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Abstract

Host-microbiome interactions and the microbial community have broad impact in human

health and diseases. Most microbiome based studies are performed at the genome level

based on next-generation sequencing techniques, but metaproteomics is emerging as a

powerful technique to study microbiome functional activity by characterizing the complex

and dynamic composition of microbial proteins. We conducted a large-scale survey of

human gut microbiome metaproteomic data to identify generalist species that are ubiqui-

tously expressed across all samples and specialists that are highly expressed in a small

subset of samples associated with a certain phenotype. We were able to utilize the metapro-

teomic mass spectrometry data to reveal the protein landscapes of these species, which

enables the characterization of the expression levels of proteins of different functions and

underlying regulatory mechanisms, such as operons. Finally, we were able to recover a

large number of open reading frames (ORFs) with spectral support, which were missed by

de novo protein-coding gene predictors. We showed that a majority of the rescued ORFs

overlapped with de novo predicted protein-coding genes, but on opposite strands or in differ-

ent frames. Together, these demonstrate applications of metaproteomics for the characteri-

zation of important gut bacterial species.

Author summary

Many reference genomes for studying human gut microbiome are available, but knowl-

edge about how microbial organisms work is limited. Identification of proteins at individ-

ual species or community level provides direct insight into the functionality of microbial

organisms. By analyzing more than a thousand metaproteomics datasets, we examined

protein landscapes of more than two thousands of microbial species that may be impor-

tant to human health and diseases. This work demonstrated new applications of metapro-

teomic datasets for studying individual genomes. We made the analysis results available

through a website (called GutBac), which we believe will become a resource for studying

microbial species important for human health and diseases.
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Introduction

It is now well established that microbial species inhabit many ecosystems, which drives diver-

sity due to the need to adapt to these environments [1]. Molecular diversity and robustness

also allows these species to inhabit microbiomes that are host associated, such as the human

gut [2–7]. Due to its importance to human health and disease, the human gut microbiome has

been extensively sequenced, leading to the identification of more than a thousand distinct spe-

cies, with knowledge about diversity increased by every new study [8]. Culture based whole

genome sequencing techniques [9, 10] have identified a few hundred human gut associated

genomes. Culture free techniques, revolutionized by metagenomics coupled with computa-

tional genome binning methods, have resulted in many more metagenome-assembled

genomes (MAGs) [1, 3, 5, 8–11]. A unified genome catalog contains more than 200,000 refer-

ence genomes from the human gut microbiome [8]. Maintaining a comprehensive genomic

catalog of bacteria and archaea will provide the basis needed to perform large scale multi-omic

comparative genomic studies. Large scale studies based on whole genome sequences will be

central in understanding details about mechanisms of microbial interactions with each other

and with their environments and hosts. These studies will also be critical for uncovering details

about metabolic pathways and key functions at the protein level by examining proteome land-

scapes and employing various data-mining techniques to identify genes and functions of inter-

est, such as CRISPR-cas systems [12] and anti-CRISPRs [13].

Recent progress has dramatically increased the collection of microbial species that are

related to human health and diseases, most notably the accumulation of MAGs, many of

which represent new species. Experimental studies of these new species in terms of their

expression and functions remains scarce. Computational gene predictors have become an

essential first step in the annotation of these new genomes. De novo gene prediction techniques

are commonly used because they are not constrained by sequence similarity with known ones

[14, 15]. De novo gene prediction remains a unsolved problem, with different tools, such as

FragGeneScan (FGS), Prokka, and GenMark, producing largely consistent but not perfect pre-

dictions because most of the predicted genes remain hypothetical without functional annota-

tions. Proteomic studies have been used to improve understanding of the microbial world

beyond genomics. Proteomics allows correction of bad gene predictions, and the discovery of

protein products from the regions of the genome not yet predicted to be coding areas [16].

Proteomics has been used as a tool for studying bacterial virulence and antimicrobial resis-

tance [17]. The Multidimensional Protein Identification Technology (MudPIT) approach was

used to study Pseudomonas aeruginosa membrane-associated proteins, which contribute to P.
aeruginosa cells’ antibiotic resistance and is involved in their interaction with host cells [18].

