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Abstract

In [13] the authors show that if p is a strongly compact cardinal,
K is an Abstract Elementary Class (AEC) with LS(K) < u, and K
satisfies joint embedding (amalgamation) cofinally below g, then K
satisfies joint embedding (amalgamation) in all cardinals > u. The
question was raised if the strongly compact upper bound was optimal.

In this paper we prove the existence of an AEC K that can be
axiomatized by an L, .-sentence in a countable vocabulary, so that
if p is the first measurable cardinal, then

1. K satisfies joint embedding cofinally below p ;
2. K fails joint embedding cofinally below pu; and
3. K satisfies joint embedding above pu.
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Moreover, the example can be generalized to an AEC KX axiomatized
in L, + ,,, in a vocabulary of size x, such that (1)-(3) hold with x being
the first measurable above x.

This proves that the Hanf number for joint embedding is contained
in the interval between the first measurable and the first strongly com-
pact. Since these two cardinals can consistently coincide, the upper
bound from [13] is consistently optimal.

This is also the first example of a sentence whose joint embedding
spectrum is (consistently) neither an initial nor an eventual interval
of cardinals. By Theorem 3.27, for any club C' on the first measurable
1, it is consistent that JEP holds exactly on lim C' and everywhere
above p.

1 Background
In [8, Conjecture 9.3], Grossberg made (essentially) the following conjecture.

Conjecture 1.1. For every k, there is a cardinal u(k) such that for every
Abstract Elementary Class (AEC) K, if K has the u(LS(K))-amalgamation
property' then K has the A-amalgamation property for all X > u(LS(K)).

This cardinal u(LS(K)) (if it exists) is called the Hanf number for amal-
gamation, and we can define similarly what is means for a cardinal to be
the Hanf number for joint embedding.

Baldwin and Boney in [13] proved the existence of a Hanf number for
joint embedding (and amalgamation and a few other variants of these two
properties) from large cardinals, although their definition of ‘Hanf number’
is slightly different from Grossberg’s: if p is a strongly compact cardinal, K
is an AEC with LS(K) < u, and K satisfies amalgamation cofinally below
1, then K satisfies amalgamation in all cardinals > pu.

The confusion comes from the fact that Hanf number is most often used
for the property of model existence. In this case, there are a number of

equivalent formulations.

Fact 1.2. Let (K, <k) be an AEC, let P(\) be the property that “there exists
a model of size \ in K ”"(model-existence), and let  be the Hanf number of

K. The following properties are all equivalent:
1. P()\) holds in some A > k;

2. P(\) holds in every A\ > k;

!Throughout the paper we assume the common convention that LS(K) > |7(K)]|.
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3. P(\) holds for cofinally many A < k;
4. P(X\) holds for eventually many A < k; and
5. P(X\) holds in every cardinality.

These equivalences heavily use the downward-closed nature of model
existence (and the computation of the Hanf number using Morley’s Omitting
Types Theorem for (3) and (4)). However this is not the case for other
properties, such as joint embedding and amalgamation, and the equivalence
of (1)-(5) fails in these cases.

More importantly, the computation of the Hanf number does not use any
of the specifics of the AEC K except for the LS(K). So, two AECs with the
same LS(K) will yield the same Hanf number. This motivates Definition
1.3, the Hanf number for a general property P.

For the purposes of this paper we take the definition of the Hanf number
to be that of Baldwin-Boney (cf. [13]).

Definition 1.3. Fix a property P()\). A function up(x) from cardinals to
cardinals will be called the Hanf number for P iff it satisfies the following:

1. If K is an AEC that satisfies property P(\) for cofinally many A <
up(LS(K)), then K satisfies P(\) in every A > up(LS(K)) and

2. up(LS(K)) is the least such cardinal.

If P is obvious from the context, then we will write u(x) instead of pp (k).

In the language of Fact 1.2, Definition 1.3 defines the Hanf number for
property P to be the least cardinal such that the implication (3) — (2) holds
true for all AECs with the same LS-number. Because the Hanf number is a
function, we investigate certain values of this function. We fix property P
and LS(K) and we ask the value of up(LS(K)). The example stated in the
abstract proves that pyepp(x) cannot be smaller than the first measurable
cardinal above Y.

Properties P of interest are joint embedding, amalgamation, categoricity,
existence of maximal models, etc. In this paper, we focus on the properties
of joint embedding (JEP) and amalgamation (AP), especially the former.

In a parallel line of inquiry we ask the following: Fix LS(K) and let
P be the property of joint embedding, or amalgamation, or some other
property of interest. For which of the implications between (1)-(5), other
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than (3) — (2), there exists some x that makes the implication true? What
is the least such k? Provide counterexamples when no such s exists.

One of the contributions of this paper is to provide an example that
(3) does not imply (4) when P is JEP and & is the first measurable?. In
particular, as stated in the abstract, there exists an AEC K that both
satisfies and fails JEP cofinally below the first measurable.

This example also relates to Question 4.0.2 in [3], that asks whether
there is an AEC, in particular one defined by an L, ,-sentence, whose
finite amalgamation spectrum is not an interval (that is, amalgamation
restricted to the W,, for n < w). If we drop the restriction to a finite spectrum
and replace AP by JEP, we prove that the answer is positive. Notice that
while our example exhibits quite interesting JEP-spectrum, the same is
not true for the AP-spectrum. By Theorem 4.4, KX fails amalgamation
in every cardinal above 2x" This leaves open the corresponding question
(does (3) imply (4)), when P is the amalgamation property and « is the
first measurable cardinal.

If P is either JEP or AP, and & the first measurable or the first strongly
compact cardinal, the status of the implications (1) — (2) (as envisioned
by Grossberg) and (2) — (3) also remains open.

