Computers, Environment and Urban Systems 98 (2022) 101884

Contents lists available at ScienceDirect
Compurters
ENVIRONMENT

AND
URBAN SYSTEMS

Computers, Environment and Urban Systems

journal homepage: www.elsevier.com/locate/ceus

ELSEVIER

Check for

Performance benchmark on semantic web repositories for spatially explicit [&&s
knowledge graph applications

Wenwen Li®, Sizhe Wang ®", Sheng Wu ¢, Zhining Gu?, Yuanyuan Tian *

@ School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ 85287-5302, United States of America
b School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85287-8809, United States of America
¢ School of Computer and Information Science, Southwest University, Chongqing 400715, China

ARTICLE INFO ABSTRACT

Keywords:

Triple store

Property graph databases

Ontology

Knowledge graph

Relational database

Ontology-based Data Access (OBDA)

Knowledge graph has become a cutting-edge technology for linking and integrating heterogeneous, cross-domain
datasets to address critical scientific questions. As big data has become prevalent in today’s scientific analysis,
semantic data repositories that can store and manage large knowledge graph data have become critical in suc-
cessfully deploying spatially explicit knowledge graph applications. This paper provides a comprehensive
evaluation of the popular semantic data repositories and their computational performance in managing and
providing semantic support for spatial queries. There are three types of semantic data repositories: (1) triple store
solutions (RDF4j, Fuseki, GraphDB, Virtuoso), (2) property graph databases (Neo4j), and (3) an Ontology-Based
Data Access (OBDA) approach (Ontop). Experiments were conducted to compare each repository’s efficiency (e.
g., query response time) in handling geometric, topological, and spatial-semantic related queries. The results
show that Virtuoso achieves the overall best performance in both non-spatial and spatial-semantic queries. The
OBDA solution, Ontop, has the second-best query performance in spatial and complex queries and the best
storage efficiency, requiring the least data-to-RDF conversion efforts. Other triple store solutions suffer from
various issues that cause performance bottlenecks in handling spatial queries, such as inefficient memory

management and lack of proper query optimization.

1. Introduction

Knowledge graph, a semantic web technology that links massive and
cross-domain data, has become a new linked-data way of data organi-
zation and a key technology for information retrieval, hidden linkage
identification, and knowledge-driven decision support (Li, Song, & Tian,
2019). In the geospatial domain, in which available data are highly
heterogeneous in their formats and storage methods, knowledge graphs
have been exploited to provide a uniform solution for managing and
organizing such data. As geospatial big data have become increasingly
prevalent in applications, such as smart cities (Li, Batty, & Goodchild,
2020), earth observations (Usery et al., 2022), and social sensing (Liu
et al., 2015), there is an urgent need to investigate different semantic
data repositories in their scalability and capabilities to manage large
domain knowledge graphs, which often requires the integration and
interoperability of diverse datasets in order to address critical environ-
mental and social problems (Janowicz et al., 2022).

In a knowledge graph, the structured or unstructured data will be

* Corresponding author.
E-mail address: wenwen@asu.edu (W. Li).

https://doi.org/10.1016/j.compenvurbsys.2022.101884

serialized into the format of triples <subject, predicate, object>, which
contain atomic units to express logical relationships between the en-
tities. Leveraging this data structure, a knowledge graph application can
more readily perform logic reasoning to infer new knowledge and hid-
den semantic relationships (Li, Raskin, & Goodchild, 2012). A typical
storage solution for such data structures is called a triple store, a type of
graph database to perform graph data management and provide se-
mantic query support. Since the notion of the Semantic Web was coined
by Berners-Lee, Hendler, and Lassila (2001), there have been many ef-
forts to develop scalable and efficient triple stores leveraging RDFs
(Resource Description Frameworks). However, when adopting knowl-
edge graph technology for geospatial applications, a key question has
arisen: Are available semantic data repositories sufficient for managing
large amounts of spatial data and efficiently handling spatial semantic
queries? A semantic data store without proper query optimization may
negatively affect the performance of domain applications that rely on
knowledge graph technology. Geospatial data, as a special type of
datasets, need to be stored and queried efficiently on top of regular

Received 18 March 2022; Received in revised form 3 June 2022; Accepted 2 September 2022

Available online 15 September 2022
0198-9715/© 2022 Elsevier Ltd. All rights reserved.

mailto:wenwen@asu.edu
www.sciencedirect.com/science/journal/01989715
https://www.elsevier.com/locate/ceus
https://doi.org/10.1016/j.compenvurbsys.2022.101884
https://doi.org/10.1016/j.compenvurbsys.2022.101884
https://doi.org/10.1016/j.compenvurbsys.2022.101884
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compenvurbsys.2022.101884&domain=pdf

W. Liet al.

knowledge graphs to support real-world applications, such as real-time
decision making on traffic routing, disaster response, and object tracking
that involves critical space and time components (Li, Zhou, & Wu, 2016;
Li, 2020; Li, 2022).

Although there are many available open-source and commercial
triple store solutions (e.g., RDF4j, AllegroGraph), their support for
spatially embedded knowledge graphs is largely understudied. Recent
research (Raza, 2019) provides a comparison of triple stores in their
support of spatial queries and spatial reasoning, but they evaluate only
the availability of certain spatial functions. There is no assessment on
the computational efficiency of such solutions to respond to spatial
query requests that support de facto geospatial applications. A recent
piece by Ioannidis, Garbis, Kyzirakos, Bereta, and Koubarakis (2021)
provided a benchmark on geospatial RDF stores from a computational
perspective; however, the RDF/triple stores they selected, such as
Parliament and Strabon (Kyzirakos, Karpathiotakis, & Koubarakis,
2012), may not be the most active platforms, and the evaluation con-
tains only a single type of semantic data repositories: the triple stores.
Jovanovik, Homburg, and Spasi¢ (2021) conducted a comprehensive
review on the compatibility of various triple stores with GeoSPARQL
(SPARQL with Geospatial functions; SPARQL: Simple Protocol and Rdf
Query Language); however, computational performance is not
evaluated.

In recent years, there has also been interest in exploiting the use of
“property graphs” to model knowledge graphs, which has shed new light
on semantically managing large datasets (Alocci et al., 2015). Compared
with an RDF triple, a property graph carries more semantic meanings in
a single “triple” unit. The “predicate” is not only a connection between
entities but it can also have additional properties to semantically enrich
that connection. For instance, a typical RDF triple to express a hurricane
event is <Hurricane Katrina, landed in, Louisiana>. In a property graph,
a property “on August 25, 2015 can be added to the predicate “landed
in” to enrich the triple with additional information. Hence, a “triple” in a
property graph can carry more semantics than an RDF triple. According
to Miller (2013), a very popular property graph database is Neo4j, which
stores data in a connected state and delivers deeper context for intelli-
gent analytics.

A third type of semantic data repository is based on relational spatial
databases. As geospatial data possess complex geometry information,
spatial reasoning and query performance has become a bottleneck to
many RDF/triple store solutions, which were originally designed to
handle non-spatial data. But spatial databases, such as PostGIS, are
capable of providing high-efficiency data storage, indexing, and spatial
queries. Hence, there have also been attempts to exploit the use of
relational spatial databases to achieve semantic data management
through building virtual knowledge graphs. To support a unified
semantic-spatial query interface with other RDF stores, a semantic
connector is developed on top of the relational databases to receive
standard semantic queries in SPARQL format and translate it into the
SQL (Structured Query Language) for interacting with the backend
spatial database. These solutions are also known as Ontology-Based Data
Access (OBDA). Ontop is a flagship OBDA platform that supports stan-
dard spatial-semantic queries through a virtualized RDF created from
data in a relational database (Bereta, Xiao, & Koubarakis, 2019; Can,
Sezer, Bursa, Unalir, & O., 2017). Sparqlify is a similar solution to
Ontop, but its performance in handling spatial queries of big data is
inferior to Ontop, according to a recent study (Ding, Xiao, Pano, Stadler,
& Calvanese, 2021).

Although exciting progress in developing and enhancing semantic
data repositories have been made, there is still a lack of systematic
studies to compare and evaluate existing solutions on their performance
in handling spatial data and spatial queries in a sizable knowledge
graph. This void hinders our ability to choose and use proper storage and
query platforms when it comes to large-scale knowledge graph appli-
cations with spatial data. This paper addresses this problem. We sur-
veyed the most active semantic data repositories, from open source (e.g.,

Computers, Environment and Urban Systems 98 (2022) 101884

RDF4j, Apache Fuseki, Virtuoso) to commercial solutions (e.g.,
GraphDB), from triple store implementations (e.g., RDF4j, Apache
Fuseki, Virtuoso) to property graph database (e.g., Neo4j), as well as an
OBDA solution (Ontop), which builds a layer of semantic and spatial
queries based on traditional relational databases. We also conducted
systematic experiments to evaluate the performance of these semantic
data repositories in handling spatial-semantic queries.

