
J. Plasma Phys. (2022), vol. 88, 835880402 © The Author(s), 2022.
Published by Cambridge University Press

1

This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and
reproduction, provided the original article is properly cited.
doi:10.1017/S0022377822000642

Action principles and conservation laws for
Chew–Goldberger–Low anisotropic plasmas

G.M. Webb 1,†, S.C. Anco 2, S.V. Meleshko 3 and G.P. Zank 1,4

1Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville,
Huntsville, AL 35805, USA

2Department of Mathematics and Statistics, Brock University, St. Catharines, ON L2S 3A1, Canada
3School of Mathematics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima

30000, Thailand
4Department of Space Science, The University of Alabama in Huntsville, Huntsville, AL 35899, USA

(Received 4 February 2022; revised 19 June 2022; accepted 20 June 2022)

The ideal Chew–Goldberger–Low (CGL) plasma equations, including the double
adiabatic conservation laws for the parallel (p‖) and perpendicular pressure (p⊥), are
investigated using a Lagrangian variational principle. An Euler–Poincaré variational
principle is developed and the non-canonical Poisson bracket is obtained, in which the
non-canonical variables consist of the mass flux M , the density ρ, the entropy variable
σ = ρS and the magnetic induction B. Conservation laws of the CGL plasma equations
are derived via Noether’s theorem. The Galilean group leads to conservation of energy,
momentum, centre of mass and angular momentum. Cross-helicity conservation arises
from a fluid relabelling symmetry, and is local or non-local depending on whether the
gradient of S is perpendicular to B or otherwise. The point Lie symmetries of the CGL
system are shown to comprise the Galilean transformations and scalings.
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1. Introduction

In magnetohydrodynamics (MHD), the ideal Chew–Goldberger–Low (CGL) equations
(Chew, Goldberger & Low 1956) describe plasmas in which there is not enough scattering
of the particles to have an isotropic pressure and only lowest-order gyro-radius effects
terms are taken into account in the particle transport (i.e. finite Larmor-radius terms are
neglected). These equations can be viewed as the small gyro-radius limit of the Vlasov
fluid moment equations, where the pressure tensor has the anisotropic (gyrotropic) form
p = p⊥I + ( p‖ − p⊥)ττ . Here τ = |B|−1B is the unit vector along the magnetic field and
I is the identity tensor. The pressure component p‖ − p⊥ controls the anisotropy, i.e. the
pressure tensor is isotropic if p‖ = p⊥.
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Higher-order gyro-radius effects and gyro-viscosity lead to the extended anisotropic
MHD equations (see, e.g., Macmahon 1965; Ramos 2005a,b; Sulem & Passot 2015;
Hunana et al. 2019a). Braginskii (1965), Schnack (2009) and Devlen & Pekünlü (2010)
used an isotropic pressure decomposition, which is not an anisotropic CGL decomposition.
Hunana et al. (2022) considered various generalisations of the Braginskii (1965) model
using the Landau collisional operator for the case of multi-species plasmas. A recent
Hamiltonian version of extended gyro-viscous MHD has been developed by Lingam,
Morrison & Wurm (2020).
In the present work, we develop a variational formulation of the ideal CGL plasma

equations starting from the Lagrangian formulation of Newcomb (1962). Our main goals
are to derive and discuss:

(1) an Euler–Poincaré (EP) action principle;
(2) a non-canonical Poisson bracket and its Casimirs;
(3) conservation laws from application of Noether’s theorem to the Galilean group of

Lie point symmetries;
(4) a cross-helicity conservation law from particle relabelling symmetries and its

non-local nature when the entropy gradients are non-orthogonal to the magnetic
field.

Previous work on the CGL equations can be found in Abraham-Shrauner (1967),
Hazeltine, Mahajan & Morrison (2013), Holm & Kupershmidt (1986), Ramos (2005a,b),
Hunana et al. (2019a,b) and Du et al. (2020).
Cheviakov & Bogoyavlenskij (2004) and Cheviakov & Anco (2008) derived exact,