Open Questions 1.4.

1. Is there an AEC K that fails JEP eventually below k, k being the
first measurable or the first super compact, but satisfies JEP in all

cardinalities above k¢
2. Same question as (1), but satisfy JEP in one cardinality above k?

Although in this paper we will not deal with it, we ought to say that
similar considerations about categoricity have long occupied researchers in
the area, e.g. the main open problem for AECs (Shelah’s Categoricity Con-
jecture) is whether there exists some k such that (1) implies (2) for cate-
goricity?.

A lower bound for pap(k) is given in [11]. For every cardinal x and every
a with Kk < a < kT there exists an AEC W, in a vocabulary of size x, W,
has countable Lowenheim-Skolem number, and it satisfies amalgamation up

to Jg, but fails amalgamation in 3,.+. This proves that pap(r) > J.+.

2In this example LS(K) = R, but the construction works for any LS(K) smaller
than the first measurable cardinal.

3Categoricity means that P()\) is the property that “there exists a unique model (up
to isomorphism) of size \".
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On the other hand, results from [13], prove that if LS(K) = x, then
tap(k) is no larger than the first strongly compact above . Combining the
results from [11] and [13], pap(k), the Hanf number for AP, is contained in
the interval between J,.+ and the first strongly compact above . As noted
in [13], the gap between these two cardinals is immense.

The picture is not very promising for JEP either. From [13]|, we know
that the first strongly compact above & is also an upper bound for p;pp(k).
A lower bound is given by the examples from [4] and [5]. From Fact 3.37
in [4], for every countable « there exists an AEC (K, C) defined by a
universal L, ,-sentence such that LS(K,) = Ry and K, satisfies JEP up
to and including 3., but it has no larger models. This proves that 3, is a
lower bound for 1;5p(Ro), the Hanf number for JEP.

The above example can easily be generalized: for every v < a < k™,
there exists an AEC (K, C) defined by a universal L+ ,-sentence such
that LS(K,) = « and K, satisfies JEP up to and including J,, but it
has no larger models. This proves that as in the case for AP, pu;pp(k) is
contained in the interval between 3.+ and the first strongly compact above
K.

Stimulated by early versions of [5], Baldwin and Shelah announced in [1]
that (under certain set theoretic hypotheses) there exists a complete L, .-
sentence with maximal models in cofinally many cardinalities below the first
measurable. They also note that every model of size equal to or larger than
the first measurable has a proper L, ,-elementary extension; one can take a
countably complete ultrapower. This proves the first measurable cardinal to
be equal to pp(Ng), where P is the property of “maximality”. More precisely,
“maximality” is defined to be the property P()): the exists a maximal model
of size A.

Notice that this introduces yet another notion of a Hanf number. If 4 is
the first measurable cardinal, then no L, ,-sentence has a maximal model
above p. In the language of Fact 1.2, letting P be “maximality” and k be
the first measurable, (1) and (2) are equivalent for the trivial reason that
they are both always false. The example from [1| proves that (3) does not
imply (1) (or (2)) for maximality. So, this notion of a Hanf number does
not fit into Definition 1.3, which is our working definition for this paper.

The main result of this paper is to prove a lower bound for the Hanf
number for JEP. In particular, we show that p;pp(Xg) is bounded below by
the first measurable cardinal. Since by results of [12, Theorem 3.1], the first
measurable and the first strongly compact can be consistently equal, this
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proves that the known bounds are consistently optimal. Of course, the first
measurable and the first strongly compact can also be different. So, this
leaves open the question whether the lower bound from the current paper
or the upper bound from [13] can be improved.

Our example was inspired by [1]. In fact, the idea of the main construc-
tion in the current paper appears as Example 3.0.3. in [1]. Our contribution
is to compute the JEP- and AP- spectra of this example. Notice that our
L., w-sentence (as well as the sentence from Example 3.0.3 in [1]) is incom-
plete. This is in contrast to the main construction of [1|, where Baldwin
and Shelah go in great lengths to create a complete sentence. It is an open
question whether the results from this paper can extend to the complete
example of [1].

In Section 2 we describe the construction. The JEP-spectrum is given in
Section 3 and the AP-spectrum in Section 4.

For the main definitions of Abstract Elementary Classes, we refer the
reader to Baldwin [2]; however, they are not necessary to understand the

main construction and theorems.

2 The main example

Fix an infinite cardinal y, although this can be taken to be N;. We will
define a language 7% and an AEC KX.
The prototypical elements of K* will be structures of the form

M = (k,P(k),*P(k), €, V, A, 1,0, Ta) e
where

1. XP(k) are the y-length sequences from P(x) (the power set of k);
2. € is the (extensional) ‘member of” relation between x and P(k);
3. (P(k),V,A,-1) is the standard Boolean Algebra;

4. N : XP(k) — P(k) returns the intersection of all elements of the

sequence; and

5. Ty : XP(k) — P(k) returns the ath element of the sequence.

However, we don’t want the entire theory of these structures and only
demand that the members of K* satisfy a particular subset of their L, -
theory.

Formally, set 7X to consist of
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e sorts K, P, and Q;

e constant 1;

e unary functions -¢, N, and 7, for a < y;
e binary functions A and V; and

e a binary relation ¢.

