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ABSTRACT
Qualitative spatial reasoning has been a core research topic in
GIScience and AI for decades. It has been adopted in a wide
range of applications such as wayfinding, question answering,
and robotics. Most developed spatial inference engines use sym-
bolic representation and reasoning, which focuses on small and
densely connected data sets, and struggles to deal with noise
and vagueness. However, with more sensors becoming available,
reasoning over spatial relations on large-scale and noisy geospa-
tial data sets requires more robust alternatives. This paper, there-
fore, proposes a subsymbolic approach using neural networks to
facilitate qualitative spatial reasoning. More specifically, we focus
on higher-order spatial relations as those have been largely
ignored due to the binary nature of the underlying representa-
tions, e.g. knowledge graphs. We specifically explore the use of
neural networks to reason over ternary projective relations such
as between. We consider multiple types of spatial constraint,
including higher-order relatedness and the conceptual neighbor-
hood of ternary projective relations to make the proposed model
spatially explicit. We introduce evaluating results demonstrating
that the proposed spatially explicit method substantially outper-
forms the existing baseline by about 20%.
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1. Introduction

Humans heavily rely on qualitative spatial relations to perceive and reason over space
(Lynch 1960, Freksa 1991, Egenhofer and Mark 1995b, Mark et al. 1999). Over the
years, numerous researchers have studied the formalization of and reasoning over
qualitative geospatial information, including qualitative distance and direction (Frank
1992, Hernandez et al. 1995, Clementini et al. 1997, Worboys 2001, Mossakowski and
Moratz 2012, Freksa et al. 2018), topological relations (Egenhofer 1989, Egenhofer and
Franzosa 1991, Clementini and Di Felice 1995, Klippel et al. 2013), as well as projective
relations (Clementini and Billen 2006, Billen and Clementini 2004, 2005, Clementini
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et al. 2010, Beall et al. 2012). It is not until recently, however, that data models, such
as directed and labeled graphs (i.e., knowledge graphs), have been explored at scale
to represent qualitative spatial relations that complement the strong geometric focus
of GIS (Vasardani et al. 2013, Chen et al. 2018, Regalia et al. 2019, Yan et al. 2019).
Moreover, most spatial inference engines work on top of a set of axioms and an
underlying symbolic calculus (e.g. the region connection calculus (Renz 2002)). These
systems work for relatively small datasets that are free of noise, vagueness, and error
(Egenhofer 1991, Billen and Clementini 2005). Meanwhile, thanks to computational
improvements and big data, a bottom-up, subsymbolic (or connectionist) approach
has recently attracted extensive attention in artificial intelligence (Russell and Norvig
2002). In contrast to its symbolic counterpart, a subsymbolic approach does not repre-
sent axioms or rules explicitly; instead, they are implicitly learned through the compu-
tation of numeric vectors based on observed data (Minsky 1991). With regard to
knowledge graphs particularly, plenty of advanced techniques (primarily based on
neural networks such as knowledge graph embedding) have been developed to
accomplish tasks such as graph completion, i.e., inferring missing links between two
nodes (Wang et al. 2017, Ji et al. 2020). With qualitative spatial relations being repre-
sented within knowledge graphs, we can, therefore, leverage techniques such as
knowledge graph embedding to perform spatial reasoning.

More concretely, in knowledge graph embedding, both geographic entities (origin-
ally represented as symbolic nodes) and their spatial relations (originally repre-
sented as symbolic edges) are encoded as numeric vectors (known as embedding).
Then the validity of a relation statement, which typically consists of three compo-
nents (i.e., two nodes and one edge), can be determined by computing the related-
ness of their associated numeric vectors. There are various ways to compute such a
relatedness. For example, a relation statement can be regarded as valid if the
Euclidean distance between two nodes’ embeddings approximates the embedding
of the edge.

Nevertheless, due to its inherent binary nature (i.e., using an edge to link two enti-
ties), a graph-based data model leads to a strong preference over pairwise relations
(e.g., is part of, touches, and overlaps), while failing to address higher-order relations
that simultaneously involve more than two spatial features (Zhu et al. 2017, 2019),
such as between and surrounding. Consequently, syntactic structures such as concept
reification (Adams and Janowicz 2011) must be adopted to enable the representation
of higher-order spatial relations when using graph-based data models. But such a
structural modification poses a challenge to typical subsymbolic models in learning
representations of nodes and edges as they are mostly designed for pairwise relations.

Hence, this paper aims at developing subsymbolic neural network models that are
capable of reasoning over higher-order qualitative spatial relations. We specifically
focus on ternary projective relations (i.e., relations that are invariant to projective
transformation), including between, before, after, on the left of, and on the right of
(Billen and Clementini 2004). By learning subsymbolic representations (i.e., embed-
dings) of both places and ternary projective relations based on an incomplete geospa-
tial knowledge graph, the model is designed to predict (1) ternary spatial relations
(e.g., what is the spatial relation between Santa Barbara, Goleta, and Los Angeles?), and
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(2) places (e.g., which landmarks are visible on the left side while traveling from Santa
Barbara to Thousand Oaks?).

Following this mindset, we first choose to represent qualitative spatial relations
using the Resource Description Framework (RDF), which is capable of capturing the
semantics of geographic information in a human and machine understandable way
(Hitzler et al. 2009, Kuhn et al. 2014). Furthermore, instead of representing a relation
as an edge, a class node is constructed as a reification of the higher-order relation
that connects with more than two place-typed nodes (also called values), each of
which has a role in the relation. For instance, a ternary projective relation statement
(e.g. Santa Barbara is between San Francisco and Los Angeles) can be represented
as three role-value pairs (e.g. target – Santa Barbara, start – San Francisco, and
destination – Los Angeles). With such a geospatial knowledge graph, we then intro-
duce a neural network architecture built from a sequence of operations (e.g. convolu-
tion and regression) to learn the embedding for both roles and values, which are
further concatenated to form the embedding of a role-value pair. In contrast to classic
symbolic approaches, such a subsymbolic approach allows for quantitative computa-
tions over role-value pairs (e.g. comparison and transformation). Consequently, the
reasoning process over ternary projective relations can boil down to computing the
relatedness of the three role-value pair embeddings. Specifically, if three role-value
pairs are closely related, they are more compatible to compose a valid ternary relation
statement. In order to learn such embeddings from data, we train the model by feed-
ing both valid and invalid sample statements and design a learning objective function
to ensure a high compatibility score (computed from the embedding) for a valid rela-
tion while keeping such a score low for an invalid one. Finally, for a specific spatial
reasoning task (either on spatial relation or place prediction), one can then rank the
compatibility score of different candidate relation statements using the trained
embedding, and the one(s) with the highest score(s) will be selected as the answer to
the question.

It is worth emphasizing that such a subsymbolic approach is fundamentally differ-
ent from its symbolic counterpart in reasoning over qualitative spatial relations. Classic
symbolic approach, such as the commonly used composition rules, provides a deter-
ministic set of results while subsymbolic approaches conduct inference based on a
ranked list of numerical compatibility scores (can also be interpreted as likelihoods).
This difference makes the introduced subsymbolic approach more robust to noise and
uncertainty. Plus, given the embedding, the compatibility score of any relation state-
ments can be readily computed, which makes such a reasoning mechanism more
computationally effective than symbolic approach, especially on large-scale and
loosely-connected graphs.

The proposed method is built upon the state of the art of general n-ary link predic-
tion (Guan et al. 2020), which is a knowledge graph embedding method using deep
neural networks. However, in contrast to aspatial n-ary relations, ternary projective
relation has its inherent cognitive characteristics, including strict higher-order related-
ness, mutual exclusivity, and conceptual neighborhood (Billen and Clementini 2004).
Therefore, we design a set of spatially explicit models that take into account these
characteristics as spatial constraints. Experimental results demonstrate that a spatially
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explicit method substantially outperforms its baseline by about 20%. In summary, we
hope to contribute to a better support of higher-order qualitative spatial relations,
thus, to a richer means of representing and reasoning of human knowledge in
AI systems.