Motivated by recent expansion of microbial genome catalogues, our previously defined ref-

erence based peptide identification pipeline (HAPiID) [19], and the increasing number of pub-

licly available gut metaproteomics datasets, we conducted a large scale survey of

metaproteomics data of the human gut microbiome to study the proteome landscapes of the

various microbial species dominating the human gut. Our aim was to mimic targeted proteo-

mics studies, which traditionally focused on single cultured species, by leveraging the available

metaproteomics datasets. We were able to identify species that are ubiquitously expressed

across all samples spanning various phenotypes. Furthermore, by focusing on the most highly

expressed genome sequences at the protein level, we represented the expressed proteome as a

network and extracted co-abundant protein modules. We used such network information to

study the various metabolic pathways that a protein with unknown function might be involved

in and also identified modules that were expressed in hosts with specific phenotypes. We also

leveraged proteome information to identify and annotate potential operon structures within
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genomes and recover open reading frames (ORFs) with spectral evidence that were otherwise

missed by computational protein coding gene predictors. Operon structures have been

exploited for computational functional predictions (guilt by association) [20, 21]. We made

the results from our analysis available at a publicly accessible website, providing the protein

expression and putative operon structures with spectral support for many human gut related

microbial species for the first time.

Results

Summary of the metaproteomic identification results

Using more than one thousand metaproteomic datasets, we were able to reveal information

about the functional landscapes for many bacteria species that are important for human health

and disease. Due to the throughput limitation of the metaproteomic experiments, protein

expressions of the rare species were not observable for all the bacterial species that were identi-

fied through metagenomic research. In total, we were able to identify 2,511 distinct genomes

that were expressed in at least one out of the total 1,276 samples (see Table 1; see details of the

datasets in S1 Data). A total of 13,460,264 spectra were matched to peptides, out of which

12,950,155 spectra (96.2%) were matched to these 2,511 genomes. The remaining 510,109

identified spectra (which could either be from rarer species or a result of false identifications)

were not considered further in this study. Fig 1 summarizes the spectral support for these

genomes with x-axis showing the number of supporting samples and y-axis showing the total

number of identified spectra for each genome (a data point in the plot).

Not all highly-expressed species are equal: Some are generalist and some

are specialist

We saw variation in metaproteomic support for the different genomes (see Fig 1) with the

most highly expressed genome having over one million supporting spectra. The mean number

Table 1. Summary of the metaproteomics datasets that were analyzed.

Study # of MS files in original study # samples for downsteam analysis phenotypes

Rechenberger et al. 2019 [22] 424 318 AL

Tanca et al. 2015 [23] 5 5 healthy

Cerdo et al. 2018 [24] 56 8 healthy infants

Gavin et al. 2018 [25] 101 101 healthy/seronegative T1D/seropositive

Long et al. 2020 [26] 38 10 colorectal cancer/healthy

Lehmann et al. 2019 [27] 77 56 healthy/CD/UC/IBS colon adenoma gastric carcinoma

Zhang et al. 2018 [28] 203 167 healthy/CD/UC

Zhang et al. 2020 [29] 48 37 healthy/CD

Zhang et al. 2016 [30] 8 8 healthy

Lloyd-Price et al. 2019 [31] 641 493 healthy/CD/UC

Zhang et al. 2017 [32] 45 9 healthy/CD/UC

Hickl et al. 2019 [33] 30 3 healthy

Young et al. 2015 [34] 176 9 female preterm infant

Blakeley-Ruiz et al. 2019 [35] 572 52 CD (resection surgery)

Total 2424 1276

# samples: not all datasets were used in our downstream analyses. We discarded the datasets that had < 1000 identified peptides and for references 32–35, we grouped

fractions into single samples.

https://doi.org/10.1371/journal.pcbi.1009397.t001
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of spectra expressed by each genome was 4,780 and the median was 385, which indicates very

few highly expressed genomes and many low expression genomes at the protein level. S1 Fig

shows a long-tailed abundance distribution for the human gut associated bacteria, with many

species observed with very low abundance. The top 100 most abundant genomes (less than 4%

of the total number of expressed genomes) contributed more than 61% of the identified spectra

(7,327,171 spectra). Fig 2 summarizes the taxonomic composition at the genus level of these

top 100 genomes. These 100 genomes represent a total of 34 genera in five most abundant

phyla of the human gut Bacteriodetes, Firmicutes, Actinobacteria, Proteobacteria and Verruco-
microbiota (S2 Fig).