Now we define a sentence yX € LL,+ , that consists of the conjunction of
the following first-order assertions

1. e C K x P is extensional,;
2. (P,V,A,-1)is a Boolean Algebra;

3. ¢ interacts with the Boolean Algebra operations in the expected way:
1 contains every element of K, a complement contains exactly the

elements not in the original, etc;

4. P contains all singletons: Vo € K3Y € PVz € K (z € Y <— z =1x);
and

the conjunction of the following infinitary assertions:
(5) the functions 7, : Q@ — P are jointly extensional in the sense that
VA, B € Q <A =B < J\ m(4) = m(B))
a<xy

(6) the function N : @ — P returns the intersection in the sense that

VAe QVr e K (xe NA — /\ xswa(A))

a<xy

Given any model M of X, there is a natural embedding of the Boolean
Algebra induced on PM into the Boolean Algebra on P(K™), the powerset
of KM,

Definition 2.1. Let M C N model ¢X and X € PM,
1. Define XM := {z € KM | M E zeX}.

2. M and N agree on X iff XM = XV
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3. M and N agree on finite subsets iff they agree on every X € P such
that XM is a finite subset of K.

4. Define KX to be the collection of all models of ¥X of size > y. For
M,N € K* let M <} N if M C N and M and N agree on finite
subsets.

Following standard convention, we will often use KX to refer to the
pair (KX, <%).

Crucial to our later analysis, the lack of full elementarity in the <}
relation means that M and N do not need to agree on all sets. In particular,
M and N agree on 1 iff K™ = K. Note also that XM= XN KM,

Proposition 2.2. For each x, (KX, <) is an Abstract Elementary Class
with Lowenheim-Skolem number y.

Proof. This is an easy argument and we leave the details to the reader.
One approach is that a definitional expansion (by adding “finite subset”

functions) turns KX into a universal class. ]
Observation 2.3.

1. It is immediate from the definition that the size of P is bounded by
2151 and the size of Q by |P|X. There is no restriction on the size of

K. Therefore, X has models in all infinite cardinalities.

2. Given any model M E X, we can find an isomorphic copy M of M
such that

(a) KM _ KM
(b) PM c P(KM); and
(c) QM c XP(KM).

Howewver, this choice is very non-canonical.
Definition 2.4.

1. An AEC K satisfies the x-Joint Embedding Property or JEP(k) iff
K, is not empty and for all My, M; € K,, there are N € K and
K-embeddings f, : My, — N. The joint embedding spectrum of K or

JEP-spectrum is the collection of all cardinals s such that K satisfies
JEP(k).
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2. Similarly, define AP(x) and the AP-spectrum for the amalgamation
property.

3. A model M of ¢X is of type (A, k) with A > &, if |[M| = X and
|KM| = k.

4. Given M € KX, we say that an ultrafilter U on the Boolean Algebra
PM is QM -complete iff for every A € QM if 1M (A) € U for all a <
then NM(A) € U.

3 The Joint Embedding Property

In this section we determine the joint embedding spectrum of K*. It turns
out (Lemma 3.5) that the question of when two models can be jointly em-
bedded depends on whether they can be extended in a certain way, called
K-extendibility.

Definition 3.1. Let M € KX.

1. M is K-extendible iff there is N € KX such that M <} N and
KM C KV,

2. M is K-mazimal iff whenever N € KX has M <} N, then K C
KN,

So given a K-maximal model, it is either K-extendible or truly maximal.
The next lemma connects K-extendibility to the existence of sufficiently
complete ultrafilters.

Lemma 3.2. Let M € KX. The following are equivalent:
1. M is K-extendible.

2. For all cardinals A, there exists some N € KX with M <3 N and
|[KN\ KM =)\,

3. There exists a non-principal ultrafilter U on PM that is QM -complete.

Proof. The implication (2) = (1) is immediate. We start by proving that
(1) = (3). Suppose we have M, N € KX that witness the K-extendibility
of M. By assumption, there exists some d € K~ \ K™. We then build an
ultrafilter U; € PM as follows: for X € PM we set

X e Uy ifand only if N F deX
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Then Uy is an ultrafilter by the standard set-theoretic argument; see, e.g.
Theorem 5.6 in [10].* We only prove Uy is non-principal and Q™-complete.

Assume that Uy is principal and generated by some X, € PM. By def-
inition, PM coﬁzjx&ns all finite subsets of K™ .® It follows that )/(\OM is a
singleton, say Xy, = {z}. By definition of <g, M, N agree on all finite
subsets of K™, In particular, )/(\OM = )/(\UN. By the definition of Uy, this
implies that d = x € K. Contradiction.

Let A € QM such that X, := M (A) € Uy, for all @« < x. Since N F de X,
for every a < x, we must have N & de N A. Thus, NV (A) = "M (A) € U,.

Next we prove that (3) = (2). Suppose that M € KX and there is a
non-principal, Q¥ -complete ultrafilter U on PM. Without loss of generality
M satisfies the conclusions of Observation 2.3.(2). Define N to be an <’}{—
extension of M as follows: Extend K by A-many new elements to form K*.
Say KN = K™ U \. Define ¢ on the new elements: For all z € KV \ KM
and all X € PM_stipulate that

NEzeX <— X eU.

This implies that for every X € PM_either XY = XM, or XV = XMy
(KN'\ KM). Which of the two is the case is determined by membership in
U.

Additionally, we extend P so that PV is the Boolean Algebra that is
generated by PM together with all finite subsets of K. In particular, for
every F finite subset of K~ which is not a subset of K, we introduce a
new element X in PV and define €V is such a way that )/(;N =F.

Moreover, M and N agree on (), 7, and N, and on € [gmy pm, and V, A©
have the intended interpretations.

We verify that N is in KX and M <% N. " is extensional because the
same is true for € and by definition of N. Condition (2) is immediate and
condition (3) is easy to verify using the fact that U is an ultrafilter. We
leave the details to the reader. (4) and (5) are immediate.

We only prove (6) using the Q-completeness of U. If A € QY = QM
then Y = NV A is in U if and only if for all o, m,(A) € U. The one direction
follows from U being an ultrafilter, the other direction follows from U being
QQ-complete.

