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Invariance-based randomization tests—such as permutation tests, rota-
tion tests, or sign changes—are an important and widely used class of statis-
tical methods. They allow drawing inferences under weak assumptions on the
data distribution. Most work focuses on their type I error control properties,
while their consistency properties are much less understood.

We develop a general framework to study the consistency of invariance-
based randomization tests, assuming the data is drawn from a signal-plus-
noise model. We allow the transforms (e.g., permutations or rotations) to be
general compact topological groups, such as rotation groups, acting by linear
group representations. We study test statistics with a generalized subadditiv-
ity property.

We apply our framework to a number of fundamental and highly impor-
tant problems in statistics, including sparse vector detection, testing for low-
rank matrices in noise, sparse detection in linear regression, and two-sample
testing. Comparing with minimax lower bounds we develop, we find perhaps
surprisingly that in some cases, randomization tests detect signals at the min-
imax optimal rate.

1. Introduction. Invariance-based randomization tests—such as permutation tests—are
an important, fundamental, and widely used class of statistical methods (see Figure 1 for
an illustration). They allow making inferences in general settings, with few assumptions on
the data distribution. Most methodological and theoretical work focuses on their validity,
studying their type I error (false positive rate) control. There is also work on their robustness
properties, but less is known about their power and consistency properties.

Our work develops a general theoretical framework to understand the consistency prop-
erties of invariance-based randomization tests. We assume that the data follows a “signal-
plus-noise” model, being the sum of a deterministic signal and a random noise component.
We allow the randomization distributions to be Haar measures over general compact topo-
logical groups, such as rotation groups. We go beyond most prior work, which often focuses
on discrete groups (mainly permutation groups), and does not fully develop the technically
challenging case of compact groups. Moreover, we allow the action of these groups on the
data to be via arbitrary compact linear group representations.

We apply our theoretical framework to a number of fundamental and highly important
problems in statistics, including sparse vector detection, low-rank matrix detection, sparse
detection in linear regression, and two-sample testing. Perhaps surprisingly, combining with
minimax lower bounds that we develop, we find that invariance-based randomization tests
for appropriate test statistics are minimax rate optimal in a number of cases. We consider this
surprising, because the critical values of randomization tests are determined using the same
universal principle. These critical values rely on very little information about the problem,
namely a set of symmetries of the noise.

In more detail, our contributions are as follows:
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Data X

Test statistic f (X)

Test statistic after transform f (G1X)

Test statistic after transform f (GKX)

f (X) > q1−α(f (X),f (G1X), . . . , f (GKX)).
.
.

FIG. 1. Flowchart of the invariance-based randomization test: Given the observed data X, we compute the test
statistic f (X), as well as the test statistics f (X),f (G1X), . . . , f (GKX) applied to the data X transformed by
some transforms G1, . . . ,GK , for instance, permutations, sign changes, or rotations. Under the null hypothesis,
we assume that the distribution X is invariant under a group G (e.g., permutations, rotations, or sign changes),
and that G1, . . . ,GK are sampled i.i.d. from the uniform distribution over this group. We reject the null hypothesis
if f (X) is larger than the 1 − αth quantile of f (G1X), . . . , f (GKX). This includes familiar permutation tests
for exchangeable or i.i.d. data, rotation tests assuming spherically distributed data, and sign changes assuming
noise symmetric about zero.

1. Framework for studying consistency. We develop a framework for studying the con-
sistency of invariance-based randomization tests using the language of group representation
theory. In our framework, we have a compact topological group (e.g., permutations, rotations)
that acts linearly on the data space. We assume that under the null hypothesis, the distribution
of the data is invariant under the action of the group. In the standard randomization test, we
sample several group elements chosen at random from the Haar measure on the group, and
apply them to the data. This test rejects the null hypothesis when a chosen test statistic is
larger than an appropriate quantile of the values of the test statistic applied to the randomly
transformed data.

2. Consistency results. We develop consistency results for the invariance-based random-
ization test, assuming the data has been sampled from signal-plus-noise models. We consider
sequences of signal-plus-noise models where the signal equals zero under the null hypoth-
esis. We study broad classes of test statistics satisfying the weak requirement of so-called
ψ-subadditivity. This includes, for instance, suprema of linear functionals of the data, norms
and seminorms, concave nondecreasing functions in one dimension, and convex functions of
bounded growth. Further, this class is closed under conic combinations, taking maxima, and
compositions with one-dimensional nondecreasing subadditive functions.

We develop a general consistency result, showing that if the sequence of alternatives is
such that the value of the test statistic is large enough, then the randomization test rejects
with probability tending to unity. We compare this to the corresponding result for the deter-
ministic test based on the same the statistic. The consistency threshold for the randomization
test is inflated slightly by a signal-noise interference effect. By randomly transforming the
signal, we create additional noise, inflating the effective noise level in the randomized statis-
tic compared to its distribution under the null. However, we later show that in many examples
this inflated noise level can be controlled. As part of our consistency theory, we extend to the
setting with nuisance parameters, which allows us to handle problems such as two-sample
testing.

3. New proof techniques. Our proofs are based on novel approaches. For the proofs of
the general consistency result, we proceed by a series of reductions, first reducing from the
quantile of the randomization distribution to its maximum, then from considering several ran-
dom transformations to only one transform, and then reducing from a dependent transformed
signal and noise to independent ones, via a “deterministic separating sequence” argument.

4. Examples. We illustrate our results in several important examples. We show that our
results provide consistency conditions for invariance-based randomization tests in a number
of problems, including sparse vector detection, low-rank matrix detection, sparse detection
in linear regression, and two-sample testing.
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For sparse vector detection, we consider two settings: where the noise vectors for the
different observations are independent and sign symmetric (but not necessarily identically
distributed), and where they are rotationally symmetric (spherical). For both cases, we ob-
tain general consistency results, and some matching lower bounds. Specifically for the sign
symmetric case where the entries of the noise are independent and identically distributed ac-
cording to a subexponential distribution, our upper bound for the signflip randomization test
matches a lower bound that we obtain. For spherical noise, we obtain general upper bounds
as well as specific examples for multivariate t distributions. We also provide similar results
for two sample testing.

For low rank matrix detection, we consider the case where each of the columns of the noise
matrix has an independent spherical distribution. We obtain a general consistency guarantee
for the randomization test based on the operator norm test statistic, using rotation transforms.
We show that this result is rate optimal for the special case of normal noise.

For sparse vector detection in linear regression, we study detection based on the �∞ norm
of the least-squares estimator. We assume that the noise entries of each observation are in-
dependent and sign-symmetric. We provide a consistency result for the associated signflip
based randomization test, in terms of geometric quantities determined by the feature matrix;
namely the suprema of two associated Bernoulli processes.

As a general conclusion, we think it is perhaps surprising that invariance-based randomization
tests can sometimes detect signals at the same rate as the optimal tests that assume knowledge
about the exact noise distribution. We support our claims with numerical experiments. These
experiments can be reproduced with the code provided at https://www.github.com/dobriban/
randomization_test, also provided in the Supplementary Material (Dobriban (2022a)).

Note on terminology. We follow the terminology of “randomization tests” from Ch. 15.2
of the standard textbook by Lehmann and Romano (2005): “the term randomization test will
refer to tests obtained by recomputing a test statistic over transformations (not necessarily
permutations) of the data.” This does not consider tests based on randomization of treat-
ments; see, for example, Hemerik and Goeman (2020), Onghena (2018) for discussion. In
particular, Hemerik and Goeman (2020) suggest using “randomization tests” only when the
treatments are randomized, and suggest using “group invariance tests” for the type of tests
we consider. For consistency with the standard textbook by Lehmann and Romano (2005),
we will simply use the terminology “invariance-based randomization tests” or “randomiza-
tion tests.” Another well-known example of randomization occurs with discretely distributed
tests, to ensure exact type I error control; our work is unrelated to this issue.

Some notations. For a positive integer m ≥ 1, the m-dimensional all-ones vector is denoted
as 1m = (1,1, . . . ,1)�. We denote [m] := {1,2, . . . ,m}, and for j ∈ [m], the j th standard
basis vector by ej = (0, . . . ,1, . . . ,0), where only the j th entry equals unity, and all other en-
tries equal zero. The variance of a random variable X is denoted as VarX or Var[X]. For two
random vectors X, Y , we denote by X =d Y that they have the same distribution. For an in-
dex m = 1,2, . . ., and two sequences (am)m≥1, (bm)m≥1, am � bm (and am = O(bm)) means
that am ≤ Cbm for some C ≥ 1 independent of m, but possibly dependent on other problem
parameters as specified case by case. We write am � bm (or am = �(bm)) when bm � am, and
am ∼ bm (or am = �(bm)) when am � bm � am. For a vector v ∈ R

m, and p ∈ (0,∞), ‖v‖p

denotes the �p norm. Unless otherwise specified, ‖v‖ denotes the Euclidean or �2 norm,
‖v‖ = ‖v‖2. For a matrix s, the norm ‖s‖2,∞ is the maximum of the column �2 norms of
s. For two subsets A, B of a vector space, A + B = {a + b : a ∈ A,b ∈ B} denotes the
Minkowski sum. For a p × 1 vector v, let M = diag(v) be the p × p diagonal matrix with
the entries Mii = vi . A function f : V 	→ V ′, where V , V ′ are two vector spaces, is an odd
function if f (−v) = −f (v) for all v ∈ V . A Rademacher random variable is uniform over

https://www.github.com/dobriban/randomization_test
https://www.github.com/dobriban/randomization_test
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the set {±1}. For a probability distribution Q and a random variable X ∼ Q, we may write
probability statements involving X in several equivalent ways, for instance for the probabil-
ity that X belongs to a measurable set A, we may write: P(X ∈ A), PX(A), PQ(X ∈ A),
PX∼Q(X ∈ A), Q(X ∈ A), or Q(A). Further, if Q belongs to a collection of probability mea-
sures H (e.g., a null or an alternative hypothesis), then we may also write PH(A) to denote
Q(A) for an arbitrary Q ∈ H .

1.1. Related works. There is a large body of important related work. Here we can only
review the most closely related ones due to space limitations; see Section 1 of the Supple-
mentary Material (Dobriban (2022b)) for additional related works. The idea of constructing
a statistical test based on randomly chosen permutations of datapoints in a dataset dates back
at least to Eden and Yates (1933), Fisher (1935); see Berry, Johnston and Mielke (2014),
David (2008) for historical details. General references on permutation tests include Anderson
and Robinson (2001), Ernst (2004), Good (2006), Hemerik and Goeman (2018a), Kennedy
(1995), Pesarin (2001a), Pesarin and Salmaso (2010a), Pesarin and Salmaso (2012). These
tests have many applications, for instance, in genomics (Tusher, Tibshirani and Chu (2001))
and neuroscience (Winkler et al. (2014)). For more general discussions of invariance in statis-
tics, see Eaton (1989), Giri (1996), Wijsman (1990); for a general probabilistic reference, see
also Kallenberg (2006).

Two-sample permutation tests date back at least to Pitman (1937), and have recently been
studied in more general multivariate contexts (Kim, Balakrishnan and Wasserman (2020)).
This problem brings special considerations such as issues with using balanced permutations
(Southworth, Kim and Owen (2009)).

For the theoretical aspects of invariance-based randomization tests, Lehmann and Stein
(1949) develop results for testing a null of equality in distribution Hm0 : Xm =d gmXm where
a transform gm ∈ Gm is chosen from a group Gm acting on the data. They show that all
admissible tests have constant rejection probability equal to the level over each orbit, that
is, are similar tests. They use this to show that the most powerful tests against simple al-
ternatives with density fm reject when fm(Xm) is greater than the appropriate quantile of
{fm(gmXm), gm ∈ Gm}. They use the Hunt-Stein theorem to derive uniformly most powerful
(or most stringent) invariant tests from maximin tests for testing against certain composite
alternatives. These are related to our results, but we focus on consistency against special
structured signal-plus-noise alternatives instead of maximizing power in a finite sample.

The seminal work by Hoeffding (1952) considers general group transforms, including
signflips, for testing symmetry of distributions, but focuses on permutation groups for most
part. The main results center on power and consistency of tests. For consistency, Theo-
rem 2.1 in Hoeffding (1952) states that for a test statistic fm such that fm(x) ≥ 0 and
EGm∼Qmfm(Gmx) ≤ c where Gm ∼ Qm denotes that the group element is distributed ac-
cording to the probability measure Qm on Gm, we have q1−α,m(x) ≤ c/α, α ∈ (0,1), where
q1−α,m is the 1 − αth quantile of the distribution of fm(Gmx) when Gm ∼ Qm. Then, if
fm → ∞ under a sequence of alternatives, the test that rejects when fm > q1−α,m(x) is con-
sistent, that is, has power tending to unity. These conditions are distinct from ours. Specifi-
cally, his conditions require the test statistic to be pointwise bounded (for each datapoint x,
they require that EGm∼Qmfm(Gmx) ≤ c), whereas we make assumptions that need to hold
with high probability, over the randomness in the data and the random transform. Thus, the
two types of conditions are different. Our conditions seem to be more direct. His Theorem
3.1 requires establishing limiting distributions of test statistics, which may be challenging or
impossible in certain cases.

For asymptotic power of certain special invariance-based randomization tests, one can
obtain results based on contiguity, see, for example, Example 15.2.4 in Lehmann and Ro-
mano (2005). In this line of work Albers, Bickel and van Zwet (1976), Bickel and van Zwet
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(1978) have studied asymptotic expansions of the power of distribution-free one-sample and
two-sample tests, using Edgeworth expansions, showing that the deficiency (in the sense of
Hodges and Lehmann) of appropriate linear rank tests and permutation tests compared to
optimal nonparametric tests can often be quite small, and even tend to zero in certain cases.
However, we are interested in problems where the contiguity of the alternatives may be un-
known, or hard to establish.

For permutation tests, Dwass (1957) shows that it is valid to randomly sample permu-
tations—as opposed to using all permutations—to construct the randomization test. Hemerik
and Goeman (2018b) provide a general type I error control result for random group transfor-
mations under exact invariance, and apply it to false discovery proportion control. See also
Hemerik, Solari and Goeman (2019). Hemerik and Goeman (2018a) extend this in various
forms, including to sampling transforms without replacement, and giving rigorously justified
formulas for p-values.

