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Abstract

We study anisotropic magnetohydrodynamic (MHD) turbulence in the slow solar wind measured by Parker Solar
Probe (PSP) and Solar Orbiter (SolO) during its first orbit from the perspective of variance anisotropy and
correlation anisotropy. We use the Belcher & Davis approach (M1) and a new method (M2) that decomposes a
fluctuating vector into parallel and perpendicular fluctuating vectors. M1 and M2 calculate the transverse and
parallel turbulence components relative to the mean magnetic field direction. The parallel turbulence component is
regarded as compressible turbulence, and the transverse turbulence component as incompressible turbulence,
which can be either Alfvénic or 2D. The transverse turbulence energy is calculated from M1 and M2, and the
transverse correlation length from M2. We obtain the 2D and slab turbulence energy and the corresponding
correlation lengths from those transverse turbulence components that satisfy an angle between the mean solar wind
flow speed and mean magnetic field θUB of either (i) 65° < θUB< 115° or (ii) 0° < θUB< 25° (155° < θUB< 180°),
respectively. We find that the 2D turbulence component is not typically observed by PSP near perihelion, but the
2D component dominates turbulence in the inner heliosphere. We compare the detailed theoretical results of a
nearly incompressible MHD turbulence transport model with the observed results of PSP and SolO measurements,
finding good agreement between them.

Unified Astronomy Thesaurus concepts: Interplanetary turbulence (830); Slow solar wind (1873); Solar
wind (1534)

1. Introduction

Anisotropy is one of the important properties of solar wind
turbulence. Anisotropy has been studied via (i) the power
spectral indices of the perpendicular k⊥ and parallel k||
wavenumbers, i.e., spectral anisotropy (Horbury et al. 2008;
Podesta 2009; Wicks et al. 2010; Narita et al. 2010; He et al.
2013; Bruno & Telloni 2015; Zhao et al. 2022); (ii) turbulent
power in directions parallel and perpendicular to the mean
magnetic field or variance anisotropy (Montgomery 1982;
Matthaeus et al. 1990; Bieber et al. 1996; Milano et al. 2004;
Smith et al. 2006; Osman & Horbury 2009a, 2009b; Ruiz et al.
2011; Weygand et al. 2011; Horbury et al. 2012; Weygand
et al. 2013; Pine et al. 2020; Adhikari et al. 2021a; Zank et al.
2021; Zhao et al. 2022), and (iii) the correlation length in
directions parallel and perpendicular to the mean magnetic field
i.e., correlation anisotropy (Dasso et al. 2005; Matthaeus et al.
2005; Osman & Horbury 2007; Dasso et al. 2008; Weygand
et al. 2009; Wang et al. 2019; Bandyopadhyay & McComas
2021). In the presence of a large-scale magnetic field, the
variance anisotropy is determined by the relative magnitudes of
the fluctuations in directions parallel and perpendicular to the
mean magnetic field, and spectral anisotropy is determined with
respect to the direction of k. These measures are therefore
unique, and there is no dependence between them (Matthaeus
et al. 1996; Oughton et al. 2015). Although they can be set
separately (as an initial condition), it is possible that the
dynamics may couple the two aspects.

Using a wavelet technique for high-speed streams in the
ecliptic plane near solar minimum, Podesta (2009) studied the
dependence of solar wind power spectra in the direction of the
local mean magnetic field and found that the power-law
exponent in the inertial range changes continuously from
−1.6± 0.1 in the direction perpendicular to the mean magnetic
field to−2± 0.1 in the direction parallel to the mean magnetic
field. This is also consistent with Horbury et al. (2008), who
found the magnetic power-law indices of −2 and−5/3 in flow
directions parallel and perpendicular to the mean magnetic
field. These observed results were interpreted as supporting the
critical balance (CB) theory (Goldreich & Sridhar 1995), which
requires σc∼ 0, where σc is the normalized cross helicity.
Wang et al. (2014) found that in the presence of intermittency
the spectral index for parallel magnetic fluctuations is −2,
while the spectral power index is similar for k⊥ and k|| in the
absence of intermittency. Wang et al. (2015) reported that the
spectral index for parallel magnetic fluctuations can be −2
or−5/3 for moderate or small amplitude fluctuations. By
perpendicular fluctuations, we mean that the fluctuating
magnetic field components are transverse to the mean magnetic
field B, i.e., = ˆB B z0 , δBx, δBy≠ 0, and δBz= 0, and by
parallel fluctuating magnetic field components, we mean that
the δBz≠ 0, δBx= δBy= 0.
In highly field-aligned flows, Telloni et al. (2019) and Zhao

et al. (2020), using Wind and Parker Solar Probe (PSP) data
sets, respectively, found a power-law index of−5/3. This is
inconsistent with the predictions of CB theory, which requires
that σc∼ 0, and it further introduces a puzzle about why the
inertial range should possess a Kolmogorov-like spectrum in
the apparent absence of counter-propagating Alfvén waves,
needed to initiate the nonlinear interactions. A recently
developed spectral theory based on the 2D + slab turbulence
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superposition model (Zank et al. 2020) explains the formation
of a spectral index−5/3 in highly field-aligned flows, as well
as predicting, under certain conditions, that µ -( )∣∣ ∣∣E k k 5 3 for
arbitrary values of σc.