4 Another approach is to observe that Uy is the set of all sets whose j-measure equals
to 1, where p is defined on PM by pu(X) =1 when N Fd € X, and p(X) = 0 otherwise.
Uy, is an ultrafilter because p is 2-valued.

R 5This means that if K is a finite subset of K™, there exists some X € PM with
XM = K. See also clause (4) of 1)X.
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We take cases: If Y = NNVA € U, then YV = Y™ U (KY \ KM) and

—N —M

To(A) = mo(A) U (KN \ KM), for all a. If Y ¢ U, then YN = yM
and m,(A) = mu(A) , for some o (maybe not for all a). In either case,

YN = ﬂamN, which completes the proof that N € KX.

It remains to prove M <} N. The fact that M C N is immediate. Let
X be in PM so that XM is a finite set. We need to prove that XN = XM,
Since XM is finite and U is non-principal, X ¢ U. Therefore, X = XM as
desired. [

Corollary 3.3. Assume M <XK N. If M is not K-extendible, then the

same 1s true for N.

Proof. By definition of K-extendibility, K~ must equal K. Since M C N,
PM is a sub-Boolean Algebra of PV. If N were K-extendible, by Lemma 3.2,
there would be a non-principal ultrafilter U on P which is Q”-complete.
The restriction of U on PM leads to a contradiction. ]

The key factor for determining whether two Mj, M; € KX can be jointly
embedded is the size of KMo and KM, If |[KMo| = |KM1| then this is
possible as seen by the next Lemma 3.4. In fact more is true: For every k,
there is a single structure M € KX that can embed all other M’ € KX
with |[KM '\ = k. This universality property holds true because the Boolean
Algebra (P,V,A,°,1,0) interpreted in M (the universal model) coincides
with the Boolean Algebra of the power set of KM. If |[KMo| < |KM|  then
My, My can be jointly embedded if and only if M, is K-extendible. This is
the content of Lemma 3.5

Lemma 3.4. Let k > x. There exists a model M € KX of type (2", k) such
that for any other N € KX with |KY| = k, there is an <} -embedding from
N to M. Moreover, M 1is K-maximal.

Proof. Let M be the standard model generated by K™ = k, PM = P(k),
QM =XP(k). We claim that M is the desired model.

Let N € KX with |[K"| = k. Define a K*-embedding f from N to M
as follows: f is a bijection from K™ to k; this is possible by cardinality
assumptions. For each X € PV, set f(X) = {f(z) | # € X} € P(k). For
each A € QN let f(A) be the sequence {f (7)(A)) | @ < x) € XP(k). It is
immediate that f is an K*-embedding.

For the moreover, the extensionality of € and the 7, imply that any
extension of M cannot grow P or () without growing K. [
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Lemma 3.5. Let My, M, € KX. If |[KMo| < |KM1|, then My and M, can
be jointly embedded if and only if My is K-extendible.

Proof. Left-to-right: Suppose that M, and M; can be jointly embedded
into some M € KX. Then |K"| > |KM!| > |K™°|. By Definition 3.1, My is
K-extendible.

Right-to-left: Assume that M, is K-extendible. By Lemma 3.2, there
exists some M} € KX, My <} M} and |KMo| = |[KM|. Use Lemma 3.4 to
joint embed M} and M; to a common M. Then M serves also as the joint
embedding of My and M;. ]

Recall that there are no countably complete, non-principal ultrafilters
on any set of size less than the first measurable cardinal. More generally,
fixing y, there is no y'-complete, non-principal ultrafilter on any set of
size less than the first measurable larger than y (if one exists). If there
is no measurable above y, then there are no yT-complete, non-principal
ultrafilters at all. We utilize these facts to prove the existence of models
that are not K-extendible.

Definition 3.6. Given a cardinal k, set
m(k) :=1inf{\ | A > k and X is measurable}

If there are no measurable cardinals above k, then set m(x) = oo (which is

greater than every ordinal by convention).

Lemma 3.7. Let x < k < m(x). There exists a model M € KX of type
(2%, R) that is <}jc-mazimal. In particular, M is not K -extendible.

Proof. Let M be the standard model on (k, P(k),XP(k)) as in Lemma 3.4.
We know it is K-maximal, and we claim that M is maximal. By the remark
following Definition 3.1, it suffices to show that it is not K-extendible.

If it were K-extendible, then Lemma 3.2 would imply that there is a Q-
complete, non-principal ultrafilter U on the Boolean Algebra P. However,
since PM = P(k), U is an ultrafilter on x. Moreover, since QM = XP(k),
the QM-completeness of U is a different name for xT-completeness (in the
normal sense). This would imply that there is a y*-complete ultrafilter on

r; however, this contradicts k < m(x). O

Theorem 3.8. Let x < k < m(x). Then KX fails JEP(2").
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Proof. Let M be the model from Lemma 3.7. M is of type (27, k). Let N be
any model in K of type (2%,2%). Take for instance K~ = 2%, P¥ contains
all finite and co-finite subsets of K~ and Q¥ is empty.

By Lemma 3.5, M and N can be jointly embedded if and only if M is
K-extendible. But M is not K-extendible by Lemma 3.7, which proves the

theorem. O

Once we are above a measurable, K-extendibility and, therefore, joint
embedding become trivial to accomplish.

Lemma 3.9. If K > m(x), then every model in K¥ is K-extendible.

Proof. Let U be a m(x)-complete, non-principal ultrafilter and M € K.
Since measurable cardinals are strong limits, |[K™| > m(y). By Lo§’ Theo-
rem for infinitary logics, the ultrapower [[ M /U is a Ly (y)m(y)-elementary
extension of M (up to isomorphism). In particular, M <} [[M/U €
KX. Moreover, KIIM/U = TT K™ /U 2 KM. This witnesses that M is K-
extendible. [

Theorem 3.10. If k > m(x), then KX satisfies JEP(k).

