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Abstract

In [13] the authors show that if µ is a strongly compact cardinal,
K is an Abstract Elementary Class (AEC) with LS(K) < µ, and K
satisfies joint embedding (amalgamation) cofinally below µ, then K
satisfies joint embedding (amalgamation) in all cardinals ≥ µ. The
question was raised if the strongly compact upper bound was optimal.

In this paper we prove the existence of an AEC K that can be
axiomatized by an Lω1,ω-sentence in a countable vocabulary, so that
if µ is the first measurable cardinal, then

1. K satisfies joint embedding cofinally below µ ;

2. K fails joint embedding cofinally below µ; and

3. K satisfies joint embedding above µ.
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Moreover, the example can be generalized to an AECKχ axiomatized
in Lχ+,ω, in a vocabulary of size χ, such that (1)-(3) hold with µ being
the first measurable above χ.

This proves that the Hanf number for joint embedding is contained
in the interval between the first measurable and the first strongly com-
pact. Since these two cardinals can consistently coincide, the upper
bound from [13] is consistently optimal.

This is also the first example of a sentence whose joint embedding
spectrum is (consistently) neither an initial nor an eventual interval
of cardinals. By Theorem 3.27, for any club C on the first measurable
µ, it is consistent that JEP holds exactly on limC and everywhere
above µ.

1 Background

In [8, Conjecture 9.3], Grossberg made (essentially) the following conjecture.

Conjecture 1.1. For every κ, there is a cardinal µ(κ) such that for every
Abstract Elementary Class (AEC) K, if K has the µ(LS(K))-amalgamation
property1 then K has the λ-amalgamation property for all λ ≥ µ(LS(K)).

This cardinal µ(LS(K)) (if it exists) is called the Hanf number for amal-
gamation, and we can define similarly what is means for a cardinal to be
the Hanf number for joint embedding.

Baldwin and Boney in [13] proved the existence of a Hanf number for
joint embedding (and amalgamation and a few other variants of these two
properties) from large cardinals, although their definition of ‘Hanf number’
is slightly different from Grossberg’s: if µ is a strongly compact cardinal, K
is an AEC with LS(K) < µ, and K satisfies amalgamation cofinally below
µ, then K satisfies amalgamation in all cardinals ≥ µ.

The confusion comes from the fact that Hanf number is most often used
for the property of model existence. In this case, there are a number of
equivalent formulations.

Fact 1.2. Let (K,≺K) be an AEC, let P (λ) be the property that “there exists
a model of size λ in K”(model-existence), and let κ be the Hanf number of
K. The following properties are all equivalent:

1. P (λ) holds in some λ ≥ κ;

2. P (λ) holds in every λ ≥ κ;

1Throughout the paper we assume the common convention that LS(K) ≥ |τ(K)|.
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3. P (λ) holds for cofinally many λ < κ;

4. P (λ) holds for eventually many λ < κ; and

5. P (λ) holds in every cardinality.

These equivalences heavily use the downward-closed nature of model
existence (and the computation of the Hanf number using Morley’s Omitting
Types Theorem for (3) and (4)). However this is not the case for other
properties, such as joint embedding and amalgamation, and the equivalence
of (1)-(5) fails in these cases.

More importantly, the computation of the Hanf number does not use any
of the specifics of the AEC K except for the LS(K). So, two AECs with the
same LS(K) will yield the same Hanf number. This motivates Definition
1.3, the Hanf number for a general property P .

For the purposes of this paper we take the definition of the Hanf number
to be that of Baldwin-Boney (cf. [13]).

Definition 1.3. Fix a property P (λ). A function µP (κ) from cardinals to
cardinals will be called the Hanf number for P iff it satisfies the following:

1. If K is an AEC that satisfies property P (λ) for cofinally many λ <
µP (LS(K)), then K satisfies P (λ) in every λ ≥ µP (LS(K)) and

2. µP (LS(K)) is the least such cardinal.

If P is obvious from the context, then we will write µ(κ) instead of µP (κ).

In the language of Fact 1.2, Definition 1.3 defines the Hanf number for
property P to be the least cardinal such that the implication (3)→ (2) holds
true for all AECs with the same LS-number. Because the Hanf number is a
function, we investigate certain values of this function. We fix property P

and LS(K) and we ask the value of µP (LS(K)). The example stated in the
abstract proves that µJEP (χ) cannot be smaller than the first measurable
cardinal above χ.

Properties P of interest are joint embedding, amalgamation, categoricity,
existence of maximal models, etc. In this paper, we focus on the properties
of joint embedding (JEP) and amalgamation (AP), especially the former.

In a parallel line of inquiry we ask the following: Fix LS(K) and let
P be the property of joint embedding, or amalgamation, or some other
property of interest. For which of the implications between (1)-(5), other
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than (3)→ (2), there exists some κ that makes the implication true? What
is the least such κ? Provide counterexamples when no such κ exists.

One of the contributions of this paper is to provide an example that
(3) does not imply (4) when P is JEP and κ is the first measurable2. In
particular, as stated in the abstract, there exists an AEC K that both
satisfies and fails JEP cofinally below the first measurable.

This example also relates to Question 4.0.2 in [3], that asks whether
there is an AEC, in particular one defined by an Lω1,ω-sentence, whose
finite amalgamation spectrum is not an interval (that is, amalgamation
restricted to the ℵn for n < ω). If we drop the restriction to a finite spectrum
and replace AP by JEP, we prove that the answer is positive. Notice that
while our example exhibits quite interesting JEP-spectrum, the same is
not true for the AP-spectrum. By Theorem 4.4, Kχ fails amalgamation
in every cardinal above 2χ

+ . This leaves open the corresponding question
(does (3) imply (4)), when P is the amalgamation property and κ is the
first measurable cardinal.

If P is either JEP or AP, and κ the first measurable or the first strongly
compact cardinal, the status of the implications (1) → (2) (as envisioned
by Grossberg) and (2)→ (3) also remains open.

Open Questions 1.4.

1. Is there an AEC K that fails JEP eventually below κ, κ being the
first measurable or the first super compact, but satisfies JEP in all
cardinalities above κ?

2. Same question as (1), but satisfy JEP in one cardinality above κ?

Although in this paper we will not deal with it, we ought to say that
similar considerations about categoricity have long occupied researchers in
the area, e.g. the main open problem for AECs (Shelah’s Categoricity Con-
jecture) is whether there exists some κ such that (1) implies (2) for cate-
goricity3.