A review by Oughton et al. (2015) discusses the power
anisotropy in solar wind turbulence from the inertial range to
the dissipation scale. On using Advanced Composition
Explorer (ACE) magnetometer data, Hamilton et al. (2008)
found that the average wavevectors are more field aligned in
the dissipation range than in the inertial range, and the field-
aligned wavevectors play a significant role in the formation of
dissipation range. In the inner heliosphere from 0.3–1 au,
MacBride et al. (2010) used Helios 1 magnetic field data sets to
find that 80% of the turbulence energy resides in the
wavevector perpendicular to the mean magnetic field (i.e., 2D
advected fluctuations), consistent with the results of Bieber
et al. (1996). They also found that the perpendicular and
parallel wavevectors for the transverse small scales within the
inertial range show similar energy distributions in the fast and
slow solar wind flow (see also Hamilton et al. 2008). Belcher &
Davis (1971) using Mariner magnetometer data calculated the
ratio between the perpendicular and parallel variances of the
magnetic field fluctuations, and found that the ratio is about 5
for a 3 hr long interval, and about 8 for a 22 minute long
interval, indicating that the magnetic power anisotropy
increases with decreasing length of the time interval, i.e., the
decrease in the ratio of incompressible to compressible power
implies either an increase in the power of the compressible
fluctuations or a decrease in the power in incompressible
fluctuations. They found that the magnetic power in each of the
three orthogonal directions in a magnetic field-velocity
coordinate system is of order 5:4:1. Bruno et al. (1999)
investigated the effect of intermittency on the radial evolution
of solar wind fluctuations anisotropy in the inner heliosphere at
distances of 0.3, 0.7, and 0.9 au, and found that intermittency
increases the anisotropy of both magnetic and velocity
fluctuations. However, the magnetic anisotropy is larger in
the presence of intermittency than the velocity anisotropy
because magnetic fluctuations are thought to be more
intermittent than velocity fluctuations. Bruno et al. (1999)
defined anisotropy as the ratio between the total power
perpendicular to the minimum variance direction and the
power along the minimum variance direction. Horbury et al.
(1995) investigated the anisotropy of inertial range turbulence
in the polar heliosphere using Ulysses magnetometer data sets
at distances of 1.7, 2.4, and 3.8 au. They found that the ratio of
power transverse to the magnetic field to that parallel is about
30, and that the magnetic field fluctuations in directions parallel
and perpendicular to the magnetic field become more isotropic
with distance. Using Wind data sets, Leamon et al. (1998)
found that the ratio between the total magnetic variances
transverse to and aligned with the mean field is at a ratio of
10.4:1 at the high-frequency end of the inertial range.
Similarly, Podesta (2009) using Stereo magnetometer data sets
found that the power in directions perpendicular to the mean
magnetic field in the inertial range is larger than the power in
the parallel direction by factors ranging from approximately 2
near the middle of the inertial range to a factor of about 7 at the
upper end of the inertial range. Using Voyager and ACE
observations, Pine et al. (2020) studied the anisotropy of
magnetic field fluctuations in the inertial range from 1–45 au
from two perspectives: (i) the ratio of power associated with

fluctuations perpendicular and parallel to the mean magnetic
field, and (ii) the ratio of power in two components
perpendicular to the magnetic field. In the first case, anisotropy
can be affected by the ratio of proton thermal energy and
magnetic energy, and the magnetic compressibility. In the
second case, the anisotropy may depend on the orientation of
the mean field relative to the radial (solar wind velocity)
direction, relating to the nature of the sampling and the
spacecraft’s ability to measure wavevectors parallel or
perpendicular to the flow and magnetic field.
Dasso et al. (2005) studied the correlation anisotropy in the

middle of the inertial range using 5 yr of ACE magnetometer
data sets, in which the fast solar wind is more dominated by
fluctuations with wavevectors k quasi-parallel to the local mean
magnetic field, and the slow solar wind is more dominated by
quasi-perpendicular fluctuations wavevectors. Figure 1 in
Dasso et al. (2005) shows that the correlation length of the
magnetic field fluctuations in the perpendicular direction is
smaller than that in the parallel direction in the slow solar wind,
and shows opposite characteristics in the fast solar wind. Wang
et al. (2019) further analyzed the correlation anisotropy in the
fast and slow solar wind for time intervals of lengths 2 days,
1 day, 10 hr, 2 hr, and 1 hr. In the 2 day long interval, their
results are similar to Dasso et al. (2005). However, they also
found that the correlation lengths in directions parallel and
perpendicular to the mean magnetic field are approximately
equal in the 1 hr long interval.
Several theoretical and numerical methods have been

developed to study the power anisotropy of the turbulent solar
wind (Montgomery & Turner 1981; Shebalin et al. 1983;
Grappin 1986; Zank & Matthaeus 1992a, 1992b, 1993;
Grappin et al. 1993; Goldreich & Sridhar 1995; Ghosh et al.
1998; Zank et al. 2020). One approach is to regard turbulence
as a superposition of majority 2D turbulence and a minority
slab turbulence, in which ∼80% of the turbulent power is
located in the direction perpendicular to the mean magnetic
field, and ∼20% of the turbulent power in the parallel direction
(Zank & Matthaeus 1992a, 1992b, 1993). Such a dominant
turbulent perpendicular energy from observations of the
interplanetary magnetic field was also found at 1 au (Bieber
et al. 1996). Recently, Bandyopadhyay & McComas (2021)
and Zhao et al. (2022) used PSP magnetometer data sets and
the Bieber test (Bieber et al. 1996) to find that the relative
power in 2D magnetic field fluctuations is smaller closer to the
Sun than far from the Sun. Zhao et al. (2022) found that over
the distance 0.13–0.3 au, the ratio between the amplitudes of
the 2D and slab turbulence is about 0.43 (or 30%:70%),
whereas from 0.3–0.6 au, the ratio between the amplitudes of
the 2D and slab turbulence is about 1.63 (or 62%:38%). The
Bieber test assumes that all spectra satisfy k−5/3, which is not
necessarily true for slab as we have seen, and one needs to use
a more general formulation for an arbitrary slab spectrum (Zank
et al. 2020). In this manuscript, we calculate the 2D and slab
energies in transverse magnetic field fluctuations through the
covariance analysis using the approach of Belcher & Davis
(1971) and a new method. We also calculate the 2D and slab
correlation lengths of the magnetic field fluctuations. In
addition, we calculate the 2D and slab Elsässer energies,
fluctuating kinetic and magnetic energies, normalized residual
energy, normalized cross helicity, and the corresponding 2D
and slab correlation lengths. Finally, we compare the observed
results with the theoretical results of the NI MHD turbulence
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model (Zank et al. 2017) as a function of heliocentric distance.
We summarize the theoretical and observed 2D and slab
turbulence quantities in Table 1.

A theoretical NI MHD turbulence transport model for small
(= 1) and O(1) plasma beta regimes (Zank et al. 2017) can be
used to calculate the turbulent power anisotropy in the energy-
containing range. The energy-containing range turbulence
transport models assume a Kolmogorov or IK phenomenology
to describe the cascade of turbulence energy through the
inertial range and its eventual dissipation. Here, the former is a
strong turbulence (for which nonlinear effects are dominant)
approach, whereas IK is inherently a weak turbulence approach
(i.e., essentially nonlinear corrections to Alfvén waves).
Adhikari et al. (2017b) developed a theoretical model for the
turbulent power anisotropy of the magnetic field fluctuations in
the inertial range. They found that the power anisotropy in
magnetic field fluctuating energy in the inertial range increases
slightly from ∼1.2 to∼ 4–5 au, and then decreases with
increasing distance. Therefore, in this model, power anisotropy
in magnetic turbulence near 1 au evolves toward a state of
increasingly isotropic magnetic turbulence power in the outer
heliosphere. In part, this is due to the presence of turbulent
shear and pickup ions creation that act as sources of turbulence.
In a similar study, Adhikari et al. (2018) showed that in the
absence of interplanetary sources of turbulence, the power
anisotropy in magnetic field fluctuations in the energy-
containing range and the inertial range is larger during the
2009 solar minimum than that during the 2003 and 2015 solar
maxima over the distance 1–75 au. The power anisotropy in