Proof. As we noted, if M € KX, then |[K™| > m(x). The statement follows
from Lemma 3.4 in the case |[KM°| = | K|, or otherwise from Lemmas 3.5
and 3.9. O

We can also show that joint embedding holds at strong limit cardinals.

Theorem 3.11. If k > x is a strong limit cardinal, then KX satisfies
JEP(K).

Proof. The strong limit assumption implies that if M € KX, then |KM| = &
by Observation 2.3. To prove JEP(k), let My, M; € K* both of size k. It
follows that |[K™°| = |KM| = k, so they are both jointly embeddable
into the universal model N given by Lemma 3.4. Since KX is an AEC
(Proposition 2.2), there is N’ <} N of size k that contains the images of
Moy, M. This proves JEP(k). O

Notice that Theorem 3.11 holds true even for x = Y.

Suppose that there is a measurable above x and let © = m(x). Then
Theorem 3.11 yields a cofinal sequence in y on which joint embedding holds,
while Theorem 3.8 yields a cofinal sequence on which JEP fails. Under GCH
this gives a complete characterization of the JEP-spectrum of K.
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Corollary 3.12. Assume GCH holds. K* satisfies JEP(k) if and only if

K > x is a limit cardinal below m(x) or k > m(x).

Corollary 3.13. The Hanf number pypp(Ro) is at least a measurable car-

dinal.

In the rest of this section we determine the joint embedding spectrum
even when GCH fails, in particular for cardinals y < x < m(x) such that
Kk < 2<% Our results shows that JEP(k) fails for almost all such cardinals.
Depending on cardinal arithmetic there might be some cardinals for which
our method does not give an answer. The precise statement is given in
Theorem 3.24.

Our abstract tool is the following lemma, which reduces our problem to

finding a particular model.

Lemma 3.14. Suppose that k > x and X < k < 2. If KX contains a model
of type (K, ) that is not K-extendible, then KX fails JEP(k).

Proof. Let M be a model as in the assumption and let N be a model of
type (k, k). Then ||M|| = |[N|| = x and |KV| > |KM|. By Lemma 3.5, M
and N cannot be jointly embedded, so JEP(k) fails. ]

When s = x, such a model is easy to build.

Lemma 3.15. There exists a model M € KX of type (x,x) which is not
K -extendible.

Proof. Define M by setting K™ = x; P™ is the Boolean Algebra that is
generated by all finite subsets of x plus all tails of the form [a, ), with
a < x; and QM contains for every limit ordinal 5 < y the sequence of tails

([, ) [ < B).

A couple of remarks are at hand before we proceed:

1. We do not impose any completeness requirements on P*. This means
that the size of PM is equal to .

2. If B is a limit ordinal less than y, then the sequence of tails in Q,
([, x) | @ < B), has length smaller than . Since sequences in QM
must be of length x, we tacitly assume that some of the sets in this

sequence repeat.

It follows that M has type (x, x) and M € KX.
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We also claim that M is not K—extendible, or, equivalently by Lemma
3.2, there is no non-principal Q™-complete ultrafilter on PM. Assume oth-
erwise and let U be such an ultrafilter. We prove by induction on « that
la, x) € U. For the successor stage use the fact that U is non-principal. For
the limit stages use the fact that U is Q-complete.

Therefore, U contains all the sets of the form [, ), o < x. Using QM-
completeness once more, U must contain Ny[c, x) = (). Contradiction. [

Corollary 3.16. KX fails JEP(k) for all x* < rk < 2X.

Proof. Let x* < k < 2X and let M be the model from Lemma 3.15. Define
some N € KX that extends M and has size k: K = KM PV is a Boolean
Algebra that extends PM and has size x, and QY = Q™. If N were K-
extendible, then by Lemma 3.2, there would be a non-principal Q¥-complete
ultrafilter on P". The restriction of U on P contradicts Lemma 3.15. [

Our next goal is to extend Lemma 3.15 and Corollary 3.16 to higher car-
dinalities. This will be achieved in Corollary 3.22. We need some preliminary
work before we can prove Corollary 3.22.

The proof of the following fact is standard, see, e. g., |7, Lemma 4.2.3].

Fact 3.17. Let B be a Boolean Algebra on k and let U be an ultrafilter on
B. Then U is A-complete, for some \ < k, if and only if for every W C B,

a partition of B of size |W| < A, there exists some w € W that belongs to
U.

Recall that a cardinal x is weakly compact if and only if for every s-
complete Boolean Algebra B C P(k) generated by k-many subsets, there is
a k-complete non-principal ultrafilter on B. We will consider a weakening
of this large cardinal notion as in [6, Definition 2.1].

Definition 3.18. A cardinal x is d-weakly compact for 6 < k iff every k-
complete Boolean Algebra B C P(k) generated by k-many subsets has a
d-complete non-principal ultrafilter on B.

Note that k-weakly compact is the same as weakly compact.

Lemma 3.19. Fiz an infinite cardinal x. If x < k£ < m(x) and k is x*-

weakly compact, then k is weakly compact.

Proof. Assume otherwise. That is there exists some k-complete Boolean
Algebra B C P(k) generated by k-many subsets such that there is no
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k-complete non-principal ultrafilter on B, but there is a y*-complete, non-
principal ultrafilter U on B. Let u* be the least cardinal so U is not u*-
complete. Note that we must have y* < u < k.