The rest of the paper is organized as follows: Section 2 reviews
existing semantic data repositories. Section 3 compares their capabilities
in supporting spatial queries involving both geometric and topological
operations, as well as compares community activeness. Section 4 eval-
uates the computational efficiency and scalability of the semantic re-
positories in handling different types of spatial-semantic queries. Section
5 concludes the paper and discusses future research directions.

2. Review of semantic data repositories

In this section, we provide a review of popular semantic repositories
that fall into three categories: triple stores, property graph database, and
relational spatial database with a semantic connector (a type of OBDA).

2.1. Eclipse RDF4jm™

Eclipse RDF4j™ is a Java framework for processing and handling
RDF data. This includes creation, storage, parsing, logic reasoning, and
semantic querying with RDF and Linked Data (RDF4J, 2022a). RDF4j
was formerly known as Sesame and forked from it in 2016. As an open-
source RDF data processing framework, RDF4;j supports all mainstream
RDF file formats and adapts to a wide range of triple store engines, such
as GraphDB, Amazon Neptune, Blazegraph, Virtuoso, and Strabon,
among others (RDF4J, 2022a). It acts as an integration API endpoint for
SPARQL queries. For geospatial extension, RDF4j imports Spatial4J and
JTS (Java Topology Suite, a widely used java package for topology
calculation) libraries for geospatial reasoning (Batory, Lofaso, & Smar-
agdakis, 1998). WKT (Well-Known Text) is used for geospatial data
representation. RDF4j implements a full set of functions in the OGC
(Open Geospatial Consortium) GeoSPARQL specification, which in-
cludes common non-topological query, Simple Feature, Egenhofer, and
RCC8 (Region connection calculus) functions. The Lucene geospatial
index was introduced to improve the query performance on large
datasets (RDF4J, 2022b).

2.2. Apache Jena GeoSPARQL Fuseki

Apache Jena is a popular free and open-source Java framework for
building Semantic Web and Linked Data applications (Jena, 2014). It
provides rich APIs for manipulating RDF graphs. To enable geospatial
model handling, the Apache Jena GeoSPARQL module, once launched,
implements the OGC GeoSPARQL 1.0 standard for SPARQL query (Jena,
2022). To establish the GeoSPARQL web service endpoint, Apache
introduced GeoSPARQL Fuseki as a web application server, which
combines the capabilities of Jena GeoSPARQL and Jena Fuseki to pro-
vide a Web accessing endpoint. Its implementation follows the Geo-
SPARQL standard, and all three spatial relation families are supported:
Simple Feature, Egenhofer, and RCC8. In the geospatial layer of Jena
GeoSPARQL, the JTS library is imported and provides support for ge-
ometry representation, spatial relation calculations, and spatial index.
Apart from the WKT format, Jena GeoSPARQL supports GML (Geogra-
phy Markup Language) by serializing the shape geometry to this stan-
dardized GML representation.

2.3. GraphDB
Ontotext GraphDB, formerly known as Owlim, is a commercial se-

mantic graph database engine and database management system (Giit-
ing, 1994). GraphDB implements its own native storage strategy for

W. Liet al.

managing RDF triples. A query optimizer and reasoner works on top of
the data storage for speeding up incoming semantic queries and per-
forming reasoning through forward-chaining of entailment rules.
GraphDB can be packaged as a Storage and Inference Layer (SAIL),
which is compliant with RDF4j, so that it can be used as the data storage
backbone for RDF4j. GraphDB supports multiple query languages (QL),
including GraphQL, SPARQL, and SeRQL (Sesame RDF Query Lan-
guage), as well as RDF serialization formats (e.g., RDF/XML, N3, Turtle).
The GraphDB GeoSPARQL plugin provides access and query for geo-
spatial data. GraphDB supports two-dimensional geospatial data that
uses the WGS84 (World Geodetic System) as the projection system. A set
of topological SPARQL extension functions are implemented to support
quantitative reasoning.

2.4. Neo4j

Neo4j is a popular graph database management system implemented
in Java, which is available in an open-source “community edition” under
the GPL3 (General Public License) license (Webber, 2012). Compared
with other graph databases, Neo4j is highlighted by its active and
vibrant developer communities and the number of use cases. For geo-
spatial data handling, the Neo4j Spatial library enables spatial opera-
tions on graph data. Like most Java-based engines, Neo4j Spatial relies
on the JTS library to enhance its geospatial capabilities. Developers can
create spatial indexes and perform spatial operations on the data, such
as searching for data within a specified region or within a specified
distance of a point of interest (POI). In addition, Neo4j Spatial also
provides plugins for several popular open-source GIS software, such as
GeoTools, GeoServer, and uDig (Neo4j, 2017). Unusually, Neo4j uses its
own query syntax, the Cypher query language, which does not comply
with the OGC GeoSPARQL specification.

2.5. Ontop

Ontop is a virtual knowledge graph system. It exposes the content of
arbitrary relational databases as knowledge graphs. Other than
designing a new native triple store to accommodate graph data, Ontop
chooses the full-fledged relational database engine as its datastore
infrastructure and provides a SPARQL to SQL syntax transformation
layer to convert semantic queries into SQL queries to perform on top of
the backend database. These graphs are virtual, which means that data
remain in their original storage space and “native formats” instead of
being moved to another database or converted to graph data. It takes
advantage of lightweight ontologies and maps relational database
schemas to RDF schemas (Calvanese et al., 2017). It then translates
SPARQL queries expressed over knowledge graphs into SQL queries
executed by the relational databases. Ontop-spatial is an extension of the
Ontop framework with additional geospatial support. Relying on the
powerful capacity of geospatial databases, such as PostgreSQL with
PostGIS extension enabled, Ontop-spatial can provide all the topology
functions defined in GeoSPARQL with high efficiency. As the Geo-
SPARQL support has been added in the standard distribution of Ontop
since v4.1 (Cogrel et al., 2022), we call the system Ontop throughout the
paper for consistency.

2.6. Blazegraph

Blazegraph is an open-source triple store and graph database with
ultra-high performance. The Blazegraph database is used in the Wiki-
data SPARQL endpoint and by other commercial customers. It advocates
supporting up to 50 billion triples on a single machine and powers the
Wikimedia Foundation’s Wikidata Query Service. Unfortunately,
Blazegraph’s geospatial support is limited. It can only handle Point ge-
ometry, and the project does not seem to be under active development.

Computers, Environment and Urban Systems 98 (2022) 101884
2.7. Virtuoso

OpenLink Virtuoso is a well-known universal server consisting of an
SQL Object-Relational Database Management System (ORDBMS) and a
Web Application Server. In terms of semantic storage and query capa-
bility, Virtuoso provides both Web APIs and command line tools to
import data in the RDF data model and digests and stores the data as
RDF quads (a triple plus an identifier of the parent graph) in its internal
column-oriented relational database (Huang, Raza, Mirzov, & Harrie,
2019). Spatial computing-wise, Virtuoso provides efficient GeoSPARQL
built-in functions with accelerated query speed based on the support of a
spatial index. Virtuoso also provides GeoSPARQL compliant query
functionality. However, queries based on GeoSPARQL functions in Vir-
tuoso are not as efficient as its built-in functions, because a spatial index
cannot be applied in such cases. Although the Openlink Virtuoso (open-
source version) is not as scalable as its commercial counterpart, it
maintains the same backend storage and spatial index.

The next section compares the capabilities of these semantic re-
positories in support of spatial data and queries. We also select a few of
the more representative queries for evaluation of their computational
performance.

3. Comparison of semantic data repositories on their capability
to support spatial queries

In this section, we compare the capabilities of semantic repositories
from three perspectives: support for geometry operations, support for
topological relationship identification, and community activeness. Fig. 1
presents popular geometry operations between two features (intersec-
tion, union, difference, and symmetric difference) and for a single
feature (convex hull, buffer, envelope, and boundary).

Table 1 provides a comparison of the popular semantic repositories
on their support to major geometry operations and some other auxiliary
functions, such as returning a geometry as WKT. It can be seen that
blazegraph offers very limited to no support for these spatial operations,
whereas RDF4j, Fuseki, GraphDB, Neo4j, Virtuoso, and Ontop-spatial
provide strong support for spatial operations, such as buffer and dis-
tance. Their capabilities for some supporting functions such as returning
the geometry asWKT and asGML and getting the reference system in-
formation (getSRID) vary quite a bit.

Table 2 further compares the capabilities of different semantic data
repositories in their support for topological relations identifications that
do not require returning geometries but a True or False answer. The
illustration of these topological relationships can be found in Fig. 2.
These operations can leverage spatial indexes built as part of the se-
mantic repositories to speed up query performance. Again, RDF4;j,
Fuseki, GraphDB, Neo4j, Virtuoso, and Ontop provide stronger support
for these functions than Blazegraph.

