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In recent years, the extensive growth in artificial
intelligence (AI) has led to a significant growth of
its applications in both the industry and academic
communities. Al comprises a system’s ability to
“correctly interpret external data, to learn from
such data, and to use those learning to achieve
specific goals and tasks through flexible adaption”
(Kaplan and Haenlein 2019, 15). In a techni-
cal sense, Al is a suite of algorithms that instruct
machines to learn and mimic human intelligence
with regard to vision, reasoning, communication,
and other tasks. Andrew Ng, the former head of
Google Brain, described Al as the new electric-
ity (Ng 2016) that will transform how we think,
how we work, and how we do science.

GeoAl, or geospatial artificial intelligence,
represents an exciting research area that links
Al with location-based analytics and big data
for geospatial problem-solving. Today, geospa-
tial data, such as remote sensing imagery, data
streams from Internet of Things (IoT) devices,
and Global Positioning System (GPS) records
from mobile sensors, are proliferating (Li, Batty,
and Goodchild 2020). The high volume, variety,
and velocity of data pose significant challenges to
early analytical tools designed to handle “small”
and “good” data. GeoAl differs from traditional
approaches in its outstanding ability to pro-
cess big data. By offering a novel, data-driven,
theory-free way to mine big data, GeoAl can
discover new knowledge and hidden patterns
from data of various sources.

As an interdisciplinary expansion of tradi-
tional AI, GeoAl develops as Al advances. In
fact, the efforts to combine Al and geography
can be dated back to the 1980s (Smith 1984).
The authors of Artificial Intelligence in Geography
(Openshaw and Openshaw 1997) systematically
introduced AI methods which were considered
cutting edge at the time, such as expert systems
and neural networks (NNs), as well as their
practical use in geography. This work opened a
chapter for integrating the two fields. Despite
the enthusiasm, GeoAl also drew questions in
its early days as to an overly abstracted model
due to limited computing resources and the
model’s questionable performance in real-world
applications. The recent boom in GeoAl has
brought this research area to the forefront of
GlIScience research. Three factors contributing
to the rapid development of GeoAl are the
exponential growth of data (i.e., big data); the
immense availability of computing power; and
more importantly, the advances in cutting-edge
algorithms, such as machine learning and deep
learning (Li 2020).

Machine learning refers to a set of Al algo-
rithms designed with the aims of identifying
hidden patterns and/or deriving new knowledge
with little human intervention. Compared to the
classic, theory-guided, model-driven approach,
machine learning gains valuable information
and knowledge by exploiting data. There are
two categories of machine learning techniques:
shallow machine learning and deep learning.
Shallow machine learning, such as Naive Bayes
classifier and random forest, identifies the non-
linear relationships between the input (X) and
the output (Y) through an iterative learning
process. Here, X denotes the known attributes
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of an entity or other kinds of independent vari-
ables that may relate to the outcome Y, which
could be a category in a classification problem
or a continuous value in a regression problem.
The process to derive X (a set of independent
variables) is called feature engineering. Shallow
machine learning models often require expert
knowledge and substantial manual work to
define and compute the prominent features
that help identify Y. However, this often leads
to misinterpretation of relationships between
features and outcomes in the real world. If some
important features are overlooked in model
training, the results could be biased or of low
transferability across different study areas. The
emergence of deep learning techniques as a new
research paradigm helps address these issues by
enabling automated feature extraction in the
learning process.

Deep learning refers to computer models
which learn by combining multiple processing
layers to extract representations of data auto-
matically in support of classification or other
decision-making tasks. A popular deep learning
architecture is the deep convolutional neural
network (CNN), which evolves from a tradi-
tional fully connected neural network (NN).
Figure 1 illustrates a simple, multilayer, NN and
a CNN that support deep learning. Figure 1(a)
shows that the mapping between the input
and output is through fully connected layers
containing multiple neurons in three layers: an
input layer, a hidden layer, and an output layer.
The network can be expanded by adding more
hidden layers and more nodes in each layer, but
there can only be one input layer and one output
layer. There are four nodes in the input layer,
representing input values for four attributes or
features that could aftect the output. There is
one node in the output layer, meaning that this
is a binary classification problem, and each input
data record could belong to only one of the two
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values (i.e., 0/1). Similarly, there are three nodes
in the hidden layer. What these hidden nodes
represent, however, is difficult to interpret.