anisotropic MHD equilibria solutions of the CGL equations, with a modified equation
of state for incompressible fluid flows. Cheviakov & Bogoyavlenskij (2004) obtained
an infinite group of Lie symmetries of the anisotropic plasma equilibrium equations for
steady flow configurations. An infinite-dimensional family of transformations between the
isotropic MHD equilibrium equations and solutions of the anisotropic CGL equations
were obtained. Ilgisonis (1996) studied the stability of steady CGL plasma equilibria
in a tokamak for a generalised Grad–Shafranov equation, taking into account the fluid
relabelling symmetry, and covers previous stability criteria for ideal CGL plasma and ideal
MHD cases.
Our methods are adapted from MHD and ideal fluid mechanics. It is well known how

to use a Lagrangian map to relate Eulerian and Lagrangian fluid quantities (Newcomb
1962), and this underpins the EP action principle which is a Lagrangian counterpart of
a Hamiltonian formulation (Holm, Marsden & Ratiu 1998; Webb 2018; Webb & Anco
2019). This action principle is based on the Lagrangian map and utilises an associated Lie
algebra.
Recent work by Dewar et al. (2020) and Dewar & Qu (2022) developed variational

principles to describe time- dependent relaxed MHD using a global cross-helicity
constraint with a phase space Lagrangian action principle (PSL) as opposed to a
configuration space Lagrangian (CSL) action. The theory has been used to describe
multi-region, extended MHD (RxMHD) in fusion plasma devices. In ideal MHD current
sheets can develop. One of the main ideas in this work is to provide a global fitting
together of ideal MHD sub-regions, subject to global cross-helicity and magnetic helicity
constraints by using Lagrange multipliers. This is a rather complicated theory that lies
beyond the scope of the present paper.
Noether’s theorem has been used to obtain conservation laws for ideal MHD (Webb

& Anco 2019); see also Padhye & Morrison (1996a,b) and Padhye (1998). A different
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approach to deriving conservation laws is Lie dragging of differential forms, vector fields
and tensors, as developed by Moiseev et al. (1982), Sagdeev, Tur & Yanovskii (1990), Tur
& Yanovsky (1993), Webb et al. (2014a,b), Gilbert & Vanneste (2020), Besse & Frisch
(2017) and Anco & Webb (2020).
Section 2 summarises the ideal CGL plasma equations. The anisotropic pressure

components p‖ and p⊥ satisfy double adiabatic conservation laws. The total energy
equation for the system arises from combining the internal energy equation, the kinetic
energy equation and the electromagnetic energy equation (i.e. Poynting’s theorem).
The cross-helicity and Galilean conservation laws are obtained for barotropic and
non-barotropic gas equations of state. The magnetic helicity transport equation and the
conservation of magnetic helicity is described. The thermodynamics of CGL plasmas
are discussed. This leads to an internal energy density of the form e = e(ρ, S,B) for the
plasma (e.g. Holm & Kupershmidt 1986; Hazeltine et al. 2013), where B = |B| is the
magnitude of the magnetic field. It applies to the situation when reversible energy changes
occur, with the temperature of the plasma being given by T = eS, and it yields an equation
of state which incorporates the double adiabatic conservation laws. A comparison is given
with a more restrictive different approach that applies the ideal gas law to the plasma (e.g.
Du et al. 2020), with an equation of state being derived as a consequence.
Section 3 describes the Lagrangian map between the Eulerian fluid particle position

x and the Lagrangian particle position x0. This map is obtained from integrating the
system of ordinary differential equations dx/dt = u(x, t) with the fluid velocity u(x, t)
assumed to be a known function of x and t and x = x0 at time t = 0. The Lagrangian
map x(x0, t) is used to write the fluid equations as a variational principle (Newcomb 1962;
Holm et al. 1998). In this description the canonical coordinates are q = x(x0, t), and the
canonical momenta are defined by the Legendre transformation p = ∂L0/∂ ẋ where L0 is
the Lagrangian density in a frame moving with the fluid.
Section 4 develops the EP action principle for the CGL plasma equations by using the

general method of Holm et al. (1998) and the results of Newcomb (1962).
In § 5, the Poisson bracket {F,G} of functionals F and G is described. We obtain the

non-canonical Poisson bracket of Holm & Kupershmidt (1986) but give more details. By
converting the variational derivatives for functionals from the canonical coordinates (q, p)
to physically motivated non-canonical coordinates, the Poisson bracket is converted to
its non-canonical form in the new variables. The symplectic (i.e. Hamiltonian) form of
the non-canonical Poisson bracket is determined, which is useful in proving the Jacobi
identity and for writing down the Casimir determining equations. The Casimirs of the
Poisson bracket commute with the Hamiltonian functional characterising the system and
are obtained using the approach of Hameiri (2004) (see also Morrison 1982; Holm et al.
1985; Marsden & Ratiu 1994; Padhye & Morrison 1996a,b; Padhye 1998).
Section 6 describes Noether’s theorem for the CGL variational principle using the