There are a number of works studying the power properties of invariance-based random-
ization tests. We have already discussed the fundamental work by Hoeffding (1952). Pesarin
and Salmaso (2010) develop finite-sample consistency results for certain combination-based
permutation tests for multivariate data, when the sample size is fixed and the dimension tends
to infinity. They focus on one-sided two-sample tests, and discuss Hotelling’s T -test as an
example. Pesarin and Salmaso (2013) characterize weak consistency of permutation tests for
one-dimensional two-sample problems. They study stochastic dominance alternatives assum-
ing the population mean is finite and without assuming existence of population variance.

Pesarin (2015) develops some further theoretical aspects of permutation tests. This in-
cludes consistency properties (Property 9), for two-sample tests under some nonparametric
assumptions, and alternatives specified by an increased mean of the test statistic. These have
different assumptions than the results in our paper, focusing on two-sample problems (while
we have general invariance), and nonparametric models (while we focus on parametric ones).

One one of the most closely related papers is that of Kim, Balakrishnan and Wasserman
(2020b). They study permutation tests, which are a special case of group invariance tests. The
examples in our work mostly concern signflip-based and rotation tests. Two-sample testing
is studied in both works, but under different assumptions: we study testing the equality of
means in a location model, whereas they study testing the equality of two distributions, such
as multinomials and distributions with Hölder densities. Thus, our results are not directly
comparable. For instance, our minimax optimality for two-sample testing involves location
families with i.i.d. subexponential noise, whereas their examples are multinomial distribu-
tions and Hölder densities.

Recent work (posted publicly after our paper) by Koning and Hemerik (2022) develops
a framework for improving the power of randomization tests by choosing appropriate sub-
groups of transformations. Further, they include results showing that the t-test is equivalent
to a randomization test where the randomization is performed under the entire orthogonal
group. In this light, properties of the t-test also rely on such minimal information; and this
may shed some light on the useful properties of randomization tests that we study.

In context. To further put our work in context, we can make the following comparisons:

• The vast majority of works only provide theoretical results for the behavior of randomiza-
tion tests under the null hypothesis (Eden and Yates (1933), Fisher (1935), Hemerik and
Goeman (2018a), Pitman (1939)).

• The seminal work of Hoeffding (1952), already discussed above, provides consistency
conditions that are distinct from ours; and does not discuss any of the specific problems
that we study. The power analysis based on contiguity (Lehmann and Romano (2005))
does not apply to many of the problems we study. As detailed above, the consistency and
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minimax optimality analyses from Kim, Balakrishnan and Wasserman (2020b), Pesarin
(2015), Pesarin and Salmaso (2010), Pesarin and Salmaso (2013) all concern different
setups from and/or special cases of our results.

Scientific context. For an even broader scientific context, we emphasize that random-
ization tests are ubiquitous in modern science. Their proper use is crucial for reproducible
results; and failure to use them correctly can result in irreproducible results, false scientific
discoveries, and ultimately a waste of resources. Here are some examples:

• In neuroscience, the analysis of fMRI data requires testing hypotheses about the activation
of regions in the brain. It has been observed that inferences based on models such as Gaus-
sian fields with parametric covariance functions can have massively inflated false-positive
rates (Eklund, Nichols and Knutsson (2016)). To mitigate this problem, it has been pro-
posed to use randomization methods such as permutation methods (for two-sample prob-
lems) or random sign flips (for one-sample problems) to set critical values. Further ran-
domization methods have been proposed for other problems such as general linear models
(Winkler et al. (2014)), or brain network comparison (Simpson et al. (2013)).

The ultimate goal is to report reliable discoveries, which involves analyzing data not
from the null distribution, but rather from an alternative distribution that contains signals.
Our work can shed light on when randomization tests can succeed in such an analysis of
data containing signals.

• In genetics and genomics, hypothesis testing is routinely performed to identify associations
between observed phenotypes and genotypes, or between genotypes, etc. Randomization
tests, and in particular permutation tests, are widely used to set critical values, in methods
such as transmission disequilibrium tests, etc, and are broadly available in popular software
such as PLINK; see, for instance, Churchill and Doerge (1994), Epstein et al. (2012),
Purcell et al. (2007). Randomization tests are also used for more sophisticated tasks such
as gene set enrichment analysis (Barry, Nobel and Wright (2005), Efron and Tibshirani
(2007), Subramanian et al. (2005)).

2. General framework.

2.1. Setup. We consider a sequence of statistical models, indexed by an index parameter
m → ∞. We observe data Xm from a real vector space Vm, for instance, a vector or a matrix
belonging to Euclidean space Rpm . We assume that we know a group Gm of the symmetries of
the distribution of the data. See Section 3 of the Supplementary Material (Dobriban (2022b))
for a discussion of how such symmetries can arise in practice. A group Gm has a multiplication
operation “·” that satisfies the axioms of associativity, identity, and invertibility. For instance,
we could have that the entries of Xm are exchangeable (corresponding to the permutation
group), symmetric about zero (corresponding to the group of addition modulo two) or that
the density of Xm is spherical (corresponding to the rotation group).

In addition, to transform the data, we have a group representation ρm : Gm → GLm(Vm),
acting linearly on Xm ∈ Vm via gmXm := ρm(gm) · Xm. The group representation “repre-
sents” the elements of the group Gm as invertible linear operators Vm 	→ Vm belonging to
the general linear group GLm(Vm) of such operators. The group representation ρm preserves
the group multiplication operation, that is, ρm(gmg′

m) = ρm(gm)ρm(g′
m) for all gm,g′

m ∈ Gm,
and ρm(eGm) = IVm , where eGm is the identity element of the group, and IVm is the identity
operator on Vm. For general references on representation theory, see Eaton (1989), Fulton
and Harris (2013), Hall (2015), James and Liebeck (2001), Knapp (2013), Serre (1977), etc.
For group representations in statistics, see Diaconis (1988). We will use basic concepts from
this area throughout the paper.
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Null hypothesis of invariance, and randomization test. We want to use the symmetries of
the noise distribution to detect the presence of nonsymmetric signals. Under the null hypoth-
esis, we assume that the distribution of the data is invariant under the action of each group
element gm ∈ Gm: Xm =d gmXm.1 We study the following invariance-based randomization
test (sometimes also called a group invariance test), which at various levels of generality
has been considered dating back to Eden and Yates (1933), Fisher (1935), Hoeffding (1952),
Lehmann and Stein (1949), Pitman (1937). We sample Gm1, . . . ,GmK i.i.d. from Gm (in a
way specified below), and reject the null if for a fixed test statistic fm : Vm 	→ Rm, the fol-
lowing event holds:

(1) Em = {
fm(Xm) > q1−α

(
fm(Xm),fm(Gm1Xm), . . . , fm(GmKXm)

)}
,

for the 1 − αth quantile q1−α of the numbers fm(Xm),fm(Gm1Xm), . . ., fm(GmKXm)

and some α ∈ (0,1]. Specifically, let Gm0 = IVm be the identity operator on Vm, and
f(1) ≤ f(2) ≤ · · · ≤ f(K+1) be the order statistics of fm(GmiXm), i ∈ {0,1, . . . ,K}. Let
k = �(1 − α)(K + 1)
. Rejecting the null if fm(Xm) > f(k) is guaranteed to have level at
most α, see, for example, Theorem 2 in Hemerik and Goeman (2018a) for an especially clear
and rigorous statement.

Noise invariance and robustness. The advantage of randomization tests compared to a
rejection region of the form fm(Xm) > c̃m for a fixed c̃m is that it does not require the manual
specification of the critical value c̃m. The critical value needs to account for the set of distri-
butions included the null hypothesis, which may be a very large nonparametric family. In this
case, it might be challenging to set the critical value to ensure type I error control. Random-
ization tests avoid this problem by relying on the symmetries of the noise distributions. To
wit, randomization tests are valid under any null hypothesis for which the distribution of the
noise is invariant under the group. This effectively amounts to the test only depending on the
collection of orbits, which form a maximal invariant, see Sections 3 and 4 in Eaton (1989)
for examples.

Thus our model can be semiparametric, where the nuisance parameter—the distribution of
the noise—is infinite-dimensional and is only restricted by an invariance condition. We may
add further assumptions on the noise, to enable cleanly stated consistency results, in which
case the model may become parametric.

For instance, for the rotation group O(pm), we get spherical distributions, which have a
density pm(Xm) = πm(‖Xm‖2) with respect to a σ -finite dominating measure on R

pm only
depending on the Euclidean norm of the data Xm (Fang, Kotz and Ng (2018), Fang and
Zhang (1990), Gupta and Varga (2012)). This is a nonparametric class that includes in partic-
ular distributions such as the multivariate t , multivariate Cauchy, scale mixtures of spherical
normals, etc. In particular, it includes heavy tailed distributions, for which tests based on the
normal assumption can have an inflated type I error. As another example, consider a station-
ary field Xm,J = (Xi)i∈J , for some index set J . Suppose Gm acts on J , and induces an action
on Xm,J via its regular representation, that is, (gmXm,J )i = X

g−1
m i

. For instance, we can have
a discrete-time stationary time series where J = Z, and Gm = (Z,+). In this example, any
translation of the time series keeps the distribution invariant.

While sometimes it is possible to construct test statistics whose distribution does not de-
pend on a broad set of null hypotheses (see, e.g., Section 4.3 “Null robustness” in Eaton
(1989)), this may not be possible when the null hypothesis has a great number of nuisance

1This is called the “Randomization hypothesis,” Definition 15.2.1 in Lehmann and Romano (2005). Using the
terminology of Bickel et al. (1993), Section 6.3, it is an example of a “nonparametric group model.”
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parameters. For example, this holds for null hypotheses where each noise entry is indepen-
dent with a probability density only assumed to be symmetric around zero, in which case
sign-flip based methods are applicable; see, for example, Example 15.2.1 of Lehmann and
Romano (2005), and also Hemerik, Goeman and Finos (2020), Hong, Sheng and Dobriban
(2020).

Haar measure. In the definition of the randomization test, Gm1, . . ., GmK are chosen i.i.d.
from the uniform (Haar) measure on Gm, which is assumed to exist. We refer to Section 2 in
Folland (2016) for details; see also Eaton (1989), Fulton and Harris (2013), Wijsman (1990).
Thus, Gm is assumed to be a compact Hausdorff topological group with the Borel sigma-
algebra generated by the open sets. For brevity, we will sometimes refer to such groups as
compact groups. The Haar probability measure Qm on Gm is the unique probability measure
such that Qm(Gm ∈ A) = Qm(Gm ∈ g′

mA) for all g′
m ∈ Gm and for all Borel sets A. See for

example, Theorems 2.10 & 2.20 in Folland (2016). Thus, in particular, we have the equality
in distribution Gm =d Gmg′

m for Gm ∼ Qm, and any fixed g′
m ∈ Gm.

Choice of K . We remark that, as is well known, choosing K larger, and k as above, can
generally lead to a more precise control of the type I error. Indeed, for a given K , the smallest
type I error control guaranteed by the randomization test is 1/(K + 1), and there are only K

possible values of k ∈ [K] to control the type I error more generally. Thus, for a larger K ,
we expect that we can control the type I error more accurately. Indeed, we observe this in our
experiments. Intuitively, we generally also expect larger K to lead to higher power; and we
also observe this in experiments. However, we are not aware of a general theoretical result to
this extent.

Alternative hypothesis: Signal-plus-noise model. To study the consistency of the test,
we will consider a sequence of alternative hypotheses in the signal-plus-noise model with a
deterministic signal sm and a random noise Nm,

Xm = sm + Nm.

The null hypothesis is specified by Hm0 : sm = 0pm , in which case Xm = Nm. The alternative
hypothesis Hm1 is specified by a set �m1 ⊂ Vm of signals sm ∈ �m1. We call �m = {0}∪�m1
the parameter space. The alternative hypothesis is decisively not invariant under Gm. In fact,
one can view the test statistic as detecting deviations from invariance.

We view the signal-plus-noise model as quite broad, and we will study a variety of ex-
amples as special cases. The breadth of the model arises from two aspects: First, one can
choose the signal parameter space �m to be quite general, for instance, a linear subspace, a
union of linear subspaces, a convex cone, etc. Second, one can model the family to which
the distribution of the noise Nm belongs; and our theory will rely on the symmetries of these
distributions. Further, from classical asymptotic statistics, we know that asymptotically any
sufficiently regular parametric model is well approximated by a normal observation model,
which can be viewed as a signal-plus-noise model like ours if the noise distribution does not
depend on the signal.

However, the scope of this model is limited in a few ways. It assumes a specific “structural
model” for the data, and it is essentially a submodel of a multidimensional location family.
For instance, it requires the distribution of the noise to be functionally independent on the
unknown paramater sm. In some cases, this may be approximately achieved via appropriate
variance-stabilizing transforms. In our analysis, this is currently needed to be able to formu-
late consistency conditions based on only one global distribution of the noise. If the noise
distribution can vary in parameter space, we expect that the behavior of randomization tests
could be more complex. We discuss this and further limitations of our work in Section 4.
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2.2. General consistency. Our basic idea to establish consistency of randomization tests
is to find conditions under which the test statistic under the alternative is much larger than the
randomized test statistic, that is, (informally) fm(sm + Nm) � fm(Gm[sm + Nm]). We wish
to do this by introducing only broadly applicable assumptions. The first key step is to find a
lower bound on fm(sm + Nm). To achieve this, we make assumptions of fm.

For a given constant ψ > 0, we consider ψ-subadditive test statistics, that is, functions
fm : Vm 	→R such that for all a, b ∈ Vm,

ψ · f (a + b) ≤ f (a) + f (b).

Note that typically ψ ≤ 1. In the current argument, we will use that fm(sm + Nm) ≥
ψfm(sm) − fm(−Nm). This allows us to lower bound the value fm(sm + Nm) of the test
statistic by a main term ψfm(sm) depending only on the signal, and an error term −fm(−Nm)

depending only on the noise (which we will also control). We will use a similar argument to
upper bound the randomized test statistic fm(Gm[sm + Nm]). These conditions are enough
to guarantee the consistency of tests of the form fm(Xm) > c̃m for appropriately chosen “or-
acle” critical values c̃m (which are not practically implementable in general); and we will
compare the resulting conditions later in this section.

Examples of subadditive functions include:

1. Given any set Wm ⊂ Vm, the suprema of linear functionals

fm(x) = sup
wm∈Wm

w�
mx,

assumed to be finite-valued functions, are 1-subadditive. These are the sublinear functionals
on Vm, see, for example, Section 5.4, Ch. 7, and specifically Exercise 7.103 in Narici and
Beckenstein (2010). In particular, affine functions f (x) = w�x + c are 1-subadditive for any
w ∈ Vm and any c ≥ 0.