A lower bound for µAP (κ) is given in [11]. For every cardinal κ and every
α with κ ≤ α < κ+ there exists an AEC Wα in a vocabulary of size κ, Wα

has countable Löwenheim-Skolem number, and it satisfies amalgamation up
to iα, but fails amalgamation in iκ+ . This proves that µAP (κ) ≥ iκ+ .

2In this example LS(K) = ℵ0, but the construction works for any LS(K) smaller
than the first measurable cardinal.

3Categoricity means that P (λ) is the property that “there exists a unique model (up
to isomorphism) of size λ”.
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On the other hand, results from [13], prove that if LS(K) = κ, then
µAP (κ) is no larger than the first strongly compact above κ. Combining the
results from [11] and [13], µAP (κ), the Hanf number for AP, is contained in
the interval between iκ+ and the first strongly compact above κ. As noted
in [13], the gap between these two cardinals is immense.

The picture is not very promising for JEP either. From [13], we know
that the first strongly compact above κ is also an upper bound for µJEP (κ).
A lower bound is given by the examples from [4] and [5]. From Fact 3.37
in [4], for every countable α there exists an AEC (Kα,⊂) defined by a
universal Lω1,ω-sentence such that LS(Kα) = ℵ0 and Kα satisfies JEP up
to and including iα, but it has no larger models. This proves that iω1 is a
lower bound for µJEP (ℵ0), the Hanf number for JEP.

The above example can easily be generalized: for every κ ≤ α < κ+,
there exists an AEC (Kα,⊂) defined by a universal Lκ+,ω-sentence such
that LS(Kα) = κ and Kα satisfies JEP up to and including iα, but it
has no larger models. This proves that as in the case for AP, µJEP (κ) is
contained in the interval between iκ+ and the first strongly compact above
κ.

Stimulated by early versions of [5], Baldwin and Shelah announced in [1]
that (under certain set theoretic hypotheses) there exists a complete Lω1,ω-
sentence with maximal models in cofinally many cardinalities below the first
measurable. They also note that every model of size equal to or larger than
the first measurable has a proper Lω1,ω-elementary extension; one can take a
countably complete ultrapower. This proves the first measurable cardinal to
be equal to µP (ℵ0), where P is the property of “maximality”. More precisely,
“maximality” is defined to be the property P (λ): the exists a maximal model
of size λ.

Notice that this introduces yet another notion of a Hanf number. If µ is
the first measurable cardinal, then no Lω1,ω-sentence has a maximal model
above µ. In the language of Fact 1.2, letting P be “maximality” and κ be
the first measurable, (1) and (2) are equivalent for the trivial reason that
they are both always false. The example from [1] proves that (3) does not
imply (1) (or (2)) for maximality. So, this notion of a Hanf number does
not fit into Definition 1.3, which is our working definition for this paper.

The main result of this paper is to prove a lower bound for the Hanf
number for JEP. In particular, we show that µJEP (ℵ0) is bounded below by
the first measurable cardinal. Since by results of [12, Theorem 3.1], the first
measurable and the first strongly compact can be consistently equal, this
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proves that the known bounds are consistently optimal. Of course, the first
measurable and the first strongly compact can also be different. So, this
leaves open the question whether the lower bound from the current paper
or the upper bound from [13] can be improved.

Our example was inspired by [1]. In fact, the idea of the main construc-
tion in the current paper appears as Example 3.0.3. in [1]. Our contribution
is to compute the JEP- and AP- spectra of this example. Notice that our
Lω1,ω-sentence (as well as the sentence from Example 3.0.3 in [1]) is incom-
plete. This is in contrast to the main construction of [1], where Baldwin
and Shelah go in great lengths to create a complete sentence. It is an open
question whether the results from this paper can extend to the complete
example of [1].

In Section 2 we describe the construction. The JEP-spectrum is given in
Section 3 and the AP-spectrum in Section 4.

For the main definitions of Abstract Elementary Classes, we refer the
reader to Baldwin [2]; however, they are not necessary to understand the
main construction and theorems.

2 The main example

Fix an infinite cardinal χ, although this can be taken to be ℵ0. We will
define a language τχ and an AEC Kχ.

The prototypical elements of Kχ will be structures of the form

M = (κ,P(κ), χP(κ),∈,∨,∧, ·c,1,∩, πα)α<χ

where

1. χP(κ) are the χ-length sequences from P(κ) (the power set of κ);

2. ∈ is the (extensional) ‘member of’ relation between κ and P(κ);

3. (P(κ),∨,∧, ·c,1) is the standard Boolean Algebra;

4. ∩ : χP(κ) → P(κ) returns the intersection of all elements of the
sequence; and

5. πα : χP(κ)→ P(κ) returns the αth element of the sequence.

However, we don’t want the entire theory of these structures and only
demand that the members of Kχ satisfy a particular subset of their Lχ+,ω-
theory.

Formally, set τχ to consist of
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• sorts K, P , and Q;

• constant 1;

• unary functions ·c, ∩, and πα for α < χ;

• binary functions ∧ and ∨; and

• a binary relation ε.

Now we define a sentence ψχ ∈ Lχ+,ω that consists of the conjunction of
the following first-order assertions

1. ε ⊂ K × P is extensional;

2. (P,∨,∧, ·c,1) is a Boolean Algebra;

3. ε interacts with the Boolean Algebra operations in the expected way:
1 contains every element of K, a complement contains exactly the
elements not in the original, etc;

4. P contains all singletons: ∀x ∈ K∃Y ∈ P∀z ∈ K (z ∈ Y ⇐⇒ z = x);
and

the conjunction of the following infinitary assertions:

(5) the functions πα : Q→ P are jointly extensional in the sense that

∀A,B ∈ Q

(
A = B ⇐⇒

∧
α<χ

πα(A) = πα(B)

)

(6) the function ∩ : Q→ P returns the intersection in the sense that

∀A ∈ Q∀x ∈ K

(
xε ∩ A ⇐⇒

∧
α<χ

xεπα(A)

)

Given any model M of ψχ, there is a natural embedding of the Boolean
Algebra induced on PM into the Boolean Algebra on P(KM), the powerset
of KM .

Definition 2.1. Let M ⊂ N model ψχ and X ∈ PM .