magnetic field fluctuations may depend on the solar wind speed
(Oughton et al. 2015). The speed during the 2009 solar
minimum was 359.48 kms−1, and during the 2003 and 2015
solar maxima it was 493.31 and 412.25 kms−1, respectively
(Zhao et al. 2018). Since the solar wind speed in the prior case
is smaller than that in the latter case, turbulence was more
anisotropic during the 2009 solar minimum than during the
2003 and 2015 solar maxima.
The outline of the manuscript is as follows. Section 2

introduces the solar wind model. Section 3 discusses the NI
MHD turbulence quantities, and the Appendix presents the NI
MHD turbulence transport model equations. Section 4
discusses the data analysis methodology. Sections 5 and 6
compare the theoretical and observed results. Finally, Section 7
provides a discussion and conclusions.

2. Solar Wind Model

The 1D spherically symmetric steady-state continuity,
momentum, and proton and electron pressure equations
describe the radial evolution of the solar wind mass density
ρ, speed U, and thermal proton pressure Pp and electron
pressure Pe, respectively, and are given by

r =( ) ( )d

dr
r U 0, 12

r = - - ( )U
dU

dr

dP

dr

dP

dr
, 2

p e

g g g n+ + = - - +( )( ( ) )
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dr
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2 1

1 , 4

e
e e

ep p e e p t

where νpe and νep are the rates of proton–electron Coulomb
collisions (Barakat & Schunk 1982; Zank 2014), r is the
heliocentric distance, and St is a turbulence heating term. Here,
we neglect the gravitational force and the magnetic force
(J× B)r=−1/(μ0r)Bfd/dr(rBf) in Equation (2). We only
include the thermal proton and electron forces, which drive the
solar wind in the inner heliosphere. The parameter fp denotes
the fraction of turbulence energy that heats the solar wind
protons, (1− fp) the fraction of turbulence energy that heats the
solar wind electrons, and γ(= 5/3) is the polytropic index.
Equation (3) shows that turbulence energy, through St, and
Coulomb collisions between solar wind protons and electrons
influences the radial profile of the solar wind proton
temperature. In addition to turbulence energy and Coulomb
collisions between solar wind protons and electrons, the
electron heat flux qe also influences the radial profile of the
solar wind electron temperature (Cranmer et al. 2009; Breech
et al. 2009; Engelbrecht & Strauss 2018; Chhiber et al. 2019;
Adhikari et al. 2021a, 2021b; Zank et al. 2021). Here, we
assume that the electron density ne and the proton density np
are approximately equal. The rate of proton–electron Coulomb
collisions is given by Cranmer et al. (2009) as

n » ´ -
-

-
-⎛

⎝
⎞
⎠
⎛
⎝

⎞
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8.4 10

2.5 cm 10 K
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Table 1
2D and Slab Turbulence Quantities

Turbulent Quantities

á ñ¥z 2 , á ñz 2* ,

á ñz2D
2 , á ñzsl

2

2D and slab outward/inward Elsässer energies

á ñ¥B 2 , á ñB 2* , á ñB2D
2 , á ñBsl

2 Fluctuating magnetic energy

á ñ¥u 2 , á ñu 2* , á ñu2D
2 , á ñusl

2 Fluctuating kinetic energy

s¥
D , sD* , s

D
2D, ssl

D Normalized residual energy

s¥
c , sc*, s

c
2D, ssl

c Normalized cross helicity

l¥
 , l

* , l

2D, l

sl Correlation length corresponding to Elsässer
energies

l¥D , lD* , l
D
2D, lsl

D Correlation length corresponding to residual
energy

l¥B , lB*, l
B
2D, lsl

B Correlation length of magnetic field fluctuations

l¥
u , lu*, l

u
2D, lsl

u Correlation length of velocity fluctuations

Note. The superscripts “ ∞ ” and “
*
” denote the theoretical 2D and NI/slab

quantities, respectively. The subscripts “2D” and “sl” denote the observed 2D
and slab quantities, respectively. The “+” and “-” signs denote the outward and
inward directions relative to the Sun
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where the Coulomb collisional frequencies are assumed to be
equal for protons and electrons, i.e., neνep∼ npνpe. The electron
heat flux is given by the empirical formula (Cranmer et al.
2009),

= - - -⎜ ⎟
⎛
⎝

⎞
⎠

( )∣∣q

q
x xln 0.7037 2.115 0.2545 , 6e,

0

2

which is obtained by fitting the observed electron heat flux
from Helios 2 over the distance 0.3−1 au (Pilipp et al. 1990).
Here, º ( )x rln au and q0= 0.01 erg cm−2 s−1. The term
∇ · qe is expressed as (Cranmer et al. 2009),

f =
¶
¶

· ( ) ( )∣∣q
r r

r q
1

cos , 7e 2
2 2

where f is the Parker spiral angle,

f
q

=
Wr
U

tan
sin

,

and Ω= 2.7× 10−6 rad s−1 is the solar rotation frequency. We
choose a colatitude θ= 90° to compare the theoretical results
with the PSP and Solar Orbiter (SolO) measurements.

The turbulent heating term St can be expressed as

a
l l

l l

=
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+
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+
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+
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¥+ ¥-

¥
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¥- ¥+

¥
+

+ ¥-

¥
+

- ¥+

¥
-

⎡
⎣⎢

⎤
⎦⎥
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S m n
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z z z z
, 8

t p s

2 2 1 2 2 2 1 2

2 2 1 2 2 2 1 2* *

where mp is the proton mass, ns is the solar wind proton
density, and α is a von Kármán–Taylor constant. The terms
inside the squared bracket [...] correspond to the dissipation of
2D turbulence and NI/slab (hereafter called the slab)
turbulence. The various terms appearing in Equation (8) are
discussed below.

