https://doi.org/10.17487/RFC8985
https://doi.org/10.17487/RFC4638
https://doi.org/10.1145/1851275.1851223
https://doi.org/10.17487/RFC3649
https://doi.org/10.17487/RFC2018
https://doi.org/10.17487/RFC3168
http://www.dpdk.org
https://doi.org/10.1109/JSAC.2002.807336
https://doi.org/10.1145/2934872.2934911
https://doi.org/10.1145/1592568.1592576
https://www.usenix.org/conference/nsdi-06/infinity-and-beyond-time-warped-network-emulation
https://www.usenix.org/conference/nsdi-06/infinity-and-beyond-time-warped-network-emulation
https://doi.org/10.17487/RFC6582
https://doi.org/10.1145/1400097.1400105
https://doi.org/10.1145/2018436.2018442
https://doi.org/10.1145/2619239.2626328
https://doi.org/10.1145/3422604.3425938
https://doi.org/10.1145/55482.55484
https://doi.org/10.1145/1394608.1382129
https://doi.org/10.1145/354871.354874

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

[28

—

[29

—

(30

[t

(31

—

(32

=

(33

=

for Computing Machinery, New York, NY, USA, Article 41, 13 pages.
https://doi.org/10.1145/2716281.2836126

Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Y. Sanadidi,
and Ren Wang. 2001. TCP Westwood: Bandwidth Estimation for
Enhanced Transport over Wireless Links. In Proceedings of the 7th
Annual International Conference on Mobile Computing and Networking
(MobiCom °01). Association for Computing Machinery, New York, NY,
USA, 287-297. https://doi.org/10.1145/381677.381704

William M. Mellette, Rajdeep Das, Yibo Guo, Rob McGuinness,
Alex C. Snoeren, and George Porter. 2020. Expanding across
time to deliver bandwidth efficiency and low latency. In 17th
USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 20). USENIX Association, Santa Clara, CA, 1-18.
https://www.usenix.org/conference/nsdi20/presentation/mellette
William M. Mellette, Rob McGuinness, Arjun Roy, Alex Forencich,
George Papen, Alex C. Snoeren, and George Porter. 2017. RotorNet: A
Scalable, Low-Complexity, Optical Datacenter Network. In Proceedings
of the Conference of the ACM Special Interest Group on Data Commu-
nication (SIGCOMM ’17). Association for Computing Machinery, New
York, NY, USA, 267-280. https://doi.org/10.1145/3098822.3098838
Dirk Merkel. 2014. Docker: Lightweight Linux Containers for
Consistent Development and Deployment. Linux J. 2014, 239, Article
2 (mar 2014).

Matthew K. Mukerjee, Christopher Canel, Weiyang Wang, Daehyeok
Kim, Srinivasan Seshan, and Alex C. Snoeren. 2020. Adapting TCP for
Reconfigurable Datacenter Networks. In Proceedings of the 17th Usenix
Conference on Networked Systems Design and Implementation (NSDI’20).
USENIX Association, USA, 651-666.

George Porter, Richard Strong, Nathan Farrington, Alex Forencich,
Pang Chen-Sun, Tajana Rosing, Yeshaiahu Fainman, George Papen, and
Amin Vahdat. 2013. Integrating Microsecond Circuit Switching into
the Data Center. In Proceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM (SIGCOMM ’13). Association for Computing Machinery,
New York, NY, USA, 447-458. https://doi.org/10.1145/2486001.2486007

[34] Jon Postel. 1981. Internet Control Message Protocol. RFC 792. (Sept.

(35]

1981). https://doi.org/10.17487/RFC0792

Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh,
Damon Wischik, and Mark Handley. 2011. Improving Datacenter
Performance and Robustness with Multipath TCP. In Proceedings
of the ACM SIGCOMM 2011 Conference (SSIGCOMM °11). Associ-
ation for Computing Machinery, New York, NY, USA, 266-277.

14

32

[36]

[37]

[38]

[39]

[40]

[41]

[42]

S. Chen, et al.

https://doi.org/10.1145/2018436.2018467

Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio
Honda, Fabien Duchene, Olivier Bonaventure, and Mark Handley.
2012. How Hard Can It Be? Designing and Implementing a Deployable
Multipath TCP. In 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 12). USENIX Association, San
Jose, CA, 399-412. https://www.usenix.org/conference/nsdi12/
technical-sessions/presentation/raiciu

Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby
Armistead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman,
Paulie Germano, Anand Kanagala, Jeff Provost, Jason Simmons, Eiichi
Tanda, Jim Wanderer, Urs Holzle, Stephen Stuart, and Amin Vahdat.
2015. Jupiter Rising: A Decade of Clos Topologies and Centralized
Control in Google’s Datacenter Network. SIGCOMM Comput. Commun.
Rev. 45, 4 (aug 2015), 183-197. https://doi.org/10.1145/2829988.2787508
Ankit Singla, Chi-Yao Hong, Lucian Popa, and P. Brighten Godfrey.
2012. Jellyfish: Networking Data Centers Randomly. In 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
12). USENIX Association, San Jose, CA, 225-238. https://www.usenix.

org/conference/nsdil12/technical-sessions/presentation/singla
Guohui Wang, David G. Andersen, Michael Kaminsky, Konstantina

Papagiannaki, T.S. Eugene Ng, Michael Kozuch, and Michael Ryan.
2010. C-Through: Part-Time Optics in Data Centers. In Proceedings
of the ACM SIGCOMM 2010 Conference (SIGCOMM °10). Associ-
ation for Computing Machinery, New York, NY, USA, 327-338.
https://doi.org/10.1145/1851182.1851222

Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013.
Stochastic Forecasts Achieve High Throughput and Low Delay
over Cellular Networks. In 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13). USENIX Association,
Lombard, IL, 459-471. https://www.usenix.org/conference/nsdi13/
technical-sessions/presentation/winstein

Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley.
2011. Design, Implementation and Evaluation of Congestion Control
for Multipath TCP. In Proceedings of the 8th USENIX Conference on
Networked Systems Design and Implementation (NSDI’11). USENIX
Association, USA, 99-112.

Alexander Zimmermann, Arnd Hannemann, and Tim Kosse. 2010.
Flowgrind - A New Performance Measurement Tool. In 2010 IEEE
Global Telecommunications Conference GLOBECOM 2010. 1-6.
https://doi.org/10.1109/GLOCOM.2010.5684167

https://doi.org/10.1145/2716281.2836126
https://doi.org/10.1145/381677.381704
https://www.usenix.org/conference/nsdi20/presentation/mellette
https://doi.org/10.1145/3098822.3098838
https://doi.org/10.1145/2486001.2486007
https://doi.org/10.17487/RFC0792
https://doi.org/10.1145/2018436.2018467
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/raiciu
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/raiciu
https://doi.org/10.1145/2829988.2787508
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/singla
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/singla
https://doi.org/10.1145/1851182.1851222
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/winstein
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/winstein
https://doi.org/10.1109/GLOCOM.2010.5684167

TDTCP for Reconfigurable Data Center Networks

A APPENDIX

Appendices are supporting material that has not been
peer-reviewed.

A.1 Cross-TDN reordering scenarios

high latency network low latency network

sender receiver sender receiver sender receiver
PKT PKT
PKT
123 123 123
PKT
PKT 456 PKT
456 ACK 456
ACK 456
456
ACK
123
ACK
ACK 456
123 ACK
123
(a) (b) (c)
sender receiver sender receiver sender receiver
paly PKT PKT
123 123 123
PKT PKT
456 Ay 456
ACK
456
ACK
ACK ACK
456 456 123
ACK ACK
123 123
(d) (e) (f)
sender receiver sender receiver
PKT
iy 123
PKT
PKT 456
456
ACK
ACK
ACK 456
456
(9) (h)

Figure 12: All types of cross-TDN reordering.

This section extends the cross-TDN packet reordering
discussion in §3.4. It is worth pointing out that all types
of cross-TDN reordering occur when the RDCN schedule
transitions from a high latency network to a low latency
network. There is no cross-TDN reordering in transitions
from low latency to high latency because in that case packets
will only arrive farther apart in the same order.

Figure 12 provides a comprehensive list of cross-TDN
packet arriving scenarios. Scenarios (a)-(c) are data-crossing-
only cases, where data packets arrive reordered at the
receiver. Scenarios (d)-(f) are ACK-crossing-only cases,
where ACK packets are out of order on the return path. And
in scenarios (g)—(h), both data and ACKs are crossed. Within
each category, scenarios differ by how far apart the packets
are sent and the specific RDCN schedule. Scenarios (g) and (h)

15

33

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

% 40
2
Q
S
230
= bic
cu

%20 — mptcp2f
[= A
210
o |
o H
> 0} :

0 1000 2000 3000 4000

Time (us)

Figure 13: ToR VOQ utilization of single-path TCP
CUBIC and MPTCP running in a hybrid RDCN for three
optical weeks. All ToRs have a VOQ limit of 16 packets.