The top two most abundant species belong to the genus Phocaeicola (Phocaeicola vulgatus
and Phocaeicola dorei), which expressed more than 11.9% of the total number of spectra in a

total of 543 and 308 samples respectively. We refer to these two species as generalists herein

forward. These two species share similar phenotype expression patterns because they both

appear in many healthy samples and in disease samples, including acute leukemia (AL), type-1

diabetes (T1D), Crohn’s disease (CD), irritable bowel syndrome (IBS), colorectcal cancer

(CRC), colon adenoma and CD (followed by resection surgery), with the exception of gastric

carcinoma where only Phocaeicola vulgatus was found to be expressed. We also identified two

species Lactobacillus amylovorus and Limosilactobacillus mucosae, which were the 4th and the

11th most highly expressed genomes but are only expressed in 25 and 16 samples respectively

with L. amylovorus identifications coming from three studies [22, 27, 35] and L. mucosae also

coming from three studies [26, 27, 35]. We refer to these two species as specialists. They were

not found to be expressed in a single healthy sample, but both were highly expressed in CD

(followed by resection surgery) patients, and the former was also found in AL patients with

high abundance. We also looked into the metagenomic support of these species. Analysis of

the matched metagenomic data showed that the Lactobacillus genus has a relative abundance

of 2% [26, 27, 35]. We also checked the presence of these two species using an independent col-

lection of metagenomic datasets from CD patients, which contains a total of 108 metagenomic

samples from four projects including [36–39]. Kraken2 (v2.0.8, [40]) and Bracken (v2.6.2,

[41]) was used to quantify the relative abundances of the species. The results showed that these

two species are of very low abundance in most of the CD datasets but are in relative high

Fig 1. Scatter plot summarizing the expression of 2,511 human associated microbial genomes in different

samples. X-axis shows the number of samples in which each genome was observed, and y-axis shows the total support

spectra for each genome. The four “outlier” genomes that are highly expressed and/or broadly distributed are

highlighted in red with their species names shown in the plot, followed by the number of samples supporting their

expression in the parenthesis.

https://doi.org/10.1371/journal.pcbi.1009397.g001
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abundance (e.g.. 2% or 4%) in a small number of CD patients, which is in agreement with the

observation based on the metaproteomic data. Further, our analyses suggested that this species

had high protein expressions (quantified by metaproteomic approach) that was dispropor-

tional to their abundance (quantified by the metagenomic approach).

We next checked whether or not these two pairs of species have similar functional profiles

when compared with each other, over the samples in which they are expressed. To do that, we

annotated their expressed proteins, as much as possible, with COG terms (see Methods for

more details). For each of the four genomes mentioned above, we computed the relative abun-

dances for the COG terms associated with their expressed protein sequences. We summarize

the distribution of the high level COG categories, represented by 25 single letter groups, in

Fig 3. We noticed that, overall, the two generalist species share more similar functional pro-

files, and the two specialist genomes share more similar functional profiles (Fig 3). The two

specialist genomes had significantly higher relative protein expression levels for the COG cate-

gories G (Carbohydrate transfer and metabolism), J (Translation, including ribosome struc-

ture and biogenesis) and T (Signal transduction). On the other hand, the two generalist species

had relatively higher expression levels in the COG categories P (inorganic ion transport and

metabolism), M (Cell wall/membrane/envelope biogeneis), C (Energy production and conver-

sion), U (Intracellular trafficking, secretion, and vesicular transport) and W (Extracellular

structures). It should be noted that the latter functional category W had no observed expres-

sion within the two specialist species.

Protein co-expression modules and their applications

We focused on the top 100 most highly expressed genomes in this section to assess the pres-

ence/expression of their proteins among the different host phenotypes (see S3 Fig for the sum-

mary). We derived groups of proteins (protein co-expression modules) that had similar

presence/expression patterns across samples and were mostly found in one of the 11 pheno-

types. We extracted a total of 854 such modules, composed of 3,697 protein sequences (see

Table 2). Fig 4 shows two such protein modules. The first module containing proteins that

were exclusively expressed in CD patients (the proteins were observed in high abundance

although they were only observed in 16 CD samples), and the second one contains proteins

mostly expressed (but in less abundance) in AL patients. We noticed that many of the proteins

Fig 2. Piechart summarizing the taxonomic composition at the genus level for the top 100 highly expressed

genomes. Phocaeicola is the most abundant phylum (23.4%, purple), followed by Bacteroides (13.4%, red),

Faecalibacterium (11.5%, green), and the rest can be followed by reading left to right in the legend and counter-

countwise accordingly in the graph.

https://doi.org/10.1371/journal.pcbi.1009397.g002
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Fig 3. Barplot summarizing the relative abundances of the COG functional categories of the two generalist (blue/green) and two specialist (red/

orange) highly abundant genomes.

https://doi.org/10.1371/journal.pcbi.1009397.g003

Table 2. Phenotype specific protein co-expression modules.