We also compared the community activeness of these projects aiming
to provide novel semantic data storage and queries (Table 3). It can be
seen that Neo4j is a very active project with an update frequency in days.
The same applies to RDF4j, Fuseki, and Ontop. The other projects are not
very popular due to being close-sourced (e.g., GraphDB) or lack of
community interests (e.g., Blazegraph), measured by number of con-
tributors and update frequencies.

From the above analysis, we selected six semantic web storage so-
lutions which maintain high community activeness and comprehensive
support for geospatial and topological operations to evaluate their
computational performance in support of spatially enabled semantic
applications. These platforms, covering both open-source and commer-
cial solutions, include RDF triple stores (RDF4;j, Fuseki, GraphDB, Vir-
tuoso), property graph database (Neo4j), and the semantic connector +
relational database solution (Ontop). Virtuoso is also a triple store; the
difference between Virtuoso and the other listed triple stores is that
instead of using a native storage system, its backend uses a relational
database for managing triples.

W. Liet al.

Computers, Environment and Urban Systems 98 (2022) 101884

Intersection Union Difference Symmetric
Difference

‘\/
Convex Hull Buffer Envelope Boundary

Fig. 1. Geometry operations for spatial analysis. Area or line in blue is the expected result. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

Table 1

Comparison among the semantic data repositories on their support for geometry operations. SRID: Spatial Reference Identifier. The following versions of software were
used in comparing the capabilities and follow-on experiments: RDF4j 3.6.2, Jena Fuseki 4.0.0, GraphDB 9.10.0, Neo4j 4.2.5, Virtuoso 7.20.3233, and Ontop 4.1.0

(backend with Postgres 13.2 and PostGIS 3.1.1).

Capabilities RDF4J GeoSPARQL Fuseki

GraphDB

Z
)
o
&

Blazegraph Virtuoso Ontop

buffer
convexHull
envelope
boundary
distance
intersection
union
difference
symDifference
asWKT
asGML
getSRID

CRS Support

L]
I I T I I N T R
HHHEHHAaAS33 93

|

HHE A
LG

=
PR

- =

Table 2
Semantic repositories’ support for topological relationship identification.

Capabilities RDF4J GeoSPARQL Fuseki

GraphDB Neo4j

Blazegraph Virtuoso

o
3
=
s}
o

equals
disjoint/intersects
contains
inside/within
overlap/crosses
meet/touches
covers
converedBy

HHaHaEAa A4
R R
HHHAaAaaa3

HHH A E A
e s I I I
e s I I I

These semantic repositories will be compared on both simple and
complex queries, non-spatial and spatial semantic queries, and queries
over increasing size of datasets. The next section describes the experi-
mental data and processing workflow.

4. Data and processing workflow

We prepared three major types of geospatial data: point data, poly-
line data, and polygon data. The point data are from the POI (point of
interest) dataset. The polyline data are US highway data. These two
datasets are from OpenStreetMap (OSM) downloaded through Map-
cruzin (2022). While we derived the OSM data in the Esri shapefile

format, the datasets are also available in the RDF format as part of the
LinkedGeoData effort (Stadler, Lehmann, Hoffner, & Auer, 2012). The
polygon dataset is from the Soil Survey Geographic Database (SSURGO)
of the USDA (US Department of Agriculture) downloaded through Esri
(2022). These data are important data sources to analyze how agricul-
ture and supply chain influence people’s food selection and quality on
the table. We retrieved data in four US states: Arizona, California,
Oregon, and Utah. They each have an attribute table containing non-
spatial properties about the spatial features. To understand the scal-
ability and computational efficiency of different semantic repositories,
we prepared subsets of these data at different sizes, ranging from 50 k
spatial features to 800 k spatial features. Although we use these data for

W. Liet al.

A B B
A
A disjoint B A contains B
B
A A B
A meet B A equals B

Computers, Environment and Urban Systems 98 (2022) 101884

B
A
B A
A inside B A overlap B
B A
A B
A covers B A coveredBy B

Fig. 2. Egenhofer topological relations.

Table 3

Community activeness (as of February 1, 2022). Reference to DB-Engines’ scores and rankings can be found in DB-Engines (2022).
Capabilities RDF4J GeoSPARQL Fuseki GraphDB Neo4j Blazegraph Virtuoso Ontop
contributors 72 74 216 10 17 34
stars 268 791 9600 649 725 460
forked 140 543 2100 137 197 136
update frequency days days days year months days
DB-Engines Score 0.67 271 2.86 58.03 0.96 5.37
DB-Engines Ranking 209 106 103 20 180 73
Database model RDF RDF Graph, RDF Neo4j Graph, RDF Graph, RDF, R RDB, RDF

experiments in this study, our experimental framework is generalizable
and applicable to other kinds of non-spatial and spatial datasets.

Fig. 3 demonstrates the data processing framework for setting up a
reproducible experimental framework by establishing a docker envi-
ronment that allows standard and easy (re)deployment of testing envi-
ronments for each semantic repository, as well as the reproducibility of
our results (Goodchild & Li, 2021; Wilson et al., 2021). First, different
types of spatial data are made available in the popular Esri shapefile or
other formats, that is, WKT (Well-Known Text). Then a knowledge graph
auto-generation tool is developed to automatically convert the geo-
spatial data into a knowledge graph-ready format, such as RDF, based on
a predefined ontological schema. Here, the raw geospatial data are
converted into two formats to be imported into different types of se-
mantic data repositories. A Turtle file (Terse RDF Triple Language)
(Beckett, 2008) is created for importing the raw data into RDF triple
stores as well as property graph databases. A structured CSV file with the
geometry data encoded in WKT format is created for importing the
geospatial data into spatial relational databases that serve as the back-
end data storage for the OBDA platforms, such as Ontop. An Esri
shapefile is also an acceptable input format for spatial relational data-
bases (SDB). For Ontop, a relational-data-table to ontological-schema
mapping file is also created for the on-the-fly generation of a virtual-
ized knowledge graph using data retrieved from the SDB. The mapping
file will also be used to convert a (Geo)SPARQL query from end users to
a SQL (Structured Query Language) query in the backend database.

Once the data are converted into knowledge graph-ready format and
imported into the semantic data repositories (stores), the next step is to
construct spatial-semantic queries for performance evaluation. Table 4
lists the type of queries and the actual GeoSPARQL used to query the
semantic stores. Queries 1-8 contain purely spatial queries for both
geometry operations and topological relationship identification. We
have selected a list of spatial queries that are commonly used in real-
world applications. For instance, a question about “How many biodi-
versity conservation sites (point or polygon) are there in Oregon
(polygon)?” could make use of Query 4 or Query 8 in Table 4 to get the
answer. Queries 9-10 contain more complex semantic queries involving
multiple datasets/data types. Query 9 presents a complex non-spatial

semantic query and Query 10 presents a complex query containing
both spatial and semantic operations.

Next, to enable a reproducible workflow, we deployed all the se-
mantic data stores into a docker environment, which is a containeriza-
tion platform that allows packaging applications and its running
environment into a virtualized container to share and reuse anywhere.
All these semantic stores will expose a semantic search interface to allow
spatial queries from one or more remote clients. As a new type of se-
mantic storage solution, Neo4j does not provide a native web interface
for spatial queries and uses a different query language, Cypher, that is
not compliant with GeoSPARQL. To ensure all the experiments were
completed in a similar environment, a Web API based on the REST
(Representational State Transfer) standard was developed to enable
remote queries.

5. Experimental design methods and results
5.1. Experimental design

We evaluated the performance of the semantic data repositories in
two key areas: storage space and query response time. For the first, we
compared the storage taken by the different platforms to store the same
amount of information in a knowledge graph. Additional space is used
by these stores to build spatial and non-spatial indices, as well as save
other auxiliary information. For evaluating the query response time, we
designed a set of experiments to measure the response speed of a se-
mantic data repository in handling a single request using queries 1-8
listed above. Two thousand queries of each spatial query type (e.g., line
intersection) were randomly generated with different query parameters
using the experimental dataset to create a query pool. A hundred queries
were then randomly selected and sent to each semantic store sequen-
tially. The averaged response time from these 100 queries was used to
measure how fast a semantic repository responds to a specific type of
spatial query.

All the experiments were performed on the same machine, with the
following configuration: 2 CPUs, each with 20 cores running at 2.1 GHz
and 128GB DDR4 memory running at 2933 MT/s. Software wise, every

W. Liet al.

Data Source
Spatial data Non-spatial
data
Point
Tabular
Polyline
Semi-
Polygon Structured

A

Knowledge Graph Generation

Turtle file CSV + WKT
Dgt;ab%ge Spatial RDBMS

\ 4

Spatial-Semantic Query Generation

Computers, Environment and Urban Systems 98 (2022) 101884

Docker Environment

RDF4J
RDF
Store
GraphDB
+
WebAPI Fuseki

Semantic Connector

Geometry Topological
Operations Relations
Figure 1 Figure 2

Ontop
WebAPI
I
Property Graph Database
> Rest Neodj
API

Fig. 3. A reproducible, semantic data processing framework for performance evaluation of semantic data repositories. RDBMS: Relational Database Manage-

ment System.

triple store used in experiments is wrapped in an individual docker
container to maintain a clean and isolated experimental environment.