- 40 i
+ : i
2 i ; retcpdyn
)] '
g 30 ; g | — tatep
= ‘ [i [1] — retc
%20 | l | 5 [— dctc?)
c == =AM ==~ — cubi
5 10 o EPP IR EPP e — cubic
o INAT AV AV : ptcp
e) i : :
>0 : : '

0 1000 2000 3000 4000

Time (us)
(a) Packet/optical bandwidth = 10 Gbps
- 40 i - =
p ! i | o
< \ | | % || retcpdyn
B b B

g% A Al il — tdtep
st { | I tip ——retep
520 { | R || — dctp
c 0| | i1 — cubic
ﬁlohh'llbdh'h’ i’)h’h”‘ mptcp2f
Q o NN RN PN R PV TN PN R P T F A A l“,

0 1000 2000 3000 4000

Time (us)

(b) Packet/optical bandwidth = 100 Gbps

Figure 14: ToR VOQ utilization for an RDCN with only
latency differences (max VOQ size is 16 packets for all
cases except retcpdyn). Packet and optical RTTs are
20 s and 10 ps, respectively. Bandwidth is fixed.

contain both data and ACK crossing, hence the ACKs return
to the sender in the same order as the outgoing packets. This
means that double crossing either cancels each other out or
does not manifest as an issue from the sender’s perspective.
For instance, scenario (h) actually sees no reordering in either
the outgoing or incoming paths.

A.2 Special handling for SYN packet

The first SYN packet of a TCP connection is also counted
as a segment. However, despite incrementing packets_out
for this SYN, the Linux TCP stack does not keep a local copy
of the segment like it does for other segments. Moreover,
during the TCP handshake, there is not yet a notion of TDNs
associated with the to-be-established connection, because
the TDTCP negotiation has not completed. A problem

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

hereby emerges: when the SYN/ACK packet is received by
the sender, packets_out should be decremented to reflect
the successful delivery of the SYN segment, but TDTCP does
not know which packets_out was incremented or should
be decremented. To mitigate this issue, TDTCP treats the first
SYN packet as a special case and always tracks it under TDN 0.

A.3 Queuing
with bandwidth and latency changes

Continuing from §2.2, Figure 13 shows the virtual output
queue (VOQ) utilization in the source ToR for the same
configuration as Figure 2. The VOQ utilization of single-path
TCP CUBIC is relatively stable during the first six days in a
week (unshaded regions). When the optical network becomes
active (shaded regions), packets in the VOQ are quickly
drained, and the VOQ remains close to empty, showing that
the service rate is much higher than the arrival rate. In other
words, TCP has not ramped up to the new bottleneck rate.

The interesting dip observed in the mptcp2f curve is the
result of tdm_schd switching subflows for transmission.
When the 7th day ends, the VOQ drain rate drops from
100 Gbps to 10 Gbps while in-flight packets are still arriving
at 100 Gbps. This results in a burst in the VOQ utilization.
The sending host then switches to another subflow for the
packet network, which transmits at a lower rate. Therefore,
the VOQ is partially drained (causing the dip) before the
sender ramps up again to fully occupy the VOQ.

A.4 Queuing with only latency changes

Continuing from §5.2, Figure 14 shows the ToR VOQ
utilization for an RDCN configuration with bandwidth fixed
to 100 Gbps or 10 Gbps, but with varying latency. In both
cases, TDTCP’s buffer utilization is in line with that of CUBIC,
DCTCP, and MPTCP. reTCP, on the other hand, builds up
large queues in advance of circuit start. This is to prepare
enough packets so that it can start blasting at the circuit rate
once the circuit TDN is activated. However, in these scenarios
where bandwidth is fixed, the circuit BDP is smaller than
the packet BDP because the circuit latency is lower, hence
reTCP’s queue-building technique is mismatched. TDTCP, on
the other hand, achieves a high throughput without having
to build large queues.

B ARTIFACT APPENDIX
Abstract

We provide an artifact package of Linux kernel source code,
Etalon RDCN emulator source code, Wireshark source code,
log parser and plotting scripts, as well as raw experiment
dataset for this paper. The artifact package is fully open source
and hosted online with public access. Specific hardware

16

34

S. Chen, et al.

is required to set up a testbed for evaluating TDTCP. We
welcome feedbacks and contributions to our artifacts.

Scope
The artifact package can be used to measure the performance
of various TCP variants in an RDCN environment. Specifi-
cally, the kernel source code can be used to compile and install
different versions of Linux kernels that implement multiple
TCP variants. The Etalon source code can be used to emulate
an RDCN given some specific hardware requirements. The
Wireshark source code can be used to compile and install
Wireshark with TDTCP protocol parser support. This is a
debug tool when developing new features in TDTCP.