Lagrangian variables. Noether’s theorem produces conservation laws in terms of these
variables from variational symmetries. The Eulerian form of the conservation laws is
obtained through the Lagrangian map by use of a result of Padhye (1998). The variational
symmetries include the Galilean group, in particular: (i) time translation invariance yields
energy conservation; (ii) space translation invariance yields momentum conservation; (iii)
invariance under Galilean boosts yields centre of mass conservation; (iv) invariance of
under rotations yields angular momentum conservation.
In addition, fluid relabelling symmetries are shown to be variational symmetries which

yield the generalised cross-helicity conservation law for CGL plasmas. The conditions
under which this conservation law is local or non-local are delineated. A local conservation
law is shown to arise when the parallel and perpendicular entropies, S‖ and S⊥, have
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zero gradient along the magnetic field. Alternatively, for an internal energy density
e = e(ρ, S,B), a local conservation law occurs when B · ∇S = 0. When these conditions
fail to hold in the plasma, the cross-helicity conservation law is non-local and depends on
the integration of the temperatures back along the Lagrangian fluid particle paths.
The present paper can be thought of as an extension of the work of Holm&Kupershmidt

(1986). We restrict our analysis to non-relativistic flows, whereas Holm & Kupershmidt
(1986) study both relativistic and non-relativistic flow versions of the CGL equations.
Our analysis is more complete than Holm & Kupershmidt (1986) in the following ways.
(i) Our analysis takes into account more recent developments in anisotropic moment
equations for plasmas with an anisotropic pressure tensor (e.g. Hazeltine et al. 2013;
Hunana et al. 2019a). In particular, the formulations of the equation of state and the first
law of thermodynamics used by Holm & Kupershmidt (1986) were not clear because of
the brevity of the exposition. (ii) We show that a slightly more general, non-separable
equation of state can be used than that of Hazeltine et al. (2013) (see (2.30) and what
follows). (iii) We provide a more complete treatment of the conservation laws for the CGL
system, and identify the symmetries of the Lagrangian which give rise to the conservation
laws in Noether’s theorem. Our analysis shows that the cross-helicity conservation law
is a consequence of a fluid relabelling symmetry, which is, in general, a non-local
conservation law unless B is normal to the entropy gradients of S‖, S⊥ and S, in which
case the conservation law is local. (iv) We describe the CGL Poisson bracket of Holm &
Kupershmidt (1986) which uses the non-canonical variables ρ, M = ρu, σ = ρS and B.
The entropy variable used in the non-canonical Poisson bracket is σ = ρS where S is
the entropy. The entropy S can, in turn, be decomposed into the form S = S‖ + S⊥.
The non-canonical Poisson bracket derivation in Appendix D is more rigorous than that
used by most authors as it takes into account the variations in the basis vectors used
to define vectors and tensors. However, these changes do not modify the net Poisson
bracket, because they only lead at most to changes in the boundary terms in the bracket
which are discarded (see, e.g., Holm, Kupershmidt & Levermore (1983) for the more
rigorous general derivation of the non-canonical Poisson bracket in MHD). (v) We provide
a modern version of Noether’s theorem which only uses the evolutionary symmetry
operator. We describe the classical form of Noether’s theorem obtained by Bluman &
Kumei (1989), in Appendix H. In § 6.1 we derive CGL conservation laws using the more
modern form of Noether’s theorem. Section 6.2 gives the classical version of Noether’s
theorem to derive CGL plasma conservation laws.
Section 7 concludes with a summary and discussion.
The various technical derivations used in the main results, and the Lie point symmetries

of the CGL system, are summarised in Appendices A to G.

2. CGL equations and conservation laws

In this section, we first summarise the basic CGL plasma model equations, and then
we discuss the thermodynamics of CGL plasmas, followed by the key conservation laws
in Eulerian form: total energy; cross-helicity and non-local conserved cross-helicity;
magnetic helicity. These conservation laws, in later sections, will be related to the
variational symmetries of the action principle for the CGL equations and expressed in
Lagrangian form. Some general remarks about Eulerian conservation law equations, which
will be used in the discussions, are summarised in § 6.