5.2. Storage space comparison

Fig. 4 compares the size increase after importing the original spatial
data with different sizes (increased from 50,000 spatial features to
800,000 spatial features). The result shows that Ontop was most effi-
cient in terms of storage, since the storage space after data importation is
much smaller (less than half) than that of the other semantic re-
positories. This is because Ontop builds upon a spatial relational data-
base, PostGIS which uses a very efficient generalized search tree as its
spatial index, so that it can achieve fast query speed. Another possible
reason for the memory advantage of Ontop is that the spatial data,
particularly the point, line, and polygon geometries, are stored in binary
formats in the spatial databases, hence saving much storage space.

In contrast, the spatial data take up a much larger space in GraphDB
and Virtuoso. GraphDB uses R-tree as the spatial index. Its default
quadtree encoding provides location accuracy at different levels. The
higher the level, the deeper the spatial index tree and thus the larger the
index file. We use the default level value 11 in this research. At level 11,
the accuracy of the spatial index was at +-2.5 km at the equator. Virtuoso
also has a very high storage consumption from its column-wise indexing
systems. The storage space for Fuseki, RDF4j, and Neo4j are about the
same. RDF4j builds its index based on Lucene SAIL (Storage and Infer-
ence Layer), and thus provides both spatial and non-spatial indices.

Apache Fuseki uses STR-Tree, an R-tree created using the Sort-Tile-
Recursive (STR) algorithm. Similar to GraphDB, RDF4;j also uses an R-
tree spatial index.

5.3. Comparison of semantic data repositories’ performance on spatial-
semantic queries

We next conducted performance evaluations in terms of query
response time (average over 100 queries) for each of the spatial queries
(Q1-Q8) in Table 4. Fig. 5 shows the response time for Q1, which is to
find the three nearest points of a given point. Virtuoso and Ontop are the
top performing platforms. For datasets smaller than 200 k, Virtuoso can
return results within 100 ms, and the range for Ontop’s response time is
between 100 and 350 ms. When the dataset is larger (at 400 k and 800 k
spatial features), Virtuoso can return results between 150 ms-350 ms,
while Ontop can return results between 500 ms-1 s. Although Virtuoso is
a triple store solution, it uses a relational database to store graph data,
and it adopts a more deeply coupled query model between the semantic
query engine and the database engine. These features make Virtuoso
very efficient in handling spatial queries. Ontop stores the structured
data in a relational table rather than as an RDF model so that it can
leverage the built-in function of a spatial database to perform the queries
efficiently. Different from Virtuoso, Ontop develops a SPARQL to SQL
translation layer to conduct the query so that all the datasets can be
stored in their original native structure in the relational database
without the need of any data conversion.

W. Liet al.

Table 4

Spatial-semantic queries.

Queries

Type

GeoSPARQL

Q1

Q3

Q4

Q6

Nearest points using
distance function

Line intersection

Polygon boundary

Contains
(Polygon, Point)

Convex hull (Polygon)

Envelope (Polygon)

PREFIX uom: <http://www.opengis.net/de
f/uom/0GC/1.0/>

PREFIX geo: <http://www.opengis.
net/ont/geosparql# >

PREFIX geof: <http://www.opengis.net/de
f/function/geosparql/>

PREFIX poi: <http://cici.lab.asu.edu/poi# >
SELECT?g2

WHERE {

poi:416935 geo:asWKT?gl,

?f geo:asWKT?g2,

FILTER (?f! = poi:416935)

}

ORDER BY ASC (geof:distance(?g1,?g2, uom:

meter))

LIMIT 3

PREFIX geo: <http://www.opengis.
net/ont/geosparql# >

PREFIX geof: <http://www.opengis.net/de
f/function/geosparql/>

PREFIX xsd: <http://www.w3.
org/2001/XMLSchema# >

PREFIX highway: <http://cici.lab.asu.edu/h
ighway#>

SELECT?id?p

WHERE {

highway:16269 geo:asWKT?g1,

?f xsd:ID?id,

?f geo:asWKT?g2,
BIND(geof:intersection(?g1,?g2) AS?p)
FILTER(?id! = 16,269 && geof:sfIntersects(?
g1,782)

}

PREFIX geo: <http://www.opengis.
net/ont/geosparql# >

PREFIX geof: <http://www.opengis.net/de
f/function/geosparql/>

PREFIX ssurgo: <http://cici.lab.asu.
edu/ssurgo#>

SELECT?b

WHERE {

ssurgo:423338 geo:asWKT?geom,
BIND(geof:boundary(?geom) AS?b)

}

PREFIX geo: <http://www.opengis.
net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/de
f/function/geosparql/>

PREFIX xsd: <http://www.w3.
org/2001/XMLSchema# >

SELECT?id

WHERE {

?f xsd:ID?id,

?f geo:asWKT?geom,

BIND(“POINT (—120.49973620479315
34.805647906537345)"""geo:wktLiteral AS?
p)

FILTER (geof:sfContains(?geom,?p))

}

PREFIX geo: <http://www.opengis.
net/ont/geosparql# >

PREFIX geof: <http://www.opengis.net/de
f/function/geosparql/>

PREFIX ssurgo: <http://cici.lab.asu.
edu/ssurgo#>

SELECT?h

WHERE {

ssurgo:635480 geo:asWKT?geom,
BIND(geof:convexHull(?geom) AS?h)

}

PREFIX geo: <http://www.opengis.
net/ont/geosparql# >

PREFIX geof: <http://www.opengis.net/de
f/function/geosparql/>

Computers, Environment and Urban Systems 98 (2022) 101884

Table 4 (continued)

Queries

Type

GeoSPARQL

Q7

Q8

Q9

Q10

Intersects (Polygon,
Polygon)

Within (Point,
Polygon)

Complex non-spatial
query: Return all
SSURGO units with
area <500 square
meters

Complex spatial query:
Return the average
distance between
grocery stores and their
closest road networks

PREFIX ssurgo: <http://cici.lab.asu.
edu/ssurgo#>

SELECT?env

WHERE {

ssurgo:9494 geo:asWKT?geom,
BIND(geof:envelope(?geom) AS?env)

}

PREFIX geo: <http://www.opengis.
net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/de
f/function/geosparql/>

PREFIX xsd: <http://www.w3.
org/2001/XMLSchema# >

PREFIX rdfs: <http://www.w3.
org/2000/01/rdf-schema#>
SELECT?id?label

WHERE {

?f xsd:ID?id,

?f rdfs:label?label,

?f geo:asWKT?geom,

FILTER (geof:sfIntersects(?geom, “POLYGON
((—118.191746173483 47.5371825726328,
—118.191746173483 47.5394688885643,
—118.186886287796 47.5394688885643,
—118.186886287796 47.5371825726328,
—118.191746173483
47.5371825726328))"""geo:wktLiteral))

}

PREFIX geo: <http://www.opengis.
net/ont/geosparql# >

PREFIX geof: <http://www.opengis.net/de
f/function/geosparql/>

PREFIX xsd: <http://www.w3.
org/2001/XMLSchema# >

SELECT?id

WHERE {

?f xsd:ID?id,

?f geo:asWKT?geom,

BIND(“POINT (—115.61972444331998
33.04264614096238)"geo:wktLiteral AS?p)
FILTER (geof:sfWithin(?p,?geom))

}

PREFIX xsd: <http://www.w3.
org/2001/XMLSchema# >

PREFIX rdfs: <http://www.w3.
org/2000/01/rdf-schema#>

PREFIX ssurgo: <http://cici.lab.asu.
edu/ssurgo#>

SELECT?ssurgoName

WHERE {

?z xsd:ID?surgolD.

?z rdfs:label?ssurgoName.

?z ssurgo:Area?area.

FILTER (?area < 500)}

GROUP BY?ssurgoName?area

ORDER BY DESC(?area)

LIMIT 1

PREFIX xsd: <http://www.w3.
org/2001/XMLSchema# >

PREFIX geo: <http://www.opengis.
net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/de
f/function/geosparql/>

PREFIX uom: <http://www.opengis.net/de
f/uom/0GC/1.0/>

PREFIX: <http://cici.lab.asu.
edu/ontology/semantic_connector# >

SELECT (AVG(?minValue) as?avgDist){
SELECT DISTINCT?x (MIN(?d) AS?minValue)
WHERE {

?x:pointOfinterestCategory “Grocery
store”"xsd:string.