3. NI MHD Turbulence Quantities

In the NI MHD notational convention, the magnetic field
fluctuations ¢B , the velocity fluctuations ¢u , and the density
fluctuations r¢ can be expressed as ¢ = +¥B B B*,
¢ = +¥u u u*, and r r r¢ = +¥ * (Zank & Matthaeus 1992b,

1993), in which the leading order 2D fluctuations, and the
minority slab fluctuations follow the ordering M M:A

t
A
t 2 (Zank

et al. 2017, 2020), where ºá ñ( )M u VA
t

A
2 1 2

0 is the turbulent
Alfvén Mach number, 〈u2〉1/2 the square root of the
characteristic velocity fluctuations, and VA0 the large-scale
Alfvén velocity. NI MHD theory is developed based on MA

t

being a small quantity. NI MHD in the plasma beta regimes of
order 1 (i.e., βp∼ 1) or much less than 1 (i.e., βp= 1) predicts
that solar wind turbulence is a superposition of the majority 2D
turbulence component and a minority slab turbulence comp-
onent (Zank & Matthaeus 1992b, 1993; Zank et al. 2017). The
majority 2D and the minority slab Elsässer variables are given
by Zank et al. (2017)

m r m r
=  = ¥ ¥

¥
z u

B
z u

B
, ,

m m0 0

* *
*

where ρm is the mean solar wind mass density, and μ0 the
magnetic permeability. The 2D variances of the Elsässer
variables 〈z±2〉, and the residual energy ED, with analogous

definitions for the “
*
” superscript quantities,

m r
á ñ = á ñ
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0

The Elsässer energies and the residual energy weighted length
scales allow us to introduce the correlation lengths using

ò
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where y= |y| is the spatial lag between fluctuations, ¢¥ -z ,* the
lagged Elsässer variables, and λ± and λD are the correlation
lengths corresponding to the outward and inward Elsässer
energies, and the residual energy.
Similarly, other 2D turbulence quantities, with corresp-

onding definitions for the “*” superscript quantities (Zank et al.
2012; Dosch et al. 2013),
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where ¥ET is the total turbulent energy, ¥EC the cross helicity,
¥Eb the fluctuating magnetic energy density, and ¥rA the Alfvén

ratio. Note that the Elsässer-based versus u/b-based definitions
contain identical information and it is a matter of convenience
and situation in deciding which to use.

4. Data Analysis

We select the first orbit PSP Solar Wind Electrons Alphas &
Protons (SWEAP; Kasper et al. 2016) and FIELDs (Bale et al.
2016) data sets, and SolO magnetometer (Horbury et al. 2020)
and Solar Wind Analyzer–Proton and Alpha Sensor plasma
(Owen et al. 2020) data sets corresponding to the slow solar
wind to calculate the 2D and slab turbulence energies and the
corresponding 2D and slab correlation lengths. We use two
methods: (i) the approach of Belcher & Davis (1971)—Method
1 (or M1), and (ii) a new method—Method 2 (or M2). These
two methods yield the turbulence components in directions
parallel and transverse to the mean magnetic field. The prior is
regarded as compressible turbulence, and the latter as
incompressible turbulence, which can be either Alfvénic or
2D. We first calculate the various transverse turbulence
energies using M1 and M2, and the corresponding transverse
correlation lengths using M2. M1 directly calculates the
transverse turbulence energy. By contrast, M2 first calculates
the R, T, and N components of the fluctuating perpendicular
solar wind speed and the magnetic field, and then calculates the
transverse turbulence energy and the transverse correlation
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length. An important difference between the methods is that
M2 calculates the correlation matrix for the fluctuations, while
M1 calculates only the variance matrix (=correlation matrix
evaluated at zero lag). We then determine the various slab
turbulence energies and the corresponding correlation lengths
(see Table 1) by selecting those transverse turbulence
components that satisfy the range of angles between the mean
flow and mean magnetic field θUB values according to
0° < θUB< 25° (155° < θUB< 180°). In this case, the geome-
try between the mean flow and magnetic field is parallel (or
radial). Similarly, we determine the various 2D turbulence
energies and correlation lengths by selecting those transverse
turbulence components that satisfy θUB values between
65° < θUB< 115°. In this case, the geometry between the
mean flow and magnetic field is perpendicular. We compare the
results of the new method (M2), with the results obtained from
the Belcher & Davis (1971) approach (M1), and the NI MHD
turbulence model (Zank et al. 2017).

4.1. Method 1

Belcher & Davis (1971) introduced the following expression
for the parallel variance of the magnetic field fluctuations P||:

=
åá ñ á ñ

á ñ∣ ∣
( )∣∣

B
P

B S B
, 10

i ij j

2

and the transverse variance of the magnetic field fluctuations
P⊥ is given by

= -^ ( )∣∣P P P , 11s

where

= á ñ - á ñá ñS b b b bij i j i j

is a 3× 3 matrix, formed by the R, T, and N components of the
fluctuating magnetic field b, and Ps denotes the trace of a
variance matrix Sij. Using Equations (10) and (11) we calculate
the transverse magnetic field fluctuations in a plane perpend-
icular to the mean magnetic field. To calculate the transverse
Elsässer energies and fluctuating kinetic energy, the variance
matrix Sij is formed by the R, T, and N components of the
Elsässer variables and the fluctuating solar wind speed,
respectively (Adhikari et al. 2021c). Then, we calculate the
observed 2D and slab turbulence energies based on two criteria
discussed above.

4.2. Method 2

The alternative approach to calculate the various transverse
and parallel Elsässer moments including various transverse and
parallel correlation lengths is presented. A fluctuating vector
= + +( ˆ ˆ ˆa a r a t a nr t n , where ar, at, and an are the R, T, and N

components of a vector a) can be written in terms of parallel
and perpendicular vectors as

= + = +^ ^ˆ∣∣ ∣∣a a a aa b ,

where =ˆ ∣ ∣B Bb is the unit vector, |B| is the magnitude of the
mean magnetic field B, and a⊥ and =( ˆ)∣∣ ∣∣a a b are the
perpendicular and parallel vectors, respectively. The parallel
component a|| can be written as

= · ˆ ( )∣∣ aa b, 12

and the perpendicular vector a⊥,

= - ´ ´ =
´ ´

^ ˆ ( ˆ ) ( )
∣ ∣

( )a a
B a B

B
b b , 13

2

where = + +∣ ∣B B B BR T N
2 2 2 2 is the square of the magnitude of

the mean magnetic field, and BR, BT, and BN are the R, T, and N
components of the mean magnetic field. The perpendicular
vector a⊥ can be written in terms of R, T, and N components as

=
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where CR= BTan− BNat, CT= BNar− BRan, and CN= BRat−
BTar. Similarly, the parallel vector a|| is given by

=
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+ +
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The first, second, and third terms on the right-hand side (rhs) of
Equations (14) and (15) yield the R, T, and N components of
the perpendicular and parallel fluctuating magnetic field and
solar wind speed. Using the R, T, and N components of the
perpendicular fluctuating fields, we calculate the transverse
turbulence energy and correlation length by following the same
approach as in our previous papers (Zank et al. 1996; Adhikari
et al. 2014, 2015, 2017a; Shiota et al. 2017; Zhao et al. 2018;
Adhikari et al. 2021c). We then calculate the observed 2D and
slab turbulence components from the transverse values using
the criteria based on θUB values.