The remainder of this paper is structured as follows: Section 2 reviews related work
on qualitative spatial representation, qualitative spatial reasoning via neural networks,
and geospatial knowledge graphs. Section 3 proposes ontology design patterns to
represent ternary projective relations, providing a platform for Section 4, which further
defines two reasoning tasks and introduces a set of spatially explicit neural network-
based methods to address them. In order to validate the proposed methods, Section 5
introduces three newly built geospatial knowledge graphs of various sizes to conduct
experiments. Section 6 concludes our work and outlines future research directions.

2. Related work

In this section, we discuss related work and background readings relevant to the pre-
sented work.

2.1. Qualitative spatial representation and reasoning

With regard to qualitative spatial representation, Vasardani et al. (2013)’s place graphs
model is the closest to the geospatial knowledge graph approach studied in this
paper. To assist the modeling of human descriptions about the environment, a place
graph represents the identified places from texts as nodes and their relations as edges.
Following this work, Chen et al. (2018) proposed an extension to the basic place
graphs model with higher-order relations, such as betweenness, being explicitly taken
into account. In contrast to their work, which mainly uses labelled property graphs,
our work applies the Resource Description Framework (RDF) to simultaneously repre-
sent both the data schema (ontology) and data itself as sets of triples. Moreover, the
roles in a higher-order relation are distinguished through an attribute (position) associ-
ated with the property edge in the extended place graphs model while ours directly
defines the semantics of edges without using any associated attributes. The geospatial
knowledge graph built from our data model can be efficiently integrated with other
open graph data repositories such as Wikidata.

To reason over ternary projective relations, Clementini et al. (2010) systematically pro-
posed rules of permutation and composition. Permutation rule further contains converse
and rotation. An example of permutation-based reasoning is if P1 is on the right side of
P2 to P3, then P1 is on the left side of P3 to P2. Similar to composition table of topological
relations such as RCC8 (Renz 2002), ternary projective relations’ composition table aims
to find new relations from two given ones. For example, if P1 is on the left side of P2 to
P3 and P2 is on the right side of P3 to P4, then P1 can be on the right side, left side, or
before P3 and P4. On contrary to these symbolic reasoning, subsymbolic approach via
neural networks has advantages including (1) robustness to noise and vagueness, (2)
scalability to large data set, as well as (3) capability of implicitly mining more compli-
cated large-scale rules (Russell and Norvig 2002, Calegari et al. 2020).
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2.2. Spatial reasoning via neural networks

Rooted in the field of robotics, spatial reasoning using neural networks is one of the
main research tracks in AI (Landsiedel et al. 2017). Works in this fields can be principally
categorized into text-based, image-based, or hybrid spatial reasoning. Text-based rea-
soning focuses on answering natural language-based questions that require inferences
of spatial relations. Neural networks are typically trained using pre-labeled question and
answer pairs (Peng et al. 2015, Mirzaee et al. 2021). Image-based reasoning aims to infer
spatial relations between objects based on their visual properties (Hudson and Manning
2019, Krishnaswamy et al. 2019, Peyre et al. 2019). Convolutional neural networks are
typically applied in this group of methods. Lastly, combining texts and images to answer
questions about spatial relations is an active research topic (Janner et al. 2018, Chen
et al. 2019, Huang et al. 2019). The key idea underlying those models is to learn repre-
sentation of objects from both visual and textual perspectives, and such a model often
adopts a functional component that learns the interaction between objects (Santoro
et al. 2017). While these methods manage to reason spatial relations from unstructured
data (texts and images), our work attempts to do so based on structured data (i.e., geo-
spatial knowledge graphs). Also, to enable a fair comparison with traditional symbolic
spatial inference engines, our work does not, even though it is feasible, use any aspatial
contextual information to assist spatial reasoning like what the aforementioned text-
and image-based approaches do. Finally, none of these works is designed and tested
specifically for reasoning over higher-order spatial relations.

2.3. Spatially explicit knowledge graph embedding methods

In past years, several spatially explicit embedding methods have been proposed to
implicitly learn representations of geospatial knowledge graphs. For example, Mai
et al. (2019) proposed a spatially explicit knowledge graph embedding model to relax
and rewrite unanswerable geographic questions in which a distance decay function
was used to resample geospatial triples during model training. Similarly, Qiu et al.
(2019) modified the loss function in classical translation-based knowledge graph
embedding approaches to predict links between spatial features with their distance
being considered. Furthermore, to summarize geospatial knowledge graphs, Yan et al.
(2019) introduced a reinforcement learning model coupled with new spatial relations
to summarize graphs. Despite focusing on distinct applications, these approaches all
incorporate geospatial information by leveraging distance decay. In contrast, Mai et al.
(2020a) proposed a location-aware knowledge graph embedding model that directly
encodes spatial footprints of geographic entities into the embedding space. Unlike the
above mentioned work which mainly focuses on simple geospatial knowledge graphs
which include only binary spatial relations, this work seeks new methods to represent
and reason about higher-order spatial relations.

3. Knowledge representation for ternary projective relations

The Resource Description Framework (RDF) 1 is a W3C standard to represent
resources – ranging from webpages to actual mountains – by making statements
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about them in the form of hsubject, predicate, objecti triples. The graph forms, so to
speak, by a set of such triples sharing common elements, e.g. objects. As far as geo-
graphic and earth science data is concerned, RDF and ontologies have been success-
fully used for various problems of data integration, interoperability, conflation, and
geographic information retrieval (Bennett et al. 2008, Kuhn et al. 2014, Zhu et al. 2016,
Claramunt 2020, Scheider et al. 2020). Due to the binary nature of RDF’s triple-based
form, reification is introduced in this section to represent higher-order spatial relations
within RDF. Before that, we first discuss a family of higher-order spatial relations: tern-
ary projective relation. In line with the literature, we will use the term knowledge
graphs here to signify RDF graphs describing the world around us together with
ontologies that formalize the used vocabulary.

3.1. Ternary projective relations

By considering its cardinality, Clementini (2019) categorized spatial relations into
unary, binary, ternary, and n-ary. A unary relation is defined as the geometric property
of a single spatial feature and a binary relation is about the interaction between two
features. Topological relations (Egenhofer 1989), describing the connectedness of fea-
tures, are the most common binary relations. In contrast, there are only few investiga-
tions into ternary (Billen and Clementini 2004, Bloch et al. 2006, Clementini and Billen
2006) as well as n-ary (n> 3) spatial relations (Dube and Egenhofer 2014).

Our work focuses on ternary projective relations and follows the formalization pro-
posed by Billen and Clementini (2004). Namely, based on the collinearity of three spa-
tial features, their ternary projective relations are grouped into one of the five types:
between, before, after, right, and left (see the left in Figure 1 as an example)2. There are
two key properties associated with ternary projective relations. First, the relation
among the three spatial features is invariant in terms of projective transformation.
Secondly, the relation simultaneously involves three spatial features and cannot be
decomposed into a set of pairwise relations. The latter point becomes particularly
important as ternary relations are often conceptually confused with the type of spatial
relations that involves three features but can be decoupled into a set of pairwise
ones. For example, three features can all overlap each other. This does not constitute
a higher-order relation as they can be simply considered as three pairs of binary

Figure 1. Left: the five ternary projective relation of points. Right: overlap among three spa-
tial features.
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overlaps (see the right of Figure 1). Put differently, topological relations like overlap
are fundamentally binary while projective relations like betweeness are inher-
ently ternary.