A CNN alters the computational process of a
traditional NN from global operations to local
operations. The global operation of traditional
NNs proceeds with the dense connections
between adjacent layers in which each node in
the previous layer connects to every node in the
immediate next layer. The local operation in a
CNN applies the convolution operation, which
uses a convolution filter moving across the input
image to extract local signatures and assemble
them to produce a feature map (Figure 1b).
This local operation allows the data processing
and model training to be performed in parallel,
either on a graphics computing unit (GPU) or
a cloud-based cluster, such that the model can
achieve convergence quickly.

In a CNN, multiple convolutional layers
can be stacked together (there are three in the
example in Figure 1) to subsequently extract
low-level features (by layers closer to the input
data) to high-level semantics (further down in
the pipeline) which are important to the discern-
ment of objects and/or the type of event. After
the convolution layers, the feature map is serial-
ized into a 1-D vector for a fully connected layer
to produce the final classification or prediction.

The revolutionary nature of deep learning and
its outstanding capability in extracting hidden
patterns from big data has quickly attracted
attention in many scientific domains. The
number of Al-related research publications has
increased sixfold from 2000 to 2018 (Statt 2018).
Material scientists have developed Al models
that are capable of recreating chemistry’s peri-
odic table of elements by automatically parsing
a material database, identifying elements with
similar chemical properties, and then cluster-
ing them in an unsupervised manner (Zhou
et al. 2018). Mathematicians use Al to solve
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Figure 1 Examples of (a) a fully connected neural network and (b) a convolutional neural network.

high-dimensional partial differential equations
(Han, Jentzen, and Weinan 2018). Medical
sciences leverage Al to detect unexpected phar-
macological effects, such as adverse drug events,
by exploring various drug interactions (Ryu,
Kim, and Lee 2018). Applications and appealing
research using Al can also be found in the fields
of psychology, neuroscience, and astronomy.
The upward trend of research adopting Al
in geography is also evident. Since 2015,
research using GeoAl, especially deep learning,
has increased dramatically in many subdisci-
plines of geography. In the domains of physical

geography and Earth system science, scientists
have explored and verified the applicability of
deep learning in (i) classification and anomaly
detection (e.g., when extracting extreme weather
patterns); (i) regression (e.g., when predicting
river runoff in ungauged catchments); and (iii)
state prediction (e.g., when developing hybrid
physical-convolutional network models to make
predictions on temporal changes). In human
geography, researchers have tried to predict
individuals’ socioeconomic status and political
views from scenes in neighborhoods. In the
more technical fields, such as remote sensing
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and geographic information science, numerous
studies are reported related to image recognition,
including classification, object detection, and
pixel-level image segmentation.

Besides deep learning, another GeoAl tech-
nique, knowledge graph, has also been the focus
of recent interest by geospatial researchers. Many
big-tech companies, such as Google and Face-
book, have used large-scale knowledge graphs
to assist smart search and automated query and
answering with chatbots, for example. As its
name suggests, knowledge graph is a graph
that models world entities and the semantic
relationships among them. An entity could be
a geospatial entity, such as a city or a river, or
it could be a moving object, such as a person
or a vehicle. It could also be a digital object,
such as a computer model. In a nutshell, any
object, real or virtual, that can be abstracted as an
entity characterized by different properties can
be added as a node in the knowledge graph. The
semantic linkage (the edge of a graph) among
the entities could be a simple, superclass—subclass
relationship or it could be any other association
relationship, such as “resultln” or “isSimilarTo.”