Since U is not p*-complete, by Fact 3.17, there exists some partition
W = {w; | i < pu} of B such that w; ¢ U for all i < u. Define a function

fik— by
flz)=1iifx € w

The function f is defined on x and is onto p. Use f to define a complete
Boolean Algebra C' C P(u) and some ultrafilter V' on C' as follows: Y € C
if and only if f~1(Y) € B, and Y € V if and only if f~(Y) € U.

It is routine to verify that C' = P(u) and that V' is a u-complete, non-
principal ultrafilter on C'. Thus, ¢ must be measurable, contradicting the
assumption that x < p < x < m(x). ]

We introduce two functions on cardinals, one standard and one not.
Definition 3.20. 1. For any cardinal k,

e Jy(k) =k
o Joii(k) =220

e J,(k) =supyyJa(k), for A limit
If no ~ is mentioned, we assume that x = N,.

2. For any cardinal k,

Alr) K<f if Kk is regular
K) =
2% if k is singular

Fact 3.21.

1. All strong limit cardinals are of the form 3y for some limit X\ and,

given any K, the least strong limit above k is 3, (k).

2. If B is a k-complete Boolean algebra on P(k) that contains the finite
subsets of k, then B must be of size A(k). Recall that we assume the

Boolean algebras we deal with have all finite subsets of k.

Corollary 3.22. Assume x < k < m(x). If & is not weakly compact, then
JEP(X) fails for all \ satisfying

max{k", A(k)} <\ < 2"
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Note that 2% always satisfies this inequality, but it can be the only car-

dinal there if case & is singular or GCH holds at x.

Proof. By Lemma 3.19, x is not x"-weakly compact. By definition there
is a Boolean Algebra B on k that admits no non-principal y"-complete
ultrafilter. The size of B is A(k) by Fact 3.21 (if kK = y regular, then use
Corollary 3.16). Then use B to construct a model M € K* of type (A(k), k)
that is not K-extendible by defining K¥ = x, PM = B and QM = BX. By
Lemma 3.14, if K < A(k), KX fails JEP(A(k)).

For A any cardinal in the interval (A(k),2"] (if any), we work similarly.
Construct a model N € KX of type (A, k) such that M —<>}< N. Define N by
letting KV = KM = k, PV is a Boolean Algebra extension of PM = B that
has size A and QY = QM = BX. By Corollary 3.3, N is not K-extendible

and by Lemma 3.14 again, KX fails JEP(A). O

We can strengthen this failure by using induction to build many failures
between k and the first strong limit above k.

Lemma 3.23. Let x < k < m(x) such that k is not weakly compact. Then
JEP()N) fails for all X satisfying

max{x", A(rk)} <X < 3, (k)

except perhaps when there is a singular limit p such that 2<# < X\ < 2*, in

which case our method does not determine whether JEP(X) holds or not.

The cardinal restrictions on A may seem strange, but are necessary from
our methods. Essentially, we will apply Corollary 3.22 to an interval of
cardinals to get failures of JEP. When applying to successor A, the start of
the new interval covers the first cardinal missed by the previous intervals.
However, at limit cardinals, there can be a gap at the places indicated in the
lemma. Notice that under GCH this exception can not happen. Additionally,
the JEP is guaranteed to fail on the 3, (k)’s.

Proof. We apply Corollary 3.22 to all cardinals \ € [k, 3,,(k)) to get failure

of JEP on each interval
I = [max{A\*, A(\)}, 2.

We take the following cases:
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A = )¢ successor: The start of the interval I, is at worst (2’\0)+, which
is the first cardinal above I,. Using that A is regular and A()\) = A<,
we have that

max{\*, AN} < (2°M)7.

e ) limit cardinal: Set I.y = U,<xl,. The first cardinal not in I, is

either 2<* or (2<)‘)+, depending on whether I, has supremum or a

maximum respectively. We split this case into the following subcases.

e )\ is regular and 2<* = 2* for some 1 < \.

In this case, the first cardinal above Iy is (2<*)T. By regularity,
A(X) = A=}, Then there is no gap between I, and I, because

max{)\+,)\<’\} < (2<)\)+

e ) is regular and 2<* > 2* for all u < \.

In this case, the first cardinal above Iy is 2<*. By regularity, A(\) =
A<* = 22 50 the left endpoint of I, = max{\",2<*}. If 2<* = )\,
then A would have been a strong limit. But we noted already that the
first strong limit above « is J,(k) > A. So, 2<* > X and there is no
gap between I, and I,.

e )\ is singular and 2<* = 2* for some pu < \.

In this case, the continuum function is eventually constant below A
and 2* = 2<* = 2¢. By singularity, A(\) = 2*. So I, begins at (and
only contains) 2* and Iy is a subset of I_.

e )\ is singular and 2<* > 2* for all u < \.
In this case, the first cardinal above I, is 2<*. By singularity, A(\) =

2}, So I begins at (and only contains) 2%, thus the gap.

Putting the above items together, we have the above lemma statement.

]

Summarizing the results of this section, we have shown that the JEP
spectrum of KX is as desired.

Theorem 3.24. Fixz an infinite cardinal x. Then there is an AEC KX with
LS(K*) = x (that is given by models of a sentence in L,+ ) whose JEP

spectrum satisfies the following:

1. JEP holds cofinally below m(x);
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2. JEP fails cofinally below m(x); and
3. JEP holds everywhere above m(x).
In particular, we have
e JEP holds at every strong limit and above m(x);
o if x <k <m(x), then JEP fails at 2%; and

e more generally, for reqular k with x < k < m(x), JEP fails on the
interval

[max{x", k<"}, 2]

Proof. The first bullet point is Theorems 3.11 and 3.10. The last two bullets
are Theorem 3.8 and Lemma 3.23. ]

Corollary 3.25. If GCH holds, then JEP fails in KX exactly at the k
satisfying x < k < m(x) that are not strong limit.