?x geo:hasGeometry?cGeom,
?cGeom geo:asWKT?cWKT,
?y a:RoadFeature.

(continued on next page)

http://www.opengis.net/def/uom/OGC/1.0/%3e
http://www.opengis.net/def/uom/OGC/1.0/%3e
http://www.opengis.net/ont/geosparql#%3E
http://www.opengis.net/ont/geosparql#%3E
http://www.opengis.net/def/function/geosparql/%3e
http://www.opengis.net/def/function/geosparql/%3e
http://cici.lab.asu.edu/poi#%3E
http://www.opengis.net/ont/geosparql#%3E
http://www.opengis.net/ont/geosparql#%3E
http://www.opengis.net/def/function/geosparql/%3e
http://www.opengis.net/def/function/geosparql/%3e
http://www.w3.org/2001/XMLSchema#%3E
http://www.w3.org/2001/XMLSchema#%3E
http://cici.lab.asu.edu/highway#%3E
http://cici.lab.asu.edu/highway#%3E
http://www.opengis.net/ont/geosparql#%3E
http://www.opengis.net/ont/geosparql#%3E
http://www.opengis.net/def/function/geosparql/%3e
http://www.opengis.net/def/function/geosparql/%3e
http://cici.lab.asu.edu/ssurgo#%3E
http://cici.lab.asu.edu/ssurgo#%3E
http://www.opengis.net/ont/geosparql#%3E
http://www.opengis.net/ont/geosparql#%3E
http://www.opengis.net/def/function/geosparql/%3e
http://www.opengis.net/def/function/geosparql/%3e
http://www.w3.org/2001/XMLSchema#%3E
http://www.w3.org/2001/XMLSchema#%3E
http://www.opengis.net/ont/geosparql#%3E
http://www.opengis.net/ont/geosparql#%3E
http://www.opengis.net/def/function/geosparql/%3e
http://www.opengis.net/def/function/geosparql/%3e
http://cici.lab.asu.edu/ssurgo#%3E
http://cici.lab.asu.edu/ssurgo#%3E
http://www.opengis.net/ont/geosparql#%3E
http://www.opengis.net/ont/geosparql#%3E
http://www.opengis.net/def/function/geosparql/%3e
http://www.opengis.net/def/function/geosparql/%3e
http://cici.lab.asu.edu/ssurgo#%3E
http://cici.lab.asu.edu/ssurgo#%3E
http://www.opengis.net/ont/geosparql#%3E
http://www.opengis.net/ont/geosparql#%3E
http://www.opengis.net/def/function/geosparql/%3e
http://www.opengis.net/def/function/geosparql/%3e
http://www.w3.org/2001/XMLSchema#%3E
http://www.w3.org/2001/XMLSchema#%3E
http://www.w3.org/2000/01/rdf-schema#%3E
http://www.w3.org/2000/01/rdf-schema#%3E
http://www.opengis.net/ont/geosparql#%3E
http://www.opengis.net/ont/geosparql#%3E
http://www.opengis.net/def/function/geosparql/%3e
http://www.opengis.net/def/function/geosparql/%3e
http://www.w3.org/2001/XMLSchema#%3E
http://www.w3.org/2001/XMLSchema#%3E
http://www.w3.org/2001/XMLSchema#%3E
http://www.w3.org/2001/XMLSchema#%3E
http://www.w3.org/2000/01/rdf-schema#%3E
http://www.w3.org/2000/01/rdf-schema#%3E
http://cici.lab.asu.edu/ssurgo#%3E
http://cici.lab.asu.edu/ssurgo#%3E
http://www.w3.org/2001/XMLSchema#%3E
http://www.w3.org/2001/XMLSchema#%3E
http://www.opengis.net/ont/geosparql#%3E
http://www.opengis.net/ont/geosparql#%3E
http://www.opengis.net/def/function/geosparql/%3e
http://www.opengis.net/def/function/geosparql/%3e
http://www.opengis.net/def/uom/OGC/1.0/%3e
http://www.opengis.net/def/uom/OGC/1.0/%3e
http://cici.lab.asu.edu/ontology/semantic_connector#%3E
http://cici.lab.asu.edu/ontology/semantic_connector#%3E

W. Liet al.

Table 4 (continued)

Queries Type GeoSPARQL

?y geo:hasGeometry?fGeom,

?fGeom geo:asWKT?fWKT.
BIND(geof:distance(?cWKT,?fWKT,uom:
metre) as?d)

} GROUP BY?x

}

For the other semantic data stores, which run slower than the first-
tier solutions, Neo4j, GraphDB, and RDF4j have similar query perfor-
mance, with GraphDB slightly slower than the other two. Fuseki’s per-
formance was relatively good when data size was small; however, as the
data grow to a certain size (400 k spatial features and more), the query
response time increased exponentially. This may be largely due to the
following reasons. First, Fuseki has a very aggressive memory use
strategy. With the same amount of graph data loaded, Fuseki’s memory

Computers, Environment and Urban Systems 98 (2022) 101884

consumption is much more than the other semantic repositories. For
instance, in our current experimental setting and for loading 800 k
SSURGO polygonal records, Fuseki’s memory use is twice (43.8GB) as
much as Virtuoso (21.84GB), and about five times as much as GraphDB
(8.46GB) and about 90 times of Ontop (0.48GB)). Second, substantial
CPU time is allocated for conducting Java Garbage Collection (JGC)
during the execution of a query. For Q4 run on the 800 k SSURGO data,
the total query execution time is around 115 s (Fig. 7a) for Fuseki (which
runs on a single CPU core) and the JGC has taken 8.23 s (which runs
parallelly on 40 CPU cores). It is expected that the JGC will take up more
CPU resources when requests arrive concurrently. Both issues negatively
affect its query performance. As the nearest neighbor calculation does
not involve the use of spatial index, the resultant query time directly
reflects algorithm efficiency in the implementation of different semantic
repositories.

Fig. 6 shows the results for spatial query on line intersection. As data
sizes increased, Fuseki’s performance drops significantly, as reflected by

Storage Consumption (with Line Geometry)

1500

B Ontop [Fuseki [RDF4J

1000

Size of Datastore (MB)

GraphDB [l NeodJ Virtuoso

100K

0 -.5.()|—<. l.l._.. l.II_I III_I Illj

200K 400K 800K

Number of Geometries

Fig. 4. Comparison of storage space consumption among different semantic repositories with an increasing size of line geometries.

Query 1: Find K Nearest Points (K=3)

15000
[Ontop [Fuseki [RDF4J GraphDB [Neo4J Virtuoso
é 10000
>
(7]
>
a
@
Q
.g 5000
'—
00— =emie =00 A -.l.l_| I\I_I
50K 100K 200K 400K 800K
Number of Geometries

Fig. 5. Query performance on k nearest neighbors/points (k = 3).

W. Liet al.

Query 2: Line Intersection

100 —
C [Ontop [Fuseki
10 —
I C
e)
=
5 L
@ 1=
k) =
= C
9] L
= |
% 0.1
w -
Qo L
(]
£ B
= 0.01 =
0.001 “—
100K

B RDF4J

50K

Computers, Environment and Urban Systems 98 (2022) 101884

GraphDB [Neo4J Virtuoso

200K 400K 800K

Number of Geometries

Fig. 6. Query performance on line intersection. Note: Y axis uses a base-10 log scale instead of a linear scale to make the very small numbers and large numbers easy
to read. The minor ticks between the main data points [x1, x2] represent 2, 4, 6, 8 *(x1). For instance, the four ticks between [0.01,0.1] refer to 0.02, 0.04, 0.06, and

0.08, respectively.

the overly long response time. The overall response time for Fuseki was
linearly correlated with the data size, and its response time (at the scale
of 1-30 s) was nearly 100 times longer than good performing semantic
stores, such as Ontop. (Note that the Y axis uses a base-10 log scale, so
the difference between the values of the bars was actually much larger
than it appears as the bar gets taller). This is possibly due to suboptimal
memory management of Fuseki, as discussed above. Neo4j was the
second slowest among all the semantic stores in processing the line
intersection query. But it was about 10 times faster than Fuseki. Also, we
can still observe a linear correlation between the response time and the
data size; this means a spatial index was utilized by the system during
this query but not very efficiently.

In comparison, Ontop, RDF4j, and GraphDB have demonstrated
better performance in this query. The results can be returned within 100
ms for queries of all given data sizes. Of the three repositories, Ontop
performed the best, and its response time was consistently low (<15 ms
for all datasets) and was almost unchanged with the data size. This
means that the spatial index takes effect to process this query efficiently.
The second best was GraphDB, and similar to Ontop, the response was
almost invariant of the changing data size, indicating the proper appli-
cations of the spatial index, but speed-wise, it was about half as fast as
Ontop. RDF4j showed a linear increase in response time as the data size
increases, although slower than Ontop and GraphDB, it achieved a
performance that is one magnitude better than Fuseki and Neo4j.