1. Define X̂M := {x ∈ KM |M � xεX}.

2. M and N agree on X iff X̂M = X̂N .
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3. M and N agree on finite subsets iff they agree on every X ∈ PM such
that X̂M is a finite subset of KM .

4. Define Kχ to be the collection of all models of ψχ of size ≥ χ. For
M,N ∈ Kχ, let M ≺χK N if M ⊂ N and M and N agree on finite
subsets.
Following standard convention, we will often use Kχ to refer to the
pair (Kχ,≺χK).

Crucial to our later analysis, the lack of full elementarity in the ≺χK
relation means thatM and N do not need to agree on all sets. In particular,
M and N agree on 1 iff KM = KN . Note also that X̂M = X̂N ∩KM .

Proposition 2.2. For each χ, (Kχ,≺χK) is an Abstract Elementary Class
with Löwenheim-Skolem number χ.

Proof. This is an easy argument and we leave the details to the reader.
One approach is that a definitional expansion (by adding “finite subset”
functions) turns Kχ into a universal class.

Observation 2.3.

1. It is immediate from the definition that the size of P is bounded by
2|K| and the size of Q by |P |χ. There is no restriction on the size of
K. Therefore, ψχ has models in all infinite cardinalities.

2. Given any model M � ψχ, we can find an isomorphic copy M̂ of M
such that

(a) KM̂ = KM ;

(b) P M̂ ⊂ P(KM); and

(c) QM̂ ⊂ χP(KM).

However, this choice is very non-canonical.

Definition 2.4.

1. An AEC K satisfies the κ-Joint Embedding Property or JEP(κ) iff
Kκ is not empty and for all M0,M1 ∈ Kκ, there are N ∈ K and
K-embeddings f` : M` → N . The joint embedding spectrum of K or
JEP-spectrum is the collection of all cardinals κ such that K satisfies
JEP(κ).
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2. Similarly, define AP(κ) and the AP-spectrum for the amalgamation
property.

3. A model M of ψχ is of type (λ, κ) with λ ≥ κ, if |M | = λ and
|KM | = κ.

4. Given M ∈Kχ, we say that an ultrafilter U on the Boolean Algebra
PM is QM -complete iff for every A ∈ QM , if πMα (A) ∈ U for all α < χ,
then ∩M(A) ∈ U .

3 The Joint Embedding Property

In this section we determine the joint embedding spectrum of Kχ. It turns
out (Lemma 3.5) that the question of when two models can be jointly em-
bedded depends on whether they can be extended in a certain way, called
K-extendibility.

Definition 3.1. Let M ∈Kχ.

1. M is K-extendible iff there is N ∈ Kχ such that M ≺χK N and
KM ( KN .

2. M is K-maximal iff whenever N ∈ Kχ has M ≺χK N , then KM (
KN .

So given a K-maximal model, it is either K-extendible or truly maximal.
The next lemma connects K-extendibility to the existence of sufficiently
complete ultrafilters.

Lemma 3.2. Let M ∈Kχ. The following are equivalent:

1. M is K-extendible.

2. For all cardinals λ, there exists some N ∈ Kχ with M ≺χK N and
|KN \KM | = λ .

3. There exists a non-principal ultrafilter U on PM that is QM -complete.

Proof. The implication (2) ⇒ (1) is immediate. We start by proving that
(1) ⇒ (3). Suppose we have M,N ∈ Kχ that witness the K-extendibility
of M . By assumption, there exists some d ∈ KN \KM . We then build an
ultrafilter Ud ⊂ PM as follows: for X ∈ PM , we set

X ∈ Ud if and only if N � dεX
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Then Ud is an ultrafilter by the standard set-theoretic argument; see, e.g.
Theorem 5.6 in [10].4 We only prove Ud is non-principal and QM -complete.

Assume that Ud is principal and generated by some X0 ∈ PM . By def-
inition, PM contains all finite subsets of KM .5 It follows that X̂0

M
is a

singleton, say X̂0

M
= {x}. By definition of ≺K , M,N agree on all finite

subsets of KM . In particular, X̂0

M
= X̂0

N
. By the definition of Ud, this

implies that d = x ∈ KM . Contradiction.
Let A ∈ QM such thatXα := πMα (A) ∈ Ud, for all α < χ. Since N � dεXα

for every α < χ, we must have N � dε ∩ A. Thus, ∩N(A) = ∩M(A) ∈ Ud.

Next we prove that (3) ⇒ (2). Suppose that M ∈ Kχ and there is a
non-principal, QM -complete ultrafilter U on PM . Without loss of generality
M satisfies the conclusions of Observation 2.3.(2). Define N to be an ≺χ

K
-

extension ofM as follows: ExtendKM by λ-many new elements to formKN .
Say KN = KM ∪ λ. Define εN on the new elements: For all x ∈ KN \KM

and all X ∈ PM , stipulate that

N � xεX ⇐⇒ X ∈ U.

This implies that for every X ∈ PM , either X̂N = X̂M , or X̂N = X̂M ∪
(KN \KM). Which of the two is the case is determined by membership in
U .

Additionally, we extend P so that PN is the Boolean Algebra that is
generated by PM together with all finite subsets of KN . In particular, for
every F finite subset of KN which is not a subset of KM , we introduce a
new element XF in PN and define εN is such a way that X̂F

N
= F .

Moreover, M and N agree on Q, πα and ∩, and on ε �KM×PM , and ∨,∧,c

have the intended interpretations.
We verify that N is in Kχ and M ≺χK N . εN is extensional because the

same is true for εM and by definition of N . Condition (2) is immediate and
condition (3) is easy to verify using the fact that U is an ultrafilter. We
leave the details to the reader. (4) and (5) are immediate.

We only prove (6) using the Q-completeness of U . If A ∈ QN = QM ,
then Y = ∩NA is in U if and only if for all α, πα(A) ∈ U . The one direction
follows from U being an ultrafilter, the other direction follows from U being
Q-complete.

4Another approach is to observe that Ud is the set of all sets whose µ-measure equals
to 1, where µ is defined on PM by µ(X) = 1 when N � d ∈ X, and µ(X) = 0 otherwise.
Ud is an ultrafilter because µ is 2-valued.