We finish this section by producing models of ZFC+ “there is a mea-
surable” where Theorem 3.24 characterizes the JEP spectrum of KX. The
main tool is the following theorem of Paris and Kunen (see |9, Theorem
21.3]).

Fact 3.26. Assume GCH and let k be a measurable cardinal. Let D be a
normal measure on k and let A be a set of reqular cardinals below k such
that A ¢ D. Let F be a function on A such that F(a) < k for all o € A,
and:

1. ¢fF(a) > a;
2. F(a1) < F(ag) whenever a; < as.

Then there is a generic extension V[G] of V with the same cardinals
and cofinalities, such that k is measurable in V|G|, and for every a € A,
VIG] E 2% = F(a).

Moreover, the powersets of cardinals not in A have the smallest possi-
ble cardinality that satisfies k < cf(2") and that the powerset function is

INCTeasing.

Theorem 3.27. Assume GCH and fix an infinite cardinal x. Given a club C
on m(x), there is a generic extension V|G| that preserves cardinalities and

cofinalities, m(x) remains a measurable cardinal and K* satisfies JEP(X)
iff A€ imC or A > m(x).
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Proof. The goal is to force the cardinal arithmetic of V[G] to make the
limit points of C' the uncountable strong limit cardinals while preserving
the measurability of m(y). Since limits of strong limit cardinals are also
strong limits, it suffices that we ensure that all cardinals in lim C'\ lim lim C
are strong limits.

Let U be a normal ultrafilter on m(x). U contains all clubs, so lim C' €
U. Given A € limC \ limlim C, X has cofinality w and the set imC' N A
is bounded in A. Let {x} | n < w} be an increasing sequence of regular
cardinals converging to A and choose k) such that it is the least regular
cardinal above all cardinals in lim C' N A. Then define a function F' with
domain {x) | n < w, A € lim C — limlim C'} by

F(ﬁi\z) = ’f;\z+1

Using Theorem 3.26, we can force to preserve cofinalities and the mea-
surability of m(x) while enforcing

VIG]F “2" = k)7

Thus we have guaranteed that in V[G], J,(k)) = X. In particular all
cardinals in lim C' are strong limit cardinals. We prove that the reverse is
true too.

Let p be a limit cardinal (in V[G]) that is not in lim C. We prove that p
is not strong limit. Let A be the least cardinal in lim C above u. If k) < p,
then we noted that A\ = J,(k}) is the least strong limit above xj. In this
case, i is not strong limit. If u < xj, then u must be a singular limit of
cardinals in lim C'. Given that C is a club, g must also belong to lim C,
which is a contradiction. Therefore, ;1 can not be a strong limit cardinal.

So, in V[G], imC' = {3,|A:limit and A < m(x)}. It follows from the
moreover clause of Theorem 3.26 that in V[G], 2 = (3))F, for all limit
A < m(x), that is GCH holds at strong limit cardinals.

We claim that JEP(A) if and only if A € limC or A > m(x). The
right-to-left direction is from Theorems 3.11 and 3.10, and the fact that the
cardinals in lim C' are strong limits.

For the left-to-right direction we take cases. If k is a strong limit that is
not a weakly compact cardinal, then we claim that JEP fails for all A in the
interval [xT,3,(k)). We observed already that GCH holds at strong limits.
So 2% = kT and max{x", A(k)} = kT. By Lemma 3.23, we know that JEP
fails on the interval [max{x™, A(xk)},3u(r)) = [k1,3u(k)), except possibly
some cardinals mentioned in Lemma 3.23. We argue that there are no such
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cardinals, i.e. there is no singular limit p such that 2<# < 2 in the interval
[k, 3,(k)). Let A = (k). By the way s was defined, it must be xy = & ™.
Let u € [T, 3,(k)) be a limit cardinal and let n € w be the least such that

KN < < k) 41+ Since K 41 is a regular cardinal, by the moreover clause

of Theorem 3.26, in V[G] it holds that 2* = ;.. In addition, in V[G],
2% < 20 < 2 = k). Therefore, 2<# = 2 and there is no gap in the
failures of JEP given by Lemma 3.23 in the interval [k, 3, (k)).

If x is a weakly compact cardinal, then & is a strong limit and again k* =
2%, By Theorem 3.8, JEP fails at k™. Moreover, apply Lemma 3.23 to x*.
Since max{x*T, (R+)(<H+)} = kT, JEP fails on the interval [, 3, (k)).
Combined together, JEP fails on the interval [T, 3,(k)). O

4 Amalgamation

In this section, we investigate the amalgamation spectrum of KX and show
that amalgamation will always eventually fail, regardless of large cardinals.

We start by providing a strong condition for when elements can be iden-
tified in the amalgam. Then we prove Lemma 4.3, which is an analogue of
Lemma 3.2 for disjoint amalgamation.

Recall that by the proof of Lemma 3.2, if My <} M; and KM\ KMo o£ (),
then for every d € KM\ KMo we can define a QM°-complete, non-principal
ultrafilter U; on PMo by

X € Uy if and only if M; | deX

When there is ambiguity, we will refer to this ultrafilter by U é\/‘[ oM

Lemma 4.1. Assume My, My, My € KX and let d; € KMi\ KMo =12,
If there exists an amalgam N € KX of My, My over My where dy and do

. . My M, Mo, M,
are identified, then U; V" = U770,
’ dy d2

Proof. Suppose that d; and dy are identified in the amalgam N. Since
My, My are <j-substructures of N, Ué\fl’MO = Ué\f’MO = Ug’MO = U%Q’MO.