Virtuoso was overall the best performing semantic store on this
query. For all datasets, the results were returned within 2 ms. In com-
parison, the second fastest platform Ontop returned results within 15 ms
in our experiments. This difference is likely due to the more coupled
solution between data storage and data query in Virtuoso. In Ontop,
however, a translation from (Geo)SPARQL query to a database query is
always needed and brings more overhead.

Fig. 7 further demonstrates the query performance for contains and
within, which are two membership relations. If a spatial feature A con-
tains B, we can infer that B is within A. In Fig. 7(a) and (b), A and B are
polygon and point features, respectively, and they both are polygons in
Fig. 7(c). As these queries do not return any geometry but a “True” or
“False” answer, they share similar computational complexity, so we
group the results of these three queries together. The results from these
queries also show similar trends in the response time.

In this set of results, Virtuoso still worked the best in terms of query

speed, followed by Ontop. The difference in response time (about 2
times) was smaller than performing line intersection on these two
platforms. GraphDB was the third fastest one, but it was five-times
slower than Ontop for point-polygon containment operations (Fig. 7a
and b) and three-times slower than Ontop for polygon-polygon
containment operations (Fig. 7c). All three solutions showed nearly
invariant response time as the data size increased, demonstrating the
efficiency of spatial indexing in assisting a quick search and location of
spatially related objects in space. The opposite scenarios were found in
the results of Fuseki and RDF4j, where their response time increased
with the data size. The increase in Fuseki even showed an exponential
instead of a linear trend, indicating that besides the issue in using and
applying spatial index, Fuseki’s performance in handling large datasets
is also worrisome. Neo4j, the platform that manages property graphs,
can also handle these spatial queries with the support of spatial index.
The query response time remained largely unchanged among different
sizes of datasets. The longer response time (than Virtuoso, Ontop, and
GraphDB) indicates that it has more overhead in processing the query.
But these four solutions all responded to these given requests in under 1
.

Fig. 8 demonstrates the query performance on three spatial queries
that operate on a single feature: (a) Boundary operation returns the
combinatorial boundary of a spatial feature; (b) Convex Hull operation
calculates the minimal convex polygon for a given spatial feature; and
(c) Envelop returns the bounding box (BBOX) of a spatial feature. In this
case, because only a single feature is involved in the computation, and
no spatial index is needed in the spatial algorithm, almost all the se-
mantic repositories returned results in a timely manner (the scale of Y
axis is quite small compared with other figures). Among these solutions,
Neo4j had the least satisfying performance, because of the overhead for
using its unique query language, Cypher, to query the proper graph data
to select a given feature from the data collection. In addition, Neo4j’s
query transaction requires putting a lock on the data when doing a query
and unlocking it when the query is completed. And this overhead be-
comes substantial in a simple query which runs fast. But overall, all the
semantic data repositories returned correct results with good efficiency
for queries shown in Fig. 8. The differences among the bars for the
platforms are actually very subtle, except for Neo4j.

W. Li et al. Computers, Environment and Urban Systems 98 (2022) 101884

Query 4: Polygon Contains Points

1000 —
C Wl Ontop W Fuseki [l RDF4J GraphDB [l Neo4J Virtuoso

100 —
n i
8 =
k3 C
g e
-
g B
g 0.1 —
® =
g C
E L

0.01

50K 100K 200K 400K 800K
Number of Geometries
(a)

Query 8: Points Within Polygon

1000 —
C I Ontop [Fuseki [l RDF4J GraphDB [l Neo4J Virtuoso
100 (—
z i
2
S =
3 -
S TE
=
o B
g 0.1
® E
2 [
£ -
0.01 |~
50K 100K 200K 400K 800K
Number of Geometries
(b)

Query 7: Polygon Intersects With Polygons

1000 —
F B Ontop [Fuseki [l RDF4J GraphDB [l Neo4J Virtuoso

100 —
7 i
©
5 10 —
S =
S r
&2, L
g T
-
g B
g o1k
® =
g r
E L

i I I I

0.001 C l I

50K 100K 200K 400K 800K
Number of Geometries
(©

Fig. 7. Query performance on (a) contains (Polygon, Points), (b) within (Points, Polygon), and (c) intersects (Polygon, Polygons). Note: the Y axis uses a base-10 log
scale, so the difference in the value of the bars gets much higher as the bars get taller. The minor ticks between each main data points [x1, x2] represent 2, 4, 6, 8 *
(x1). For instance, the four ticks between [0.01,0.1] refer to 0.02, 0.04, 0.06, and 0.08, respectively.

10

W. Li et al. Computers, Environment and Urban Systems 98 (2022) 101884

Query 3: Calculating Boundary

1000
E Ontop [Fuseki [l RDF4J GraphDB [Neo4J Virtuoso

50K

100K 200K 400K 800K

é 100
ey
[
=3
(€]
®
o
g 10
=

-

Number of Geometries

()
Query 5: Calculating Convex Hull

1000
E Ontop [Fuseki [RDF4J GraphDB [Neo4J Virtuoso

50K 100K 200K 400K 800K

gui 100
2
[
5
g
®
Q
"E’ 10
=

-

Number of Geometries

(b)
Query 6: Calculating Envelope

1000

- 50K

100K 200K 400K 800K

:E,, 100
e
[
-
]
@
Q
g 10
=

E Ontop [Fuseki [l RDF4J GraphDB [Neo4J Virtuoso |

-

Number of Geometries

(©
Fig. 8. Query performance on (a) Boundary, (b) Convex Hull, and (c) Envelop calculations. Note: The Y axis uses a base-10 log scale, so the difference among the

values of the bars gets much higher as the bars get taller. The minor ticks between the main data points [x1, x2] represent 2, 4, 6, 8 *(x1). For instance, the four ticks
between [1,10] refers to 2, 4, 6, and 8, respectively.

11

W. Liet al.

5.4. Comparison of semantic data repositories’ performance on complex
semantic queries

The above experiments in Section 5.3 measured the query perfor-
mance on geometric and topological operations, the results of which
provide direct evidence on the efficiency and scalability of different
semantic repositories in handling spatial queries in a semantically
enabled way. In real-world applications, there are usually more complex
queries that combine both spatial and semantic queries. Query 9 and
Query 10 (Table 4) are such complex queries involving more filter and
sorting operations. Query 9 is a complex non-spatial semantic query; it
uses a real-world SSURGO dataset containing 200 k polygon-based soil
unit data in California to find all the SSURGO units with areas <500
square meters. Query 10 is a query that combines both spatial and non-
spatial semantic filters. It uses a dataset containing 22 k POI data
(grocery stores) and 124 k highway lines covering Arizona and Utah for
the experiment to return the average distance between grocery stores
and their closest highway networks in the two states.

Fig. 9 shows the comparison on response time between the top three
performers Ontop, GraphDB, and Virtuoso. Query 9 is a non-spatial se-
mantic query. It can be seen that all can return results at the millisecond
level. GraphDB has shown better performance than Ontop in this non-
spatial semantic query, because of its powerful capability in handling
non-spatial graph data. Virtuoso amazingly returned the results within
2 ms, illustrating very efficient performance for semantic queries. In
another complex query (Q10), which contains both spatial and semantic
filters, Virtuoso again worked the best, but the difference in response
time between Virtuoso and Ontop was smaller than when conducting
purely non-spatial queries. GraphDB was much slower than the other
two in handling such types of queries.

As observed, although Ontop’s performance was quite good, its
overall response time remained longer than the triple store solution
Virtuoso. The reason for this is two-fold: first, the spatial operation in
Query 10 is a call essentially for the “nearest distance” operation, but
there is no such function implemented directly in its backend spatial
engine, PostGIS. Therefore, it needs the calculation of all the possible
distances first and then sorts them to get the smallest one (to answer
Query10). Second, the process in Ontop semantic translation (from
standard GeoSPARQL query to the SQL query) will add some mandate
statements on data type translation and data integrity check in the
translated SQL to assure the successful execution of the queries. These

Computers, Environment and Urban Systems 98 (2022) 101884

extra criteria slow down the database query speed. In the future, more
optimization could be applied during the semantic translation to make
Ontop more efficient while maintaining the robustness of the system. In
comparison, Virtuoso, which takes advantage of the efficient data
management and query performance of a relational database and at the
same time implements a deeply coupled SPARQL query engine with the
database engine, has shown superior performance. GraphDB, which
builds its system with an RDF model and a native triple storage, did not
show a performance superior to the other two, particularly in handling
spatial-semantic queries.