5This means that if K0 is a finite subset of KM , there exists some X ∈ PM with
X̂M = K0. See also clause (4) of ψχ.
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We take cases: If Y = ∩NA ∈ U , then Ŷ N = Ŷ M ∪ (KN \ KM) and

π̂α(A)
N

= π̂α(A)
M

∪ (KN \ KM), for all α. If Y /∈ U , then Ŷ N = Ŷ M

and π̂α(A)
N

= π̂α(A)
M

, for some α (maybe not for all α). In either case,

Ŷ N = ∩απ̂α(A)
N

, which completes the proof that N ∈Kχ.
It remains to prove M ≺χK N . The fact that M ⊂ N is immediate. Let

X be in PM so that X̂M is a finite set. We need to prove that X̂N = X̂M .
Since X̂M is finite and U is non-principal, X /∈ U . Therefore, X̂N = X̂M as
desired.

Corollary 3.3. Assume M ≺χ
K

N . If M is not K-extendible, then the
same is true for N .

Proof. By definition of K-extendibility, KN must equal KM . SinceM ⊂ N ,
PM is a sub-Boolean Algebra of PN . If N wereK-extendible, by Lemma 3.2,
there would be a non-principal ultrafilter U on PN which is QN -complete.
The restriction of U on PM leads to a contradiction.

The key factor for determining whether two M0,M1 ∈Kχ can be jointly
embedded is the size of KM0 and KM1 . If |KM0 | = |KM1 |, then this is
possible as seen by the next Lemma 3.4. In fact more is true: For every κ,
there is a single structure M ∈ Kχ that can embed all other M ′ ∈ Kχ

with |KM ′ | = κ. This universality property holds true because the Boolean
Algebra (P,∨,∧,c ,1,0) interpreted in M (the universal model) coincides
with the Boolean Algebra of the power set of KM . If |KM0 | < |KM1 |, then
M0,M1 can be jointly embedded if and only if M0 is K-extendible. This is
the content of Lemma 3.5

Lemma 3.4. Let κ ≥ χ. There exists a model M ∈Kχ of type (2κ, κ) such
that for any other N ∈Kχ with |KN | = κ, there is an ≺χK-embedding from
N to M . Moreover, M is K-maximal.

Proof. Let M be the standard model generated by KM = κ, PM = P(κ),
QM = χP(κ). We claim that M is the desired model.

Let N ∈ Kχ with |KN | = κ. Define a Kχ-embedding f from N to M
as follows: f is a bijection from KN to κ; this is possible by cardinality
assumptions. For each X ∈ PN , set f(X) = {f(x) | x ∈ X̂N} ∈ P(κ). For
each A ∈ QN , let f(A) be the sequence

〈
f
(
πNα (A)

)
| α < χ

〉
∈ χP(κ). It is

immediate that f is an Kχ-embedding.
For the moreover, the extensionality of ∈ and the πα imply that any

extension of M cannot grow P or Q without growing K.



12 W. Boney and I. Souldatos

Lemma 3.5. Let M0,M1 ∈ Kχ. If |KM0 | < |KM1 |, then M0 and M1 can
be jointly embedded if and only if M0 is K-extendible.

Proof. Left-to-right: Suppose that M0 and M1 can be jointly embedded
into some M ∈Kχ. Then |KM | ≥ |KM1 | > |KM0 |. By Definition 3.1, M0 is
K-extendible.

Right-to-left: Assume that M0 is K-extendible. By Lemma 3.2, there
exists some M ′

0 ∈ Kχ, M0 ≺χK M ′
0 and |KM ′0 | = |KM1 |. Use Lemma 3.4 to

joint embed M ′
0 and M1 to a common M . Then M serves also as the joint

embedding of M0 and M1.

Recall that there are no countably complete, non-principal ultrafilters
on any set of size less than the first measurable cardinal. More generally,
fixing χ, there is no χ+-complete, non-principal ultrafilter on any set of
size less than the first measurable larger than χ (if one exists). If there
is no measurable above χ, then there are no χ+-complete, non-principal
ultrafilters at all. We utilize these facts to prove the existence of models
that are not K-extendible.

Definition 3.6. Given a cardinal κ, set

m(κ) := inf{λ | λ > κ and λ is measurable}

If there are no measurable cardinals above κ, then set m(κ) =∞ (which is
greater than every ordinal by convention).

Lemma 3.7. Let χ ≤ κ < m(χ). There exists a model M ∈ Kχ of type
(2κ, κ) that is ≺χK-maximal. In particular, M is not K-extendible.

Proof. Let M be the standard model on (κ,P(κ), χP(κ)) as in Lemma 3.4.
We know it is K-maximal, and we claim that M is maximal. By the remark
following Definition 3.1, it suffices to show that it is not K-extendible.

If it were K-extendible, then Lemma 3.2 would imply that there is a QM -
complete, non-principal ultrafilter U on the Boolean Algebra PM . However,
since PM = P(κ), U is an ultrafilter on κ. Moreover, since QM = χP(κ),
the QM -completeness of U is a different name for χ+-completeness (in the
normal sense). This would imply that there is a χ+-complete ultrafilter on
κ; however, this contradicts κ < m(χ).

Theorem 3.8. Let χ ≤ κ < m(χ). Then Kχ fails JEP (2κ).
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Proof. LetM be the model from Lemma 3.7. M is of type (2κ, κ). Let N be
any model in K of type (2κ, 2κ). Take for instance KN = 2κ, PN contains
all finite and co-finite subsets of KN and QN is empty.

By Lemma 3.5, M and N can be jointly embedded if and only if M is
K-extendible. But M is not K-extendible by Lemma 3.7, which proves the
theorem.

Once we are above a measurable, K-extendibility and, therefore, joint
embedding become trivial to accomplish.

Lemma 3.9. If κ ≥ m(χ), then every model in Kχ
κ is K-extendible.

Proof. Let U be a m(χ)-complete, non-principal ultrafilter and M ∈ Kχ
κ.

Since measurable cardinals are strong limits, |KM | ≥ m(χ). By Łoś’ Theo-
rem for infinitary logics, the ultrapower

∏
M/U is a Lm(χ),m(χ)-elementary

extension of M (up to isomorphism). In particular, M ≺χK
∏
M/U ∈

Kχ. Moreover, K
∏
M/U =

∏
KM/U ) KM . This witnesses that M is K-

extendible.

Theorem 3.10. If κ ≥ m(χ), then Kχ satisfies JEP (κ).