3.2. Relation reification for ternary relations

Unary (e.g., A is a building) and binary spatial relations (e.g., building A is next to
building B) can be directly modelled in a knowledge graph as nodes and triples,
respectively. On the contrary, representing higher-order (e.g. ternary projective) spatial
relations in knowledge graphs is non-trivial and has rarely been studied in the litera-
ture. This work leverages reification techniques (Noy and Rector 2006) from the
Semantic Web to address this challenge. Specifically, instead of representing relations
as property edges between two nodes, we construct a new class which is a reification
of the spatial relation, thereby the class can further have multiple property edges (usu-
ally more than two). An instance of the class linking multiple objects, consequently,
represents one higher-order spatial relation statement.

Figure 2 shows an ontology fragment for modeling spatial relations (up to the
third-order) in knowledge graphs. Particularly for ternary projective relations, we reify
them into five classes, i.e., Left, Right, Before, After, and Between, and they share two
modular design patterns (Hitzler and Shimizu 2018). First of all, for spatial relations of
left, right, before, and after, they can all be represented by the pattern shown on the
bottom left of Figure 2 (with the Left class as an example), in which three edges: has_-
target, has_origin, and has_destination are designed to express the role of three spatial
features of interest (e.g. referred as places in this paper). Specifically, has_target links
to the place that is to be located while has_origin and has_destination together define
the origin and direction of the frame of reference using the other two places (Zhu

Figure 2. Ontology for unary (top left), binary (top right), and ternary relations (bottom).
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et al. 2019). Secondly, due to its symmetric property (i.e., “A is between B and C”
means the same to “A is between C and B”), we present a different design pattern to
model the relation of between (see the bottom right of Figure 2). Since no distinction
exists for the direction of the reference system as in the former pattern, we expect an
equal role for the origin and destination, thereby we label both as has_reference.
Through relation reification, we are able to preserve the semantics of higher-order
qualitative spatial relations on one hand and on the other keep using triples as
defined in RDF to build the geospatial knowledge graph.

3.3. Ternary projective relation example

Figure 3 illustrates an example of using this representational pattern for ternary pro-
jective relations. Five cities in California (i.e., Santa Barbara, Ventura, Fillmore,
Thousand Oaks, and Los Angeles) are labelled on the map as points. They yield 5P3 ¼

5!
ð5�3Þ! ¼ 60 (P is the permutation) ternary relation statements at most (but less due to
symmetry), among which three are extracted and represented as a knowledge graph
fragment in Figure 3. The orange nodes, before_1, between_1, and left_1 represent
instances of the ternary relation classes: Before, Between, and Left, respectively. These
relation statements (the instances) define three different ternary projective relations
among the five cities, which are instances of the Place class and shown as grey nodes

Figure 3. Top: spatial organization of five cities: Santa Barbara, Ventura, Thousand Oaks, Fillmore,
and Los Angeles. Bottom: exemplary graph of ternary relation statements among the five cities.
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in the graph. It is worth highlighting that even though this example only shows tern-
ary projective relations, other types of higher-order spatial relations, e.g. surrounded-
ness, can be represented in a similar way.

4. Reasoning over ternary relations through neural networks

Instead of relying on traditional spatial inference engine, we investigate reasoning
over ternary relations from a bottom-up, subsymbolic (or connectionist) perspective.
Specifically, we leverage deep learning to propose a neural network architecture that
explicitly incorporates cognitive principles as spatial constraints to perform spatial rea-
soning over ternary projective relations.

4.1. Definitions

Our work focuses on reasoning about ternary projective relations to answer two types
of questions. The first type is about inferring spatial relation among three observed
places (or locate-able entities more broadly). We call the related task relation predic-
tion. The second type aims at predicting a place given the other two and their ternary
relation. We call this task place prediction. In this section, we formally define the
involved relations and these two tasks. Jointly, they form the basis for the neural net-
work architecture that will be introduced in Section 4.2.

Definition 1 (Ternary relations and statements about them). Each reified ternary relation
ti is associated with exactly three role-value pairs - htarget:place, origin:place, des-
tination:placei (for the relation between, both origin and destination will be replaced by
reference). Accordingly, statements can be denoted as a tuple of the form: ti ¼ hri1 :
vi1, ri2 : vi2, ri3 : vi3i with hri1, ri2, ri3i 2 R� and vi1, vi2, vi3 2 V: The value set V is defined
as fplace1, . . . , placeMg, where M is the number of places in the knowledge graph. The
role set R� for ternary projective relations is defined as R� ¼ fRleft , Rright, Rbefore,
Rafter, Rbetweeng, where Rleft ¼ hleft_target, left_origin, left_destinationi (note that Rright,
Rbefore, and Rafter are denoted by replacing the prefix left with right, before, and after,
respectively) and Rbetween ¼ hbetween_target, between_reference, between_referencei.
Note that R� is a set of grouped roles based on their dependency in the flat role set:
R ¼ fleft_target, right_origin, before_destination,… , between_referenceg. For ternary pro-
jective relations, there are 14 such roles in total. Subsequently, a ternary knowledge
graph T is defined as a collection of ternary relation statements: T ¼ ft1, . . . , ti, . . . , tNg,
where 1<i<N and N is the overall number of relation statements. For the sake of simpli-
city, the subscript i in t, r and v will be skipped whenever no confusion arises.

Example 1. The reified relation statement between_1 in Figure 3 can be stated as:
hbetween_target: Thousand_Oaks, between_reference: Ventura, between_reference:
Los_Angelesi. In plain English it corresponds to Thousand Oaks is between Ventura and
Los Angeles.

Definition 2 (Relation Prediction). Given an incomplete relation statement t ¼ h?r1 :
v1, ?r2 : v2, ?r3 : v3i, where ?r1, ?r2, ?r3 are missing roles, the task of relation prediction is
defined as the process of inferring h?r1, ?r2, ?r3i given the observed values v1, v2, v3:
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Example 2. Using the spatial organization of cities in Figure 3 as an example, one
relation prediction task can be to predict the missing roles in h?r1 :Santa_Barbara,
?r2 :Ventura, ?r3 :Los_Angelesi. Put into natural language, what is the spatial relation
among Santa Barbara, Ventura, and Los Angeles?. One correct prediction would be:
h?r1, ?r2, ?r3i ¼ Rbefore (Santa Barbara is before the route from Ventura to Los Angeles).

Definition 3 (Place Prediction). Given an incomplete relation statement t ¼ hr1 :
?v1, r2 : v2, r3 : v3i, where ?v1 is a missing value and its role r1 is a target (e.g., if the
relation is about right, r1 ¼ righttarget), the task of place prediction is to predict the
missing value ?v1 given the other two values (v2 and v3) and their roles hr1, r2, r3i:

Example 3. Using Figure 3 as an example, one place prediction task would be to infer
the missing place ?v1 in hleft_target:?v1, left_origin:Santa_Barbara,
left_destination:Thousand_Oaksi. This can be phrased in natural language as which city
is on the left side from Santa Barbara to Thousand Oaks? There can be many correct
predictions for this question, and ?v1 ¼ Fillmore is one of them (Fillmore is on the left
side from Santa Barbara to Thousand Oaks).

4.2. Baseline model

Our baseline model is inspired by the state of the art in n-ary link prediction, which is
developed to predict general (mostly aspatial) relations in knowledge graphs (Guan
et al. 2020). The neural network architecture, specifically for ternary relations, is illus-
trated in Figure 4. The main goal is to learn a compatibility score for each ternary rela-
tion statement t so that if t is true, the model would result in a high compatibility
score; otherwise, the score would be low. The compatibility score is evaluated based
on the relatedness of role-value pairs that are involved in t, which is further computed
through the embedding of the involved roles and values. The embedding for roles and
values are looked up from their embedding matrix: ER 2 R

jRj�k and EV 2 R
jVj�k,

respectively, where k is the dimension of the embedding, which is a hyper-parameter
of the model, and jRj and jVj indicate the number of roles and values, respectively.
The whole process is trained through a neural network architecture that includes three
main components: (1) ternary relation statement embedding; (2) relatedness computa-
tion; and (3) scoring. Moreover, in order to provide the model with both positive and
negative training samples, the technique of (4) negative sampling is adopted (see
Wang et al. (2017) for a comprehensive review), which is not explicitly depicted in the
architecture but is a key component for the training process. We discuss each of these
components in detail in this section, together with two essential properties of this
model at the end.