If we call deep learning a type of data-driven
method that makes a machine smart, the knowl-
edge graph serves a knowledge-driven approach
which helps a machine to gain implicit knowl-
edge by modeling explicitly the entities and
their interrelationships. A knowledge graph and
inference rules facilitate semantic reasoning to
discover missing relationships among entities and
further expand the knowledge. Indeed, deep
learning and knowledge graphs are not exclusive
to each other. Constructing a scalable knowledge
graph requires a machine to automatically pro-
cess massive unstructured or semistructured text
documents and to perform effective information
extraction. Deep learning techniques can exten-
sively support this task because they can analyze
big data and generate semantic composition
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through embedding techniques and nonlinear
mapping.

GeoAl techniques are widely used in industry
and are considered to be key methodological
innovations toward harnessing the data revo-
lution and achieving convergence research. In
2019, the US National Science Foundation
established a new program called Convergence
Accelerator. The program has been actively
funding diverse teams composed of researchers
from academia, industry, government agencies,
and nonprofit organizations to conduct novel
research for building an open knowledge net-
work (OKN). The purpose of the OKN is to
foster interdisciplinary research and the fast con-
version of knowledge produced in academia to
commercial and other real-world scientific appli-
cations. Knowledge graph is deemed to be the
backbone technology enabling the cross-domain
knowledge network that is open, transparent,
and scalable.

Although it is being actively developed,
GeoAl research is still in its infancy. Al is often
questioned as being black box and therefore
less interpretable. Inheriting the AI properties,
GeoAl faces challenges in theoretical justifi-
cations and methodological advances. Clearly,
geography is a natural home for GeoAl tech-
nology to find its value and applications, but
research on the concept should go beyond a
simple import of Al technology from computer
science into geography. What makes GeoAl
more valuable is the exportation of domain
knowledge, especially spatial principles (such as
spatial autocorrelation and spatial heterogeneity),
back to the computer science domain toward
developing more powerful Al models for geo-
graphic inquiries. Recent studies have made
notable advances. For instance, Li, Hsu, and
Hu (2021) described a weakly supervised deep
learning model to support high-accuracy object
detection with only weak labels (i.e., a total



object count vs accurate object bounding boxes).
The authors achieved this by incorporating the
spatial autocorrelation stated in Tobler’s First Law
in Geography to convert the 2-D object detec-
tion problem into a 1-D temporal classification
problem. An optimization function successfully
incorporates the weak labels to detect object
locations even without this exact information
provided in the training data. Experiments using
well-known benchmark datasets in computer
science have shown that the proposed model
achieves state-of-the-art performance as com-
pared to existing models. The method has also
shown satistying capability to detect Mars craters
and natural features on the Earth surface.

The issue of how to make a GeoAl model
more explainable by opening up the black box of
its learning process is also of urgent concern. The
ability to explain allows researchers to compare
the similarities and differences in the human
and machine reasoning processes to evaluate the
trustworthiness of the machine predictions. In
addition, detection of geospatial entities is quite
different from Al applications in computer sci-
ence, such as those involving image scene inter-
pretation. Natural features, such as mountains
and ridges, are difficult to detect because they
often possess complex structures, diverse appear-
ances, and vague boundaries (Li and Hsu 2020).
Hence, the natural complexity calls for new solu-
tions beyond those used by existing Al models to
effectively resolve the quandaries for which they
were designed to address. Integrating geospatial
knowledge into a data-driven decision pipeline
could elevate the deep learning-based solution
to the next level, toward a human-machine
convergent research paradigm.

Meanwhile, as GeoAl is data hungry, the devel-
opment of openly shared benchmark datasets,
especially under community-driven efforts, is a
key to ensure the successful evaluation of GeoAl
models and the advancement of the field. Finally,
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efforts are needed from the entire geospatial
community to create and expand on education
and training of the next-generation workforce
so that its members will be capable of conduct-
ing cutting-edge GeoAl research. Innovative
curriculum development to improve students’
computing, programming, and spatial thinking
skills is of great demand in higher education.
All these actionable items, in both research and
education, will ensure the prosperous future of
GeoAlL
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