[

Definition 4.2. Let N,M; € KX, [ =0,1,2 and N is an amalgam of M;
and My over M. Say that the amalgamation is disjoint on the K-sort if in
N no elements of KM\ K0 are identified with any elements of K2\ KMo,

Lemma 4.3. Let My, My, My € K* with My <} M, and My <3 Ms.
There is an amalgamation of My, My over My that is disjoint on the K-
sort if and only if for every d € K™\ KMo the ultrafilter Ué\/li’MO on PMo
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defined above can be extended to a non-principal ultrafilter on P35 that is
QMs—i_complete, fori=1,2.

Note that U, éw #Mo i an ultrafilter on the Boolean Algebra (defined by)
PMo_ Since My <} Mj_;, we have that PM is a sub-Boolean Algebra of
PMs—i - Consequently, Ué\/[i’MO is a filter on PM3-i, Then Lemma 4.3 says
that there is an amalgamation of M;, My over M, which is disjoint on the
K-sort exactly when U é‘/f Mo can be extended to a non-prinicipal and QMs—i-

complete ultrafilter on P*3-i and this can be done for every d.

Proof of Lemma 4.3. First, suppose that N is a K-disjoint amalgam of
My, My over M,. Consider the case where d € K\ KMo, The case d €
KM\ KMo is symmetric and we omit it.

In the amalgam d is an element of K™ \ K™z, Define as before the
ultrafilter UéV’MQ. Then U, év M2 g g non-principal ultrafilter on PM2 that is
QMz2_complete. We need to prove that UéV’M2 extends Uflwl’MO. Let X € PMo,
Then

X e UM iff N |= deX
iff M, |= deX
iff X e U

Second, suppose that we have this extension property and let VdMi’MO

denote the Q™3~i-complete ultrafilter on PM3-i that extends U C]lw oMo pyr-
thermore, suppose that M; and M, are disjoint except for the common copy
of M, and that the elements of Q™ are actually y-sequences from P,

We define the amalgam N of M, My over My: KV equals KM U KMz,

P is the Boolean Algebra generated by P U P2 and all the finite
subsets of KV. We identify two elements X € PM and Y € PMz_if XM
and Y2 is the same subset of KMo

QN equals QM U Q™2, modulo the requirement that if A € Q™ and
B € QM2 are such that for all o < y, 7M1 (A) = 7#M2(B), then we identify
A and B in the amalgam.

All that remains is to define eV. It suffices to define e on KV x (PM
PM2) and then extend it to the rest of PV by the Boolean Algebra rules. We
require that eV extend e UeM2. Suppose d € KMi\ KMo and X € PMs-i,
Then we set

NEde X «— X eyt

Notice that if X € PM0_ then X € VMioMo iff X € UMiMo iff M, | xeX.
So, N and M; agree on ¢ on their common domain.
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The reader can verify that N € KX and that M; <} N working as in
the proof of Lemma 3.2. In particular, the Q*3-i-completeness of %M"’MO is

crucial as in Lemma 3.2. O]

Observe that the proof of the above Lemma does not yield a disjoint
amalgam for M, M,. The reason is that some elements of PM: PM2 and
some elements of QM1, Q™2 may be identified. Nevertheless, amalgamation
is disjoint on the K-sort.

Using Lemma 4.3, we prove that KX fails amalgamation above 2X". The

idea of the proof is due to Spencer Unger.
Theorem 4.4. Let k > 2X" . Then KX fails AP(k).

Proof. First, we will build a filter F' on P (k) generated by < rk-many sets
that cannot be extended to a x"-complete ultrafilter on all of P(k); indeed,
we will identify a Boolean Algebra P; and collection of y-sequences ()1 such
that F' cannot be extended to a )i-complete ultrafilter on P;. To do so,
partition x into {4, | @ < x*} and define the filter F' on « by, for X C &,

X € F if and only if there is f < xT such that U Ao C X

a>f

Note that F'is xT-complete and contains every cofinite set (and even the
co-x-sized sets). Let Py C P(k) be the Boolean Algebra generated by the
sets measured by F. Then set P D P, be the Boolean Algebra generated
by

{UAQ|SCX+}

a€sS

Now, define our set of y-sequences by

Q= {< U4ali< x> | (Si)icy € XP()&)}

aES;
Claim: F cannot be extended to a (Q;-complete filter G that measures

all sets in P;.

Suppose it could. From G, we can define a non-principal ultrafilter U on
x* by, for Y C x7,

Y eUifandonlyif | J Ay € G

acY
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Each of these sets is in P; by construction, so this is a non-principal ultrafil-
ter following the standard argument. Moreover, U is x"-complete precisely
because G is (Q1-complete. This is a contradiction because there can be no
x T-complete, non-principal ultrafilter over x . This completes the proof of
the claim.

Second, we reverse engineer the proof of Lemma 4.3 to show that this
construction forces a failure of amalgamation. We build a triple of models
My, My, M;. Unless otherwise specified ¢ is the regular € (‘belongs to’) re-
lation and the Boolean Algebra operations are the usual intersection, union
and complement. We specify (K, P, Q):

e My is defined by (k, Py, ();

e M, is defined by (kU{d}, P, 0); d belongs to some X € B if and only
if X € F'; and

e M, is defined by (k, P1, Q7).

Note that F'is an ultrafilter on Py as P, contains precisely the sets that F'
measures. By construction, My <} M, M. Tracing the definition, U, éw LMo —
F'. So by Lemma 4.3, the triple (My, M;, Ms) can be amalgamated iff F' can
be extended to a QM2-complete filter on P™2. However, this is impossible
by the claim.

We finish the proof by observing that all these models have size k +
<2X+>x = k. So K% fails AP(k). O
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