2. For instance, for any norm ‖ · ‖ on Vm (with the dependence on m suppressed), we
can take fm(x) = ‖x‖ by choosing Wm = {wm : ‖wm‖∗ ≤ 1}, the unit ball in the dual norm
‖ · ‖∗ of ‖ · ‖.

3. When Vm = R is one-dimensional, for any concave nondecreasing function c :
[0,∞) → R such that c(0) ≥ 0, f : R 	→ R given by f (x) = c(|x|) is 1-subadditive. Ex-
amples include f (x) = |x|q for q ∈ (0,1]. See Section 4 of the Supplementary Material
(Dobriban (2022b)) for the argument.

4. Convex functions of bounded growth: If f : Rp → R is convex and satisfies
ψf (2x) ≤ 2f (x), then f is ψ-subadditive. Indeed, f (a)+f (b) ≥ 2f ([a + b]/2) ≥ ψf (a +
b) by convexity and bounded growth. For instance, f (x) = ‖x‖q

q , for q ≥ 1 satisfies f (2x) =
2qf (x), thus it is 21−q -subadditive.

Nonexamples include functions of very fast growth, for instance, f : R 	→ R, f (x) =
exp(x). However, for the purposes of hypothesis testing, only the acceptance and rejection
regions are relevant; and thus even for test statistics that are not subadditive, one may—on
a case-by-case basis—find subadditive test statistics with the same acceptance and rejection
regions; where our theory can be applied. For instance, instead of the exponential map above,
one may consider the identity map as a monotone transform. Further, subadditive maps have
a number of closure properties, being closed under:

1. Conic combinations: If fj : Vj 	→ [0,∞), j ∈ [J ] are ψj -subadditive, then for any
τj ≥ 0, j ∈ [J ], ∑

j∈[J ] τjfj is minj∈[J ] ψj -subadditive.
2. Maxima: If fj : Vj 	→ [0,∞), j ∈ [J ] are ψj -subadditive, then maxj∈[J ] fj is

J−1 minj∈[J ] ψj -subadditive.
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3. Compositions with 1-D functions: if f1 : [0,∞) 	→ R is nondecreasing and ψ1-
subadditive; and f2 :Rp 	→ [0,∞) is 1-subadditive, then f1 ◦f2 :Rp 	→R is ψ1-subadditive.
Indeed,

f1 ◦ f2(x + y) ≤ f1
[
f2(x) + f2(y)

] ≤ ψ−1
1

[
f1 ◦ f2(x) + f1 ◦ f2(y)

]
.

Our first theorem is a general consistency result for randomization tests with ψ-subadditive
test statistics.

THEOREM 2.1 (Consistency of randomization test). Consider a sequence of models in-
dexed by m ≥ 1, m ∈ N, such that the data Xm ∈ Vm follow a pm-dimensional signal-plus-
noise model Xm = sm + Nm, where sm ∈ �m is deterministic and Nm is a random noise
vector. Test the sequence of null hypotheses Hm0 : sm = 0 against a sequence of alternative
hypotheses Hm1 with signal vectors sm ∈ �m1 for a fixed level α ∈ (0,1]. Reject the null
hypothesis using the randomization test (1). Let fm be ψ-subadditive. Assume the following:

1. Noise invariance. The distribution of the noise is invariant under Gm: Nm =d gmNm for
all gm ∈ Gm.

2. Signal strength. There is a sequence (tm)m≥1, and for any sequence (sm)m≥1 such that
for all m ≥ 1, sm ∈ �m1, there is another sequence (t̃m)m≥1, that may depend on sm,
t̃m = t̃m(sm), such that for all large enough integers m,

(2) fm(sm) > ψ−2 t̃m(sm) + ψ−1(
ψ−1 + 1

)
tm.

Further, as m → ∞:

(a) Noise level. We have P(fm(Nm) ≤ tm) → 1 and P(fm(−Nm) ≤ tm) → 1.
(b) Bound on randomized statistic. The test statistics evaluated on the randomized

signal fall below t̃m(sm), that is, for any sequence (sm)m≥1 such that for all m ≥ 1, sm ∈
�m1,

PGm∼Qm

(
fm(Gmsm) ≤ t̃m(sm)

) → 1.

Under condition 1, the randomization test has level at most α. Under conditions 1& 2, the
randomization test is consistent, that is, for the event Em from (1), for any sequence (sm)m≥1
such that sm ∈ �m1 for all m ≥ 1, limm→∞ PGm1,...,GmK∼Qm,Nm(Em) = 1.

Some comments on the assumptions are in order:

1. The noise invariance condition is required to ensure the exact type I error control, as
discussed above.

2. Our analysis relies on comparing the size of the test statistic on the data and the
randomized data. The subadditivity assumption allows us to reduce this to comparing the
size of the test statistics on the signal, the noise, and the randomized signal. The remaining
conditions are meant to capture high-probability deterministic bounds on the statistic over
the randomness in the remaining stochastic quantities: the noise and random group elements.

3. The sequence tm controls the size of the statistic fm evaluated on the noise Nm. The
sequence t̃m(sm) controls the size of the statistic evaluated on the randomized signal Gmsm.

See Section 4 of the Supplementary Material (Dobriban (2022b)) for the proof, which is
novel. For the consistency result, we proceed by a series of reductions, first reducing from
the quantile test to a max-based test, then from considering several random transformations
to only one transform, and then reducing from a dependent transformed signal and noise to
independent ones. In particular, our proof relies on the existence of a “separating sequence,”
which deterministically separates the values of the test statistic fm(Xm) from the randomized
versions fm(GmXm). For completeness, we record this result below.
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PROPOSITION 2.2 (Separating sequence). Under the conditions of Theorem 2.1, assume
only Condition 1, without ψ-subadditivity and without Condition 2. Suppose in addition that
there is a separating sequence (t ′m)m≥1 such that fm(Xm) > t ′m and fm(GmXm) ≤ t ′m with
probability tending to unity as m → ∞. Then, the randomization test is consistent.

See the end of Section 4 of the Supplementary Material (Dobriban (2022b)) for the proof,
which is already contained in the proof of Theorem 2.1. While our analysis relies on the
existence of a deterministic separating sequence, it turns out that this is not necessary for the
consistency of randomization tests, and we provide a discussion at the end of Section 4 of the
Supplementary Material (Dobriban (2022b)).

Conventions. To lighten notation, we will often omit the dependence of t̃m(sm) on sm,
writing simply t̃m. Further, when it is clear from context what the sequence of tests is, we
will simply say that the “test is consistent,” as opposed to saying that the “sequence of tests
is consistent.”

Consistency of deterministic test. As mentioned, ψ-subadditivity is enough to guarantee
the consistency of deterministic tests of the form fm(Xm) > c̃m for appropriately chosen
deterministic critical values c̃m. We state this result below and compare it as a “baseline”
result with the conditions for the consistency of randomization tests.

PROPOSITION 2.3 (Consistency of deterministic test). In the setting of Theorem 2.1,
suppose that condition 2(a) holds, along with the following condition:

1. Signal strength. There is a sequence (tm)m≥1 such that for all large enough integers
m ≥ 1,

(3) fm(sm) > 2ψ−1tm.

Then, for any sequence (c̃m)m≥1 such that c̃m ≤ tm for all m ≥ 1, the sequence of determin-
istic tests that rejects when fm(Xm) > c̃m is consistent, that is,

lim
m→∞PHm1

(
fm(Xm) > c̃m

) = 1.

See Section 4 of the Supplementary Material (Dobriban (2022b)) for the proof. To ensure
type I error control at level α, the sequence of critical values (c̃m)m≥1 needs to be chosen such
that supP∈Hm0

P(fm(Xm) > c̃m) ≤ α. As we discussed, this can be difficult when the class of
null hypotheses is large and has many nuisance parameters. Thus, the test with deterministic
critical values may not be practically implementable. However we can still consider it as an
idealized “baseline,” to understand the conditions on the signal strength that our approach
provides to ensure consistency. Comparing the conditions for data signal strength, (2) and
(3), and recalling that typically ψ ≤ 1, we see that the requirement for the randomization test
is stronger. The factor in front the noise level tm is larger, and in addition the randomization
test also has the additional term ψ−2 t̃m controlling the size of the randomized signal.

Thus, our requirements for the randomization test are more stringent. However, as ex-
plained above, the deterministic test requires a method to set the critical value, which may
be very hard or impossible in practice in certain problems where the null hypothesis is very
large. Specifically, every distribution in the null hypothesis leads to a constraint for the critical
value; and thus, in general, makes setting the critical value more challenging.



2454 E. DOBRIBAN

Nuisance parameters. We next develop a generalization of our consistency results allow-
ing nuisance parameters. This allows handling problems such as two-sample testing where
the global mean is a nuisance. Let Xm = νm + sm + Nm, where νm is a nuisance parame-
ter, sm ∈ �m is the signal. Suppose νm belongs to a known linear space Um, νm ∈ Um. We
can reduce this to the previous setting by projecting into the orthogonal complement of Um.
Let Pm = PU⊥

m
be the orthogonal projection operator into the orthogonal complement of Um.

Then Pmνm = 0, so by projecting with Pm, we have

PmXm = Pmsm + PmNm.

Let X̃m = PmXm be the new observation, S̃m = Pmsm be the new signal, and Ñm = PmNm

be the new noise. Then, this reduces to the standard signal-parameter model, with the signal
parameter space �̃m = Pm�m = {Pmsm : sm ∈ �m}, and a new induced noise distribution.

2.3. Review of tools to obtain concrete results. To analyze concrete examples, we will
rely on a few technical tools, reviewed in the following sections.

2.3.1. Rate optimality. In this section, we review some basic results on minimax rate
optimality for hypothesis testing that we will use, focusing on Ingster’s (or the chi-squared)
method (Ingster (1987), Ingster and Suslina (2012)). This result allows randomized tests φ :
Vm 	→ [0,1], where φ(x) is the probability of rejecting the null for data x. Denote the set of
all level α ∈ (0,1) tests by


m(α) =
{
φ : Vm 	→ [0,1] : sup

P∈Hm0

EP [φ] ≤ α
}
.

Define the minimax type II error as

Rm = inf
φ∈
m(α)

sup
P∈Hm1

EP [1 − φ].

Suppose that Pm0 ∈ Hm0 and Pm1, . . . ,PmMm ∈ Hm1. Define the average likelihood ratio
between Pm0 and Pm1, . . . ,PmMm as

Lm = 1

Mm

Mm∑
i=1

pmi(Xm)

pm0(Xm)
,

where pmi , i ∈ [Mm] ∪ {0} are, respectively, the densities of Pmi , i ∈ [Mm] ∪ {0} with respect
to a common dominating sigma-finite measure on Vm. Then, it is well known (see, e.g.,
Ingster and Suslina (2012), and Section III.B of Banks et al. (2018) for a very clear statement)
that to achieve consistency, that is, to have Rm → 0, we must have limm→∞ VarPm0[Lm] =
∞.

A further key result holds when the null distribution Pm0 is N (0, Ipm) and the alternative
Hm1 contains distributions of the form N (sm, Ipm), for sm ∈ �m1. Consider a prior �m on
�m1. Then we have—see, for example, Ingster and Suslina (2012) or Lemma 1 of Banks et
al. (2018)—for two independent copies S,S′ ∼ �m,

(4) VarPm0[Lm] = ES,S′∼�m
exp

(
S�S′).

2.3.2. Tail bounds of random variables. We recall some well-known tail bounds for ran-
dom variables. Suppose that for all m ≥ 1 and i ∈ [m], Zi are i.i.d. random variables with
a probability distribution π . Let Fπ(t, n) = P(|n−1 ∑n

i=1 Zi | > t), with Zi ∼ π i.i.d. for all
i ∈ [n].

There is a vast number of well-known results on tail bounds of sums of i.i.d. random
variables under a variety of conditions; see, for example, Boucheron, Lugosi and Massart
(2013), Petrov (2012), Vershynin (2018), etc. Each of these can be used together with our
framework to obtain consistency results. In a very rough order of increasing generality:
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1. The tail of sums of subexponential random variables (including sub-Gaussian
and bounded variables) can be controlled via Bernstein-type inequalities, which lead to
Fπ(t, n) ≤ C exp(−cnmin{t, t2}) for some C, c depending only on π (Vershynin (2018)).
Bernstein-Orlicz random variables interpolate between sub-Gaussian and subexponential ran-
dom variables (van de Geer and Lederer (2013)).

2. There are various Orlicz norms for random variables, and corresponding tail bounds,
for instance, for random variables with tail decay of order roughly exp(−xα), α > 0 (which
have all polynomial moments but for α < 1 have no moment generating function) (Chamakh,
Gobet and Szabó (2020)), or of order roughly exp(− ln[x + 1]κ) for κ > 0 (which have
all polynomial moments but no moment EX∼π exp(|X|c), c > 0 (Chamakh, Gobet and Liu
(2021)).

For instance, the results of Chamakh, Gobet and Liu (2021) imply the following.
Consider � : R+ 	→ R

+, �(x) = exp(ln[x + 1]κ) − 1, and for a random vector Z,
the �-Orlicz “norm”2 ‖Z‖� = inf{c > 0 : E�(‖Z‖/c) ≤ 1}. Then, for i.i.d. random
variables Z1, . . . ,Zn ∼ π , with finite �-Orlicz norm and finite variance, Fπ(t, n) ≤
2 exp(− ln[Cn

1/2
m t + 1]κ) for some C depending on π , see the remark after Corollary 2.3

of Chamakh, Gobet and Liu (2021).
3. For random variables with finitely many polynomial moments, one has Khintchine-

type inequalities (Boucheron, Lugosi and Massart (2013), Petrov (2012)), as well as
Rosenthal- and Fuk-Nagaev-type inequalities (Marchina (2019), Rio (2017)).

4. For more heavy-tailed random variables with only a variance, Chebyshev’s inequality
applies to the sample mean, but there are tighter tail bounds for other mean estimators, see,
for example, Catoni (2012), Lugosi and Mendelson (2019), Lugosi and Mendelson (2021).

2.3.3. Bernoulli processes. Here we review the definition of Bernoulli processes, which
we will use later in our consistency results. For any positive integer q , a subset T of Rq , and
a vector b = (b1, . . . , bp) of independent Rademacher random variables, the map t 	→ t�b,
with t ∈ T , is referred to as a Bernoulli process (also called a Rademacher process, espe-
cially in learning theory) see, for example, Boucheron, Lugosi and Massart (2013), Talagrand
(2014).