4.2.1. Ternary relation statement embedding
For one ternary relation statement t, we compose its embedding Et by concatenating
the embedding of its three role-value pairs, each of which is further a concatenation
of its role embedding Rt 2 R

1�k and value embedding Vt 2 R
1�k , which are the corre-

sponding rows in ER and EV , respectively. To enhance expressivity, a convolution layer
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of nf filters (denoted as X 2 R
nf�2k) is applied on the concatenated role-value pair

embeddings and Rectified Linear Units (ReLU) are utilized as the activation function
(Nair and Hinton 2010), which lead to the feature matrix Et 2 R

3�nf : Formally, the
embedding of a ternary relation statement t is computed as:

Et ¼ concatðReLUðconcatðRt ,VtÞ � XÞÞ (1)

where � denotes convolution operation, and concat indicates the process of
concatenation.

4.2.2. Relatedness computation
Guan et al. (2020) transfers the problem of validating a relation statement into meas-
uring the overall relatedness of the involved role-value pairs. Intuitively, if all the three
role-value pairs are closely related, the relation statement tends to be true. However,
when the number of role-value pairs in a relation is greater than two (like the ternary
projective relation), the computation becomes nontrivial. Therefore, Guan et al. (2020)
simplifies the computation into first evaluating the pairwise relatedness of role-value
pairs, based on which the overall relatedness is subsequently measured by min-pooling.

Figure 4. Neural network architecture of the baseline model.
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In terms of computing pairwise relatedness, the three role-value pair embeddings
EðjÞt 2 R

1�nf (j¼ 1, 2, 3), which indicates the jth row of matrix Et , are first concatenated
pairwisely. As Figure 4 illustrates, the three role-value pairs are concatenated into nine
(3� 3) possible permutations. Subsequently, a fully connected layer (FCN), coupled
with a ReLU activation function, is imposed on each of the nine concatenated permu-
tations, which results in nine feature vectors, each with a dimension of 1� nrFCN,
where nrFCN indicates the number of layers in this relatedness FCN (rFCN). The feature
vector represents the relatedness of a pair in some respects, which are indicated by
the value at each dimension. Finally, the overall relatedness of the nine permutations is
consolidated through a min-pooling, where the minimal value in each dimension is
extracted to build the overall relatedness feature vector Ot 2 R

1�nrFCN : In summary, this
component can be formalized as:

Ot ¼ min3j, k¼1ðrFCNðconcatðEðjÞt , EðkÞt ÞÞÞ
¼ min3j, k¼1ReLUðconcatðEðjÞt , EðkÞt ÞWrFCN þ brFCNÞ

(2)

where WrFCN 2 R
2nf�nrFCN and brFCN 2 R

nrFCN are the weight matrix and bias vector of
rFCN, respectively.

Using a fully connected layer (FCN) to compute the relatedness of two features of
interest is a widely adopted practice in deep learning, especially in computer vision
(Santoro et al. 2017). In addition, the rationale behind applying min-pooling rather
than other types of pooling techniques lies in the assumption that if the minimum
relatedness value along a dimension is large enough, then the overall relatedness of
this dimension would be large.

4.2.3. Scoring
Once the overall relatedness vector Ot is computed, another fully connected layer
(fFCN) is utilized to evaluate the final compatibility score s of a ternary relation state-
ment t. Formally, the process is represented as:

sðtÞ ¼ fFCNðOtÞ
¼ OtWfFCN þ bfFCN

(3)

where WfFCN and bfFCN are the weight matrix and bias vector of fFCN, respectively.

4.2.4. Negative sampling
In addition to the aforementioned three components that are directly related to the
neural network architecture, negative sampling is another essential step in the training
process. Negative sampling is not only applied in the baseline model, but has also
been intensively used in almost all types of knowledge graph embedding methods,
such as TransE (Bordes et al. 2013) and DisMult (Yang et al. 2015). In order to enable
the model to comprehensively learn what is correct and what is wrong so that it can
accurately produce inferences on new inputs, the technique of negative sampling gen-
erates negative samples based on what is known from the positive ones (i.e., training
data). For example, given a positive ternary relation statement tþ ¼ hr1 : v1, r2 : v2, r3 :
v3i, negative samples can be generated by replacing its roles or values, by some ran-
domly selected entities from the flat role set R, or value set V. Formally, the full set T–
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of candidate negative samples for one positive statement tþ can be defined as:

T�ðtþÞ ¼ fhr01 : v1, r02 : v2, r03 : v3ijr01 2 R�r02 2 R�r03 2 R�hr01 : v1, r02 : v2, r03 : v3i=2Tþg
[fhr1 : v01, r2 : v2, r3 : v3ijv01 2 V�hr1 : v01, r2 : v2, r3 : v3i=2Tþg
[fhr1 : v1, r2 : v02, r3 : v3ijv02 2 V�hr1 : v1, r2 : v02, r3 : v3i=2Tþg
[fhr1 : v1, r2 : v2, r3 : v03ijv03 2 V�hr1 : v1, r2 : v2, r3 : v03i=2Tþg

(4)

where Tþ represents the original knowledge graph withþ emphasizing that all state-
ments in Tþ are positives. Note that in contrast to Guan et al. (2020), the proposed
baseline model replaces the three roles all together (role-replacement as shown in the
first line of Formula 4) rather than individually as the way of replacing values (value-
replacement as illustrated in the second to fourth line of Formula 4). This modification
aligns with the characteristic of ternary projective relations that if one role of the rela-
tion changes, the other two will also change accordingly.

While training the baseline model, for each positive sample tþ, one negative sample
is extracted from its candidate set T�ðtþÞ, with a probability of it being either role-
replacement or value-replacement proportional to the cardinality of role set (jRj) and
value set (jVj), respectively. Having both positive and negative samples, the loss func-
tion, a logistic loss similar to the one used in Yang et al. (2015), is defined as:

Lð~tÞ ¼ log ð1þ e�I~t sð~tÞÞ (5)

where I~t ¼ 1 if ~t is a positive sample; otherwise, I~t ¼ �1: The established neural net-
work is optimized through backpropogation, and Adam (Kingma and Ba 2015) is
implemented as the stochastic optimization method.

Lastly, it is worth highlighting two properties of the baseline model. First, the model
is permutation free. Namely, thanks to the permutation process discussed in 4.2.2, the
model is agnostic to the order of input role-value pairs (see Guan et al. (2020) for a
detailed proof). Secondly, even though we focus on ternary relations in this work,
both binary and higher-order spatial relations, as well as their combinations, can be
studied using the same framework because no matter how many role-value pairs are
involved in the relation, the model outputs one single compatibility score.

4.3. Spatially explicit methods

In Section 3 we argued that spatial is special in terms of representing ternary projective
relations in knowledge graphs. This section focuses on investigating methods to inject
those spatial constraints about ternary projective relations into the introduced reason-
ing model so that it becomes spatially explicit (Yan et al. 2019, Janowicz et al. 2020,
Mai et al. 2020b). We will focus on three types of spatial constraint, based on which
corresponding modifications are proposed to improve the baseline model. In addition,
we also introduce an attention mechanism into the neural network architecture in
order to optimize the overall relatedness computation.