2.1. CGL model
The physical variables which describe CGL plasmas are the fluid velocity u, fluid density
ρ, magnetic field induction B, the anisotropic pressure components p‖ and p⊥ and the
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entropy S. The ideal CGL plasma equations are similar to the MHD equations and consist
of: the mass continuity equation

∂ρ

∂t
+ ∇ · (ρu) = 0; (2.1)

the momentum equation (in semi-conservative form)

∂

∂t
(ρu) + ∇ · (ρuu + p + MB) = −ρ∇Φ, (2.2)

in which p is the gyrotropic pressure tensor (which replaces the isotropic gas pressure pI
used in MHD) given by

p = p⊥I + ( p‖−p⊥)ττ , τ = B
B

, B = |B|, (2.3a–c)

and MB is the magnetic pressure tensor

MB = 1
μ0

(
B2

2
I − BB

)
= B2

μ0

(
1
2
I − ττ

)
; (2.4)

the entropy transport equation
∂S
∂t

+ u · ∇S = 0; (2.5)

Faraday’s equation and Gauss’s law

∂B
∂t

− ∇ × (u × B) = 0, (2.6)

∇ · B = 0; (2.7)

along with the pressure equations

∂p‖
∂t

+ ∇ · (
p‖u

) + 2p‖ : ∇u = 0, (2.8)

∂p⊥
∂t

+ ∇ · ( p⊥u) + p⊥ : ∇u = 0, (2.9)

where p‖ and p⊥ are the terms comprising the gyrotropic pressure tensor

p‖=p‖ττ , p⊥=p⊥ (I − ττ ) , p = p‖+p⊥. (2.10a–c)

Through Faraday’s equation (2.6) and the mass continuity equation (2.1), the pressure
equations (2.8)–(2.9) can be expressed as the double adiabatic equations

d
dt

(
p‖B2

ρ3

)
= 0,

d
dt

(
p⊥
ρB

)
= 0, (2.11a,b)

which represent conservation of the particle magnetic moment and the second longitudinal
adiabatic moment of the particles, where d/dt = ∂/∂t + u · ∇ is the Lagrangian time
derivative following the flow.
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In the momentum equation (2.2), Φ is the potential of an external source of gravity (for
example, in the case of the solar wind, it could represent the gravitational potential field
of the Sun).
If one counts the number of evolution equations in (2.1)–(2.11a,b) there are 10 equations

for the 10 variables u, B, ρ, S, p‖ and p⊥. If one does not need to know S, then there are
nine equations for nine unknowns.
The non-canonical Poisson bracket formulation of MHD in Morrison & Greene

(1982) uses Faraday’s law (2.6) in the form ∂B/∂t − ∇ × (u × B) + u∇ · B = 0 for the
mathematical case in which ∇ · B �= 0 (see also Webb 2018). In fact, the possibility of
∇ · B �= 0 arises in numerical MHD due to numerical errors in the Gauss’ law (2.7).
To determine the relationship between the entropy S, the internal energy density ε and

the pressure components p‖ and p⊥ in (2.1)–(2.11a,b) we first note that ε is given by

ε = p‖+2p⊥
2

. (2.12)

A different, related approach comes from the entropy law for ideal gases. We consider and
compare both approaches.
One link between the approaches is the observation that integration of the double

adiabatic equations (2.11a,b) yields

p‖= exp
(
S̄‖

) ρ3

B2
, p⊥= exp

(
S̄⊥

)
ρB, (2.13a,b)

where the quantities S̄‖ and S̄⊥ are dimensionless forms of entropy integration constants
arising from integrating the double adiabatic equations (2.11a,b). In principle, S̄‖ and S̄⊥
must be scalars advected with the flow. In particular, these quantities could be functions
of the entropy S satisfying (2.5). They could also be functions of other advected invariants
of the flow, such as B · ∇S/ρ (e.g. Tur & Yanovsky 1993; Webb et al. 2014a). For the
sake of simplicity, we assume that S‖ and S⊥ depend only on S. The overbars on S̄, S̄‖ and
S̄⊥ denote dimensionless versions of these quantities.
If these S‖ and S⊥ are functions solely of the entropy S, then the internal energy density

ε will have the functional form ε(ρ, S,B). This form also arises from the first law of
thermodynamics coming from the transport equation for ε when reversible thermodynamic
processes are considered. Strictly speaking, we should use normalised or dimensionless
variables in (2.13a,b), i.e. we should have used the variables

p̄‖= p‖
p‖0

, p̄⊥= p⊥
p⊥0

, B̄ = B
B0

, ρ̄ = ρ

ρ0
, (2.14a–d)

where the subscript zero quantities are dimensional constants. In a convenient abuse of
notation, we have dropped the overbar superscripts in (2.13a,b).