In this case, for any function class Fm = {f ∗
m = (fm,1, . . . , fm,nm)}, such that each fm,i :

R
pm 	→ R is an odd function, and any random vectors Nm = (Nm,1, . . . ,Nm,nm) that are mu-

tually independent and sign-symmetric, that is, Nm,j =d −Nm,j for all j ∈ [nm], for i.i.d.
signflips b1, . . . , bnm , conditional on Nm,i ∈ {±N0

m,i} for fixed N0
m,i , i ∈ [nm], the random-

ization distribution (b1Nm,1, . . . , bnmNm,nm) for test statistics of the form

fm(Nm) = sup
f ∗

m∈Fm

nm∑
i=1

fm,i(Nm,i)

is a Bernoulli process. Indeed, one can take q = nm, and the index set T = {(fm,1(N
0
m,1), . . .,

fm,nm(N0
m,nm

)) : f ∗
m ∈ Fm}.

The fundamental result for bounding expectations of suprema of Bernoulli processes is
the Bednorz-Latala theorem (Bednorz and Latała (2013)), see also Proposition 5.14 & Theo-
rem 5.1.5 in Talagrand (2014) for an expository presentation. Consider a subset T of Rq for
some q > 0 and a vector b = (b1, . . . , bq) of i.i.d. Rademacher random variables. Then, for
Z ∼N (0, Iq), the Bernoulli complexity of T is characterized as

b(T ) := E sup
t∈T

t�b ∼ inf
{
E sup

t∈T1

t�Z + sup
t∈T2

‖t‖1 : T ⊂ T1 + T2

}
.

2This may nor may not satisfy the triangle inequality, see Chamakh, Gobet and Liu (2021) for discussion.
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In turn, the Gaussian complexity E supt∈T1
t�Z is characterized up to constants by the generic

chaining (Talagrand (2014)).
Further, Bernoulli processes concentrate around their mean with a sub-Gaussian tail: as-

suming T ⊂ B(t0, σ ) (where B(x, r) is the �2 ball of radius r centered at x), for any u > 0,

P
(∣∣∣sup

t∈T

t�b − b(T )
∣∣∣ ≥ u

)
≤ c exp

(−cu2/σ 2)
,

for a universal constant c, see Theorem 5.3.2 in Talagrand (2014). We define the infimum of
the radii of all �2 balls containing the set T as the radius r(T ) of T . Further, for any scalar l,
we denote

(5) U+(T , l) := b(T ) + l · r(T ).

The above results imply that, for any sequence of positive integers (qm)m≥1, any sequence
of sets (Tm)m≥1 with Tm ⊂ R

qm , and any sequence (lm)m≥1 such that lm > 0 for all m and
lm → ∞ as m → ∞, P(supt∈Tm

t�b ≤ U+(Tm, lm)) → 1. In principle, these results provide
basic tools to control the tails of Bernoulli processes. However, they can require some work to
use in specific cases; thus, more specific results (which we will discuss later) are of interest.

3. Examples. In this section, we apply our theory to several important statistical prob-
lems. Our results allow us to determine consistency conditions in a broad range of settings.
Beyond the examples below, we also provide results for two-sample testing in Section 2 of
the Supplementary Material (Dobriban (2022b)).

3.1. Detecting sparse vectors. Our first example is the fundamental statistical problem
of sparse vector detection. We make nm noisy observations Xm,i , i = 1, . . . , nm of a signal
vector sm. We assume that the signal vector is either zero, or “sparse” in the sense that it
has only a few nonzero coordinates. We are interested to detect—or test—if there is indeed
a nonzero signal buried in the noisy observations. This is challenging due to the potentially
large and unknown level of noise. Randomization tests can be useful, because they do not
require the user to know the level of noise. Indeed, they only require one to know some
symmetries of the noise, and automatically adapt to the other nuisance parameters such as
the noise level.

Formally, we observe nm vectors Xm,i = sm+Nm,i , i = 1, . . . , nm of dimension pm, which
are sampled from a signal-plus-noise model. We arrange them into an nm × pm matrix Xm,
which has the form Xm = 1nms�

m +Nm. We are interested to detect “sparse” vectors sm; more
specifically, we are interested to test against sm with a large �∞ norm ‖sm‖∞. We use the test
statistic fm(Xm) = n−1

m ‖1�
nm

Xm‖∞.

3.1.1. Sign-symmetric noise. Based on specific assumptions on the noise, various differ-
ent randomization tests are valid. To illustrate our theory, we will make the relatively weak
nonparametric assumption that the noise vectors (Nm,i)i∈[nm] are mutually independent, and
the distribution of each noise vector Nm is sign-symmetric, independently of all other noise
vectors, that is, for any vector b ∈ {±1}nm , (Nm,1, . . . ,Nm,nm) =d (b1Nm,1, . . . , bnmNm,nm).

We consider the randomization test from equation (1), where we randomly flip the sign of
the datapoints K times using diagonal matrices Bm,i , i = 1, . . . ,K , with i.i.d. Rademacher
entries on the diagonal. We have the following result.

PROPOSITION 3.1 (Consistency of randomization test for sparse vector detection). Let
Xm,i = sm + Nm,i , i = 1, . . . , nm, where sm are pm-dimensional signal vectors and Nm,i ,
i = 1, . . . , nm, are mutually independent vectors such that Nm,i =d −Nm,i . As m → ∞, the
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sequence of randomization tests (1) of the sequence of null hypotheses sm = 0, with statistics
fm(Xm) = n−1

m ‖1�
nm

Xm‖∞ and randomization distribution uniform over nm × nm diagonal
matrices with independent Bernoulli entries is consistent against the sequence of alternatives
with sm ∈ �m1, if there is a sequence (tm)m≥1 such that with probability tending to unity,
‖n−1

m

∑nm

i=1 Nm,i‖∞ ≤ tm, and for any sequence (sm)m≥1 such that for all m ≥ 1, sm ∈ �m1,

(6) lim inf
m→∞

‖sm‖∞
2tm

> 1.

See Section 5 of the Supplementary Material (Dobriban (2022b)) for the proof. Roughly
speaking, this result shows the consistency of the signflip-based randomization test when
the signal strength is at least “twice above the noise level,” as formalized in equation (6).
Intriguingly, Proposition 2.3 leads to the same condition; thus suggesting that the additional
noise created by randomization may be small in this case. However, of course, the two results
provide only sufficient conditions; not necessary ones.

Obtaining specific consistency results. Therefore, obtaining specific consistency results
boils down to controlling ‖n−1

m

∑nm

i=1 Nm,i‖∞, the �∞ norm of a mean of potentially non-
i.i.d. random vectors. This can be accomplished under a variety of conditions, and has been
widely studied in the areas of concentration inequalities and empirical processes. We need to
find tm such that ‖n−1

m

∑nm

i=1 Nm,i‖∞ ≤ tm holds with probability tending to unity.
Consider first the simplest setting: for all m ≥ 1 and i ∈ [m], Nm,i are i.i.d. and have

pm i.i.d. coordinates sampled from a probability distribution π . Then by a union bound,
the required condition holds with probability least 1 − pmFπ(tm;nm), where Fπ(t, n) =
P(|n−1 ∑n

i=1 Zi | > t), with Zi ∼ π i.i.d. for all i ∈ [n]. To ensure consistency, it is thus
enough if tm is such that limm→∞ pmFπ(tm;nm) = 0. The tail bounds from Section 2.3.2
imply the following:

1. For subexponential random variables (including sub-Gaussian and bounded
variables), Bernstein-type inequalities imply limm→∞ pmFπ(tm;nm) = 0 if tm ∼√

(logpm)/nm, assuming tm ≤ 1.
2. For random variables with a finite �-Orlicz norm and finite variance, where � :

R
+ 	→ R

+, �(x) = exp(ln[x + 1]κ) − 1, the results of Chamakh, Gobet and Liu (2021)
imply that limm→∞ pmFπ(tm;nm) = 0 if tm ∼ exp[(logpm)1/κ ]/√nm.

Non-i.i.d. noise vectors with possibly dependent entries. Beyond the simplest setting of
i.i.d. noise vectors with i.i.d. entries, one can consider more general, nonidentically dis-
tributed noise vectors with possibly dependent entries. The sign-symmetry requirement
Nm := (Nm,1, . . . ,Nm,nm) =d (b1Nm,1, . . . , bnmNm,nm) for the validity of the randomization
test is equivalent to taking an arbitrary random vector N0

m = (N0
m,1, . . . ,N

0
m,nm

), and then

multiplying each N0
m,j , j ∈ [nm], by an independent Rademacher random variable.

To bound the tail of such a test statistic fm(Nm) for an arbitrary noise distribution, one
general approach is to first condition on the “orbit” of Nm under the signflip group, G(Nm) =
{(v1Nm,1, . . . , vnmNm,nm), v ∈ {±1}nm}, apply a bound accounting for the random signflips
(possibly using bounds on Bernoulli processes), and finally control the resulting tail bound
over the unconditional distribution of Nm.

Rate-optimality. Next, using tools from Section 2.3.1, we discuss certain rate-optimality
results for the randomization tests discussed in this section. In the setting of Proposition 3.1,
consider Pm0 specifying the distribution of the noise Nm, and Pmi ∈ Hm1, i = 1, . . . ,Mm.
Then

Lm = 1

Mm

Mm∑
j=1

pmj (Xm)

pm0(Xm)
= 1

Mm

Mm∑
j=1

pm0(Xm − 1nmS�
mj )

pm0(Xm)
= 1

Mm

Mm∑
j=1

nm∏
i=1

pm,i,0(Xm,i − Smj )

pm,i,0(Xm,i)
.
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Suppose all Nm,i have equal distribution, with pm i.i.d. coordinates with density π . Let Mm =
pm, and Smj = τm · ej , where ej is the j th standard basis vector, and τm > 0 will be chosen
below. Then

Lm = 1

pm

pm∑
j=1

nm∏
i=1

π(Xm,i,j − τm)

π(Xm,i,j )
.

Thus,

VarLm = 1

pm

Var

[
nm∏
i=1

π(Xm,i,1 − τm)

π(Xm,i,1)

]
= 1

pm

{(
VarZ∼π

[
π(Z − τm)

π(Z)

]
+ 1

)nm − 1
}
.

Under appropriate regularity conditions in parametric statistical models

VarZ∼π

[
π(Z − τm)

π(Z)

]
= χ2(

π(· − τm),π
) = Iπ · τ 2

m + o
(
τ 2
m

)
,

where Iπ = ∫
π ′(x)2/π(x)dx is the Fisher information of π (see, e.g., Polyanskiy (2019),

Theorem 7.12.). Consistency requires that limm→∞ VarPm0[Lm] = ∞, so that for any C >

0, limm→∞(1 + Iπτ 2
m)/ log(Cpm + 1) ≥ 1. Thus, the minimal signal strength required for

detection is at least ∼ √
log(pm)/nm. For subexponential random variables, this shows that

the signflip randomization test is rate-optimal in this case.
To summarize this discussion, we can formulate the following result:

PROPOSITION 3.2 (Rate-optimality of signflip test for sparse vector detection). Under
the assumptions of Proposition 3.1, suppose that Nm,i , i = 1, . . . , nm, have i.i.d. entries from
a distribution π that is subexponential and symmetric about zero, with a finite Fisher infor-
mation. Let �m1(τm) = {sm ∈ R

pm : ‖sm‖∞ ≥ τm}. The sequence of signflip-based random-
ization tests (1) of the sequence of null hypotheses sm = 0 from Proposition 3.1 is consistent
against the sequence of alternatives with sm ∈ �m1(τm) when τm = C

√
log(pm)/nm for a

sufficiently large constant C > 0. Moreover, when τm = o(
√

log(pm)/nm), there is no con-
sistent sequence of tests of sm = 0 against sm ∈ �m1(τm).

3.1.2. Spherical noise. We also study the case of spherical noise. Since the symmetry
group of the noise is larger, it turns out that is enough to have a single observation Xm =
sm + Nm ∈ R

pm to obtain a consistent test for a reasonable signal strength. We consider the
randomization test from equation (1), with a randomization distribution that rotates the data
K times using uniformly chosen rotation matrices Om,i ∈ O(pm), i = 1, . . . ,K . Thus, in
contrast to the previous section where each data point was transformed individually via a
sign flip, here the single data vector Xm is transformed via an arbitrary rotation.

PROPOSITION 3.3 (Consistency of orthogonal randomization test for sparse vector de-
tection). Let Xm = sm + Nm, where Xm, sm, Nm are pm-dimensional vectors and Nm has
a spherical distribution. As m → ∞, the sequence of randomization tests (1) with statis-
tics ‖Xm‖∞ and randomization distributions uniform over O(pm) is consistent against the
sequence of alternatives with sm ∈ �m1, if there is a sequence (tm,2)m≥1 such that with prob-
ability tending to unity, ‖Nm‖2 ≤ tm,2, and for any sequence (sm)m≥1 such that for all m ≥ 1,
sm ∈ �m1,

(7) lim inf
m→∞

‖sm‖∞/(2 logpm)1/2

(‖sm‖2 + 2tm,2)/p
1/2
m

> 1.
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See Section 5 of the Supplementary Material (Dobriban (2022b)) for the proof.
This condition is a form of relative sparsity: the maximal absolute coordinate ‖sm‖∞ is

large compared to the �2 norm ‖sm‖2 and to the noise level ‖Nm‖2. Proposition 2.3 leads
to the condition lim infm→∞ ‖sm‖∞/‖Nm‖∞ ≥ 2. Now, one can check (and we do in the
proof) that ‖Nm‖∞ =d ‖Nm‖2 · ‖Zm‖∞/‖Zm‖2, where Zm ∼ N (0, Ipm). Moreover, as we

also check in the proof, ‖Zm‖∞ ∼ (2 logpm)1/2 and ‖Zm‖2 ∼ p
1/2
m . Hence, the condition for

the deterministic test is (roughly)

lim inf
m→∞

‖sm‖∞/(2 logpm)1/2

2tm,2/p
1/2
m

> 1.

We can see that the condition is milder that (7) (compare the denominators); but may be
asymptotically equivalent if ‖sm‖2 = o(tm,2).