5. Radial Evolution of 2D and Slab Turbulence

We use a Runge–Kutta fourth-order method to solve the
coupled solar wind and NI MHD 2D and slab turbulence
transport equations from the perihelion of the first orbit of PSP
(∼36.66 Re) to 177 Re. To solve the coupled solar wind and NI
MHD turbulence transport equations, we use the boundary
conditions shown in Table 2. Table 3 shows the parameter
values used in the NI MHD turbulence transport model
equations. The boundary conditions and the parameter values
are chosen in such a way that the radial profile of the theoretical
result is close to the observed result. We compare the theoretical
results of the 2D and slab turbulence energy and correlation
length, and the solar wind parameters with PSP and SolO
measurements as a function of heliocentric distance. For the slow
solar wind of PSP, we use the data sets at times (DOY:HR:
MIN): 309:3:18−311:12:44, 313:9:29−314:3:20, 315:16:52
−317:22:59, 324:22:51−325:13:19, and 332:7:52−333:23:57
of the year 2018 (see Adhikari et al. 2020a). Similarly, for the
slow solar wind of SolO, we use the data sets at times (YY:MN:
DD): 2020-07-17, 2020-07-18, 2020-07-22, 2020-07-30, 2020-
08-02, 2020-08-03, 2020-08-04, 2020-08-05, 2020-08-07, 2020-
08-08, 2020-08-09, 2020-08-11, and 2020-08-13 (see Adhikari
et al. 2021c). During the period of our study, PSP and SolO stay
within a latitude of 5°. Although PSP and SolO do not observe
the same plasma parcel, they measure similar types of slow solar
wind. Here, PSP data intervals vary from about 1 day to 2 days,
while SolO data intervals are 1 day long. In every∼1–2 day long
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data set from PSP, and day long data set from SolO, we first
calculate the transverse turbulence energy using M1 and M2,
and the correlation length using M2 in 4 hr long moving
intervals. We then determine the 2D and slab turbulence energy
and the corresponding 2D and slab correlation lengths. The 2D
components are determined from the transverse components in
the∼1–2 day period that satisfy the criterion 65° < θUB< 115°,
and taking averaged values. Similarly, the slab turbulence
components are determined from those transverse components in
the∼1–2 day period that satisfy the values 0° < θUB< 25°
(155° < θUB< 180°), and taking averaged values. In doing so,
we assume that the solar wind plasma properties are similar
within the∼1–2 day period. In the case of SolO, we further bin
the observed results using a 7 Re bin width.

As discussed above, our method for distinguishing between
2D and slab turbulence uses the geometry between the
background fields. Only propagating Alfvénic fluctuations
with wavevectors parallel to a mean magnetic field can be
observed when the mean magnetic field is parallel to the radial
solar wind flow vector. The approach is analogous to that of
Telloni et al. (2019) and Zhao et al. (2020), who identified
unidirectionally propagating Alfvén waves in a highly aligned
magnetic field—solar wind flows. Similarly, Zank et al. (2022)
argued that PSP observes only the slab turbulence component
in the sub- and super-Alfvénic regions during encounter 8 near
perihelion based on θUB values of 15° and 18°, respectively.
This method is closely related to the Bieber et al. (1996)

approach in distinguishing between 2D turbulence and slab
turbulence near 1 au. According to Equation (81) of Bieber
et al. (1996) (see also Zank et al. 2020), as the field angle
increases, the slab contribution decreases while the 2D
contribution increases, and vice versa. In this manuscript, we
assume that when the background fields are parallel, only the
slab contribution can be measured (is visible), and when the
background fields are perpendicular, only the 2D contribution
is visible. The angle between the measurement direction and
mean field direction restricts what can be obtained from the
measurements but, it should be emphasized, this does not
reflect the possible range of fluctuations that are likely present
in the flow, i.e., observing Alfvénic fluctuations in a highly
magnetic field-aligned flow does not exclude the presence of
advected 2D fluctuations, and vice versa.
Figure 1 shows a comparison between the theoretical and

observed 2D and slab outward and inward Elsässer energies (A
and B), fluctuating magnetic and kinetic energies (C and D),
normalized residual energy (E), normalized cross helicity (F)
and the variance of the density fluctuations (G) as a function of
heliocentric distance. In the figure, the red curve identifies the
theoretical majority 2D component, and the blue curve is the
theoretical minority slab component. The red stars, cyan and
brown stars with error bars, and green diamonds denote the
observed 2D component. The blue stars, black and yellow stars
with error bars, and magenta diamonds denote the observed
slab component. The error denotes the standard error s n ,
where n is the number of data points. Here, the red and blue
stars (calculated by M2), and the green and magenta diamonds
(calculated by M1) correspond to the results from the PSP data
sets. Similarly, the cyan, and black stars with error bars
(calculated by M2), and brown and yellow stars with error bars
(calculated by M1) correspond to the results from SolO data
sets. Over a distance∼36.7−129 Re, PSP observes mostly the
slab component (at distances ∼36.66, ∼48.85, ∼60.29, and
∼100.72 Re) compared to the 2D component (at distances
∼64.46 and ∼129 Re). Recall that the 2D and slab turbulence
components are distinguished by using measurements made
only in specific θUB ranges: (i) 65° < θUB< 115°, and (ii)
0° < θUB< 25° (155° < θUB< 180°), respectively. In case (i),
the slab component is invisible to PSP (and SolO), and in case
(ii), the 2D component is invisible to PSP (and SolO). For other
angles θUB, PSP (and SolO) can observe both the 2D and slab
components, allowing one to decompose the turbulence
components into 2D and slab components. This is beyond
the scope of this manuscript. Over a distance∼ 142–176 Re,
SolO observes the slab turbulence component at distances
∼144, ∼147.8, ∼156.7, and ∼167 Re, and the 2D turbulence
component at distances ∼145, ∼149.8, ∼159.4, and ∼168.5
Re. We also note that the observed results in this manuscript
are calculated over 4 hr long intervals in order to compare with
theoretical results.
PSP observes primarily slab outward Elsässer energy á ñ+zsl

2

rather than 2D outward Elsässer energy á ñ+z2D
2 during its first

encounter. In contrast, SolO observes both 2D and slab
outward Elsässer energies frequently, with the 2D component
being larger than the slab component. The theoretical á ñ+z 2* is
consistent with that measured by PSP and SolO. However, the
theoretical á ñ¥+z 2 is larger than that observed by PSP, but is
consistent with that measured by SolO.
Similarly, PSP measures á ñ-zsl

2 near perihelion, and not á ñ-z2D
2 ,

whereas SolO observes both slab and 2D components regularly.