2.2. Thermodynamic formulation
A physical description of p‖ and p⊥ and their relation to the internal energy density ε was
developed first by Holm & Kupershmidt (1986), which in part uses the work of Volkov
(1966), and also later by Hazeltine et al. (2013), which discusses both reversible and
irreversible thermodynamics. Here we concentrate on the ideal reversible dynamics case.
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An analysis of reversible work done on the plasma reveals that the internal energy per
unit mass of the CGL plasma, e = ε/ρ, obeys the Pfaffian equation

de = T dS + p‖
ρ2

dρ − pΔ

ρB
dB. (2.15)

where T is the adiabatic temperature in the plasma. The expression (2.12) for the internal
energy density gives the relations

e = ε

ρ
= ( p‖+2p⊥)

2ρ
, pΔ = p‖−p⊥, (2.16a,b)

(see also Holm & Kupershmidt 1986) and

p ≡ ( p‖+2p⊥)

3
= 2ε

3
, (2.17)

which is the gas pressure defined by one-third of the trace of the CGL pressure tensor
(2.3a–c).
The Pfaffian equation (2.15) constitutes the first law of thermodynamics for a CGL

plasma. As outlined in Hazeltine et al. (2013), it can be derived from the transport equation
for ε under thermodynamic processes that involve reversible work done on the plasma
described by the gyrotropic part of the Vlasov distribution function. The derivation can
be generalised to include irreversible work comprising a dissipative term and a further
term due to gyro-viscosity, which is a non-dissipative term obtained in the limit of no
scattering. Equation (2.15) is equivalent to the non-dissipative internal energy equation
(2.51) in which a source term ρT dS/dt has been added to the right hand-side.
The above interpretation of (2.15) implies e = e(ρ, S,B) along with the thermodynamic

relations

T = eS = εS/ρ, p‖=ρ2eρ = ρερ − ε, pΔ = −ρBeB = −BεB. (2.18a–c)

Thus, if e(ρ, S,B) is known, i.e. an equation of state has been specified, then the relations
(2.18a–c) give p‖ and p⊥ as functions of ρ, S,B. Consistency must hold with the double
adiabatic equations (2.11a,b), which constrains the possible expressions for e(ρ, S,B).
To derive the constraints, we first substitute the relations (2.18a–c) into the internal

energy (2.17), giving

e = 1
ρ

(
3p‖
2

− pΔ

)
= 3

2
ρeρ + BeB. (2.19)

This is a first-order partial differential equation for e(ρ, S,B) which is easily solved by
using the method of characteristics (e.g. Sneddon 1957):

dρ
(3ρ/2)

= dB
B

= de
e

. (2.20)

Integrating these differential equations yields the general solution

e = ρ2/3f (ξ, S), ξ = Bρ−2/3, (2.21a,b)

where f (ξ, S) is an arbitrary function of S and the similarity variable ξ . Now, the relations
(2.18a–c) imply that

T = ρ2/3fS, (2.22)
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and
p‖= 2

3ρ
5/3 (

f − ξ fξ
)
, p⊥= 1

3ρ
5/3 (

2f + ξ fξ
)
. (2.23a,b)

Substitution of expressions (2.23a,b) into the double adiabatic equations (2.11a,b)
followed by use of the relation B = ρ2/3ξ then yields

d
dt

(
2
3
ξ 2f − 2

3
ξ 3fξ

)
= 0,

d
dt

(
2
3ξ

f + 1
3
fξ

)
= 0, (2.24a,b)

with df /dt = fξ dξ/dt for any process in which S is adiabatic (cf. the entropy equation
(2.5)). However, from Faraday’s equation (2.6) and the mass continuity equation (2.1), we
find that ξ obeys the transport equation

d
dt

ξ =
(

−1
3
∇ · u + ττ : ∇u

)
ξ. (2.25)

Thus, ξ is not an advected quantity, which implies that the adiabatic equations (2.24a,b)
for f (ξ, S) reduce to