Obtaining consistency results. Therefore, obtaining specific consistency results boils down
to controlling ‖Nm‖2, the �2 norm of a spherically invariant random vector. This distribution
can be completely arbitrary. We give a few examples of such random vectors in Table 1,
including normal, multivariate t , and multivariate Cauchy distributions. See Fang, Kotz and
Ng (2018), Chapter 3, for more examples.

1. For Zm ∼ N (0, Ipm), we have ‖Zm‖2
2 ∼ χ2

pm
. By the chi-squared tail bound in

Lemma 8.1 of Birgé (2001), when �m ∼ χ2
pm

P

(
�m/pm ≥ 1 + 2

√
x

pm

+ 2x

pm

)
≤ e−x.

Hence, for any sequence (lm)m≥1 such that lm > 0 for all m and lm → ∞ as m → ∞, �
1/2
m ≤

p
1/2
m (l

1/2
m ∧ [1 + O((lm/pm)1/2)]) with probability tending to unity. Thus, we can take

tm,2 = p1/2
m

(
l1/2
m ∧ [

1 + O
(
(lm/pm)1/2)])

.

2. For a multivariate Cauchy distribution (and more generally a multivariate t distri-
bution with dm ≥ 1 degrees of freedom), by the chi-squared tail bound in Lemma 8.1 of
Birgé (2001), when �m ∼ χ2

dm
, �m/dm ≥ 1 − 2

√
x/dm with probability at most exp(−x).

Hence, for any sequence (lm)m≥1 such that lm > 0 for all m and lm → ∞ as m → ∞,
1/�

1/2
m ≤ d

1/2
m (l

1/2
m ∧ [1 + O((lm/dm)1/4)]) with probability tending to unity. Thus, we can

take

tm,2 = p
1/2
m (l

1/2
m ∧ [1 + O((lm/pm)1/2)])

d
1/2
m (l

1/2
m ∧ [1 + O((lm/dm)1/4)])

.

See Section 5 of the Supplementary material (Dobriban (2022b)) for a discussion of rate-
optimality.

TABLE 1
Classical examples of spherical distributions, for random vectors Z ∈ R

p , for p > 0. The densities are given up
to constants independent of the argument z ∈R

p , and the distribution of ‖Z‖2
2 is given in terms of classical

distributions such as the chi-squared distribution with p degrees of freedom (χ2
p), and the F -distribution with p

and d > 0 degrees of freedom (Fp,d )

Distribution Density Distribution of ‖Z‖2

Normal ∼ exp(−‖z‖2
2/2) χ2

p

Multivar. Cauchy ∼ (1 + ‖z‖2
2)−(p+1)/2 p · Fp,1

Multivar. t with d d.o.f. ∼ (1 + ‖z‖2
2/d)−(p+d)/2 p · Fp,d



2460 E. DOBRIBAN

FIG. 2. Evaluating the power of the randomization test in comparison with the deterministic test as a function
of signal strength in sparse vector detection. Left plot: rotation test; right plot: signflip test. See the text for details.

Numerical example. We support our theoretical result by a numerical example. We generate
data from the signal-plus-noise model Xm = sm + Nm, where Nm ∼ N (0, Ipm), with pm =
100 and sm = (μ,0,0, . . . ,0)� with the signal strength parameter μ taking values over a
grid of size 20 spaced equally between 0 and 4 · √

logpm. We evaluate the power of the
deterministic test based on ‖Xm‖∞, tuned to have level equal to α = 0.05. The critical value
tα is set so that PHm0(‖Xm‖∞ ≥ tα) = 0.05, and thus equals tα = 
−1([(1 − α)1/pm + 1]/2),
where 
−1 is the standard normal quantile function, that is, the inverse of the standard normal
cumulative distribution function. In this case, the noise has rotational symmetry. This model
can also be viewed as having sign symmetric noise (Section 3.1.1), with nm = pm, and with
each Nm,i , i = 1, . . . , nm being a one-dimensional standard normal random variable.

We evaluate the power of the randomization test based on K = 19 and K = 99 random
orthogonal rotations as well as the same number of random signflips, with α = 0.05. Since the
two randomization tests are appropriate under different observation models, we emphasize
that this experiment does not aim to compare the two types of randomization methods. We
repeat the experiment 1000 times and plot the average frequency of rejections.

On Figure 2, we observe that, as expected, the randomization tests correctly controls the
level (under the null when μ = 0). Moreover, the power of all tests increases to unity over
the range of signals considered, and the deterministic test has only slightly higher power than
the randomization tests. In particular, the randomization tests achieve power almost equal to
unity at almost the same point as the deterministic test. This is aligned with our results, and
supports our claims that the randomization tests are near-optimal. Further, we also observe
that the power with K = 99 random transforms is slightly higher.

Heavy tailed example. One of the the strengths of randomization tests is that they seam-
lessly apply to heavy tailed noise. To illustrate this, we repeat the above experiment with
t-distributed noise entries (with three and five degrees of freedom, respectively) instead of
normal noise, and using the signflip randomization test. On Figure 3, we observe that the
power of the randomization test increases over the range studied; but since the t distribution
has heavier tails than the normal, the power increases at a slower rate than in our previous
experiment, especially for the t distribution with three degrees of freedom.

3.2. Detecting spikes/low-rank matrices. A second example is the important problem of
detecting low-rank matrices, which is fundamental in multivariate statistical analysis, includ-
ing in PCA and factor analysis; see, for example, Anderson (1958), Dobriban (2020), Hong,
Sheng and Dobriban (2020), Johnstone (2001), Johnstone and Onatski (2020), Johnstone and
Paul (2018), Muirhead (2009).

Here the data Xm is represented as an nm × pm matrix, where often nm is the number of
samples/datapoints, and pm is the number of features. We are interested to detect if there is



CONSISTENCY OF RANDOMIZATION TESTS 2461

FIG. 3. Evaluating the power of the randomization test for t-distributed noise. Left plot: t distribution with three
degrees of freedom; right plot: t distribution with five degrees of freedom. See the text for details.

a latent signal in the highly noisy observation matrix; and we model this by a matrix with a
large operator norm. Formally, Xm = sm + Nm, where sm, Nm are nm × pm matrices, and we
use the operator norm test statistic fm(Xm) = ‖Xm‖op = σmax(Xm). This is just one of the
many possibilities. One could consider other ψ-subadditive test statistics; and in particular
norms, such as the maximum absolute entry, maxi,j |Xm,ij |, or generalized Ky Fan norms
of the form X 	→ (

∑κ
i=1 σi(Xm)ζ )1/ζ , where σ1(Xm) ≥ . . . σnm∧pm(Xm) ≥ 0 are the singular

values of Xm, κ ≥ 1, and ζ ≥ 1 (Li and Tsing (1988)).
As in the previous sections, there are many possible models for the structure of the noise

and its corresponding group of invariances. For illustration, we only study one of them here.
We consider a model where the columns of Nm are independent, and each has a spherical
distribution. As in the general theory, we consider a sequence of such signal-plus-noise ma-
trices, for a sequence of signals sm. We can then randomize via independent uniform rotations
of the columns. Recall that ‖sm‖2,∞ is the maximum of the column �2 norms of sm.

PROPOSITION 3.4. Let the observations follow the matrix signal-plus-noise model Xm =
sm + Nm, where Xm, sm, Nm are nm × pm-dimensional matrices and each column of Nm

is independent, with a spherical distribution. As nm,pm → ∞ such that c0 ≤ nm/pm ≤ c1
for arbitrary fixed 0 < c0 < c1, the sequence of randomization tests (1) with test statis-
tics ‖Xm‖op and randomization distributions uniform over the direct product of orthogonal
groups Gm = O(nm) ⊗ O(nm) . . . ⊗ O(nm) rotating the columns of the data is consistent
against the sequence of alternatives with sm ∈ �m1, if there is a sequence (tm,2)m≥1 such that
with probability tending to unity, ‖Nm‖2,∞ ≤ tm,2, and for any sequence (sm)m≥1 such that
for all m ≥ 1, sm ∈ �m1,

lim inf
m→∞

‖sm‖op/(n
1/2
m + p

1/2
m )

(‖sm‖2,∞ + 2tm,2)/n
1/2
m

> 2.

See Section 5 of the Supplementary Material (Dobriban (2022b)) for the proof. One can
verify that Proposition 2.3 implies that the deterministic test based on ‖β̂m‖∞ is consistent
when

lim inf
m→∞

‖sm‖op/(n
1/2
m + p

1/2
m )

2tm,2/n
1/2
m

> 2.

When Nm ∼ N (0, Inm ⊗ Ipm), one can verify that we can take tm,2 = n
1/2
m (1 + oP (1)),

thus the condition in Proposition 3.4 can be verified to simplify to

lim inf
m→∞

[‖sm‖op/
(
n1/2

m + p1/2
m

) − ‖sm‖2,∞/n1/2
m

]
> 1.
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More generally, suppose that Nm = [νm,1Om,1; . . . , νm,pmOm,pm], where νi,mi
, i ∈ [pm]

are i.i.d. from a distribution with cdf Fm, and Oi,mi
, i ∈ [pm] are i.i.d. according to the Haar

measure on the orthogonal group O(pm). Then the condition on tm,2 is that P(maxpm

i=1 νi,mi
≤

tm,2) = Fm(tm,2)
pm → 1. Consider any sequence (lm)m≥1 such that lm > 0 for all m and

lm → 0 as m → ∞. Then, we can take tm,2 = F−1
m (1 − lm/pm).

See Section 5 of the Supplementary Material (Dobriban (2022b)) for a rate-optimality
result.

3.3. Sparse detection in linear regression. We consider the fundamental linear regression
problem Ym = Xmβm + εm, where εm is random. The null hypothesis is that βm = 0, and we
are interested to detect “sparse” alternatives in the same way as in Section 3.1, that is, vectors
βm with a large �∞ norm.

We can directly view this as a signal plus noise model, where sm = Xmβm. However, the
most direct approach of using a test statistic such as fm(Ym) = ‖Ym‖∞ leads to a condition
for consistency that depends on the �∞ norm Xmβm as opposed to βm only. Instead, we write
the ordinary least squares (OLS) estimator β̂m as

β̂m = X†
mYm = PXmβm + X†

mεm,

where X†
m is the pseudo-inverse of Xm, and PXm is the projection into the row space of Xm.

Formally, this is the OLS estimator if nm ≥ pm and Xm has full rank; otherwise it is the
minimum �2 norm interpolator of the normal equations X�

m(Ym − Xmβ̂m) = 0. We can view
this as a signal-plus-noise model with observation X′

m = β̂m, signal sm = PXmβm, and noise
Nm = X†

mεm. If nm ≥ pm and Xm has full rank, sm = βm, but in general this approach only
provides information about the projection of βm into the row span of Xm. We are interested
to detect sparse signals using the test statistic fm(β̂m) = ‖β̂m‖∞.

As before, there are many possibilities for the structure of the noise. As in Section 3.1.1,
we consider coordinatewise sign-symmetric noise, assuming that for any vector b ∈ {±1}nm ,
(εm,1, . . . , εm,nm) =d (b1εm,1, . . ., bnmεm,nm). We consider the randomization test from equa-
tion (1), where we randomly flip the sign of the data K times using diagonal matrices Bm,i ,
i = 1, . . . ,K , with i.i.d. Rademacher entries on the diagonal. For any nm-dimensional vector
v, define the matrix

(8) Xm(v) = [
X†

m diag(v);−X†
m diag(v)

]
.

For j = 1, . . . , pm, let [X†
m]j,· be the j th row of X†

m. Let

(9) T (Xm) = {
diag

([
X†

m

]
j,·

)
Xmw : w ∈ R

pm,‖w‖∞ ≤ 1, j ∈ [pm]}.
Define the vector |εm| = (|εm,1|, . . . , |εm,nm |)�. Recall U+ from (5). Below, ‖M‖∞,∞ =
sup‖v‖∞≤1 ‖Mv‖∞ is the induced matrix norm, which is also the maximum of the �1 norms
of the rows of M .

PROPOSITION 3.5. Let the data (Xm,Ym) follow the linear regression model Ym =
Xmβm + εm, where Ym is an nm-dimensional vector of outcomes, Xm is and nm × pm-
dimensional observation matrix, and βm is an unknown pm-dimensional vector of regression
parameters. Let εm have independent entries εm,i , i = 1, . . . , nm, such that εm,i =d −εm,i .
The sequence of randomization tests (1) of the null hypothesis PXmβm = 0 with test statistics
‖β̂m‖∞, where β̂m = X†

mYm, and randomization distributions uniform over nm ×nm diagonal
matrices with independent Bernoulli entries is consistent against the sequence of alternatives
with PXmβm ∈ �m1, if there are two sequences (lm)m≥1 and (tm)m≥1 such that the following
hold:
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1. lm > 0 for all m and lm → ∞ as m → ∞,
2. tm > 0 for all m and, with U+ from (5) and Xm from (8),

P
(
U+(

Xm

(|εm|), lm) ≤ tm
) → 1,

3. for any sequence (PXmβm)m≥1 such that for all m ≥ 1, PXmβm ∈ �m1, with T (Xm)

from (9),

lim inf
m→∞

(
‖PXmβm‖∞

1 − U+(T (Xm), lm)

2tm

)
> 1.

See Section 5 of the Supplementary Material (Dobriban (2022b)) for the proof. This re-
sult bounds ‖X†

mεm‖∞ by an “asymmetrization” argument first, by conditioning on |εm|
and using the Bernoulli/Rademacher randomness over the signs of the entries of εm. How-
ever, in specific cases when more is known about the distribution of εm, one may ob-
tain simpler results by directly bounding this quantity. For instance, when εm ∼ N (0, Ipm),
X†

mεm ∼ N (0,X†
m(X†

m)�), and under certain structural conditions on Xm, one may be able
to derive sharp bounds for the required maximum ‖X†

mεm‖∞ of a correlated multivariate
Gaussian random vector.

For comparison, one can verify that Proposition 2.3 implies that the deterministic
test based on ‖β̂m‖∞ is consistent when the (at least as liberal) condition
lim infm→∞ ‖PXmβm‖∞/(2tm) > 1 holds. See Section 5 of the Supplementary Material
(Dobriban (2022b)) for a discussion of rate-optimality.

4. Discussion. We developed a set of results on the consistency of randomization tests.
While we think that our results are quite powerful, they also have limitations to be addressed
in future work. A limitation is the restriction to signal plus noise models. This is needed in
the current proof technique; in fact our entire approach is based on this structure. However,
to broaden the scope of our results, it would be important to extend to more general statistical
models.
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SUPPLEMENTARY MATERIAL

Supplementary technical material (DOI: 10.1214/22-AOS2200SUPPA; .pdf). The sup-
plementary technical material contains the proofs of all technical results, additional results
on two-sample testing, further related work and discussion.