4.3.1. Ternary projective relations are strictly higher-order
Even though the baseline model can process higher-order relations, it is specifically
designed for and merely evaluated on general knowledge bases, such as Wikidata, in
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which the definition of higher-order relations is relatively relaxed. Namely, all relations
that involve more than two features are considered as higher-order. This definition
does not distinguish cases whether the higher-order relation can be decomposed into
a set of pairwise relations or not. As argued by Guan et al. (2020), the statement
“Marie Curie received Nobel Prize in Physics in 1903 together with Henri Becquerel
and Pierre Curie” can be represented as a higher-order relation hperson:Marie Curie,
award:Nobel Prize in Physics, point_in_time: 1903, together_with:Henri Becquerel,
together_with:Pierre Curiei. However such a relation can, in fact, be decomposed into
lower-order (e.g., pairwise) relations. For instance, the binary relation hperson:Marie
Curie, award:Nobel Prize in Physicsi still holds true. In contrast, the definition of higher-
order in ternary projective relations is strict, as discussed in Section 3.1. The involved
three places are simultaneously related in the relation; one cannot decompose them
into a set of pairwise relations. For example, the binary relation hbetween_target:
Ventura, between_reference: Los_Angelesi is invalid and its semantics is missing without
the third role-value pair.

This fundamental difference has practical implications with respect to the neural
network architecture design, particularly to the component of relatedness computa-
tion. If the higher-order relation can be decomposed into pairwise relations, the com-
putation of overall relatedness can be simplified through the evaluation of pairwise
relatedness (Figure 4 and Section 4.2.2). However, if a relation is strictly higher-order,
measuring the relatedness through its pairwise counterparts might blindly discard the
essential semantics. Therefore, this work proposes a new component for relatedness
computation, in which the original pairwise permutations are replaced by a set of
third-order ones (Figure 5). Furthermore, in contrast to the baseline model, we do not
consider permutations where there are duplicated role-value pairs (e.g., in Figure 4,
the relatedness of role-value pair 3 and role-value pair 3 is considered). As a result, a
ternary projective relation includes in total six third-order permutations
(3P3 ¼ 3!

ð3�3Þ! ¼ 6) as shown in Figure 5.
The formula to compute higher-order relatedness is hence modified as:

Oternary
t ¼ min3j, k, l¼1, j 6¼k 6¼lðrFCNðconcatðEðjÞt , EðkÞt , EðlÞt ÞÞÞ

¼ min3j, k, l¼1, j 6¼k 6¼lReluðconcatðEðjÞt , EðkÞt , EðlÞt ÞWrFCN þ brFCNÞ
(6)

Figure 5. Higher-order relatedness computation.
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4.3.2. Ternary projective relations are mutually exclusive
Another characteristic of ternary projective relation is that the five relations are mutu-
ally exclusive (Billen and Clementini 2004). For example, if we know the relation
among three sequenced places is left (i.e., the corresponding role tuple is Rleft), the
other four relations right, before, after, and between become invalid on these three pla-
ces in the same sequence. This argument does not necessarily hold for general (e.g.,
aspatial) ternary relations.

To take advantage of this spatial constraint that is specific to ternary projective rela-
tion, we improve the negative sampling process by replacing the random strategy
(discussed in Section 4.2.4). Specifically, for a positive ternary relation statement tþ

from the training data set, we generate a negative sample candidate set, which
includes all possible hard negatives according to their mutually exclusive relation with
the positive. Taking left_1 in Figure 3 as an example, the positive sample hleft_target:
Fillmore, left_origin: Santa_Barbara, left_destination: Thousand_Oaksi can produce a
negative sample set by iteratively replacing roles of left to their correspondences in
Rright, Rbefore, Rafter, and Rbetween. For instance, hright_target: Fillmore, right_origin:
Santa_Barbara, right_destination: Thousand_Oaksi is one hard negative sample in the
candidate set.

Accordingly, the randomly sampled T�ðtþÞ in Formula 4 is updated to a spatially
constrained sample set T��ðtþÞ as:

T��ðtþÞ ¼ fhr01 : v1, r02 : v2, r03 : v3ijhr01, r02, r03i 2 ðR�nhr1, r2, r3iÞg
[fhr1 : v01, r2 : v2, r3 : v3ijv01 2 V�hr1 : v01, r2 : v2, r3 : v3i=2Tþg
[fhr1 : v1, r2 : v02, r3 : v3ijv02 2 V�hr1 : v1, r2 : v02, r3 : v3i=2Tþg
[fhr1 : v1, r2 : v2, r3 : v03ijv03 2 V�hr1 : v1, r2 : v2, r3 : v03i=2Tþg,

(7)

In contrast to Formula 4, where roles are sampled randomly from the flat role set R,
the replacement of roles in Formula 7 is constrained by grouped role families in R�:
Note that the value-replacement part (second to fourth line) are the same between
the two formulas.

4.3.3. Conceptual neighborhood of ternary projective relations
Freksa and Kreutzmann (2016) defined conceptual neighborhoods as “direct discrete
transitions between temporal and spatial relations”. Initially, they were introduced to
study qualitative temporal and spatial reasoning (Freksa 1991, Freksa et al. 1991,
Egenhofer and Mark 1995a). With respect to ternary projective relations, the five rela-
tions can also be correlated through the notion of their conceptual neighborhoods. As
Figure 1 (left) illustrates, the five relations separate the region into five sub-regions,
whose organization implies the possibility of transition between regions3. For example,
right can be directly transited to between, before, and after but not left. So the concep-
tual neighborhood of relation right is composed of the former three. A complete list
of the conceptual neighborhood for each relation is presented in Table 1. Note that
this is one way to form such conceptual neighborhoods for ternary projective rela-
tions. The same is true for Freksa’s temporal conceptual neighborhood.

Next, we inject this conceptual neighborhood induced constraint into our model
by a new negative sampling strategy. The underlying assumption is that a relation
is easier to be confused with its conceptual neighbors. Therefore, in order to allow
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the model to improve its performance, we explicitly feed it with more difficult sam-
ples that are from the conceptual neighborhood. Taking left_1 in Figure 3 as an
example again: one negative sample constrained by conceptual neighborhood is
hbetween_target: Fillmore, between_reference: Santa_Barbara, between_reference:
Thousand_Oaksi, while the sample built from right as demonstrated in Section 4.3.2
will not be selected anymore since right is not a conceptual neighbour of left. The
formula for this negative sampling strategy is similar to Formula 7 only with R�

being replaced by a rule-based role set according to Table 1.
Finally, it is worth emphasizing that even though generated samples of the two

strategies introduced in Section 4.3.2 and 4.3.3 overlap, the rationales behind them
are clearly distinct.

4.3.4. Attention vs. min-pooling
When computing the overall relatedness of role-value pairs, the baseline model
applies the technique of min-pooling, with an assumption that if the minimum
relatedness value of a dimension across all the permutations is large enough, the over-
all relatedness of the corresponding dimension will be significant enough so that the
final compatibility score can be appropriately computed to validate a relation. One
can argue that it is an oversimplified assumption for two reasons. First, solely extract-
ing the minimum value would result in a loss of information (i.e., relatedness values in
other non-minimum permutations are discarded). Secondly, it neglects the complex
interaction among all permutations, which might play roles in evaluating the overall
relatedness. Therefore, we propose to replace min-pooling with an attention based
module (Bahdanau et al. 2014), in which all relatedness values in a dimension are
taken into account with weights proportional to their relative importance in measuring
the overall relatedness. An updated version of Formula 2 is, therefore, illustrated as
follows (the ternary version, i.e., Formula 6, can be updated in the same way):

O0
t ¼ atten3j, k¼1ðrFCNðconcatðEðjÞt , EðkÞt ÞÞÞ (8)

Figure 6 explains the attention module attenðÞ: To compute the feature value oq at
the qth dimension (q 2 f1, 2, . . . , nrFCNg) of the overall relatedness vector O0

t , corre-
sponding values of all permutations eqr (r 2 f1, 2, . . . ,Npg, Np is the number of permu-
tations, which is 9 for ternary projective relations) are aggregated with weights aqr ,
which are computed based on their relative importance in the overall relatedness. The
process can be formally modeled using Formula 9 and 10. We can imagine oq as the
expected relatedness over all possible permutations, each of which has its own prob-
ability (aqr ) of attending to oq. Note that this attention module is part of the neural

Table 1. Conceptual neighbourhood of ternary projective relation.
Relation Conceptual neighbourhood

left before, after, between
right before, after, between
before left, right, between
after left, right, between
between left, right, before, after
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network architecture, so the gradient from the loss function can backpropagate
through it allowing a joint learning of the weight (aqr ), the relatedness computation
(eqr ), as well as the overall compatibility score (s).

oq ¼
XNP

r¼1

aqr e
q
r (9)

aqr ¼ exp ðeqr ÞXNP

h¼1
expðeqhÞ

(10)

5. Experiments

To evaluate the proposed spatially explicit models (Section 4.3.1–4.3.4), we perform
two tasks: relation prediction and place prediction, which are formally defined in
Section 4.1, and compare their performances to the baseline model (Section 4.2). In
addition, to gain an understanding of the spatial reasoning capability of our neural
network architecture, we further design experiments to explore the impact of graph
density as well as the number of negative samples.