Proof. As we noted, if M ∈Kχ
κ, then |KM | ≥ m(χ). The statement follows

from Lemma 3.4 in the case |KM0 | = |KM1 |, or otherwise from Lemmas 3.5
and 3.9.

We can also show that joint embedding holds at strong limit cardinals.

Theorem 3.11. If κ ≥ χ is a strong limit cardinal, then Kχ satisfies
JEP (κ).

Proof. The strong limit assumption implies that ifM ∈Kχ
κ, then |KM | = κ

by Observation 2.3. To prove JEP (κ), let M0,M1 ∈ Kχ both of size κ. It
follows that |KM0 | = |KM1 | = κ, so they are both jointly embeddable
into the universal model N given by Lemma 3.4. Since Kχ is an AEC
(Proposition 2.2), there is N ′ ≺χK N of size κ that contains the images of
M0,M1. This proves JEP (κ).

Notice that Theorem 3.11 holds true even for κ = χ.
Suppose that there is a measurable above χ and let µ = m(χ). Then

Theorem 3.11 yields a cofinal sequence in µ on which joint embedding holds,
while Theorem 3.8 yields a cofinal sequence on which JEP fails. Under GCH
this gives a complete characterization of the JEP-spectrum of K.
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Corollary 3.12. Assume GCH holds. Kχ satisfies JEP (κ) if and only if
κ ≥ χ is a limit cardinal below m(χ) or κ ≥ m(χ).

Corollary 3.13. The Hanf number µJEP (ℵ0) is at least a measurable car-
dinal.

In the rest of this section we determine the joint embedding spectrum
even when GCH fails, in particular for cardinals χ ≤ κ < m(χ) such that
κ < 2<κ. Our results shows that JEP (κ) fails for almost all such cardinals.
Depending on cardinal arithmetic there might be some cardinals for which
our method does not give an answer. The precise statement is given in
Theorem 3.24.

Our abstract tool is the following lemma, which reduces our problem to
finding a particular model.

Lemma 3.14. Suppose that κ ≥ χ and λ < κ ≤ 2λ. If Kχ contains a model
of type (κ, λ) that is not K-extendible, then Kχ fails JEP (κ).

Proof. Let M be a model as in the assumption and let N be a model of
type (κ, κ). Then ‖M‖ = ‖N‖ = κ and |KN | > |KM |. By Lemma 3.5, M
and N cannot be jointly embedded, so JEP (κ) fails.

When κ = χ, such a model is easy to build.

Lemma 3.15. There exists a model M ∈ Kχ of type (χ, χ) which is not
K-extendible.

Proof. Define M by setting KM = χ; PM is the Boolean Algebra that is
generated by all finite subsets of χ plus all tails of the form [α, χ), with
α < χ; and QM contains for every limit ordinal β ≤ χ the sequence of tails
〈[α, χ) | α < β〉.

A couple of remarks are at hand before we proceed:

1. We do not impose any completeness requirements on PM . This means
that the size of PM is equal to χ.

2. If β is a limit ordinal less than χ, then the sequence of tails in QM ,
〈[α, χ) | α < β〉, has length smaller than χ. Since sequences in QM

must be of length χ, we tacitly assume that some of the sets in this
sequence repeat.

It follows that M has type (χ, χ) and M ∈Kχ.
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We also claim that M is not K–extendible, or, equivalently by Lemma
3.2, there is no non-principal QM -complete ultrafilter on PM . Assume oth-
erwise and let U be such an ultrafilter. We prove by induction on α that
[α, χ) ∈ U . For the successor stage use the fact that U is non-principal. For
the limit stages use the fact that U is QM -complete.

Therefore, U contains all the sets of the form [α, χ), α < χ. Using QM -
completeness once more, U must contain ∩α[α, χ) = ∅. Contradiction.

Corollary 3.16. Kχ fails JEP (κ) for all χ+ ≤ κ ≤ 2χ.

Proof. Let χ+ ≤ κ ≤ 2χ and let M be the model from Lemma 3.15. Define
some N ∈Kχ that extends M and has size κ: KN = KM , PN is a Boolean
Algebra that extends PM and has size κ, and QN = QM . If N were K-
extendible, then by Lemma 3.2, there would be a non-principal QN -complete
ultrafilter on PN . The restriction of U on PM contradicts Lemma 3.15.

Our next goal is to extend Lemma 3.15 and Corollary 3.16 to higher car-
dinalities. This will be achieved in Corollary 3.22. We need some preliminary
work before we can prove Corollary 3.22.

The proof of the following fact is standard, see, e. g., [7, Lemma 4.2.3].

Fact 3.17. Let B be a Boolean Algebra on κ and let U be an ultrafilter on
B. Then U is λ-complete, for some λ ≤ κ, if and only if for every W ⊂ B,
a partition of B of size |W | < λ, there exists some w ∈ W that belongs to
U .

Recall that a cardinal κ is weakly compact if and only if for every κ-
complete Boolean Algebra B ⊂ P (κ) generated by κ-many subsets, there is
a κ-complete non-principal ultrafilter on B. We will consider a weakening
of this large cardinal notion as in [6, Definition 2.1].

Definition 3.18. A cardinal κ is δ-weakly compact for δ ≤ κ iff every κ-
complete Boolean Algebra B ⊂ P (κ) generated by κ-many subsets has a
δ-complete non-principal ultrafilter on B.

Note that κ-weakly compact is the same as weakly compact.

Lemma 3.19. Fix an infinite cardinal χ. If χ < κ ≤ m(χ) and κ is χ+-
weakly compact, then κ is weakly compact.

Proof. Assume otherwise. That is there exists some κ-complete Boolean
Algebra B ⊂ P (κ) generated by κ-many subsets such that there is no
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κ-complete non-principal ultrafilter on B, but there is a χ+-complete, non-
principal ultrafilter U on B. Let µ+ be the least cardinal so U is not µ+-
complete. Note that we must have χ+ ≤ µ < κ.

Since U is not µ+-complete, by Fact 3.17, there exists some partition
W = {wi | i < µ} of B such that wi /∈ U for all i < µ. Define a function
f : κ→ µ by

f(x) = i if x ∈ wi

The function f is defined on κ and is onto µ. Use f to define a complete
Boolean Algebra C ⊂ P(µ) and some ultrafilter V on C as follows: Y ∈ C
if and only if f−1(Y ) ∈ B, and Y ∈ V if and only if f−1(Y ) ∈ U .