Table 2
Boundary Values for Solar Wind Parameters and Turbulence Quantities for the

Slow Solar Wind at 36.66 Re

Parameters Values Parameters Values

á ñ¥+z 2 (km2 s−2) 12,000 á ñ+z 2* (km2 s−2) 6000

á ñ¥-z 2 (km2 s−2) 600 á ñ-z 2* (km2 s−2) 300
¥ED (km2 s−2) −300 ED* (km2 s−2) −200

l¥
+ (km) 8.4 × 104 l+

* (km) 1.2 × 105

l¥
- (km) 1.05 × 105 l-

* (km) 1.5 × 105

l¥D (km) 1.38 × 106 lD* (km) 1.53 × 106

Tp (K) 2.0 × 105 Te (K) 1.6 × 105

U (km s−1) 350 rá ñ¥2 (cm−6) 1.16 × 103

ρ (cm−3) 207.16 L L

Note. The electron density is assumed approximately equal to the proton
density, ne ≈ np. The proton and electron thermal pressure is determined from
Pp = npkBTp and Pe = nekBTe, respectively

Table 3
Values of The Parameters Used for the Turbulence Model

Parameters Values

VA0 102.73 (km s−1)
α 0.02
β 0.01
b 0.28

+Csh 0.1
-Csh 0.1

CE
sh
D 0.1
+Csh* 0.1
-Csh* 0.1

C E
sh

D* −0.01

η 0.01
ΔU 200 (km s−1)
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The SolO observed á ñ-z2D
2 is larger than the SolO observed á ñ-zsl

2 .
The theoretical 〈z∞−2〉 increases slightly, and then decreases
slowly with increasing heliocentric distance, and is consistent with
the observedá ñ-z2D

2 . The increase in 〈z∞−2〉may be due to both the
presence of a turbulent shear source, and gradients in the solar
wind density, magnetic field, and solar wind speed (Coleman
1968; Zhou & Matthaeus 1990; Marsch & Tu 1993; Matthaeus
et al. 1999; Breech et al. 2008; Adhikari et al. 2015). The
theoretical 〈z

*

−2〉 decreases with increasing distance, and is
similar to that observed by PSP and SolO.

Although the 2D turbulent magnetic energy component
cannot be observed near the perihelion, the theoretical results
and the observed results beyond ∼64.46 Re show that the 2D
component is larger than the slab component, consistent with
the NI MHD theory (Zank & Matthaeus 1992b, 1993) and
observations (Bieber et al. 1996). Recently, Bandyopadhyay &
McComas (2021) and Zhao et al. (2022) found that the relative
power in 2D magnetic field fluctuations appears to be smaller
closer to the Sun after analyzing PSP magnetometer data sets
and applying the Bieber test (Bieber et al. 1996). However,
these conclusions rely on several important assumptions, and

especially the assumption that the observed turbulence power
density spectra in the inertial range correspond to
Kolmogorov−5/3 power laws. In principle, the Bieber et al.
(1996) test results can change if the power-law PSDs are
different from the Kolmogorov form (Zank et al. 2020),
particularly if the 2D and slab spectra differ as found by Zank
et al. (2022), for example. Note that the Bieber et al. (1996)
method assumes the same power law forms k−5/3 for both 2D
and slab turbulence. In Figure 1(C), the theoretical 〈B∞2〉 and
〈B

*

2〉 are consistent with the corresponding observed turbulent
magnetic energies. Similarly, PSP observes á ñusl

2 near perihe-
lion, whereas the observed á ñu2D

2 is larger than the observed á ñusl
2

from 142–176 Re. The theoretical 〈u∞2〉 shows reasonable
agreement with á ñu2D

2 , whereas the theoretical 〈u
*

2〉 is in
reasonable accord with PSP measurements, but is larger than
SolO measurements.
Near the perihelion, the observed slab turbulence is less

magnetically dominated (since the observed slab residual energy
ssl
D is close to 0), and becomes more magnetically dominated with

increasing distance. Compared to slab turbulence, 2D turbulence

Figure 1. Comparison between the theoretical and observed 2D and slab Elsässer energies 〈z±2〉 (A and B), fluctuating magnetic energy (C), fluctuating kinetic energy
(D), normalized residual energy (E), normalized cross helicity (F), and the variance of the density fluctuations (G) as a function of heliocentric distance. The solid red
curve denotes the 2D component, and the solid blue curve the slab component. The red stars, cyan and brown stars with error bars, and green diamonds denote the
observed 2D component. The blue stars, black and yellow stars with error bars, and magenta diamonds denote the observed slab component. The solid black curve in
the bottom right panel denotes the theoretical variance of density fluctuations. The orange and light green stars denote the observed variance of density fluctuations.

7

The Astrophysical Journal, 933:56 (13pp), 2022 July 1 Adhikari et al.



is observed to be more dominated by the turbulent magnetic
energy. SolO measurements show that the observed ssl

D decreases
more slowly than the observed sD2D. The theoretical sD* is larger
than the observed ssl

D, and decreases as distance increases. The
theoretical s¥

D decreases more rapidly initially, then more
gradually as distance increases, and is close to observations.
The theoretical slab cross helicity sc* is similar to the theoretical
2D cross helicity s¥

c near the perihelion, but the slab component
decreases more rapidly than the 2D component. The theoretical sc*
is consistent with the observed ssl

c , whereas the theoretical s¥
c is

larger than the observed sc2D below ∼100 Re, and thereafter is
consistent with observed sc2D. Observationally, the 2D cross
helicity is smaller than the slab cross helicity.

NI MHD turbulence transport theory can be used to study the
radial evolution of solar wind density fluctuations as illustrated
in Figure 1(G). Both the theoretical and observed density
fluctuations decrease as a function of heliocentric distance.