Phenotype # of modules # of proteins

AL 232 1,250

CD 96 307

CD (resection surgery) 225 816

colon adenoma 6 17

CRC 0 0

gastric carcinoma 9 23

healthy & healthy seronegative 169 873

healthy infant 25 92

IBS 6 26

preterm infants 0 0

T1D 12 45

UC 74 248

https://doi.org/10.1371/journal.pcbi.1009397.t002
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within the modules lack functional annotations but have connections to those whose functions

are previously characterized.

We explored the possibility of suggesting functions for proteins that lack COG or KEGG

annotations, but are co-expressed with other annotated proteins (guilt-by-association). We

report pathway associations when such proteins share edges with other annotated ones within

the modules. By doing so we were able to suggest potential pathways for a total of 7,682 pro-

teins using COG annotations and 5,800 proteins using KEGG annotations (9,566 receiving

either COG or KEGG pathway). On the other hand, there were a total of 3,747 proteins using

COG annotations and 2,080 proteins using KEGG annotations respectively, that either had no

edges with any other annotated proteins or were found in modules that were completely com-

posed of un-annotated protein sequences. We note just like any guilt-by-association

approaches, our protein-coexpression based analysis can provide hints to potential biological

processes (pathways) that these proteins might be involved, however, their exact functions

may need to be studied further using other approaches.

Putative operon structures with spectral support

We applied the described pipeline to extract potential operon candidates from genomes that

were expressed in relatively high number of samples (see Methods for more details). Two lists

of potential operons were produced: one with spectral support (as described in the Methods

section), and the other one of operons without consideration of spectral information. In total,

we analyzed 278 genomes, and made the results available on the GutBac website. From these

genomes, a total of 4,089 potential operon structures with spectral support and 36,633 sug-

gested operon structures with or without spectral support were identified. We compared our

predictions with those predicted using fgenesB for the top 10 most highly expressed genomes,

and the results are summarized in Table 3. The number of potential operons with spectral sup-

port were always lower than those predicted by fgeneB and those suggested by our pipeline

without spectral support. However, on average there was slightly better agreement between the

fgenesB predictions and those with spectral support (> 92%) compared to the suggestions

without spectral support (88%). It should be noted that the increase in the difference between

Fig 4. Example protein co-abundant modules extracted from specialists. (a) Limosilactobacillus mucosae a specialist found in CD samples (L.
mucosae was one of the two most highly expressed specialists discussed in this paper), and (b) Escherichia flexneri a specialist found in acute leukemia

patients. The nodes are proteins: unknown proteins are in blue, and they are connected to proteins with functional annotations (shown in other colors)

through our co-occurrence analysis.

https://doi.org/10.1371/journal.pcbi.1009397.g004
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the reported numbers is expected in this case, as we included more genomes with decreasing

spectral coverage.

Recovery of missed ORFs with spectral support

We incorporated metaproteomics datasets to recover ORFs with spectral support which were

otherwise missed by de novo gene predictors mentioned in the Methods section above. Novel

ORFs in comparison to the two computational gene/protein prediction methods (FGS and

Prokka) were extracted as explained in Methods. From the 2,511 distinct genomes that were

identified to be expressed at the protein level in at least one sample, a total of 23,949 putative

ORFs were identified which were otherwise missed, when FGS was employed for gene predic-

tion. Similarly, a total of 22,658 novel ORFs were recovered when Prokka was used for gene

prediction. The majority of these recovered ORFs were overlapping (at 84%); a more detailed

results for this comparison is summarized in S4 Fig. Unsurprisingly, there is positive correla-

tion between the number of ORFs recovered for genomes with their protein expression levels

in both cases, as shown in S5 and S6 Figs. This further suggests potential improvement in bac-

terial annotations with the increase in the throughput of metaproteomics. The rescued ORFs

tend to be short (which is expected as longer ORFs are harder to be missed by de novo gene

predictors), albeit there are some very long ORFs (see S7 Fig). We compiled lists of rescued

ORFs with metaproteomics support, along with putative annotations of the ORFs if available,

and made all the results available for download through the GutBac website.