5.1. Data

Since there is no existing dataset that facilitates experiments on reasoning over tern-
ary projective relations in a large scale, we first created one by extracting significant
cities (in Arizona, California, Nevada, and Oregon) from DBpedia Places4, which is a
gazetteer built from user contributed content in Wikipedia5. In total, we collected 764
cities. Given that every three cities can generate three ternary projective relations, we
will end up having about 440 million relations, which is infeasible for most system to
execute. Besides, humans certainly do not rely on memorizing a large number of rela-
tions to understand the spatial organization of our environment; we rather use a small
number of relations assisted with our intuitive reasoning ability to infer the missing
statements on-demand (Egenhofer and Mark 1995b, Freksa 2020). Therefore, we only
sampled a subset of relations among these 764 cities and attempted to investigate
the impact of the subset size on reasoning performance. We hypothesize that with
denser knowledge graphs, our model would perform better.

Figure 6. Attention module.
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Among the 764 cities, we first sampled 2000 pairs, from which the origin and des-
tination of the ternary projective relation were selected. In most gazetteers cities are
represented as points without a spatial extent. Moreover, these cities are distributed
on a geographic space rather than a Euclidean plane. Hence simply applying Billen
and Clementini (2004)’s formalization of ternary projective relation (Figure 1 left)
becomes problematic. Instead of drawing a straight line between two points, we then
used driving route between the two points, together with its buffer zones, to separate
the space in order to determine the five relations. We believe such a route-based for-
malization is closer to human’s perception of ternary projective relations for spatial
features like cities, while extensive studies have to be conducted to validate it, which
is beyond the scope of this paper. More concretely, we built five buffer zones to deter-
mine the five relations. As Figure 7 illustrates, the five buffer zones were created by
four buffers: the red and purple buffer zones were computed based on the route from
the origin to destination (blue line) with different buffer distances (5 km and 30 km,
respectively); while the two green zones were based on the origin and destination,
respectively (buffer distance is 30 km). Based on the five buffer zones (named left,
between, right, before, and after in Figure 7), cities were consequently grouped into
five relations, represented as points of different colors in Figure 7, with respect to the
origin and destination. Detailed process of computing the five buffer zones can be
found in Appendix A.

Once the full set of ternary projective relation statements for each of the 2000
sampled pairs were computed, we randomly sampled L (L 2 f10, 20, 30g) relation state-
ments from the full set (if its size is less than L, the full set will be kept). Having differ-
ent L is important for testing the role of graph density on the reasoning capability of
proposed methods. Moreover, we split the data into 80%, 10%, and 10% for training,

Figure 7. Example of computing ternary projective relations.
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validation, and testing, respectively. In summary, we generated three geospatial know-
ledge graphs of different densities and their statistics are shown in Table 2.

5.2. Evaluation metrics

In terms of relation prediction, we remove all the three roles in a testing statement
and replace them with roles in R� to generate a set of candidate statements. Then
each of the candidate statements is fed into the trained model and a compatibility
score is computed. Subsequently, candidate statements are ranked according to their
compatibility scores, based on which an assessment of the trained model is produced.
The process to test place prediction is similar but with only one value (i.e., the target
place) being replaced by entities in V when generating candidate statements. We
apply several evaluation metrics to assess these two tasks.

5.2.1. Relation prediction
Given three places, relation prediction aims at inferring their relation. Similar to other
work on link prediction (Wang et al. 2017), we use the mean reciprocal rank (MRR), as
well as Hits@n (n¼ 1 or 3) to evaluate this task. MRR measures the average reciprocal
rank of the correct statements in predictions, and Hits@n calculates the proportion of
predictions where the correct statement is ranked in the top n. The performance of a
model is greater with higher values of these three metrics.

5.2.2. Place prediction
In contrast to relation prediction, where there are only five families of relations (see
R�), the prediction of a target place given the origin and destination as well as their
relation is more challenging, and there are often numerous correct answers. For
example, the question “which city is in between San Francisco and Los Angeles?” will
result in dozens of places. Therefore, we apply metrics that are commonly used in rec-
ommender systems (Bobadilla et al. 2013) to assess performance. More concretely, we
use precision@k (k ¼ 1, 5, or 10), which indicates the proportion of correct places in
top k of the ranked list. The larger precision@k is, the better a method performs.

5.3. Implementation details

To find the best parameter setting for the proposed method, we tuned hyperpara-
meters using the validation data. The set of hyperparameters that fits the model the
best was consequently selected. Specifically, a grid search was executed to select the
learning rate k 2 f0:00001, 0:0001, 0:001, 0:01, 0:1g, and random searches (Bergstra
and Bengio 2012) were implemented to choose the embedding dimension k 2

Table 2. Statistics about the graph (Ntrain, Nvalid, and Ntest represent the number of relations for
training, validation, and testing, respectively.).
Name L Ntrain Nvalid Ntest
West2000_10 10 15895 1987 1987
West2000_20 20 31578 3947 3947
West2000_30 30 46871 5859 5859
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f50, 100g, the number of filters nf 2 f50, 100, 200, 400, 500g, as well as the dimension
of the relatedness FCN nrFCN 2 f50, 100, 200, 400, 500, 800, 1000, 1200g: Details of the
tuning process can be found in Appendix B. The finally adopted hyperparameters
are: k ¼ 0:001, k ¼ 100, nf ¼ 100, nfFCN ¼ 1000:

5.4. Results and discussions

In Section 4 we introduced multiple types of spatial constraints and their correspond-
ing spatially explicit methods. This section discusses their performances of improving
over baseline model on reasoning about ternary projective relations. Table 3 lists
related sections and abbreviation of different methods.

Table 4 depicts experimental result of relation and place predictions by using differ-
ent combinations of our proposed methods. The experiment is conducted on the data
set of West2000_20, which has an intermediate size among the three built knowledge
graphs (Table 2). From this experiment, we observe that jointly leveraging higher-
order relatedness (Ternary), mutual exclusivity biased negative sampling (ME), as well
as the attention module (Atten) leads to the best result with Hits@1 reaching 0.755
and precision@1 hitting 0.407. In comparison, the performance of the baseline model
(Pairwiseþ RND) on these two metrics is 0.548 and 0.194, respectively. Our best model
achieves about 20% improvement for both relation prediction and place prediction.

In order to understand distinct roles that different components play in the two
tasks, we further perform a series of ablation studies (Meyes et al. 2019), in which com-
parisons are made between models with and without a key component.