Similar to the turbulence energy, the 2D correlation length
λ2D cannot be observed near the perihelion. In Figure 2, red
stars and cyan diamonds denote the observed 2D correlation
length measured by PSP and SolO, respectively. The slab
correlation length λsl is observed from the perihelion to ∼176
Re as denoted by blue stars and black diamonds. Figure 2(A)
shows that the observed correlation lengthl+

sl of the slab energy
in outward propagating modes derived from the PSP measure-
ments increases more rapidly than that obtained from the SolO
measurements. The observed 2D outward Elsässer energy
correlation length l+

2D measured by PSP does not show a clear
radial trend, whereas the l+

2D derived from SolO measurements
increases with distance. The theoretical l+

*
(blue curve) is in

reasonable accord with the observed l+
sl. The theoretical l¥

+

(red curve) agrees reasonably with l+
2D inferred from SolO

measurements, but is lower than derived from PSP

measurements. The radial profile of the theoretical correlation
length of the 2D inward Elsässer energy (l¥

- ) is shown in
Figure 2(B) to be close to that observed, while the theoretical
l-
*
increases more rapidly than the observed l-sl.
After the initial drop, the theoretical 2D and slab correlation

lengths of the residual energy increase slightly in a similar
fashion to that of the corresponding observed correlation
lengths (Figure 2(C)). The observed 2D and slab correlation
lengths of the residual energy are larger than that of the
corresponding theoretical residual energy correlation lengths.
Figure 2(D) shows that the theoretical and observed 2D
correlation lengths of the magnetic field fluctuations are
approximately similar. The theoretical slab correlation length
lB* is close to the PSP measurements, but is larger than that
derived from SolO measurements. Finally, the theoretical 2D
and slab correlation lengths of the velocity fluctuations are
consistent with the corresponding observed correlation lengths
with increasing heliocentric distance.

6. Radial Evolution of Background Solar Wind Profile

The solar wind model and the NI MHD 2D and slab
turbulence transport equations are coupled. Therefore, the
background solar wind and turbulence influence each other.
Coulomb collisions between the solar wind protons and
electrons are included in the solar wind proton and electron
pressure equation, but this is not as effective as the turbulent
heating term. Due to both the turbulent dissipation term and
Coulomb collisions between protons and electrons, the proton
temperature decreases more slowly than predicted by adiabatic
cooling. In Figure 3(A), the theoretical solar wind proton
temperature (black curve) decreases with increasing helio-
centric distance. However, the theoretical proton temperature is
larger than the observed proton temperature (orange and light

Figure 2. Comparison between the theoretical and observed 2D and slab correlation lengths corresponding to the energy in forward (A) and backward (B) propagating
modes, the residual energy (C), the fluctuating magnetic energy (D), and the fluctuating kinetic energy (E) as a function of heliocentric distance. The solid red and blue
curves denote the theoretical correlation length corresponding to 2D and slab components, respectively. The red stars and cyan diamonds with error bars represent the
observed 2D correlation lengths. The blue stars and black diamonds with error bars represent the observed slab correlation lengths
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green stars). Besides the turbulent dissipation term and
Coulomb collisions term, the electron heat flux also influences
the radial profile of the electron temperature. In Figure 3(A),
the light orange curve shows the theoretical electron temper-
ature, which decreases gradually from 36.66 to ∼100 Re, and
then decreases more slowly with increasing heliocentric
distance due to the electron heat flux. The dissipation of
turbulence also leads to an increase in the solar wind proton
and electron entropy with increasing heliocentric distance
(Adhikari et al. 2020b, 2021b). As shown in Figure 3(B), the
theoretical solar wind proton entropy (black curve) increases
slightly from about 36.66 to about 177 Re in a similar fashion
to that of the observed proton entropy of PSP (orange stars) and
SolO (light green stars). Similarly, the theoretical electron
entropy (light orange curve) also increases gradually with
increasing heliocentric distance.

Because the dissipated turbulence energy heats the solar
wind protons and electrons, this leads to an increase in the
thermal proton and electron pressure gradients. As a result, the
solar wind speed increases with distance, as shown by the black
curve in Figure 3(C). In the figure, the theoretical solar wind
speed (black curve) is close to the observed solar wind speed
measured by PSP (orange stars), but is higher than that
measured by SolO (light green stars). In Figure 3(D), the
theoretical solar wind proton density (black curve) and the
observed proton density measured by PSP (orange stars) and
SolO (light green stars) decrease with increasing heliocentric
distance, and are consistent.

7. Discussion and Conclusions

We used a new data analysis method (M2) to calculate the 2D
and slab Elsässer energies, fluctuating magnetic and kinetic
energies, normalized residual energy and cross helicity, and the
2D and slab correlation lengths corresponding to Elsässer
energies, residual energy, and the fluctuating kinetic and magnetic
energies. We also calculated the 2D and slab turbulence energies
from the Belcher & Davis (1971) approach (M1). M1 and M2
calculate the transverse and parallel turbulence components
relative to the mean magnetic field direction. The parallel
turbulence component is regarded as compressible turbulence,
and the transverse turbulence component as incompressible
turbulence, being either Alfvénic or 2D. M2 first calculates the
R, T, and N components of the perpendicular and parallel
fluctuating vectors, and then calculates the transverse and parallel
variances of the turbulence energies and correlation lengths.
Whereas M1 directly calculates the transverse and parallel
variances of the turbulence energies. M2 has an advantage over
M1 because M2 allows us to calculate the parallel and transverse
correlation lengths.
In this work, we calculated the transverse turbulence energy

using M1 and M2, and the transverse correlation length
using M2 for slow solar wind data sets from the first orbits
of PSP and SolO. The slab turbulence component was
determined from those transverse turbulence components that
are observed in flows satisfying 0° < θUB< 25° (155° <
θUB< 180°). The 2D turbulence component was identified
from those transverse turbulence fluctuations that are observed

Figure 3. Comparison between the theoretical and observed solar wind parameters as a function of heliocentric distance. The black and light yellow solid curves
denote the theoretical solutions. The brown and light green stars denote the observed solar wind parameters corresponding to PSP and SolO measurements,
respectively.
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when 65° < θUB< 115°, where θUB is the angle between the
mean magnetic and mean flow velocity. Specifically, we used
the geometry between the background fields to identify the
incompressible 2D and slab components. 2D turbulence can be
identified (and measured) in the solar wind when the mean
magnetic field and mean solar wind flow vector are orthogonal,
whereas slab turbulence can be measured when the two are
aligned. This approach is closely related to the Bieber et al.
(1996) approach.

We studied the radial evolution of anisotropic MHD turbulence
by comparing the theoretical results of the NI MHD turbulence-
driven solar wind model with PSP and SolO measurements. We
compared the theoretical and observed 2D and slab turbulence
energies, and 2D and slab correlation lengths as a function of
radial distance. In Adhikari et al. (2021c), we compared the
theoretical results of the NI MHD turbulence transport model
equations with SolO measurements, in which we incorrectly
associated the observed transverse turbulence energy as exclu-
sively the 2D turbulence energy, and the parallel turbulence
energy as the slab turbulence energy. In this manuscript, we
correctly compared the theoretical results of the NI MHD
turbulence transport model equations with the observed 2D and
slab turbulence components, where we determined the 2D and
slab turbulence components based on θUB. We summarize our
findings as follows.

1. The 2D turbulence energies obtained from M1 and M2
are approximately equal and show similar radial trends
with increasing heliocentric distance. Similarly, the slab
turbulence energies derived from M1 and M2 are similar
with distance.