We examined the relationship of the rescued ORFs with respect to the protein coding genes

predicted by FGS or Prokka. We found that among the rescued ORFs (22,949) missed by FGS,

the majority of them are either on the opposite strands (11,955, 53%) of already predicted pro-

tein coding genes by FGS, or the same strand but in different frames (7,347, 33%). Similarly,

among the 22,658 rescued ORFs missed by Prokka, 10,807 (47.7%) are on the opposite strands

of predicted protein coding genes by Prokka and 6,734 (29.7%) are of the same strand but in

different frames. The genome that has the most number of rescued ORFs is Phocaeicola vulga-
tus (accession ID: GCF_003475695.1), one of the two generalists we discussed above. Of the

426 recused ORFs missed by Prokka and 437 missed by FGS, 232 and 249 cases respectively

were found on the opposite strands of predicted genes, and 97 and 122 cases were found to be

encoded by a different frame of overlapping genes. Fig 5 shows plots of three regions in this

Table 3. Summary of predicted operons for the selected genomes by fgenesB and our approaches including the total with and without spectra support.

genome id fgenesB predicted operons supported� no-support��

GCF_003475695.1 875 817 (699#) 421 (375) 390 (324)

20287_6_9 1038 878 (759) 378 (349) 500 (410)

BackhedF_2015__SID70_4M__bin_5 675 533 (492) 185 (174) 348 (318)

GCF_003465905.1 454 301 (279) 125 (117) 176 (162)

LiJ_2017__H2M414927__bin_20 486 374 (353) 154 (143) 220 (210)

12718_7_31 910 766 (650) 289 (265) 477 (385)

GCF_003471795.1 747 549 (478) 274 (244) 275 (234)

GCF_000169015.1 835 694 (586) 299 (267) 395 (319)

GCF_000209425.1 560 400 (362) 114 (111) 286 (251)

GCF_003433995.1 667 511 (476) 164 (152) 347 (324)

�, �� putative operons with and without spectral support, respectively.
# numbers in parentheses reflect the number of operons that overlap with fgenesB predictions (we considered that two operons overlap if half of the smaller operon

overlaps with the larger one).

https://doi.org/10.1371/journal.pcbi.1009397.t003
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genome that contain rescued ORFs with spectral support (together with predicted operons).

The first example (illustrated on the top in Fig 5) involves two rescued ORFs, among which

one is a large ORF that was missed by Prokka (but was predicted as a protein coding gene by

FGS), and could be re-identified using metaproteomic data (we note this ORF was missed by

Prokka probably because it overlaps with a tRNA gene, shown as a red arrow in the plot). The

second example (shown in the middle in Fig 5) also contains two rescued ORFs, and we note

the first ORF (from 86972 to 87128 bp in NP_QRPW01000005.1) was missed by both FGS and

Prokka but we found metaproteomic evidence for this ORF. In fact, this ORF is part of a large

operon that involves genes encoding ribosomal proteins, and hmmscan search (https://www.

ebi.ac.uk/Tools/hmmer/search/hmmscan) shows that the rescued ORF is ribosomal protein

S11. In the last example, the larger rescued ORF of 199 aa overlaps (on the opposite strand)

with two putative protein coding genes. This ORF is supported by one peptide of 2 peptide

spectrum matches (PSMs) but similarity search (using hmmscan search) did not return similar

sequences, so further investigation could be needed.

Further confirmation of the rescued ORFs will require experimental validation. Here we

used three indirect evidences to support the validity of some of the rescued ORFs. First, 25% of

the rescued ORFs have some function annotations (to COG categories in this paper) and they

are likely to be true. S8 Fig summaries the functional distributions of the rescued ORFs (details

of the functional annotations can be found on GutBac). Second, clustering of ORFs revealed

1,346 groups of ORFs each having at least 2 members, among which 37% received functional

annotations and the remaining 63% did not (but we would argue they are also likely to be true

as they are non-unique events). For example, the largest group of ORFs without any functional

annotation (the fourth largest group of rescued ORFs with or without functional annotations)

includes 61 rescued ORFs from various of genomes that share sequence similarity. Third, we

compared rescued ORFs to putative proteins annotated by NCBI for the top 5 genomes that

encode the highest number of novel ORFs and also have a RefSeq genome in the NCBI

Fig 5. Selected cases of rescued ORFs using metaproteomic data in P. vulgatus genome. The three blocks of arrows represent genes predicted from

three regions in this genome: from the top to the bottom are contigs with IDs of NZ_QRPW01000017.1, NZ_QRPW01000005.1, and

NZ_QRPW01000002.1, respectively. Genes predicted by FGS and/or Prokka are shown as purple arrows around the central lines, each representing a

segment of the genome: dark purple and light purple are for genes with spectral support in at least two metaproteomic datasets, or only one

metaproteomic dataset, respectively. The red small arrow represents a tRNA gene predicted by Prokka. Rescued ORFs are shown as green arrows above

the lines. Genes in the same putative operon structure are surrounded in orange squares.

https://doi.org/10.1371/journal.pcbi.1009397.g005
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database (the five NCBI genomes are GCF_000159855.2, GCF_000169015.1,

GCF_003433995.1, GCF_003464525.1 and GCF_003475695.1), and the results showed that

about 6% of the rescued ORFs had perfect match with these proteins.