2
3
ξ 2f − 2

3
ξ 3fξ = c‖(S),

2
3ξ

f + 1
3
fξ = c⊥(S). (2.26a,b)

The general solution of this pair of equations is given by

f (ξ, S) = c⊥(S)ξ + c‖(S)
1
2ξ 2

. (2.27)

Consequently, expressions (2.23a,b) yield the equation of state

p‖=c‖(S)ρ3/B2, p⊥=c⊥(S)ρB, (2.28a,b)

along with the relations
S̄‖= ln c‖(S), S̄⊥= ln c⊥(S) (2.29a,b)

from the double adiabatic integrals (2.13a,b). The corresponding internal energy (2.21a,b)
and pressure (2.17) have the explicit form

e = c⊥(S)B + c‖(S)
ρ2

2B2
= exp(S̄⊥)B + exp(S̄‖)

ρ2

2B2
, (2.30)

and

p = c⊥(S)
2ρB
3

+ c‖(S)
ρ3

3B2
= exp(S̄⊥)

2ρB
3

+ exp(S̄‖)
ρ3

3B2
. (2.31)

Note that the expressions for e and p in terms of the double adiabatic integrals S̄‖ and S̄⊥
hold independently of any form of equation of state. Finally, either (2.22) or (2.18a–c),
both of which rely on e = e(ρ, S,B), yield the plasma temperature:

T = c′
⊥(S)B + c′

‖(S)
ρ2

2B2
= dS̄⊥

dS
exp(S̄⊥)B + dS̄‖

dS
exp(S̄‖)

ρ2

2B2
. (2.32)

Hazeltine et al. (2013) arrived at a similar but less-general result under the assumption
that f is separable in S and ξ . This leads to c‖(S) = Q(S)d‖ and c⊥(S) = Q(S)d⊥, where
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d⊥ and d‖ are constants. The assumption of separability includes, for example, the case
where the gas pressure p satisfies the ideal gas law:

p = ρRT or T = p
ρR

, (2.33)

where R is the gas constant. In this case, from the relation (2.17), it follows that f must
satisfy the equation ∂f /∂S = (2/3R)f . Then it further follows that Q(S) = exp(2S/(3R)).
Conditions on the derivatives of the internal energy e for thermodynamic stability are

discussed in Hazeltine et al. (2013), but these considerations lie beyond the scope of the
present work.

2.2.1. Ideal gas law and entropy
The double adiabatic equations (2.8) for a CGL plasma can be combined in the form

d
dt

(
p‖p2⊥
ρ5

)
= 0 (2.34)

which suggests the advected quantity p‖p2⊥/ρ5 may be viewed as a function of the entropy
S. A specific functional relation can be motivated by considering the MHD limit for a
non-relativistic gas, where the gas entropy is given by the standard formula

S = Cv ln
(

p
ργ

)
, γ = Cp

Cv

= 5
3
, (2.35a,b)

with Cv and Cp being the specific heats at constant volume and pressure, respectively.
In a CGL plasma, the gas pressure p is given by expression (2.17) in terms of the
pressure components p‖ and p⊥ which are equal in the MHD limit, because the
pressure tensor (2.3a–c) must become isotropic. This results in the relation p‖ = p⊥ = p,
and as a consequence p‖p2⊥/ρ5 = p3/ρ5 = exp(3S/Cv) by assuming the formula (2.35a,b).
Generalising this relation away from the MHD limit then suggests the formula

S = Cv ln

(
p1/3‖ p2/3⊥

ρ5/3

)
(2.36)

for the entropy of a CGL plasma (see, e.g., Abraham-Shrauner 1967; Du et al. 2020).
Furthermore, because the double adiabatic integrals (2.13a,b) give p‖p2⊥/ρ5 = exp(S̄‖ +

2S̄⊥) where S̄‖ and S̄⊥ are each advected, the entropy formula (2.36) can be expressed as
S = (Cv/3)(S̄‖ + 2S̄⊥). This relation now suggests that the entropy is a sum of components

S = S‖ + S⊥ where S‖ ≡ Cv‖S̄‖ and S⊥≡Cv⊥S̄⊥, (2.37)

with
Cv‖ ≡ 1

3Cv, Cv⊥ ≡ 2
3Cv. (2.38a,b)

Correspondingly, the internal energy density (2.16a,b) of the plasma can be split into a
sum of densities

ε = p‖+2p⊥
2

= p‖
(γ‖−1)