2. PSP observed the slab turbulence energy and the slab
correlation length near the perihelion of the first orbit, and
not the 2D turbulence energy and the 2D correlation length.
During its first encounter, PSP observed primarily the slab
turbulence component and not the 2D turbulence comp-
onent over the radial distance 36.66–129 Re. Note that the
observed results correspond to the energy-containing range
scale that is described by the energy-containing range
turbulence transport model equations. SolO observed 2D
and slab turbulence components frequently over the distance
142–176 Re. Although the 2D turbulence component is
invisible to PSP near perihelion, the observed 2D and slab
fluctuating magnetic energy and energy in backward
propagating modes observed by SolO and PSP show that
2D turbulence is the dominant component. For PSP, θUB
corresponding to long intervals is usually small so that
only/primarily transverse fluctuations with a parallel
wavevector can be measured (assuming the Taylor hypoth-
esis holds). SolO can identify advected 2D transverse
fluctuations with wavevectors orthogonal to the mean
magnetic field because there are more intervals with
θUB∼ 90°. Of course, as we have emphasized repeatedly,
transverse 2D fluctuations are almost certainly present in
magnetic field-aligned flows but cannot be observed by,
e.g., PSP, and vice versa with regard to Alfvénic
fluctuations in orthogonal solar wind flows.

3. The theoretical and observed 2D and slab outward
Elsässer energies decrease with increasing heliocentric
distance with theory predicting that the 2D energy density
is dominant. PSP measurements do not show clearly
whether the 2D or the slab outward Elsässer energy

dominates, unlike SolO measurements, which reveal a
clear dominance of the 2D component.

4. PSP and SolO observations show clearly that the 2D
inward Elsässer energy exceeds that of the slab,
consistent with theory. The same is true for the
fluctuating magnetic energy density. SolO confirms the
same result for the kinetic energy density, but this is less
clear from PSP measurements. All theoretical and
observed energy densities (inward Elsässer, magnetic,
kinetic) decrease with increasing heliocentric distance.

5. Observationally and theoretically, slab turbulence is less
magnetically dominated than the 2D turbulence, and both
slab and 2D normalized residual energies become more
negative with increasing distance.

6. The theoretical and observed slab normalized cross helicity
is larger than the theoretical and observed 2D normalized
cross helicity over the distance∼ 36.66–177 Re, indicating
that slab turbulence is Alfvénic. The theoretical and
observed 2D and slab normalized cross helicity show good
agreement as a function of heliocentric distance.

7. The theoretical and observed 2D and slab correlation
lengths of the outward Elsässer energy, fluctuating magnetic
energy and fluctuating kinetic energy increase with
increasing heliocentric distance, and the slab correlation
length is larger than the 2D correlation length. Conversely,
2D and slab correlation lengths of the inward Elsässer
energy increase with increasing heliocentric distance.

8. The theoretical proton temperature decreases gradually
with increasing distance, while the theoretical electron
temperature flattens beyond 100 Re due to the electron
heat flux.

9. The theoretical and observed proton entropy increases as
distance increases in a similar fashion. The theoretical
electron entropy also increases as a function of
heliocentric distance.

10. The theoretical solar wind speed increases slightly as a
function of heliocentric distance due to the presence of
thermal solar wind proton and electron pressure gradi-
ents, and is close to PSP measurements, but larger than
SolO measurements.

11. The theoretical and observed solar wind density decreases
as distance increases in a similar fashion.

This study provides evidence of anisotropic MHD turbulence in
the slow solar wind in the presence of the large-scale solar
magnetic field. PSP has already completed its 10th orbit, and
directly interacted with the Sun for the first time during its 8th
orbit by crossing the Alfvén critical surface (Kasper et al. 2021;
Zank et al. 2022). SolO is also measuring the solar wind in the
inner heliosphere, and moving toward the high latitude region. It
will be very interesting to extend the study anisotropic MHD
turbulence in both sub-Alfvénic and high latitude solar wind
regions using PSP and SolO measurements, respectively, using
the data analysis methods (M1 and M2) and the NI MHD
turbulence transport model.

We acknowledge the partial support of a Parker Solar Probe
contract SV4-84017, an NSF EPSCoR RII-Track-1 cooperative
agreement OIA-1655280, and NASA awards 80NSSC20K1783
and 80NSSC21K1319. The SWEAP Investigation and this study
are supported by the PSP mission under NASA contract
NNN06AA01C.
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Appendix
NI MHD Turbulence Transport Model Equations

Zank et al. (2017) derived the 12 coupled NI MHD turbulence transport model equations describing the majority and a minority
turbulence energies (Elsässer energies and residual energy) and the corresponding energy weighted length scales. Here, we write the
12 coupled turbulence transport equations in terms of the Elsässer energies, residual energy, and the corresponding correlation
lengths. The 1D steady-state majority 2D turbulence transport model equations can be written as (Zank et al. 2017)
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The first term on the rhs of Equation (16) is the nonlinear dissipation term for the quasi-2D Elsässer energies. In Equation (17), the
first term on the rhs defines the decay of the quasi-2D residual energy through the inertial range. The second term in Equations (16)
and (17) is the turbulent shear source associated with the interaction of fast and slow streams, and Csh andC

E
sh
D denote the strengths of

the sources. The parameter |ΔU| denotes the velocity difference between the fast and slow solar wind speed, and VA0 is the Alfvén
velocity at a reference point r0. The parameters β(= α/2) and α are the von Kármán–Taylor constants.

We consider the Parker spiral magnetic field in the form given by Weber & Davis (1967)
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where the subscript a represents the reference point ra. We assume the reference point ra≈ 10R e, where Re is a solar radius. We use
Ba= 1.08× 103 nT.

The 1D steady-state transport equations for NI/slab turbulence can be written as (Zank et al. 2017)
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where VA is the Alfvén velocity. The parameter b describes the geometry of NI/slab turbulence and is related to the closure
assumption for the off-diagonal two-point correlations. In Equation (21), the first term on the rhs is the nonlinear dissipation term for
the NI/slab energy in forward and backward propagating modes. On the rhs of Equation (22), the first term defines the decay of the
NI/slab residual energy. The second term on the rhs of Equations (21) and (22) is the shear source of turbulence for the NI/slab
energy in forward/backward propagating modes, and the residual energy with strengths Csh* and C E

sh
D* , respectively.

The 1D steady-state transport equation for the variance of the density fluctuations can be written as (Zank et al. 2017, 2018;
Adhikari et al. 2017a)
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The second term on the rhs of Equation (25) is the turbulent shear source for the density variance with strength η1, and 〈ρ∞2〉0 is the
density variance at a reference position r0.
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