Discussions

By taking advantage of the availability of many metaproteomics datasets, we were able to

probe the protein landscapes for many human-associated microbial species. However, due to

the relatively low throughput of metaproteomics comparing to metagenomics (and metatran-

scriptomics), the number of genomes we studied (in depth) was rather limited, even though a

huge number of reference genomes for human gut microbiome were available. The HAPiID

pipeline includes more than 6000 genomes for peptide and protein identification from meta-

proteomic data, and we were only able to provide genome-level protein landscape analysis for

40% of these genomes.

Using metaproteomic data, we were able to identify a large number of ORFs that had spec-

tral support but were missed by de novo gene predictors. Many of these rescued ORFs are rela-

tively short (otherwise they are unlikely to be missed by protein coding gene predictors), and

we want to emphasize that they need to be interpreted cautiously. Some of them could be false

identifications and some of them may reflect translation that does not result in proteins with

biological significance. In the case of the 199aa ORF discussed in the results, evidence of this

ORF was based on a single peptide of 2 PSMs and more focused mass spectrometry analysis

(higher throughput techniques or a focus on this species) could be used to improve support for

this existence of this ORF and eliminate the possibility of it being a false identification. Finally,

we hope the finding of “rescued” ORFs (such as the one that overlaps with a tRNA gene) and

their analysis can inspire ideas for improving de novo protein coding gene predictions.

With the increasing number of microbial genomes being sequenced, functional annotation

becomes an immediate need. Numerous genomes are being computationally assembled as a

result of these metagenomic sequencing efforts coupled with emerging computational genome

assembly and binning tools. This is expanding the gap between the amount of whole microbial

genomes recovered and the fraction of annotation the community has concerning these newly

discovered genomes. While metaproteomics based techniques are still low throughput com-

pared to the sequencing base techniques, we believe there is great value in studying the prote-

ome of these microbial communities directly within their environment and augmenting a

third level of information on top of metagenome and metatranscriptome, to capture such

microbial interactions at a more granular scale, i.e., both functional and pathway levels, rather

than a mere interpretation of the genome abundance levels of the different microbial entities

at some taxonomic level.

We hope that our results would serve as a resource for the study of gut microbial commu-

nity in particular to cast more light over the microbial dark matter, and broaden our under-

standing at the functional level. Furthermore, we also hope that this work would inspire others

and serve as an example on how to utilize metaproteomics as a tool for large scale analysis to

study the microbial functional landscapes, especially as metaproteomics throughput improves

and different mass spectrometry methods that may improve results, such as multiplexing and

data independent approaches, become more common.

Methods

Metaproteomics samples

Human gut metaproteomic datasets were obtained from the publicly accessible proteome

exchange database [42]. We extracted a total of 2,424 Thermo Fisher RAW files, from 14 recent
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studies, spanning 11 distinct phenoypes [22–35]. A more detailed summary of the datasets

used can be found in Table 1. Four of the studies were based on fractionation approaches to

increase sequencing depth. For peptide-spectral-matching and to identify expressed proteins,

we ran these individual samples through our previously developed HAPiID pipeline [19]. For

fractionated samples, we performed peptide spectral matching for each individual fraction sep-

arately and then combined the identification results from every fraction into results for a single

sample.

Peptide identification and proteome quantification

To identify peptides and quantify proteome content of our proteomics dataset, we first ran

each individual sample through our previously implemented HAPiID proteomics framework

(https://github.com/mgtools/HAPiID) [19]. HAPiID uses two steps to optimize the use of the

reference genomes and metagenome-assembled genomes (MAGs) as the universal reference

for human gut metaproteomic MS/MS data analysis. For this work, we expanded the search

protein database used by HAPiID to include proteins predicted from 6,160 non-redundant

microbial whole genome sequences or MAGs, and used it as a reference to compute theoretical

spectra, for peptide spectral matching. These microbial genomes were collected from five

recent studies [3, 5, 9–11], and then filtered and dereplicated by dRep [43], using 90%

sequence identity for the primary clusters, and 99% sequences identity for the secondary clus-

ters with a minimum of 60% genome alignment coverage. Default parameters for the two-step

search strategy were used over all samples. For the peptide spectral matching step, the MSGF