5.4.1. Impact of higher-order relatedness computation
To investigate the impact of higher-order relatedness computation in predicting rela-
tions and places, we compared it with its counterpart - pairwise relatedness computa-
tion (Section 4.2.2). As illustrated on Figure 8, taking into account higher-order
relatedness considerably benefits the performance of predicting places. In fact, the
improvement reaches 9.7% on average for precision@1, with a maximum improvement
hitting 16.7% for the best model comparing with its pairwise counterpart. The same
pattern can be observed for precision@5 and precision@10 as well. This supports our
hypothesis that the three places involved in a ternary projective relation are simultan-
eously related. Hence, they should not be decomposed into pairwise relations. In
terms of relation predictions, there are remarkable improvements as long as the atten-
tion module is applied. However, the improvement becomes generally less significant
without using attentions. In fact, the performance occasionally decreases (e.g., the ME
related methods), even though the decrease is marginal comparing to the

Table 3. Abbreviation (Abbr.) and corresponding section(s) of experimented methods.
Method Abbr. Section(s)

Baseline Model Pairwise 4.2.1–4.2.3
Higher-order relatedness Ternary 4.3.1
Random negative sampling RND 4.2.4
Mutual exclusivity – constrained negative sampling ME 4.3.2
Conceptual neighbourhood – constrained negative sampling CN 4.3.3
Attention module Atten 4.3.4
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improvement of leveraging higher-order relatedness (i.e., 0.7% for MRR, 1.8% for
Hits@3, and 0.35% for Hits@1). One possible explanation for this effect is that higher-
order interaction among roles is implicitly encoded in the training data, where roles
from the same family of ternary relations (see R�) always co-occur; hence, repeatedly

Table 4. Experimental results on the data of West2000_20.
Relation prediction Place prediction

Data: West2000_20 Hits@1 Hits@3 MRR Precision@1 Precision@5 Precision@10

Pairwiseþ RND 0.548 0.881 0.704 0.194 0.177 0.155
Pairwiseþ RNDþ Atten 0.638 0.903 0.762 0.237 0.208 0.179
Ternaryþ RND 0.563 0.876 0.711 0.210 0.187 0.163
Ternaryþ RNDþ Atten 0.661 0.906 0.774 0.362 0.292 0.230
PairwiseþME 0.591 0.895 0.730 0.215 0.185 0.161
PairwiseþMEþ Atten 0.662 0.910 0.776 0.240 0.209 0.178
TernaryþME 0.588 0.877 0.723 0.230 0.194 0.166
TernaryþMEþ Atten 0.755 0.910 0.833 0.407 0.318 0.252
Pairwiseþ CN 0.620 0.893 0.746 0.211 0.182 0.160
Pairwiseþ CNþ Atten 0.651 0.905 0.769 0.233 0.200 0.171
Ternaryþ CN 0.625 0.886 0.747 0.244 0.210 0.180
Ternaryþ CNþ Atten 0.739 0.907 0.822 0.368 0.292 0.233
Best improvement 0.207 0.029 0.129 0.213 0.141 0.097

The best models under each metric are highlighted in bold.

Figure 8. Comparison between pairwise and higher-order relatedness computations for relation
prediction (top) and place prediction (bottom).
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adding higher-order relatedness of roles into the model would not help substantially
increase the performance of relation prediction.

5.4.2. Impact of spatially constrained negative sampling
Likewise, we compare the impact of three different negative sampling strategies across
various methods, which are shown in Figure 9. In general, for both relation and place
predictions, spatially constrained sampling strategies outperform the baseline strategy.
More concretely, when mutual exclusivity constraint is applied, the MRR of relation
prediction achieves a 2.78% improvement on average across all the methods; while
the improvement increases to 3.32% when conceptual neighbourhood constraint is
used. In terms of place prediction, the improvement reaches to 2.24 and 1.31% in
terms of precision@1 for mutual exclusivity constraint and conceptual neighbourhood
constraint, respectively. Even though we observe consistent improvement by using
any of the two spatial constraints, their differences are subtle in general (i.e., within
1.6% across all metrics of the two tasks), which justifies the discussion in Section 4.3.3
that there are remarkable overlaps between these two spatially constrained negative
sampling strategies.

Figure 9. Comparison between random and spatially constrained (i.e., by mutual exclusivity or con-
ceptual neighbourhood) negative samplings for relation prediction (top) and place predic-
tion (bottom).
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5.4.3. Impact of attention
According to Figure 10, we observe that leveraging the attention module constantly
outperforms its non-attention counterpart, where the min-pooling is used to evaluate
the overall relatedness of role-value pairs. Different metrics under the two tasks bene-
fit from this method in various strengths. For instance, the average improvement of
Hits@1 of relation predictions reaches 9.49%, while it is only 2.20% and 6.23% for
Hits@3 and MRR, respectively. One reason underlying this observation is that Hits@1
(the top one in the ranked predictions has to be correct) is a stricter metric compared
to Hits@3 (the correct one exist in the top three). Simpler methods can therefore
achieve a comparatively greater performance on Hits@3 (already around 0.9) than
Hits@1 (only around 0.6). Consequently, there is more potential to improve Hits@1
than Hits@3 using new methods. Besides, it shows that when coupled with higher-
order relatedness (Ternary), the attention module (Atten) significantly fulfills its poten-
tial in predicting places (see the bottom of Figure 10). Specifically, the average
improvement when Atten is used together with Ternary are 11.32%, 7.79%, and 5.14%
for precision@1, precision@5, and precision@10, respectively. On the contrary, it is
2.23%, 1.80%, and 1.31%, respectively, when Atten is coupled with Pairwise-
based methods.

Figure 10. Comparison between attention and non-attention models for relation prediction (top)
and place prediction (bottom).
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5.4.4. Impact of negative sample size
So far, all tested methods sample one negative based on one positive relation state-
ment. As discussed in Sections 4.3.2 and 4.3.3, however, one positive statement is able
to generate multiple hard negatives. Therefore, this experiment investigates the
impact of negative sample size on reasoning over ternary projective relations.
Specifically, we increased the number of negative samples per positive from one to
four, which is the largest number of negatives that both ME and CN can produce. The
complete experimental results are listed in Appendix C and comparisons across
Ternary-related methods are depicted in Figure 11. On average, the improvements are
around 5.06%, 7.88%, and 0.67%, for MRR, Hits@1, and Hits@3, respectively. Compared
with relation prediction, we observed even greater benefits of applying a larger nega-
tive sample size for place prediction. Namely, precision@1, precision@5, and
precision@10 improved about 18.05%, 12.14%, and 6.65%, respectively. This achieve-
ment can be attributed to the fact that having more negative samples enables the
model to better capture the complex interaction among places because each place, in
relation with others in either positive or negative way, will have a higher frequency
(four times over the baseline) to be observed by the model.

Figure 11. Comparison between one and four negative samples per positive for relation prediction
(top) and place prediction (bottom). The experiment is conducted on ternary-related methods.
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5.4.5. Impact of knowledge graph density
In this experiment, we hypothesize that feeding a denser geospatial knowledge graph
into the model would improve the prediction. To test it, we experiment on the impact
of graph densities in reasoning about ternary projective relations. Figure 12 illustrates
the trend of different methods’ performances working on the three graphs listed in
Table 2 (results for dataset West2000_10 and West2000_30 are detailed in Appendix D).
We specifically select four methods for the comparison by removing key components
(i.e. higher-order relatedness, spatially constrained negative sampling, and the atten-
tion module) one by one from the best method (i.e. TernaryþMEþAtten). As Figure
12 shows, when increasing the number of sampled relation statements in a graph, the
six metrics are notably improving, with only exceptions for precision@1 of methods
TernaryþME and Ternaryþ RND. This exceptional drop of precision@1, as well as the
relatively marginal increase of precision@5 and precision@10 from West2000_10 to
West2000_20, are only observed for the two methods where no attention module is
leveraged. Therefore, it appears that when the number of relation statements in a
geospatial knowledge graph is small, applying attention module becomes more prom-
ising in predicting places than simply adding more samples into the training data.
This observation can be explained by the fact that the attention module preserves all
computed relatedness information among role-value pairs while its counterpart - min-
pooling - simply dismisses much of them by only keeping the minimum ones (see
Section 4.3.4 for a detailed discussion).