It is routine to verify that C = P(µ) and that V is a µ-complete, non-
principal ultrafilter on C. Thus, µ must be measurable, contradicting the
assumption that χ < µ < κ ≤ m(χ).

We introduce two functions on cardinals, one standard and one not.

Definition 3.20. 1. For any cardinal κ,

• i0(κ) = κ

• iα+1(κ) = 2iα(κ)

• iλ(κ) = supα<λ iα(κ), for λ limit

If no κ is mentioned, we assume that κ = ℵ0.

2. For any cardinal κ,

A(κ) =

{
κ<κ if κ is regular
2κ if κ is singular

Fact 3.21.

1. All strong limit cardinals are of the form iλ for some limit λ and,
given any κ, the least strong limit above κ is iω(κ).

2. If B is a κ-complete Boolean algebra on P(κ) that contains the finite
subsets of κ, then B must be of size A(κ). Recall that we assume the
Boolean algebras we deal with have all finite subsets of κ.

Corollary 3.22. Assume χ ≤ κ < m(χ). If κ is not weakly compact, then
JEP (λ) fails for all λ satisfying

max{κ+, A(κ)} ≤ λ ≤ 2κ
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Note that 2κ always satisfies this inequality, but it can be the only car-
dinal there if case κ is singular or GCH holds at κ.

Proof. By Lemma 3.19, κ is not χ+-weakly compact. By definition there
is a Boolean Algebra B on κ that admits no non-principal χ+-complete
ultrafilter. The size of B is A(κ) by Fact 3.21 (if κ = χ regular, then use
Corollary 3.16). Then use B to construct a modelM ∈Kχ of type (A(κ), κ)
that is not K-extendible by defining KM = κ, PM = B and QM = Bχ. By
Lemma 3.14, if κ < A(κ), Kχ fails JEP (A(κ)).

For λ any cardinal in the interval (A(κ), 2κ] (if any), we work similarly.
Construct a model N ∈Kχ of type (λ, κ) such thatM ≺χ

K
N . Define N by

letting KN = KM = κ, PN is a Boolean Algebra extension of PM = B that
has size λ and QN = QM = Bχ. By Corollary 3.3, N is not K-extendible
and by Lemma 3.14 again, Kχ fails JEP (λ).

We can strengthen this failure by using induction to build many failures
between κ and the first strong limit above κ.

Lemma 3.23. Let χ ≤ κ < m(χ) such that κ is not weakly compact. Then
JEP (λ) fails for all λ satisfying

max{κ+, A(κ)} ≤ λ < iω(κ)

except perhaps when there is a singular limit µ such that 2<µ ≤ λ < 2µ, in
which case our method does not determine whether JEP(λ) holds or not.

The cardinal restrictions on λ may seem strange, but are necessary from
our methods. Essentially, we will apply Corollary 3.22 to an interval of
cardinals to get failures of JEP. When applying to successor λ, the start of
the new interval covers the first cardinal missed by the previous intervals.
However, at limit cardinals, there can be a gap at the places indicated in the
lemma. Notice that under GCH this exception can not happen. Additionally,
the JEP is guaranteed to fail on the in(κ)’s.

Proof. We apply Corollary 3.22 to all cardinals λ ∈ [κ,iω(κ)) to get failure
of JEP on each interval

Iλ = [max{λ+, A(λ)}, 2λ].

We take the following cases:
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• λ = λ+0 successor: The start of the interval Iλ is at worst
(
2λ0
)+, which

is the first cardinal above Iλ0 . Using that λ is regular and A(λ) = λ<λ,
we have that

max{λ+, A(λ)} ≤ (2<λ)+.

• λ limit cardinal: Set I<λ = ∪µ<λIµ. The first cardinal not in I<λ is
either 2<λ or

(
2<λ
)+, depending on whether I<λ has supremum or a

maximum respectively. We split this case into the following subcases.

• λ is regular and 2<λ = 2µ for some µ < λ.
In this case, the first cardinal above I<λ is (2<λ)+. By regularity,
A(λ) = λ<λ. Then there is no gap between I<λ and Iλ because

max{λ+, λ<λ} ≤ (2<λ)+

• λ is regular and 2<λ > 2µ for all µ < λ.
In this case, the first cardinal above I<λ is 2<λ. By regularity, A(λ) =
λ<λ = 2<λ, so the left endpoint of Iλ = max{λ+, 2<λ}. If 2<λ = λ,
then λ would have been a strong limit. But we noted already that the
first strong limit above κ is iω(κ) > λ. So, 2<λ > λ and there is no
gap between I<λ and Iλ.

• λ is singular and 2<λ = 2µ for some µ < λ.
In this case, the continuum function is eventually constant below λ

and 2λ = 2<λ = 2µ. By singularity, A(λ) = 2λ. So Iλ begins at (and
only contains) 2λ and Iλ is a subset of I<λ.

• λ is singular and 2<λ > 2µ for all µ < λ.
In this case, the first cardinal above I<λ is 2<λ. By singularity, A(λ) =
2λ. So Iλ begins at (and only contains) 2λ, thus the gap.

Putting the above items together, we have the above lemma statement.

Summarizing the results of this section, we have shown that the JEP
spectrum of Kχ is as desired.

Theorem 3.24. Fix an infinite cardinal χ. Then there is an AEC Kχ with
LS(Kχ) = χ (that is given by models of a sentence in Lχ+,ω) whose JEP
spectrum satisfies the following:

1. JEP holds cofinally below m(χ);
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2. JEP fails cofinally below m(χ); and

3. JEP holds everywhere above m(χ).

In particular, we have

• JEP holds at every strong limit and above m(χ);

• if χ ≤ κ < m(χ), then JEP fails at 2κ; and

• more generally, for regular κ with χ ≤ κ < m(χ), JEP fails on the
interval [

max{κ+, κ<κ}, 2κ
]

Proof. The first bullet point is Theorems 3.11 and 3.10. The last two bullets
are Theorem 3.8 and Lemma 3.23.

Corollary 3.25. If GCH holds, then JEP fails in Kχ exactly at the κ

satisfying χ ≤ κ < m(χ) that are not strong limit.