+ search engine was used with the following settings [44]: high-resolution LTQ as the instru-

ment type, precursor mass tolerance of 15 PPM, isotope error range between -1 and 2, a

maximum of 3 fixed modifications, variable oxidation of methionine, fixed carboamidomethyl

of cysteine, maximum charge of 7 and a minimum charge of 1 (S1 Table shows the

breakdown of the identified peptides with different charges), and allowing for semi-tryptic

fragmentation up to two missed-cleavages. A strict FDR cutoff at 1% was enforced by using

target-decoy database approach with reverse protein sequences as decoy. A final set of samples

was maintained by discarding the ones where we identify less than 1,000 unique peptide

sequences. After combining fractions for the fractionated samples, our final dataset was com-

posed of 1,276 samples.

Genomes identified by the profiling step of HAPiID were considered as expressed genomes

and their relative abundances at proteome level were estimated using all identified spectra

(from the two steps of identifications by HAPiID) as following. All uniquely mapped spectra

(i.e., their corresponding peptides are unique to individual genomes) get assigned to their cor-

responding genomes, followed by partial allocations of the multi-mapped spectra (shared by

multiple genomes). Quantities from unique spectra to genomes are used for weighted assign-

ment of the multi-mapped spectra shared between multiple genomes, similar to the approach

proposed in Qin et al. [45] (genomes that do not receive unique spectra are not considered fur-

ther). In addition to the absolute counts of spectra assigned to each genome, we also computed

the normalized spectra counts to consider the differences of proteome sizes for the various

genomes and the different metaproteomic throughput for comparative analysis. Spectral

counts were first normalized (per million amino acids) by the respective proteome sizes (calcu-

lated as the total combined lengths of protein sequences for each genome), and then normal-

ized by the total number of identified spectra for each sample to account for sequencing

depths. Using normalized spectra counts is important for downstream comparative analyses of

the expression of identified species.
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Protein function annotation

We used both COG [46] and KEGG [47] databases to assign functional annotations to protein

sequences. The latest version of clusters of orthologs (COG) database (release 2020), was used

to assign COG terms, with significant hits, to the predicted protein sequences from whole

genome sequences. A COG protein reference database was first created from the curated list

of 3,213,025 protein sequences with COG assignments. Diamond blast [48], with the –more-
sensitive setting, was employed to assign COG terms to our query sequences. A protein

sequence was annotated with a COG term if the alignment between the query protein sequence

and the reference protein sequence covers at least 50% of the total length of the COG domain,

with a minimum e-value score of 0.01. A total of 10,546,105 protein sequences (out of

15,072,008 protein sequences), each had at least one COG hit, using these criteria. Protein

sequences that did not receive any COG hit were assigned to the category S (i.e., no COG-term

assignments). We also performed COG based pathway annotation, for protein sequences with

COG hits that participate in certain pathways. To transfer KEGG annotations to our protein

sequences we first annotated protein sequences with KO terms using KEGG’s blast-Koala tool,

over the latest version of KEGG database [47], followed by mapping putative pathways that

each protein participates in using KEGG’s pathway mapper tool. Furthermore, we post-pro-

cessed protein to KEGG pathway maps by using our previously developed tool, MinPath [49],

to overcome potential overestimation of pathways by the naive function-to-pathway mapping

method.

Inference of protein co-expression network

For the top 100 most highly expressed genomes, we created protein expression profile M x N
matrices where M represents the list of expressed proteins and N represents the list of samples

where the particular genome is expressed in, and a particular entry mi, nj represents the num-

ber of spectra expressed by the protein mi in the sample nj. From this matrix, protein expres-

sion profile vectors were then extracted for each expressed protein and all against all pairwise

correlation coefficients were calculated using the program fastspar [50], which is a fast and

scalable implementation of the original sparCC correlation measure [51]. The resulting M x M
correlation matrix is used to construct a protein co-abudnance network. Based on author rec-

ommendations, we used a minimum sparCC correlation coefficient of 0.3 or higher to infer an

edge between two expressed proteins. To extract proteome connected components, we devel-

oped an in house script using python’s networkX module [52]. A graph node in this context is

an expressed protein sequence, and an edge between two protein sequences represents a

sparCC correlation coefficient of 0.3 or higher, between the expression profile of these two

proteins. We first identified all the maximum cliques within the network by an iterative

approach. For all the remaining nodes that did not form cliques, we identified the best candi-

date connected components, by adding them to the clique where they share the highest num-

ber of edges with. Cytoscape was used for network visualization [53].