The artifact package allows users to reproduce the
evaluation results and figures in the paper.

Contents
The artifact package contains the following artifacts:

e source code of Linux 4.19 MPTCP kernel

e source code of Linux 4.15 reTCP kernel

e source code of Linux 5.8 TDTCP kernel

e source code of Etalon RDCN emulator

e source code of Wireshark with TDTCP protocol parser
support

e log parser and plotting scripts

e raw experiment dataset generated from evaluation

The source code of each kernel variant corresponds to what
we used in the evaluation section. The source code of TDTCP
kernel contains 2 branches: an optimized branch and an
unoptimized branch. The source code of vanilla 4.15 kernel
is not provided as it can be easily obtained from the Ubuntu
18.04 distribution. We also provide you our raw experiment
dataset for cross reference.

Hosting

All source code in the artifact package is hosted on GitHub.
You can find it at https://github.com/shuoshuc/TDTCP.
Commit 1d84b62491e9db00847940029f24a2e43596e18c
of the main branch points to a stable snapshot.

The raw dataset in the artifact package is hosted on
Zenodo. You can find it at https://zenodo.org/record/
6618182#.YsC54mDMIPY. DOI 10.5281/zenodo.6618182
points to a stable snapshot.

Requirements

All experiments in the paper run on a testbed that emulates
a reconfigurable data center network (RDCN) and hosts. 4
machines are required in total, each machine should have
at least 32 CPU cores, 128GB RAM, 100GB disk space, 1x
10GbE NIC, 2x 40GbE NIC, and IPMI or other out-of-band

https://github.com/shuoshuc/TDTCP
https://zenodo.org/record/6618182#.YsC54mDMJPY
https://zenodo.org/record/6618182#.YsC54mDMJPY

TDTCP for Reconfigurable Data Center Networks

means to connect to it. The 40GbE NICs must support DPDK.
All four machines should reside in the same subnet, and
the 10GbE and 40GbE interfaces should each connect to a
separate common switch.

We recommend a spec that looks like:

e Intel(R) Xeon(R) CPU E5-2680 v2

e 128GBECCRAM

o Mellanox ConnectX-3 dual port 40GbE NIC
e Intel 82599ES 10GbE NIC

What happens if using different hardware?

CPU. Since we run 16 containers on each machine to
emulate a server rack, 2 CPU cores are pinned to each con-
tainer for packet processing and other tasks to avoid process
thrashing. With fewer than 32 cores, you might observe delay
in packet processing and a reported performance different
from the paper.

NIC. We require 2 DPDK-capable 40G NICs to emulate
a SDN network with a data plane and a control plane.
The Etalon RDCN emulator binds these 2 NICs to DPDK
for userspace packet processing. The 10G NIC is used

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

17

35

as a separate channel to send commands to and collect
measurements from the hosts without interfering with the
40G network. With NICs of lower speed, you would not be
able to emulate a fast data center network. Results may look
different than expected. However, we expect that you should
be able to at least verify the functionality of the artifacts and
general trend of the results despite different hardware.

We base our experiment environment on Ubuntu 18.04
LTS and highly recommend that you do the same. This
streamlines the setup process and avoids unexpected issues
caused by incompatible software versions. Please make
sure that you have Python installed and the binary points
to Python 2.7. Also make sure that you have root or sudo
permission on all machines.

Detailed instructions

Detailed instructions about how to configure and in-
stall kernels, start Etalon, run experiments and plot
figures are documented in the README file at https:
//github.com/shuoshuc/TDTCP/blob/main/README . md.

https://github.com/shuoshuc/TDTCP/blob/main/README.md
https://github.com/shuoshuc/TDTCP/blob/main/README.md

	Abstract
	1 Introduction
	2 Motivation
	2.1 Hybrid demand-oblivious RDCNs
	2.2 Measuring TCP performance in RDCNs

	3 Design
	3.1 Per-TDN state variables
	3.2 TDN change notification
	3.3 Sequence numbering
	3.4 Packet reordering
	3.5 Fairness, generality, and limitations

	4 Implementation
	4.1 Packet format
	4.2 Connection establishment
	4.3 TDN state management
	4.4 RTT estimation

	5 Evaluation
	5.1 Etalon testbed
	5.2 Bandwidth and latency difference
	5.3 Reordering
	5.4 TDN change notification

	6 Related work
	7 Conclusion
	References
	A Appendix
	A.1 Cross-TDN reordering scenarios
	A.2 Special handling for SYN packet
	A.3 Queuing with bandwidth and latency changes
	A.4 Queuing with only latency changes

	B Artifact Appendix