We finish this section by producing models of ZFC+ “there is a mea-
surable” where Theorem 3.24 characterizes the JEP spectrum of Kχ. The
main tool is the following theorem of Paris and Kunen (see [9, Theorem
21.3]).

Fact 3.26. Assume GCH and let κ be a measurable cardinal. Let D be a
normal measure on κ and let A be a set of regular cardinals below κ such
that A /∈ D. Let F be a function on A such that F (α) < κ for all α ∈ A,
and:

1. cfF (α) > α;

2. F (α1) ≤ F (α2) whenever α1 ≤ α2.

Then there is a generic extension V [G] of V with the same cardinals
and cofinalities, such that κ is measurable in V [G], and for every α ∈ A,
V [G] � 2α = F (α).

Moreover, the powersets of cardinals not in A have the smallest possi-
ble cardinality that satisfies κ < cf(2κ) and that the powerset function is
increasing.

Theorem 3.27. Assume GCH and fix an infinite cardinal χ. Given a club C
on m(χ), there is a generic extension V [G] that preserves cardinalities and
cofinalities, m(χ) remains a measurable cardinal and Kχ satisfies JEP (λ)
iff λ ∈ limC or λ ≥ m(χ).
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Proof. The goal is to force the cardinal arithmetic of V [G] to make the
limit points of C the uncountable strong limit cardinals while preserving
the measurability of m(χ). Since limits of strong limit cardinals are also
strong limits, it suffices that we ensure that all cardinals in limC \ lim limC

are strong limits.
Let U be a normal ultrafilter on m(χ). U contains all clubs, so limC ∈

U . Given λ ∈ limC \ lim limC, λ has cofinality ω and the set limC ∩ λ
is bounded in λ. Let {κλn | n < ω} be an increasing sequence of regular
cardinals converging to λ and choose κλ0 such that it is the least regular
cardinal above all cardinals in limC ∩ λ. Then define a function F with
domain {κλn | n < ω, λ ∈ limC − lim limC} by

F (κλn) = κλn+1

Using Theorem 3.26, we can force to preserve cofinalities and the mea-
surability of m(χ) while enforcing

V [G] � “2κ
λ
n = κλn+1”

Thus we have guaranteed that in V [G], iω(κλ0) = λ. In particular all
cardinals in limC are strong limit cardinals. We prove that the reverse is
true too.

Let µ be a limit cardinal (in V [G]) that is not in limC. We prove that µ
is not strong limit. Let λ be the least cardinal in limC above µ. If κλ0 ≤ µ,
then we noted that λ = iω(κλ0) is the least strong limit above κλ0 . In this
case, µ is not strong limit. If µ < κλ0 , then µ must be a singular limit of
cardinals in limC. Given that C is a club, µ must also belong to limC,
which is a contradiction. Therefore, µ can not be a strong limit cardinal.

So, in V [G], limC = {iλ|λ:limit and λ < m(χ)}. It follows from the
moreover clause of Theorem 3.26 that in V [G], 2iλ = (iλ)+, for all limit
λ < m(χ), that is GCH holds at strong limit cardinals.

We claim that JEP (λ) if and only if λ ∈ limC or λ ≥ m(χ). The
right-to-left direction is from Theorems 3.11 and 3.10, and the fact that the
cardinals in limC are strong limits.

For the left-to-right direction we take cases. If κ is a strong limit that is
not a weakly compact cardinal, then we claim that JEP fails for all λ in the
interval [κ+,iω(κ)). We observed already that GCH holds at strong limits.
So 2κ = κ+ and max{κ+, A(κ)} = κ+. By Lemma 3.23, we know that JEP
fails on the interval [max{κ+, A(κ)},iω(κ)) = [κ+,iω(κ)), except possibly
some cardinals mentioned in Lemma 3.23. We argue that there are no such
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cardinals, i.e. there is no singular limit µ such that 2<µ < 2µ in the interval
[κ+,iω(κ)). Let λ = iω(κ). By the way κλ0 was defined, it must be κλ0 = κ+.
Let µ ∈ [κ+,iω(κ)) be a limit cardinal and let n ∈ ω be the least such that
κλn < µ < κλn+1. Since κλn+1 is a regular cardinal, by the moreover clause
of Theorem 3.26, in V [G] it holds that 2µ = κλn+1. In addition, in V [G],
2κ

λ
n ≤ 2<µ ≤ 2µ = κλn+1. Therefore, 2<µ = 2µ and there is no gap in the

failures of JEP given by Lemma 3.23 in the interval [κ+,iω(κ)).
If κ is a weakly compact cardinal, then κ is a strong limit and again κ+ =

2κ. By Theorem 3.8, JEP fails at κ+. Moreover, apply Lemma 3.23 to κ+.
Since max{κ++, (κ+)(

<κ+)} = κ++, JEP fails on the interval [κ++,iω(κ)).
Combined together, JEP fails on the interval [κ+,iω(κ)).

4 Amalgamation

In this section, we investigate the amalgamation spectrum of Kχ and show
that amalgamation will always eventually fail, regardless of large cardinals.

We start by providing a strong condition for when elements can be iden-
tified in the amalgam. Then we prove Lemma 4.3, which is an analogue of
Lemma 3.2 for disjoint amalgamation.

Recall that by the proof of Lemma 3.2, ifM0 ≺χK M1 andKM1\KM0 6= ∅,
then for every d ∈ KM1 \KM0 we can define a QM0-complete, non-principal
ultrafilter Ud on PM0 by

X ∈ Ud if and only if M1 |= dεX

When there is ambiguity, we will refer to this ultrafilter by UM0,M1

d .

Lemma 4.1. Assume M0,M1,M2 ∈Kχ and let di ∈ KMi \KM0, i = 1, 2.
If there exists an amalgam N ∈ Kχ of M1,M2 over M0 where d1 and d2
are identified, then UM1,M0

d1
= UM2,M0

d2
.

Proof. Suppose that d1 and d2 are identified in the amalgam N . Since
M1,M2 are ≺χK-substructures of N , UM1,M0

d1
= UN,M0

d1
= UN,M0

d2
= UM2,M0

d2
.

Definition 4.2. Let N,Ml ∈ Kχ, l = 0, 1, 2 and N is an amalgam of M1

and M2 over M0. Say that the amalgamation is disjoint on the K-sort if in
N no elements of KM1 \KM0 are identified with any elements of KM2 \KM0 .