Code supplement (DOI: 10.1214/22-AOS2200SUPPB; .zip). The code supplement con-
tains the scripts used to produce the numerical experiments from the paper.
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SUPPLEMENTARY MATERIAL

1. Additional related works. Here we discuss additional related works, which were not
included in the main text due to space limitations.

A number of invariance-based randomization based tests have been developed for linear
and generalized linear models (Freedman and Lane, 1983; Perry and Owen, 2010; Winkler
et al., 2014; Hemerik, Goeman and Finos, 2020; Lei and Bickel, 2021). The works by
Anderson and Legendre (1999); Winkler et al. (2014) review and compare a number of
previously proposed permutation methods for inference in linear models with nuisance
parameters. Hemerik, Thoresen and Finos (2020) show empirically that permutation tests
can control type I error even in certain high dimensional linear models. Hemerik, Goeman
and Finos (2020) develop tests for potentially mis-specified generalized linear models by
randomly flipping signs of score contributions.

Other specific problems where invariance-based randomization tests have been developed
include independence tests (Pitman, 1937), location and scale problems (Pitman, 1939),
parallel analysis type methods for PCA and factor analysis (Horn, 1965; Buja and Eyuboglu,
1992; Dobriban, 2020; Dobriban and Owen, 2019), and time series data, where Jentsch and
Pauly (2015) randomly permute entries between periodograms to test for equality of spectral
densities. In addition, randomization based inference has been useful to study factorial
designs (Pauly, Brunner and Konietschke, 2015), regression kink designs (Ganong and Jäger,
2018), and linear mixed-effects models (Rao, Drikvandi and Saville, 2019).

Most works assume exact invariance of the distribution. Romano (1990) studies the
behavior of invariance-based randomization tests beyond the exact group invariance frame-
work. This work shows that asymptotic validity holds in certain cases, and fails in others.
Canay, Romano and Shaikh (2017) relax assumptions to only require a form of limiting
invariance in distribution. They show that the group randomization test has an asymptotically
correct level.

Chung and Romano (2013) develop general permutation tests with finite-sample error
control based on studentization. Further studies include discussions of conditioning on
sufficient statistics (Welch, 1990), combination methods (Pesarin, 1990), and others (Janssen
and Pauls, 2003; Kim, Balakrishnan and Wasserman, 2020).

Beyond permutation tests, flipping signs is considered in many works, see e.g., Pesarin
and Salmaso (2010). Following Wedderburn (1975), Langsrud (2005) discusses rotation
tests in Gaussian linear regression. This approach assumes data Xm ∼ N (0, Ipm

⊗ Σm),
and computes the values of test statistics on XR = RmXm, where Rm are uniformly
distributed orthogonal matrices over the symmetric group O(pm). This is applied to testing
independence of two random vectors, as well as to more general tests in multivariate linear
regression. Perry and Owen (2010) extends the method to verify latent structure. Solari, Finos
and Goeman (2014) argues for the importance of this method in multiple testing adjusting
for confounding. The theoretical aspects of rotation tests for sphericity testing of densities
are discussed briefly by Romano (1989), Proposition 3.2.

Toulis (2019) develops residual invariance-based randomization methods for inference in
regression. This work considers a general invariance assumption εm =d gmεm for the noise
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εm, for all group elements gm ∈ Gm. For ordinary least squares (OLS), it considers the test
statistic t(ε̂m) = a⊤(X⊤

mXm)−1X⊤
mgmε̂m, where ε̂m are the OLS residuals, and a is a vector.

This work discusses many examples, including clustered observations such that the noise is
correlated within clusters, proposing to flip the signs of the cluster residuals.

2. Two-sample testing. We study a two-sample testing problem, which is a classical and
fundamental problem of exceeding importance in statistics, see e.g., (Lehmann and Casella,
1998; Lehmann and Romano, 2005). We study this for illustration purposes only, as there are
well-established tests. We do not claim that randomization tests are better, merely that they
are applicable, and it is of interest to understand what they lead to.

We consider permutation based randomization tests, valid when the entries of the noise
are exchangeable. For a given integer m⩾ 1 and dimension pm, let (fµ)µ∈Rpm be a location
family of densities on Rpm . Let ∥ · ∥Rpm be a norm on Rpm . Let εm,i ∼ f0m

sampled from
the location family at the all-zero vector be iid for i ∈ [nm], and ε′m,i ∼ f0m

also be iid for
i ∈ [n′m].

PROPOSITION 2.1. Let Zm,1, . . . ,Zm,nm
∼ fµm

, Ym,1, . . . , Ym,n′
m
∼ fµ′

m
be independent

observations, and test the null hypothesis that µm = µ′m against the alternative that µm ̸=
µ′m. Consider the randomization test (1) with test statistic ∥Z̄m − Ȳm′∥Rpm , where Z̄m =

n−1
m

∑nm

i=1Zm,i and Ȳ ′
m = (n′m)−1

∑n′
m

i=1 Ym,i.
For a randomization distribution uniform over the symmetric group of all permutations

Snm+n′
m

, the sequence of randomization tests (1) of the sequence of null hypotheses µm = µ′m
is consistent against the sequence of alternatives with (µm, µ

′
m) ∈Θm1, if

1. as m→∞, nm + n′m →∞,
2. there is a sequence (tm)m⩾1 such that

P

∥∥∥∥∥∥ 1

n′m

n′
m∑

i=1

ε′m,i −
1

nm

nm∑
i=1

εm,i

∥∥∥∥∥∥
Rpm

⩽ tm

→ 1,

where εm,i, ε
′
m,j ∼ f0m

, i ∈ [nm], j ∈ [n′m] are iid.
3. for any sequence (µm, µ

′
m)m⩾1 such that for all m⩾ 1, (µm, µ′m) ∈Θm1,

lim inf
m→∞

∥µ′m − µm∥Rpm

tm
> 2.

See Supplement 5.5 for the proof. As for the one-sample test for sparse detection,
Proposition 2.3 leads to the same condition; thus suggesting that the additional noise due
to randomization is small. The condition looks similar to the one we obtained for the one-
sample test; however this concerns a different randomization distribution (permutations), and
thus requires a different analysis. Bounding tm depends on the conditions we impose on the
location family, on the growth of the dimension and sample sizes, and on the specific norm
used. For instance, in certain cases one may use Orlicz-norm based concentration inequalities
(see e.g., Section 3.1.1 for examples), which can be adapted to the norm ∥ · ∥Rpm .

Following the approach from Section 3.1.1, for ∥ · ∥Rpm = ∥ · ∥∞, the same results
stated there apply by assuming the same conditions on the noise vectors for both samples,
and by bounding the noise vectors of the two samples separately. For instance, if the
entries of εm,i, i ∈ [nm], ε′m,i, i ∈ [n′m] are iid sub-exponential, then we can take tm ∼√

(log pm)/min(nm, n′m).
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Fig 1: Evaluating the power of the permutation and deterministic versions of the t-statistic
(left) and the difference-in-means statistic (right) as a function of signal strength in two-
sample testing. See the text for details.

Rate-optimality. It is straightforward to see that the lower bound technique from Section
3.1.1 generalizes, and leads to a bound of the order τm =

√
(log pm)/min(nm, n′m). Indeed,

when nm ⩽ n′m, one can take µm′,j = 0 and µm,j = τm ·ej , for j ∈ [nm] in the construction of
the alternatives in Ingster’s method, and it is straightforward to see that the desired conclusion
holds by the same calculation as in Section 3.1.1. This shows that for noise with iid sub-
exponential entries, the signflip based randomization test is rate-optimal. To summarize:

PROPOSITION 2.2 (Rate-optimality of permutation test for sparse two-sample testing).
Under the assumptions of Proposition 2.1, suppose that εm,i ∼ f0m

for i ∈ [nm], and
ε′m,i ∼ f0m

for i ∈ [n′m], each with iid entries following a sub-exponential distribution π.
Let Θm1(τm) = {(µm, µ′m) ∈ Rpm × Rpm : ∥µm − µ′m∥∞ ⩾ τm}. The permutation test of
the sequence of null hypotheses µm = µ′m from Proposition 2.1 is consistent against the
sequence of alternatives with (µm, µ

′
m) ∈Θm1(τm) when τm =C

√
log(pm)/min(nm, n′m)

for a sufficiently large constant C > 0. Moreover, when

τm = o
(√

log(pm)/min(nm, n′m)
)
,

there is no consistent sequence of tests of µm = µ′m against (µm, µ′m) ∈Θm1(τm), m⩾ 1.

Numerical example. We support our theoretical result by a numerical example, using
tests based on the two-sample t-statistic and the difference in means for two-sample testing.1

We generate data from the Gaussian signal-plus-noise model Zm,i ∼N (sm,1), for i ∈ [nm],
and Ym,i ∼N (0,1), for i ∈ [n′m], where sm = µ, with the signal strength parameter µ taking
values over a grid of size 20 spaced equally between 0 and 3. We take nm = n′m = 15. We
evaluate the power of the deterministic tests based on the two-sample t-statistic, and the mean
difference of the two samples, tuned to have levels equal to α = 0.05. We also evaluate the
power of their randomization versions based on K = 99 random permutations. We repeat the
experiment 100,000 times and plot the average frequency of rejections.

On Figure 1, we observe similar phenomena to those mentioned before: the randomiza-
tion tests correctly control the level, and the power of all tests increases to unity over the
range of signals considered. The powers of the tests are very close.2 In this experiment,

1We thank a referee for suggesting this experiment.
2We note that similar observations have been made by Lehmann (2009).
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the permutation version of the two-sample t-test has a slightly higher power than the
deterministic t-test, however this is reversed for the difference in means.3

3. Practical Considerations. When are invariance based tests applicable in practice?
When can one invoke the group invariance hypothesis? We think that this is a challenging
applied statistics problem, and we provide some discussion here.4 When a data analyst is
performing a hypothesis test, and they have reason to think that under the null hypothesis the
distribution of the data is (nearly) unchanged under some operation, then one can invoke a
group invariance condition. Suppose for instance that the data analyst thinks that under the
null hypothesis, the data is equally likely to have come in any order — then one can invoke
permutation invariance. However, suppose that the data comes in predefined clusters (such as
strata, or classes based on some key distinguishing property), and under the null hypothesis
it is only reasonable to think that that data is equally likely to appear in any order in some
specific clusters. Then one can use permutation invariance only over the permutations within
those clusters.

This type of reasoning is more readily justifiable when testing a point null. In that case,
since we only consider one distribution, assumptions can be justified with greater ease.
However, if we consider composite null hypotheses, such as those in two-sample testing,
then it becomes much more challenging to justify invariance assumptions.

However, one difficulty is that formally testing (evaluating) invariance assumptions can
be very difficult, especially if the invariance groups are large (for instance suppose that we
only have one observation; then it is impossible to test that its density is symmetric around
zero).5 In our view these type of decisions can be quite application-specific. Further, there are
a number of books and reviews on group invariance and permutation tests in statistics, and
the interested statistical data analyst can study them for additional insights (see e.g., Pesarin,
2001; Ernst, 2004; Pesarin and Salmaso, 2010, 2012; Good, 2006; Kennedy, 1995; Eaton,
1989; Wijsman, 1990; Giri, 1996, etc.).

4. Proofs for the general theory.

4.1. Proof of ψ-sub-additivity in Section 2.2. Let x, y ∈R and suppose first that 0⩽ x <
y. Then, by concavity, c(y) = c(x[x/y]+[x+y][1−x/y])⩾ c(x)(x/y)+c(x+y)(1−x/y),
or equivalently, c(x+ y)⩽ [yc(y)− xc(x)]/[y− x]. Thus, c(x+ y)⩽ c(x) + c(y) follows if
xc(y)⩽ yc(x). By concavity again, and also using that c(0)⩾ 0, we have c(x) = c(y[x/y] +
0[1− x/y])⩾ c(y)(x/y) + c(0)(1− x/y)⩾ c(y)(x/y), as required. Next, if 0⩽ x= y, then
the above argument used for y = 2x shows that c(x) ⩾ c(2x)/2, thus c(x + y) = c(2x) ⩽
2c(x) = c(x) + c(y). This finishes the argument when x, y ⩾ 0. The same argument applies
when x, y ⩽ 0.

The remaining case is when x, y have opposite signs. We can assume without loss of
generality that x < 0 < y and that |y| ⩾ |x| (otherwise we can consider (−x,−y)). Then
f(x + y) = c(|x + y|) = c(x + y) = c(y − |x|) ⩽ c(y) + c(|x|), where the last inequality
follows because c is non-decreasing, and also as 0⩽ c(0)⩽ c(|x|).

3This may appear to be a bit surprising, and we have double checked it experimentally with an alternative
implementation.

4We thank a reviewer for raising this question.
5This does not contradict that the randomization tests considered in the paper can be viewed as tests of

invariance. Indeed, our claim here is that generally ascertaining invariance is difficult. The tests considered in
this paper can have power to detect certain deviations from invariance, but in general they may not universally
detect all deviations from invariance.
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4.2. Proof of Theorem 2.1. Control of type I error. The first claim, about the level/Type
I error control, is discussed at various levels of generality in many works. The textbook
result, e.g., Problem 15.3 in Lehmann and Romano (2005) considers finite groups, and for
infinite groups (e.g., Problem 15.1 in the same reference), assumes that we average over the
full group. See also more general statements in theorem 2 in Hemerik and Goeman (2018a)
and theorem 2 in Hemerik and Goeman (2018b). We provide a simple argument to show a
key required exchangeability claim, which extends the above results allowing for compact
topological groups at a full level of generality, and applies to random sampling of a finite
number of group elements. This is crucial for our results, because we use continuous groups
such as orthogonal groups in many of our examples.

Let T0 = fm(Nm), and Ti = fm(GmiNm) for i = 1, . . . ,K . Note that due to noise
invariance, Ti, i = 0, . . . ,K are exchangeable when Nm,Gm1, . . . ,GmK are all considered
random: the random variables in the vector L= (Nm,Gm1Nm, . . . ,GmKNm) are exchange-
able.

LEMMA 4.1. The random vectors {Nm,Gm1Nm, . . .,GmKNm} are mutually exchange-
able.