Host phenotype specificity of gut bacterial proteins

To quantify if a protein’s expression is only observed in gut microbiomes with a specific host

phenotype or broadly found in samples with different phenotypes, we defined the host pheno-

type specificity (HPS) of a protein using Shannon’s entropy measure [54], as following:

�
XN

j¼1

pijlogNpij
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where N is the total number of possible phenotypes that a protein i was found to be expressed,

and pij represents the proportion of the protein i being expressed in sample with phenotype j.
The proportions for each protein to be found expressed in different phenotypes are calculated

based on the spectral counts, normalized by sequencing depth. Using this metric, phenotypic

entropy closer to zero indicates phenotype specific expression patterns, and those with values

closer to 1 indicate more broadly distributed protein expressions, likely to be expected in a

broad range of phenotypes.

Inference of operon structures with protein expression support

Protein spectral support was integrated with genomic context to extract potential candidates

for operon structures within highly expressed genomes. For each genome, we extracted clus-

ters of proteins from the same contig and strand containing member protein sequences within

100 bases. We integrated spectral support to filter out clusters that did not have at least half of

its protein members expressed in 2 or more samples and required at least 2 spectra per sample.

To validate our results, we also predicted operon structures using the fgenesB program [55,

56]. FgenesB is a bacterial operon and gene prediction program, based on pattern Markov

chains. The FgenesB software suite, however, only provides a web interface with limited sub-

missions per day per user, therefore an automated method to detect operon structures, that

could be integrated in pipelines and run offline would be highly desirable. For comparison, we

counted a predicted operon as overlapping with those of fgenesB if the two suggested operon

regions on the genome overlap by more than 70%.

Recovering of proteins missed by gene predictors but are supported by

metaproteomics data

FragGeneScan (FGS) [57] was used to predict protein coding genes for the genomes used in

our reference protein database. For each of the highly abundant genomes identified in each

sample, by selecting top N genome sequences covering 80% of the identified spectra in step 1

of our HAPiID pipeline (see [19] for more details), we construct a protein database using 6

frame genome translation sequences instead of predicted protein sequences as a reference

database. We then identified peptides from each sample based on this method of database con-

struction. For each new peptide we extracted open reading frames (ORFs) that surround them,

and then filtered out those that did not have a blast hit of 70% or higher with the respective

predicted protein predicted by FGS. Similarly, we repeated the same task by using Prokka [58]

for protein prediction instead of FGS.

Availability of the results

Results are available through the GutBac website at https://omics.informatics.indiana.edu/

GutBac/. The website includes GFF files with predicted proteins for each genome, FNA and

FFN files containing relevant genomic sequences, GFF files containing both the predicted pro-

teins and the missed ORFs for each genome, and CSV files containing the list of predicted

operons for each genome. The website includes contig-specific plots generated by DNA Fea-

tures Viewer [59] containing the missed ORFs, predicted proteins, and predicted operons for

both FGS and Prokka. The website also features genome-specific searching and filtering.

Finally, the website has the MSGF+ identifications, networks and annotations for each

genome, and the genome to species mapping.
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Supporting information

S1 Data. An Excel file with details of the metaproteomics datasets used in this analysis.

(XLSX)

S1 Table. Summary of parent ion charges.

(PDF)

S1 Fig. Number of normalized spectra per genome. For clarity, we only showed the top

500genomes. Purple represents the top 100 genomes and pink the top 500.

(TIF)

S2 Fig. Piechart summarizing the taxonomic composition at the genus level for the top 100

highly expressed genomes.

(TIF)

S3 Fig. Boxplots summarizing the host phenotype specificity of expressed proteins

encoded by the top 100 most abundant genomes. Gray line indicates the average host pheno-

type specificity of the proteins in each genome.

(TIF)

S4 Fig. Venn diagram summarizing the overlap between the rescued ORFs that were

missed by FGS and Prokka.

(TIF)

S5 Fig. Scatter plots showing the relationship between the expression levels of the different

genomes at the protein level with the total number of rescued ORFs missed by FGS.

(TIF)

S6 Fig. Scatter plots showing the relationship between the expression levels of the different

genomes at the protein level with the total number of rescued ORFs missed by Prokka.

(TIF)

S7 Fig. Length distribution of the rescued ORFs.

(TIF)

S8 Fig. Barplot summarizing the functional annotations (in COG) of rescued ORFs.

(TIF)
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