Lemma 4.3. Let M0,M1,M2 ∈ Kχ with M0 ≺χK M1 and M0 ≺χK M2.
There is an amalgamation of M1,M2 over M0 that is disjoint on the K-
sort if and only if for every d ∈ KMi \KM0 the ultrafilter UMi,M0

d on PM0
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defined above can be extended to a non-principal ultrafilter on PM3−i that is
QM3−i-complete, for i = 1, 2.

Note that UMi,M0

d is an ultrafilter on the Boolean Algebra (defined by)
PM0 . Since M0 ≺χK M3−i, we have that PM0 is a sub-Boolean Algebra of
PM3−i . Consequently, UMi,M0

d is a filter on PM3−i . Then Lemma 4.3 says
that there is an amalgamation of M1,M2 over M0 which is disjoint on the
K-sort exactly when UMi,M0

d can be extended to a non-prinicipal and QM3−i-
complete ultrafilter on PM3−i and this can be done for every d.

Proof of Lemma 4.3. First, suppose that N is a K-disjoint amalgam of
M1,M2 over M0. Consider the case where d ∈ KM1 \ KM0 . The case d ∈
KM2 \KM0 is symmetric and we omit it.

In the amalgam d is an element of KN \ KM2 . Define as before the
ultrafilter UN,M2

d . Then UN,M2

d is a non-principal ultrafilter on PM2 that is
QM2-complete. We need to prove that UN,M2

d extends UM1,M0

d . Let X ∈ PM0 .
Then

X ∈ UN,M2

d iff N |= dεX

iff M1 |= dεX

iff X ∈ UM1,M0

d .

Second, suppose that we have this extension property and let V Mi,M0

d

denote the QM3−i-complete ultrafilter on PM3−i that extends UMi,M0

d . Fur-
thermore, suppose thatM1 andM2 are disjoint except for the common copy
of M0 and that the elements of QMi are actually χ-sequences from PMi .

We define the amalgam N of M1,M2 over M0: KN equals KM1 ∪KM2 .
PN is the Boolean Algebra generated by PM1 ∪ PM2 and all the finite

subsets of KN . We identify two elements X ∈ PM1 and Y ∈ PM2 , if X̂M1

and Ŷ M2 is the same subset of KM0 .
QN equals QM1 ∪ QM2 , modulo the requirement that if A ∈ QM1 and

B ∈ QM2 are such that for all α < χ, πM1
α (A) = πM2

α (B), then we identify
A and B in the amalgam.

All that remains is to define εN . It suffices to define εN on KN × (PM1 ∪
PM2), and then extend it to the rest of PN by the Boolean Algebra rules. We
require that εN extend εM1 ∪ εM2 . Suppose d ∈ KMi \KM0 and X ∈ PM3−i .
Then we set

N � d ∈ X ⇐⇒ X ∈ V Mi,M0

d

Notice that if X ∈ PM0 , then X ∈ V Mi,M0
x iff X ∈ UMi,M0

x iff Mi |= xεX.
So, N and Mi agree on ε on their common domain.
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The reader can verify that N ∈ Kχ and that Mi ≺χK N working as in
the proof of Lemma 3.2. In particular, the QM3−i-completeness of V Mi,M0

d is
crucial as in Lemma 3.2.

Observe that the proof of the above Lemma does not yield a disjoint
amalgam for M1,M2. The reason is that some elements of PM1 , PM2 and
some elements of QM1 , QM2 may be identified. Nevertheless, amalgamation
is disjoint on the K-sort.

Using Lemma 4.3, we prove that Kχ fails amalgamation above 2χ+ . The
idea of the proof is due to Spencer Unger.

Theorem 4.4. Let κ ≥ 2χ
+. Then Kχ fails AP (κ).

Proof. First, we will build a filter F on P(κ) generated by ≤ κ-many sets
that cannot be extended to a χ+-complete ultrafilter on all of P(κ); indeed,
we will identify a Boolean Algebra P1 and collection of χ-sequences Q1 such
that F cannot be extended to a Q1-complete ultrafilter on P1. To do so,
partition κ into {Aα | α < χ+} and define the filter F on κ by, for X ⊂ κ,

X ∈ F if and only if there is β < χ+ such that
⋃
α>β

Aα ⊂ X

Note that F is χ+-complete and contains every cofinite set (and even the
co-χ-sized sets). Let P0 ⊂ P(κ) be the Boolean Algebra generated by the
sets measured by F . Then set P1 ⊃ P0 be the Boolean Algebra generated
by {⋃

α∈S

Aα | S ⊂ χ+

}
Now, define our set of χ-sequences by

Q1 :=

{〈⋃
α∈Si

Aα | i < χ

〉
| 〈Si〉i<χ ∈

χP(χ+)

}
Claim: F cannot be extended to a Q1-complete filter G that measures

all sets in P1.

Suppose it could. From G, we can define a non-principal ultrafilter U on
χ+ by, for Y ⊂ χ+,

Y ∈ U if and only if
⋃
α∈Y

Aα ∈ G
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Each of these sets is in P1 by construction, so this is a non-principal ultrafil-
ter following the standard argument. Moreover, U is χ+-complete precisely
because G is Q1-complete. This is a contradiction because there can be no
χ+-complete, non-principal ultrafilter over χ+. This completes the proof of
the claim.

Second, we reverse engineer the proof of Lemma 4.3 to show that this
construction forces a failure of amalgamation. We build a triple of models
M0,M1,M2. Unless otherwise specified ε is the regular ∈ (‘belongs to’) re-
lation and the Boolean Algebra operations are the usual intersection, union
and complement. We specify (K,P,Q):

• M0 is defined by (κ, P0, ∅);

• M1 is defined by (κ∪{d}, P0, ∅); d belongs to some X ∈ P0 if and only
if X ∈ F ; and

• M2 is defined by (κ, P1, Q1).

Note that F is an ultrafilter on P0 as P0 contains precisely the sets that F
measures. By construction,M0 ≺χK M1,M2. Tracing the definition, UM1,M0

d =

F . So by Lemma 4.3, the triple (M0,M1,M2) can be amalgamated iff F can
be extended to a QM2-complete filter on PM2 . However, this is impossible
by the claim.

We finish the proof by observing that all these models have size κ +(
2χ

+
)χ

= κ. So Kχ
κ fails AP(κ).
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