PROOF. To see this, we will show that L = (Nm,Gm1Nm, . . . ,GmKNm) has the same
distribution as B = (GmNm,Gm1Nm, . . . ,GmKNm), where Gm ∼ Qm is independent of
Nm,Gm1, . . ., GmK . Denote GmNm =N ′

m. Then this is equivalent to the statement that L
has the same distribution as (N ′

m,Gm1G
−1
m N ′

m, . . . ,GmKG
−1
m N ′

m).
Let G′

mi = GmiG
−1
m , for i = 1, . . . ,K . Since Nm =d N

′
m, the above claim follows from

because the vectors (Gm1, . . . ,GmK) and (G′
m1, . . ., G

′
mK) have an identical distribution.

For simplicity, we show this for K = 2. The proof for the more general case is very similar.
We can write for i ̸= j, Qm(G′

mi ∈Mi,G
′
mj ∈Mj) = Qm(GmiG

−1
m ∈Mi,GmjG

−1
m ∈

Mj) = Qm(Gmi ∈ GmMi,Gmj ∈ GmMj). Now, let us condition on Gm. Then, we can
write using the independence of Gmi,Gmj that Qm(Gmi ∈ GmMi,Gmj ∈ GmMj |Gm) =
Qm(Gmi ∈ GmMi|Gm)Qm(Gmj ∈ GmMj |Gm). Recall that Gmi ∼ Qm are iid from the
Haar/uniform probability measure on Gm. Using the left-invariance of the Haar measure, we
have Qm(Gmi ∈ GmMi|Gm) = Qm(Gmi ∈Mi|Gm) = Qm(Gmi ∈Mi), and similarly for
j. Hence, we find, using again the independence of Gmi,Gmj that

Qm(G′
mi ∈Mi,G

′
mj ∈Mj) =Qm(Gmi ∈Mi)Qm(Gmj ∈Mj)

=Qm(Gmi ∈Mi,Gmj ∈Mj).

This shows that the joint distribution of (Gm1, . . . ,GmK) and (G′
m1, . . . , G

′
mK) is the same

for K = 2. The same argument works for K > 2. This finishes the proof.

One can then finish the proof of type I error control as in the proof of theorem 2 in Hemerik
and Goeman (2018b).

Consistency. Now we move to the part about consistency. We will consider a slight variant
of the invariance-based randomization test, where for a fixed K ⩾ 1 we reject the null when

(1) fm(Xm)>max(fm(Gm1Xm), . . . , fm(GmKXm)) ,

and where each Gmi, i= 1, . . . ,K is chosen uniformly at random over Gm. The type I error
probability over the random Xm and Gmi of this test is at most 1/(K +1), see Theorem 2.1.
The consistency of this test implies the consistency of the quantile-based test. Specifically,
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given any α ∈ (0,1), choose any positive integer K such that 1/(K + 1) ⩽ α. Let Rm,K

denote the event (1) and let Rm,α denote the event (1). Then, Rm,K ⊂ Rm,α, and hence
PHm1

(Rm,K)⩽ PHm1
(Rm,α). We will show that PHm1

(Rm,K)→ 1. Thus, it will follow that
PHm1

(Rm,α)→ 1. Therefore, it is enough to study the test (1). A simplification is given by
the following lemma.

LEMMA 4.2. Suppose K is fixed. Then we have

P (fm(Xm)>
K

max
i=1

fm(GmiXm))→ 1

if and only if we have P (fm(Xm)> fm(GmXm))→ 1 for a single Gm ∼Qm.

PROOF OF LEMMA 4.2. Consider the eventsAi = {fm(Xm)⩽ fm(GmiXm)}. By taking
complements, it is enough to show that P (∪K

i=1Ai)→ 0 if and only if P (A1)→ 0.
Since Gmi have the same distribution for all i ∈ [k], we have P (Ai) = P (Aj) for all i, j.

Moreover, since A1 ⊂∪K
i=1Ai, we have by the union bound that

(2) P (A1)⩽ P (∪K
i=1Ai)⩽

K∑
i=1

P (Ai) =K · P (A1).

Hence, as K is bounded, we have P (∪K
i=1Ai)→ 0 iff P (A1)→ 0.

Thus, for consistency to hold, it is enough to show that with probability tending to unity,

fm(Xm)> fm(GmXm).

Now, fm(GmXm) = fm(Gmsm +GmNm). We have the following:

LEMMA 4.3 (Independence Lemma). If gmNm =d Nm for any fixed gm ∈ Gm, then
Gm ⊥⊥GmNm when Gm ∼Qm.

PROOF OF LEMMA 4.3. We can write, for a measurable set A

P (GmNm ∈A|Gm = gm0) = P (gm0Nm ∈A|Gm = gm0)

= P (gm0Nm ∈A) = P (Nm ∈A).

Since this expression does not depend on gm0, the distribution of GmNm does not depend on
the value of Gm; thus GmNm is independent of Gm.

This implies that for Gm,Nm sampled independently, Gmsm + GmNm has the same
distribution as Gmsm+Nm. Therefore, fm(GmXm) =d fm(Gmsm+Nm), and it is enough
to give conditions for the potentially stronger condition that there is a deterministic sequence
of critical values t′m such that

PHm1
(fm(Gmsm +Nm)⩽ t′m) + PHm1

(fm(Xm)> t′m)→ 2.(3)

By ψ-subadditivity, we can write

fm(Xm) = fm(sm +Nm)⩾ ψfm(sm)− fm(−Nm).(4)

Since tm is such that P (fm(−Nm)⩽ tm)→ 1, we conclude that P (fm(Xm)⩾ ψfm(sm)−
tm)→ 1. Hence, if fm(sm)>ψ−1[t′m(sm)+tm], then the desired condition PHm1

(fm(Xm)>
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t′m)→ 1 holds, provided that PHm1
(fm(Gmsm+Nm)⩽ t′m)→ 1. By ψ-subadditivity again,

we can write

fm(Gmsm +Nm)⩽ ψ−1[fm(Gmsm) + fm(Nm)].

Now, with probability tending to unity, fm(Gmsm) + fm(Nm) ⩽ t̃m + tm. Hence, taking
t′m = ψ−1[t̃m + tm] finishes the proof.

Proof of Proposition 2.2. The proof of this result consists of the proof of Theorem 2.1,
until equation (3). The assumption about the separating sequence ensures precisely that this
condition holds, and thus finishes the proof.

Comments on the proof. The sequence (t′m)m⩾1 can be viewed as a “separating
sequence", which deterministically separates the values of the original test statistic fm(Xm)
from the randomized test statistic fm(GmXm). The current proof technique relies crucially
on the existence of this sequence. However, randomization tests may be consistent even if
such a sequence does not exist; thus, this step is not always sharp.

Consider for instance a sequence of observations (Xm)m⩾1, and test statistics defined by
a sequence of norms ∥ · ∥ defined on their respective sample spaces (where the dependence of
the norm onm is suppressed for readability). Suppose that randomization tests are consistent,
and that there is a separating sequence (t′m)m⩾1 such that ∥Xm∥> t′m and ∥GmXm∥⩽ t′m
both hold with probability tending to unity as m→∞.

Consider now a new observation model, where the observation X ′
m equals Xm with

probability 1/2, and equals AmXm with probability 1/2; where (Am)m⩾1 is a certain
deterministic sequence of positive scalars. We choose Am such that there is no separating
sequence for X ′

m. This can be accomplished by first choosing two sequences (Am1)m⩾1,
(Am2)m⩾1 of positive scalars, such that ∥Xm∥⩽Am1 and ∥GmXm∥>Am2 with probability
tending to unity as m → ∞. The existence of Am1 is clear, while for Am2, we only
need that GmXm ̸= 0 with probability tending to unity, which is a mild condition that
holds in all examples we have considered. Then, we can take Am = Am2/Am1, and it
follows that, with probability tending to unity, ∥Gm(AmXm)∥ > ∥Xm∥. Hence, there is a
deterministic sequence (t′′m)m⩾1, specifically t′′m =Am1, such that with positive probability,
∥GmX

′
m∥> t′′m and t′′m ⩾ ∥X ′

m∥, and thus there is no deterministic separating sequence for
X ′

m. However, the random separating sequence that equals t′m when Xm =X ′
m and Amt

′
m

otherwise, shows that the randomization test is consistent when the observation is X ′
m.

This shows that the current separating sequence approach is only sufficient and not
necessary for the consistency of randomization tests.

4.3. Proof of Proposition 2.3. As in the proof of Theorem 2.1, it is enough to give
conditions for the analogue of (3), i.e., that there is a deterministic sequence of critical values
t′m such that

PHm0
(fm(Nm)⩽ t′m) + PHm1

(fm(Xm)> t′m)→ 2.

By condition 2(a) of Theorem 2.1, we can take t′m = tm, and PHm0
(fm(Nm)⩽ t′m)→ 1. By

ψ-subadditivity, we have (4). Thus, we only need that ψfm(sm)− tm > tm, which is true by
(3). This shows that we can take c̃m ⩽ tm and finishes the proof.

5. Proofs and discussion for the examples.

5.1. Proof of Proposition 3.1. Since ∥ · ∥∞ is a norm, it is 1-subadditive. Thus, the
condition from Theorem 2.1 reads n−1

m ∥1⊤nm
sm∥∞ > t̃m(sm)+2tm.Moreover, n−1

m ∥1⊤nm
sm∥∞

= ∥sm∥∞. The requirement on tm, t̃m is that with probability tending to unity, one has
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∥n−1
m

∑nm

i=1Nm,i∥∞ ⩽ tm, and for Rademacher random variables bm,i, i ∈ [nm], with
probability tending to unity, ∥n−1

m

∑nm

i=1 bm,ism∥∞ = |n−1
m

∑nm

i=1 bm,i| · ∥sm∥∞ ⩽ t̃m.
By Hoeffding’s inequality, for any C > 0, P (|n−1

m

∑nm

i=1 bm,i| ⩾ C) ⩽ 2exp(−2nmC
2).

Hence, we can take t̃m = (am/[2nm])1/2 ·∥sm∥∞, for any sequence (am)m⩾1 with am →∞.
Thus, the condition is that for all m large enough,

∥sm∥∞ > (am/[2nm])1/2 · ∥sm∥∞ + 2tm.

This requires that am/[2nm] < 1, which we can ensure holds for all large enough nm by
taking am to grow sufficiently slowly. For such large nm, the condition is

∥sm∥∞ >
2tm

1− (am/[2nm])1/2
.

Clearly, this holds when am grows sufficiently slowly, for instance when am = lognm, if
lim infm→∞

∥sm∥∞
2tm

> 1.

5.2. Proof and discussion of Proposition 3.3.

5.2.1. Proof of Proposition 3.1. Since ∥ · ∥∞ is a norm, it is 1-subadditive. Thus, the
condition from Theorem 2.1 reads ∥sm∥∞ > t̃m(sm) + 2tm. The requirement on tm, t̃m is
that with probability tending to unity, ∥Nm∥∞ ⩽ tm, and for Om ∼O(pm), with probability
tending to unity, ∥Omsm∥∞ ⩽ t̃m.

Now, for a normal random vectorZm ∼N (0, Ipm
), we have ∥Omsm∥∞ =d ∥Zm∥∞/∥Zm∥2 ·

∥sm∥2. ForZm ∼N (0, Ipm
), using standard chi-squared concentration of measure (Boucheron,

Lugosi and Massart, 2013), we have ∥Zm∥2 = p
1/2
m (1 + oP (1)). Moreover, ∥Zm∥∞ ⩽

(1 + oP (1))
√
2 log pm with probability tending to unity. Hence, we can take t̃m = (1 +

oP (1))(2[log pm]/pm)1/2 · ∥sm∥2. Similarly, ∥Nm∥∞ = ∥OmNm∥∞ =d ∥Zm∥∞/∥Zm∥2 ·
∥Nm∥2 = (1+ oP (1))(2[log pm]/pm)1/2 · ∥Nm∥2.

Thus, the condition is that there is a sequence tm,2 such that P (∥Nm∥2 ⩽ tm,2)→ 1 and
for all m large enough,

∥sm∥∞ > (1 + oP (1))(2[log pm]/pm)1/2 · (∥sm∥2 + 2tm,2) .

This holds when

lim inf
m→∞

∥sm∥∞/(2 log pm)1/2

(∥sm∥2 + 2tm,2)/p
1/2
m

> 1.

5.2.2. Discussion of rate-optimality. In this case, obtaining explicit lower bounds on
detection thresholds is much more difficult. We are not aware of any results in this direction
under the full level of generality of our model, and thus we discuss the difficulties here.
Suppose that the noise distribution has density p̃m with respect to the Lebesgue measure;
since the distribution is rotationally invariant, we have p̃m(Nm) = πm(∥Nm∥2) for some
density πm on [0,∞). The chi-squared method shows that to achieve consistency, one must
have

lim
m→∞

∫
xm∈Rpm

πm(∥xm − sm∥2)2

πm(∥xm∥2)
dxm =∞.

For instance, if the noise is distributed as a multivariate t distribution with dm degrees of
freedom, with density cm(1 + ∥z∥22)−(pm+dm)/2, where cm = Γ[(pm + dm)/2]/[Γ(dm/2)
(πdm)pm/2], then we must show that, with em = (pm + dm)/2,

lim
m→∞

cm

∫
xm∈Rpm

(
1 + ∥xm∥22/dm

(1 + ∥xm − sm∥22/dm)2

)em

dxm =∞.
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By changing variables to xm − sm, using the rotational invariance of the density, denoting
νm = ∥sm∥, we can express the integral as an expectation with respect to Xm distributed as
a multivariate t distribution with dm degrees of freedom as

E
(
1 +

νm(2Xm,pm
+ νm)

dm + ∥Xm∥22

)em

.

However, there does not appear to be a simple way to evaluate, or obtain sharp bounds on,
this expectation, showing the difficulty of obtaining lower bounds for this problem.

5.3. Proof and discussion of Proposition 3.4.

5.3.1. Proof of Proposition 3.4. Since the maximal singular value is a norm, it is 1-
subadditive. Thus, the condition from Theorem 2.1 reads ∥sm∥op > t̃m(sm) + 2tm. The
requirement on tm, t̃m is that with probability tending to unity, ∥Nm∥op ⩽ tm, and for
Om,1, . . . ,Om,pm

∼O(nm), with probability tending to unity, ∥[Om,1sm,1; . . . ;Om,pm
sm,pm

]∥op
⩽ t̃m.