6. Conclusion and future work

Knowledge graphs and graph-based representations more broadly are powerful means
to publish geospatial information. However, both the existing geospatial knowledge
graphs and the ongoing related research are mainly focusing on modeling binary spa-
tial relations such as part of and overlap. Studies on representing higher-order relations
are rare. This work, particularly focusing on ternary projective relations, presented two

Figure 12. Comparison among three different graph densities on selected methods.
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ontology design patterns to represent higher-order qualitative spatial relations. We fur-
ther developed a neural network architecture to predict the relation among three pla-
ces, as well as to infer the missing place that is in a relation with the other two.
Without being satisfied with the performance of a totally data-driven method, we fur-
ther explored whether explicitly informing the model with simple rules (i.e., spatial
constraints) that human frequently use in reasoning would improve the model per-
formance. Three types of spatial constraints, together with multiple techniques, were
identified to transfer the neural network architecture to be spatially explicit: (1) ternary
projective relations are strictly higher-ordered, (2) mutually exclusive, and (3) each rela-
tion has a conceptual neighbourhood. Three geospatial knowledge graphs with various
densities were subsequently created and experimented to evaluate proposed methods,
whose results validated artificial neural network’s capability of spatial reasoning on
ternary relations and demonstrated remarkable benefits of injecting geospatial domain
knowledge into the method, even if they are rather simple.

This work brings up several interesting insights that are worth addressing in the future.
First of all, what is the “sweet” point between feeding more data into the model and
injecting more spatial theories such as the applied spatial constraints? Our experiments
only illustrate that reasoning performance can improve by either adding more relations
into the graph or by introducing more spatial constraints into the model. Complex inter-
actions between these two, however, remain to be investigated. We conjecture that given
a dense enough graph, adding more domain knowledge will not further advance the per-
formance as the model can comprehensively learn those spatial theory-deduced con-
straints from the graph. Nevertheless, the quality of the training graph would play a key
role as well but how and to what degree are to be explored in the future. Secondly, it
would be worth researching on whether the proposed neural model can produce new
knowledge related to qualitative spatial reasoning. For example, can a neural architecture
produce the composition table for ternary projective relations purely based on training
data? Next, how do ternary projective relations, together with the binary ones, advance
downstream tasks such as geospatial question answering and place summarization is still
an open question. Last but not least, a systematic comparison between classic symbolic
approaches and our proposed subsymbolic approaches on reasoning over higher-order
qualitative spatial relations is necessary in the future, especially from perspectives of
addressing aforementioned downstream applications.

Notes

1. https://www.w3.org/RDF/.
2. Note that the straight-line based segmentation in Figure 1 is replaced by a path-based

segmentation in order to consider the complexity of real world data when generating
relation statements for experiments in this paper. More details will be discussed in
Section 5.1.

3. Strictly speaking, the figure includes line segments but as these also have a spatial extent in
geographic space we will consider them as regions here.

4. https://wiki.dbpedia.org/projects/dbpedia-places.
5. https://www.wikipedia.org/.
6. https://developers.google.com/maps/documentation/directions/overview.
7. https://docs.ray.io/en/latest/tune/index.html.
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Appendix A. Computation of the five buffer zones for ternary
projective relations

There are multiple steps involved in determining ternary projective relations among three pla-
ces. First, we regard the two places in each sampled pair as either the origin or destination.
Secondly, we utilize the Google Directions API6 to obtain the route between the origin and des-
tination places. Since no city will exactly lie on the route so as to be considered as between the
origin and destination, we apply a buffer zone on the route (red line in Figure 7) and whichever
city (green points in Figure 7) falls into the zone will be taken as in between. Furthermore, we
extend the buffer zone with larger distances (zone with purple boundary in Figure 7), which
results into the left and right zones (orange and pink points in Figure 7). Next, for both before
and after, we first build a rectangle buffer zone for each, which is vertical to the first (for before
zone) or the last (for after zone) segment of the route. Lastly, the before and after zones are
determined by the intersection of green rectangle zones with the purple one.

Appendix B. Hyperparameter tuning details

In hyperparameter tuning, we use precision@1 of place prediction as the main evaluation metric
because its performance is generally worse than relation predictions. Namely, the set of hyperpara-
meters that achieves the best result in terms of precision@1 will be kept to further train the model. In
addition, to improve the efficiency of the optimization process, we apply a scheduler to stop the
searching early. Specific algorithm used in this work is ASHA (Li et al. 2018). The scheduler terminates
those trials that cannot keep improving model performance in terms of selected metrics, and allo-
cates more resource to those trials that are more promising. The maximum number of trials is set to
10 and the maximum number of epochs for each trial is set to 100 (the number of epochs for train-
ing the model is 200). Such a hyperparameter tuning process is implemented using the library
Ray Tune7.
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Appendix C. Experiment results about the impact of negative
sampling size.

Appendix D. Experiment results about the impact of knowledge
graph density.

Data: West2000_20 (four negative
samples per positive)

Relation prediction Place prediction

Hits@1 Hits@3 MRR Precision@1 Precision@5 Precision@10

Pairwiseþ RND 0.664 0.895 0.774 0.322 0.275 0.225
Pairwiseþ RNDþ Atten 0.692 0.903 0.795 0.374 0.317 0.250
Ternaryþ RND 0.656 0.861 0.766 0.396 0.315 0.245
Ternaryþ RNDþ Atten 0.740 0.911 0.828 0.573 0.427 0.295
PairwiseþME 0.717 0.890 0.809 0.332 0.277 0.225
PariwiseþMEþ Atten 0.733 0.911 0.822 0.374 0.309 0.245
TernaryþME 0.712 0.871 0.800 0.388 0.309 0.244
TernaryþMEþ Atten 0.788 0.917 0.856 0.573 0.421 0.295
Pairwiseþ CN 0.688 0.884 0.786 0.333 0.277 0.226
Pairwiseþ CNþ Atten 0.744 0.907 0.828 0.377 0.309 0.247
Ternaryþ CN 0.721 0.884 0.808 0.410 0.320 0.247
Ternaryþ CNþ Atten 0.786 0.912 0.854 0.564 0.427 0.297

The best models under each metric are highlighted in bold.

Data: West2000_10 (one negative
sample per positive)

Relation prediction Place prediction

Hits@1 Hits@3 MRR Precision@1 Precision@5 Precision@10

Pairwiseþ RND 0.473 0.817 0.653 0.193 0.149 0.112
Pairwiseþ RNDþ Atten 0.532 0.833 0.692 0.172 0.131 0.102
Ternaryþ RND 0.468 0.810 0.646 0.247 0.167 0.122
Ternaryþ RNDþ Atten 0.548 0.837 0.695 0.312 0.198 0.137
PairwiseþME 0.484 0.833 0.664 0.206 0.155 0.155
PariwiseþMEþ Atten 0.553 0.852 0.707 0.166 0.126 0.097
TernaryþME 0.497 0.838 0.672 0.282 0.180 0.125
TernaryþMEþ Atten 0.584 0.844 0.718 0.345 0.200 0.136

Data: West2000_30 (one negative Relation prediction Place prediction

sample per positive) Hits@1 Hits@3 MRR Precision@1 Precision@5 Precision@10

Pairwiseþ RND 0.661 0.918 0.779 0.261 0.250 0.226
Pairwiseþ RNDþ Atten 0.705 0.935 0.806 0.268 0.253 0.230
Ternaryþ RND 0.673 0.920 0.783 0.305 0.279 0.248
Ternaryþ RNDþ Atten 0.743 0.935 0.830 0.313 0.284 0.253
PairwiseþME 0.680 0.928 0.788 0.274 0.255 0.232
PariwiseþMEþ Atten 0.729 0.930 0.820 0.295 0.267 0.240
TernaryþME 0.700 0.933 0.802 0.357 0.317 0.277
TernaryþMEþ Atten 0.837 0.948 0.891 0.415 0.366 0.314

The best models under each metric are highlighted in bold.
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