6. Discussion and conclusion

While recent literature has evaluated the availability and compati-
bility of semantic data repositories to support spatial queries, almost all
focus on RDF triple stores (loannidis et al., 2021; Jovanovik et al., 2021;
Raza, 2019) and very few have addressed this question from a compu-
tational performance perspective. In this paper, we provide a compre-
hensive analysis of a variety of semantic repository solutions, including
RDF triple stores, property graph databases, and OBDA platforms in
terms of their capabilities, community activeness, and computational
efficiency for handling spatial-semantic queries. The first category rep-
resents traditional semantic data storage solutions in which graph data
are modeled upon Semantic Web standards into RDF triples. The second
category, property graphs databases, such as Neo4j, allows the use of a
complex triple to describe a property linking two entities in order to
express more semantically enriched meanings in a statement. On the
other hand, there is a third type of approach for accessing spatially
enabled knowledge graphs, which is known as OBDA. Instead of build-
ing a completely new semantic data store, OBDA approaches, such as
Ontop, achieve handling of spatial-semantic queries by developing a
semantic connector on top of traditional spatial relational databases,
such as PostGIS, resulting in highly efficient in handling geospatial data
and queries. Once a new query (in GeoSPARQL) arrives, Ontop-spatial
will be able to translate the GeoSPARQL query into a SQL query and
conduct the spatial queries using the database engines, and the returned
results will then be encapsulated into an RDF format.

Our work performs a systematic analysis of these approaches to
provide the knowledge graph community an important reference for
selecting semantic storage platforms for knowledge graph applications.
We evaluated their performance based on simple and complex spatial-

Performance Evaluation on Complex Queries

456 s

500
@ Ontop [GraphDB [l Virtuoso
400
(]
£
=
p 300
[2]
c
o
Q
[7]
O
X 200
Pl
5]
>
c 101.29 ms
100
36.46 ms
1.801 ms
0
Query 9

Query 10

Fig. 9. Performance of semantic data repositories on complex queries.

12

W. Li et al.

semantic queries to simulate real-world scenarios. Our results show that
storage-wise, Ontop is the most efficient solution, because data can be
stored in its original and binary formats in relational databases, which
are very efficient at managing such structured spatial data. There is no
need with Ontop for converting structured data (spatial and non-spatial)
into the graph format to fit into the storage requirement of a triple store.
Query-wise, Virtuoso performs the best among all solutions in terms of
both non-spatial and spatial semantic queries, followed by Ontop. They
both perform much better than the other triple store solutions, including
the commercial solution GraphDB, whose performance in handling
spatial queries is similar to that of RDF4j and Neo4j. Fuseki’s query
performance is overall the most worrisome, due partially to its subop-
timal memory management deficiencies.

Although Virtuoso is a type of an RDF store, it has a storage method
sitting in between traditional triple stores and the OBDA approach.
Instead of using a native graph storage method, Virtuoso builds its
storage based on a relational database. But it has a more coupled solu-
tion between the query engine and the database than the OBDA
approach, making it a very efficient solution. However, similar to other
triple stores, such as RDF4j and GraphDB, in Virtuoso, structured data
have to be remodeled into a graph format (such as RDF). In scientific
applications, where huge amounts of observation or simulation data are
available, this will introduce significant extra effort for preprocessing
and data conversion in order to make the data available in a graph
format and queryable in a knowledge graph. These converted data will
also inevitably consume a huge amount of (duplicated) storage space, as
illustrated in our storage consumption experiment (Fig. 4). Additionally,
keeping the data in two formats (original and graph) will also substan-
tially increase maintenance cost. In real-world applications where big
data are being collected in real-time or where there is a frequent update
in the data, the semantic lifting of such data into the graph format may
well impede downstream applications with real-time requirements.
Also, when there is a schema change to the semantic model of the data,
all the datasets will need to go through the data conversion process
again.

In comparison, Ontop’s semantic model has shown important ad-
vantages. First, its implementation respects the heterogeneity of spatial
data in terms of formats and their native data structures. Ontop allows
geospatial data to remain in their native formats, and the data conver-
sion exists only at the scheme/data model level. This way, the platform
benefits from the advanced capabilities of existing spatial databases in
efficiently handling spatial queries, and it can also reduce graph main-
tenance costs by keeping data in their original formats. The updates in
semantic models also require the changes to be made only in the map-
ping table between the database-scheme and the knowledge-graph-
scheme without touching the actual data. What is more, keeping data
in their well-accepted formats is not only natural for scientists and data
analysts, but we can also encourage adoption by the scientific commu-
nity of knowledge graph technology for building a large, open knowl-
edge network. From this end, more attention could be paid to the OBDA
approaches for accelerating the accessibility and availability of geo-
spatial scientific data into a global knowledge graph. Experimental re-
sults of the current research show that there is still room for Ontop to be
improved in its query translation and efficiency. More optimization
could be applied during the semantic translation to make Ontop more
efficient while maintaining the robustness of the system.

As a new form of semantic data storage, Neo4j also shows relatively
good performance in handling spatial queries. An advantage of Neo4j’s
design is that it separates the spatial data layer from the non-spatial
layer and manages them separately. Its concept of property graph also
allows the modeling of complex semantics. In practical applications,
however, Neo4j requires the use of a new query language, Cypher,
which may introduce additional overhead in query processing. If query
optimization can be properly improved, it could also become a good
candidate for both spatial and non-spatial knowledge graph
applications.

13

Computers, Environment and Urban Systems 98 (2022) 101884

As spatially explicit knowledge graphs are being increasingly
investigated, spatial enablement in existing semantic data repositories
will become critical and essential in supporting geospatial applications,
ranging from environmental to urban science domains. For instance,
when a disaster occurs, such as a hurricane or an earthquake, the relief
experts need to quickly gather first-hand information in the disaster
impacted area, including physical infrastructure and its damage, social-
economic conditions, power outage information, health profile as well
as information about local and national disaster (response) experts.
These datasets are geospatial in nature and they are typically from
multiple sources and are encoded in diverse formats. It is therefore a
critical and challenging task for collecting such datasets and made them
available in an analysis-ready manner. Building a spatially enabled
knowledge graph that supports efficient queries and information
retrieval from semantic repositories of cross-domain big data is the key
for addressing the above challenge (Janowicz et al., 2022; Li, 2020). Our
research, through a comprehensive performance evaluation of the
functionality, storage and query efficiency of popular semantic data
repositories of different types, provides new insights on choosing proper
storage solutions to support real-world environmental and urban ap-
plications empowered by knowledge graph.

In the future, more work is needed in the spatially enabled knowl-
edge graph research, particularly in building a community for exper-
imenting and promoting new solutions to foster the adoption of
knowledge graph technology in spatial data management, interopera-
bility, and accessibility. Instead of following the one-size-fits-all solution
that requires the conversion of data of any type to the standard RDF
formats, the approach that provides the balanced solution between unity
and diversity—such as semantic connector supported by Ontop, which
can preserve the native formats and diversity of the data but also utilize
the advanced concepts of Semantic Web for heterogeneous data man-
agement, integration, and semantic query—may become the optimal
solution.

CRediT authorship contribution statement

Wenwen Li: Conceptualization, Methodology, Formal analysis,
Visualization, Validation, Writing — original draft, Supervision, Project
administration, Funding acquisition. Sizhe Wang: Software, Investiga-
tion, Formal analysis, Visualization, Validation, Data curation, Writing —
original draft. Sheng Wu: Methodology, Investigation, Formal analysis,
Data curation, Visualization, Writing — original draft. Zhining Gu:
Experiment. Yuanyuan Tian: Experiment.

Acknowledgement

This work is supported in part by the National Science Foundation
under awards 1455349, 2120943, 1853864, and 2230034.

References

Alocci, D., Mariethoz, J., Horlacher, O., Bolleman, J. T., Campbell, M. P., & Lisacek, F.
(2015). Property graph vs RDF triple store: A comparison on glycan substructure
search. PLoS One, 10(12), Article e0144578. https://journals.plos.org/plosone
/article?id=10.1371/journal.pone.0144578.

Batory, D., Lofaso, B., & Smaragdakis, Y. (1998, June). JTS: Tools for implementing
domain-specific languages. In Proceedings. Fifth International Conference on Software
Reuse (Cat. No. 98TB100203) (pp. 143-153). IEEE.

Beckett, D. (2008). Turtle-terse RDF triple language. http://www. ilrt. bris. ac. uk/discovery/
2004/01/turtle/.

Bereta, K., Xiao, G., & Koubarakis, M. (2019). Ontop-spatial: Ontop of geospatial
databases. Journal of Web Semantics, 58, Article 100514.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific American,
284(5), 34-43.

Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M., ... Xiao, G.
(2017). Ontop: Answering SPARQL queries over relational databases. Semantic Web,
8(3), 471-487.