Now, for iid normal random vectors Zm,i ∼ N (0, Inm
), i ∈ [pm], we have Om,ism,i =d

Zm,i/∥Zm,i∥2 · ∥sm,i∥2. Thus,

∥[Om,1sm,1; . . . ;Om,pm
sm,pm

]∥op

=d ∥[Zm,1/∥Zm,1∥2 · ∥sm,1∥2; . . . ;Zm,pm
/∥Zm,pm

∥2 · ∥sm,pm
∥2]∥op.

Further, for any matrix M = [m1;m2; . . . ;mpm
] and scalars di, i ∈ [pm],

∥[d1m1;d2m2; . . . ;dmmpm
]∥op ⩽max

i
|di| · ∥M∥op.

Now, from standard concentration inequalities we have P (|∥Zm,i∥/n1/2m − 1| ⩾ δ +
1/

√
nm) ⩽ 2exp(−nmδ2/2). This follows from the Lipschitz concentration of Gaussian

random variables, see e.g., Example 2.28 in Wainwright (2019), and from the fact that the
mean of the χ(nm) random variable ∥Zm,i∥ is bounded as

√
nm− 1⩽ E∥Zm,i∥⩽

√
nm, see

exercise 3.1 in Boucheron, Lugosi and Massart (2013).
Taking a union bound, we find that P (maxi=1,...,pm

|∥Zm,i∥2/n1/2m − 1|⩾ δ+1/
√
nm)⩽

2exp(log pm − nmδ
2/2). So, maxi=1,...,pm

|∥Zm,i∥2/n1/2m − 1| →P 0 as long as there is a
sequence δ = δm such that δm → 0 and nmδ

2
m − 2 log pm → ∞. This holds if log pm =

o(nm). Then, we also have that maxi=1,...,pm
|n1/2m /∥Zm,i∥2 − 1| →P 0.

Thus denoting Zm = [Zm,1; . . . ;Zm,pm
], with probability tending to unity,

∥[Zm,1/∥Zm,1∥2 · ∥sm,1∥2; . . . ;Zm,pm
/∥Zm,pm

∥2 · ∥sm,pm
∥2]∥op

⩽ (1 + oP (1))∥sm∥2,∞/n1/2m · ∥Zm∥op.

It is well known that as nm, pm →∞ such that c0 ⩽ nm/pm ⩽ c1 for some 0< c0 < c1, we
have almost surely that ∥Zm∥op ⩽ (1 + oP (1))(

√
nm +

√
pm). This follows from (Davidson

and Szarek, 2001, Theorem 2.13). Hence, we can take t̃m = (1 + oP (1))∥sm∥2,∞(
√
nm +

√
pm)/n

1/2
m .

Now, due to the distributional invariance of Nm, we have

∥Nm∥op =d ∥[Zm,1/∥Zm,1∥2 · ∥Nm,1∥2; . . . ;Zm,pm
/∥Zm,pm

∥2 · ∥Nm,pm
∥2]∥op

Hence, using the same argument as above, for any sequence tm,2 such that ∥Nm∥2,∞ ⩽
tm,2 with probability tending to unity, we can take tm = (1 + oP (1))(

√
nm +

√
pm) ·
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tm,2/n
1/2
m . Thus, a sufficient condition is that there is a sequence tm,2 such that P (∥Nm∥2,∞ ⩽

tm,2)→ 1 and

∥sm∥op > (1 + oP (1))[1 + (pm/nm)1/2] · (∥sm∥2,∞ + 2tm,2) .

This holds when

lim inf
m→∞

∥sm∥op/
(
n
1/2
m + p

1/2
m

)
(∥sm∥2,∞ + 2tm,2)/n

1/2
m

> 1.

This finishes the proof.

5.3.2. Rate-optimality. Suppose that Nm ∼N (0, Inm
⊗ Ipm

), and let Θm1 = {
√
nm/2 ·

τ · uv⊤, v ∈ Rnm , u ∈ Rpm ,∥u∥ = ∥v∥ = 1}. Suppose without loss of generality that nm ⩽
pm; otherwise flip the roles of nm and pm. Consider a prior Πm on Θm1 such that u =
[v; 0pm−nm

], and v follows a distribution Π′
m. Based on (4), we have

VarPm0
[Lm] = ES,S′∼Πm

exp(S⊤S′)

= Euv⊤,u′(v′)⊤∼Πm
exp(nmτ

2/2 · u⊤u′v⊤v′)

= Ev,v′∼Π′
m
exp

(
nmτ

2/2 · (v⊤v′)2
)
.

This has the exact same form as the expression studied in Theorem 1 of Banks et al. (2018).
From that result, it follows that, if Π′

m is uniform over {±1}nm/
√
nm and τ < 1, then

VarPm0
[Lm] ⩽ C for a constant C <∞ not depending on nm. This shows a lower bound

of order τ ≳ n
1/2
m . Meanwhile, our upper bound simplifies to τ ≲ n

1/2
m , showing that rando-

mization tests are rate-optimal in this case.
To summarize:

PROPOSITION 5.1 (Rate-optimality of rotation test for low-rank matrix detection).
Under the assumptions of Proposition 3.4, suppose that Nm ∼ N (0, Inm

⊗ Ipm
), and

let Θm1(τm) =
{
sm =

√
min(nm, pm)/2 · τm · uv⊤, v ∈Rnm , u ∈Rpm ,∥u∥= ∥v∥= 1

}
.

The sequence of rotation tests (1) of the sequence of null hypotheses sm = 0 from
Proposition 3.4 is consistent against the sequence of alternatives with sm ∈ Θm1(τm)

when τm = C
√

min(nm, pm) for a sufficiently large constant C > 0. Moreover, when

τm = o
(√

min(nm, pm)
)

, there is no consistent sequence of tests of sm = 0 against
sm ∈Θm1(τm).

5.4. Proof and discussion of Proposition 3.5.

5.4.1. Proof of Proposition 3.5. Since the map Ym 7→ ∥X†
mYm∥∞ is a quasi-norm, it is

1-subadditive. Thus, the condition from Theorem 2.1 reads ∥PXm
βm∥∞ > t̃m + 2tm. The

requirement on tm, t̃m is that with probability tending to unity, ∥X†
mεm∥∞ ⩽ tm, and for

Bm = diag(bm,1, . . . , bm,pm
) with iid Rademacher entries bm,i, i ∈ [pm], with probability

tending to unity, ∥X†
mBmXmβm∥∞ ⩽ t̃m.

Let (lm)m⩾1 be any sequence such that lm > 0 for all m and lm → ∞ as m → ∞.
Now, conditional on the vector |εm| = (|εm,1|, . . . , |εm,nm

|), X†
mεm is an nm-dimensional

Bernoulli process over the rows of the matrix Xm(|εm|). Thus, conditional on |εm|, we have
∥X†

mεm∥∞ ⩽ U+(Xm(|εm|), lm) with probability going to unity, see (5). Thus, it is enough
to take tm to be an upper bound of this quantity with probability tending to unity.
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Next, writing Bm = diag(bm),

∥X†
mBmXmβm∥∞ ⩽ ∥X†

mBmXm∥∞,∞ · ∥βm∥∞

= max
j∈[pm]

|[X†
m]⊤j,· ·BmXm∥1 · ∥βm∥∞

= max
j∈[pm]

∥X⊤
m diag([X†

m]j,·) · bm∥1 · ∥βm∥∞

= ∥βm∥∞ · sup
v∈T (Xm)

v⊤bm.

Thus, it is enough if t̃m = U+(T (Xm), lm). Thus, a sufficient condition is that there is a
sequence (lm)m⩾1 such that lm > 0 for all m and lm → ∞ as m→ ∞, and a sequence
(tm)m⩾1 such that P (U+(Xm(|εm|), lm)⩽ tm)→ 1 and

lim inf
m→∞

∥PXm
βm∥∞

1−U+(T (Xm), lm)

2tm
> 1.

This finishes the proof.

5.4.2. Discussion of rate-optimality. There is a large literature on optimal hypothesis
testing for linear regression, see for instance Ingster, Tsybakov and Verzelen (2010); Arias-
Castro, Candès and Plan (2011); Mukherjee and Sen (2020); Carpentier and Verzelen (2021)
and references therein. These works essentially only study iid Gaussian (or sub-Gaussian)
noise, and make varying assumptions on the design matrix and signal strength. In general it
appears quite difficult to make a direct comparison to our assumptions. For instance the work
of Arias-Castro, Candès and Plan (2011) (their Theorem 2) implies that if [Xm]j,· is the j-th
row of Xm, and (cm)m⩾1 is a sequence such that cm > 0 for all m and cm → 0 as m→∞,
then if X⊤

mXm is normalized to have unit diagonal entries, if for all i ∈ [pm], |{j ∈ [pm] :
|[Xm]⊤j,·[Xm]i,·| ⩾ cm(log pm)−4}| = O(pδm) for all δ > 0, and if the regression coefficient
βm can be any 1-sparse vector, then it is required that lim infm→∞ ∥βm∥∞/

√
2 log pm ⩾ 1 in

order for any test to have non-vanishing detection power. The main assumption is that for any
feature, the number of other features with correlation above the level cm(log pm)−4 is smaller
than any positive power of pm. This assumption does not appear to be easily comparable to
our conditions. Indeed, our conditions require (among others) to bound ∥X†

mεm∥∞, where
X†

mεm ∼ N (0,X†
m(X†

m)⊤), which does not appear to be directly related to the conditions
from Arias-Castro, Candès and Plan (2011). Thus, our conditions under which the randomi-
zation test works appear to be different from the ones that have been studied before for rate
optimality in this problem. Since our main goal in this paper was to develop a general frame-
work that enables proving consistency results for randomization tests, we view it as beyond
our scope to fully elucidate the relationships between our conditions and those variously
proposed in the literature. We would like to emphasize that our consistency results cover
settings where the noise for every observation is assumed to be merely independent and
symmetrically distributed, potentially heteroskedastic and heavy-tailed. This goes beyond
the settings in which lower bounds have been proved for this problem.

5.5. Proof of Proposition 2.1. We can write Zm,i = µm + εm,i, for i ∈ [nm], where
εm,i ∼ f0m

are iid. Similarly, we can write Ym,i = µm+ ε′m,i, for i ∈ [n′m], where ε′m,i ∼ f0m

are also iid. We can arrange the datapoints as the rows of a matrix. This model has a signal-
plus-noise form with nuisance µm,∗ = 1nm+n′

m
· µ⊤m and signal S = [0nm

; 1n′
m
] ·∆⊤

m, where
∆m = µ′m − µm.
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We can follow our general approach for problems with nuisance parameters, see Section
2. Let Pm be the projection in the orthogonal complement of the span of the nuisance. We
project

Xm = [Zm,1; . . . ;Zm,nm
;Ym,1; . . . ;Ym,n′

m
]

to X̃m = PmXm, and we obtain a standard signal-plus-noise model X̃m = s̃m + Ñn. Since
Pm = Inm+n′

m
− 1nm+n′

m
1⊤nm+n′

m
/(nm + n′m), we have

X̃m = [Inm+n′
m
− 1nm+n′

m
1⊤nm+n′

m
/(nm + n′m)]X̃m = X̃m − 1nm+n′

m
X̄⊤

m.

Also

s̃m = Pmsm = sm − 1nm+n′
m
s̄⊤m = [−n′m · 1nm

;nm · 1n′
m
]/(nm + n′m) ·∆⊤

m.

We can write the test statistic ∥Ȳm−Z̄m∥Rpm as ∥w⊤X̃m∥Rpm , wherew = [−1nm
/nm; 1n′

m
/n′m].

Note that Pmw =w.
The test statistic is clearly 1-subadditive. Thus, the condition from Theorem 2.1 reads

∥∆m∥Rpm > t̃m + 2tm. The requirement on tm, t̃m is that with probability tending to unity,
∥w⊤Ñm∥Rpm ⩽ tm, and for a uniformly random permutation matrix Πm of nm+n′m entries,
with probability tending to unity, ∥w⊤Πms̃m∥Rpm ⩽ t̃m.

Now,

∥w⊤Ñm∥Rpm = ∥w⊤Nm∥Rpm = ∥Ȳ ′
m − Z̄m∥Rpm

= ∥(n′m)−1

n′
m∑

i=1

ε′m,i − n−1
m

nm∑
i=1

εm,i∥Rpm .

Also,

∥w⊤Πms̃m∥Rpm =w⊤Πmw · n′mnm
nm + n′m

∥∆m∥Rpm .

Consider the random variable U = w⊤Πmw, where the randomness is due to the random
permutation matrix Πm. Let d = nm + n′m be the dimension of w. Now, if πm : [d] 7→ [d]
denotes the permutation represented by Πm,

EU2 = Ew⊤Πmw ·w⊤Πmw = E
∑
ij

wiwπm(i)wjwπm(j)

=
∑
ij

wiwjEwπm(i)wπm(j).

If i= j, then Ewπm(i)wπm(j) = Ew2
πm(i) = ∥w∥2/d. If i ̸= j, then, since

∑
kwk = 0,

Ewπm(i)wπm(j) =
1

d(d− 1)

∑
k ̸=l

wkwl =− ∥w∥2

d(d− 1)
.

Thus,

EU2 =
∑
i

w2
i ∥w∥2/d+

∑
i ̸=j

wiwj(−
∥w∥2

d(d− 1)
)

= ∥w∥4
(
1

d
+

1

d(d− 1)

)
=

∥w∥4

d− 1
.
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Now, we can check that ∥w∥2 = nm+n′
m

n′
mnm

. Therefore, by Chebyshev’s inequality,

P (w⊤Πmw · n′mnm
nm + n′m

⩾ lm) = P (U/∥w∥2 ⩾ lm)

⩽
E(U2/∥w∥4)

l2m
=

1

(nm + n′m − 1)l2m
.

Thus, if lm →∞, we can take t̃m = lm · ∥∆m∥Rpm

(nm+n′
m−1)1/2 . Thus, a sufficient condition is that

there is a sequence (lm)m⩾1 such that lm > 0 for all m and lm → ∞ as m→ ∞, and a
sequence (tm)m⩾1 such that P (∥(n′m)−1

∑n′
m

i=1 ε
′
m,i − n−1

m

∑nm

i=1 εm,i∥Rpm ⩽ tm)→ 1 and

∥∆m∥Rpm > lm · ∥∆m∥Rpm

(nm + n′m − 1)1/2
+ 2tm.

This requires that nm + n′m →∞. Then, we can take lm to grow sufficiently slowly, and the
above condition holds if

lim inf
m→∞

∥∆m∥Rpm

tm
> 2.

This finishes the proof.
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