Can, O., Sezer, E., Bursa, O., Unalir, M., & O.. (2017). Comparing relational and
ontological triple stores in healthcare domain. Entropy, 19(1), 30.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144578
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144578
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0010
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0010
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0010
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0015
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0015
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0020
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0020
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0025
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0025
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0030
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0030
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0030
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0035
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0035

W. Liet al.

Cogrel, B., Kontchakov, R., Xiao, G., Hardi, J., Muro, M. R., Corman, J., ... Biihmann, L.
(2022). DB-Engines. In System Properties Comparison Apache Jena - TDB vs. Blazegraph
vs. GraphDB vs. Neo4j vs. RDF4J. https://db-engines.com/en/system/Apache+Jena
+-+TDB%3BBlazegraph%3BGraphDB%3BNeo4j%3BRDF4J (last accessed on May
24, 2022).

Ding, L., Xiao, G., Pano, A., Stadler, C., & Calvanese, D. (2021). Towards the next
generation of the LinkedGeoData project using virtual knowledge graphs. Journal of
Web Semantics, 71, Article 100662.

Esri. (2022). SSURGO downloader. https://www.arcgis.com/home/item.html?id=cdc4
9bd63ea54dd2977(3f2853e07fff (last accessed on May 24 2022).

Goodchild, M. F., & Li, W. (2021). Replication across space and time must be weak in the
social and environmental sciences. Proceedings of the National Academy of Sciences,
118(35), Article e2015759118.

Giiting, R. H. (1994, September). GraphDB: Modeling and querying graphs in databases.
VLDB, 94, 12-15.

Huang, W., Raza, S. A., Mirzov, O., & Harrie, L. (2019). Assessment and benchmarking of
spatially enabled RDF stores for the next generation of spatial data infrastructure.
ISPRS International Journal of Geo-Information, 8(7), 310.

Ioannidis, T., Garbis, G., Kyzirakos, K., Bereta, K., & Koubarakis, M. (2021). Evaluating
geospatial RDF stores using the benchmark Geographica 2. Journal on Data
Semantics, 10(3), 189-228.

Janowicz, K., Hitzler, P., Li, W., Rehberger, D., Schildhauer, M., Zhu, R., ... Currier, K.
(2022). Know, know where, KnowWhereGraph: A densely connected, cross-domain
knowledge graph and geo-enrichment service stack for applications in
environmental intelligence. AI Magazine, 43(1), 30-39.

Jena, A. (2014). Apache jena fuseki. 18. The Apache Software Foundation. https://jena.
apache.org/documentation/fuseki2/ (last accessed on March 1, 2022).

Jena, A. (2022). Apache Jena GeoSPARQL. https://jena.apache.org/documentation/
geosparql/index.

Jovanovik, M., Homburg, T., & Spasi¢, M. (2021). A GeoSPARQL compliance benchmark.
ISPRS International Journal of Geo-Information, 10(7), 487.

Kyzirakos, K., Karpathiotakis, M., & Koubarakis, M. (2012). Strabon: A semantic
geospatial DBMS. In International semantic web conference (pp. 295-311). Springer.

Li, W. (2020). GeoAl: Where machine learning and big data converge in GIScience.
Journal of Spatial Information Science, 20, 71-77.

Li, W., Batty, M., & Goodchild, M. F. (2020). Real-time GIS for smart cities. International
Journal of Geographical Information Science, 34(2), 311-324.

Li, W., Raskin, R., & Goodchild, M. F. (2012). Semantic similarity measurement based on
knowledge mining: An artificial neural net approach. International Journal of
Geographical Information Science, 26(8), 1415-1435.

14

Computers, Environment and Urban Systems 98 (2022) 101884

Li, W., Song, M., & Tian, Y. (2019). An ontology-driven cyberinfrastructure for intelligent
spatiotemporal question answering and open knowledge discovery. ISPRS
International Journal of Geo-Information, 8(11), 496.

Li, W., Zhou, X., & Wu, S. (2016). An integrated software framework to support semantic
modeling and reasoning of spatiotemporal change of geographical objects: A use
case of land use and land cover change study. ISPRS International Journal of Geo-
Information, 5(10), 179.

Li, W. (2022). GeoAl in Social Science. In S. J. Rey, & J. Franklin (Eds.), Handbook of
Spatial Analysis in the Social Sciences. Edward Elgar. In press.

Liu, Y., Liu, X., Gao, S., Gong, L., Kang, C., Zhi, Y., & Shi, L. (2015). Social sensing: A new
approach to understanding our socioeconomic environments. Annals of the
Association of American Geographers, 105(3), 512-530.

Mapcruzin. (2022). OpenStreetMap GIS data layers in the United States. https://mapcr
uzin.com/free-united-states-shapefiles/ (last accessed on May 24, 2022).

Miller, J. J. (2013, March). Graph database applications and concepts with Neo4j. In ,
2324. Proceedings of the Southern Association for Information Systems Conference,
Atlanta, GA, USA (p. 36).

Neo4j, S. (2017). Neo4;j Spatial. http://neo4j-contrib.github.io/spatial/0.24-neo
4j-3.1/index.html (last accessed on January 2, 2022).

Raza, A. (2019). Comparison of geospatial support in RDF stores: Evaluation for ICOS carbon
portal metadata. Master Thesis in Geographical Information Science. Sweden: Lund
University.

RDF4J. (2022a). The Eclipse RDF4J Framework. https://rdf4j.org/about/ (last accessed
on January 2, 2022).

RDF4J. (2022b). RDF4j GeoSPARQL. https://rdf4j.
org/documentation/programming/geospargl/#supported-geospargl-functions (last
accessed on January 2, 2022).

Stadler, C., Lehmann, J., Hoffner, K., & Auer, S. (2012). Linkedgeodata: A core for a web
of spatial open data. Semantic Web, 3(4), 333-354.

Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D. (2022).
GeoAl in the US geological survey for topographic mapping. Transactions in GIS, 26
(1), 25-40.

Webber, J. (2012, October). A programmatic introduction to Neo4j. In Proceedings of the
3rd annual conference on systems, programming, and applications (pp. 217-218).
Software for Humanity.

Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J. (2021). A five-star guide
for achieving replicability and reproducibility when working with GIS software and
algorithms. Annals of the American Association of Geographers, 111(5), 1311-1317.

https://db-engines.com/en/system/Apache+Jena+-+TDB%3BBlazegraph%3BGraphDB%3BNeo4j%3BRDF4J
https://db-engines.com/en/system/Apache+Jena+-+TDB%3BBlazegraph%3BGraphDB%3BNeo4j%3BRDF4J
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0045
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0045
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0045
https://www.arcgis.com/home/item.html?id=cdc49bd63ea54dd2977f3f2853e07fff
https://www.arcgis.com/home/item.html?id=cdc49bd63ea54dd2977f3f2853e07fff
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0055
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0055
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0055
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0060
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0060
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0065
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0065
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0065
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0070
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0070
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0070
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0075
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0075
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0075
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0075
https://jena.apache.org/documentation/fuseki2/
https://jena.apache.org/documentation/fuseki2/
https://jena.apache.org/documentation/geosparql/index
https://jena.apache.org/documentation/geosparql/index
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0090
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0090
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0095
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0095
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0100
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0100
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0105
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0105
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0110
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0110
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0110
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0115
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0115
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0115
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0120
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0120
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0120
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0120
http://refhub.elsevier.com/S0198-9715(22)00128-4/opter79Ml7A54
http://refhub.elsevier.com/S0198-9715(22)00128-4/opter79Ml7A54
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0125
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0125
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0125
https://mapcruzin.com/free-united-states-shapefiles/
https://mapcruzin.com/free-united-states-shapefiles/
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0135
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0135
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0135
http://neo4j-contrib.github.io/spatial/0.24-neo4j-3.1/index.html
http://neo4j-contrib.github.io/spatial/0.24-neo4j-3.1/index.html
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0145
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0145
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0145
https://rdf4j.org/about/
https://rdf4j.org/documentation/programming/geosparql/#supported-geosparql-functions
https://rdf4j.org/documentation/programming/geosparql/#supported-geosparql-functions
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0160
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0160
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0165
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0165
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0165
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0170
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0170
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0170
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0175
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0175
http://refhub.elsevier.com/S0198-9715(22)00128-4/rf0175

	Performance benchmark on semantic web repositories for spatially explicit knowledge graph applications
	1 Introduction
	2 Review of semantic data repositories
	2.1 Eclipse RDF4j™
	2.2 Apache Jena GeoSPARQL Fuseki
	2.3 GraphDB
	2.4 Neo4j
	2.5 Ontop
	2.6 Blazegraph
	2.7 Virtuoso

	3 Comparison of semantic data repositories on their capability to support spatial queries
	4 Data and processing workflow
	5 Experimental design methods and results
	5.1 Experimental design
	5.2 Storage space comparison
	5.3 Comparison of semantic data repositories’ performance on spatial-semantic queries
	5.4 Comparison of semantic data repositories’ performance on complex semantic queries

	6 Discussion and conclusion
	CRediT authorship contribution statement
	Acknowledgement
	References