+ p⊥
(γ⊥−1)

≡ ε‖+ε⊥, (2.39)

with effective adiabatic indices:
γ‖=3, γ⊥=2. (2.40a,b)
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Further note that

ε = p
γ − 1

, p = 1
3
( p‖+2p⊥), γ = 5

3
(2.41a–c)

in terms of the gas pressure p.
In addition, by applying the standard ideal gas law (2.33) to each of the pressure

components p‖ and p⊥, we can define corresponding temperatures:

T‖≡p‖/(ρR) and T⊥≡p⊥/(ρR). (2.42a,b)

Then the internal energy density (2.39) can be expressed as

ε = Rρ
(
1
2T‖+T⊥

)
, (2.43)

which yields the relations

Cv‖ = eT‖ = 1
2R, Cv⊥ = eT⊥ = R, Cv = 3

2R (2.44a–c)

from the specific heats (2.38a,b). Finally, by substituting the double adiabatic integrals
(2.13a,b) into the quantities (2.42a,b) and using expressions (2.37) and (2.44a–c), we
obtain

∂T‖
∂S‖

= 2T‖/R,
∂T⊥
∂S⊥

= T⊥/R, (2.45a,b)

which implies the expected thermodynamic relations:

eS‖ = T‖, eS⊥ = T⊥. (2.46a,b)

The preceding approach to the entropy of CGL plasmas has been adopted by Du et al.
(2020). It is equivalent to the thermodynamic approach specialised to the case of an ideal
gas in which the gas law is assumed to hold for all three pressures p, p‖ and p⊥.
The net upshot of this discussion is that we take e = e(ρ, S,B) as the equation of state

for the gas in the rest of the paper. Note, however, that S‖ = S‖(S) and S⊥(S) = S − S‖(S)
are functions of S. Here e = e(ρ, S,B) is the form of the equation of state used by Holm &
Kupershmidt (1986). The CGL Poisson bracket of Holm & Kupershmidt (1986) uses the
entropy variable σ = ρS to describe the complicated thermodynamics of the CGL plasma.

2.3. Total mass and energy conservation laws
The mass continuity equation (2.1) can be expressed in the familiar co-moving form

∂ρ

∂t
+ u · ∇ρ = −ρ∇ · u. (2.47)

On a volume V(t) moving with the fluid, the corresponding mass integral is conserved:

d
dt

∫
V(t)

ρ d3x = 0. (2.48)

A co-moving equation for the internal energy density (2.12) is obtained by combining
the parallel and perpendicular pressure equations (2.8)–(2.9), which yields

∂ε

∂t
+ ∇ · (εu) + ( p‖−p⊥)ττ : ∇u + p⊥∇ · u = 0. (2.49)

https://doi.org/10.1017/S0022377822000642 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000642


Action principles for CGL plasmas 11

This equation can be written in terms of the gyrotropic pressure tensor p by noting from
expression (2.10a–c) that

p · ∇u = p⊥∇ · u + ( p‖−p⊥)ττ : ∇u. (2.50)

Then the co-moving equation (2.49) takes the form

∂ε

∂t
+ ∇ · (εu + p · u) = u · (∇ · p), (2.51)

which is analogous to the internal energy density equation in fluid dynamics and MHD.
The total kinetic energy equation for the plasma is obtained by taking the scalar product

of the momentum equation (2.2) with u, which yields

∂

∂t

(
1
2
ρu2 + ρΦ

)
+ ∇ ·

(
u

(
1
2
ρu2 + ρΦ

))
= −u · ∇ · p + J · E + u · B∇ · B

μ0
,

(2.52)
where u = |u|, and

E = −u × B and J = ∇ × B
μ0

, (2.53a,b)

are the electric field E and the electric current J .
Using Maxwell’s equations (2.6)–(2.7), we obtain Poynting’s theorem (the

electromagnetic energy equation) in the form:

∂

∂t

(
1

2μ0
B2

)
+ ∇ ·

(
1
μ0

E × B
)

= −J · E − 1
μ0

(∇ · B)(u · B). (2.54)

The equation for the total energy in conserved form is obtained by adding the internal
energy equation (2.51), the kinetic energy equation (2.52) and the electromagnetic energy
equation (2.54), which gives

∂

∂t

(
1
2
ρu2 + ρΦ + ε + 1

2μ0
B2

)
+ ∇ ·

((
1
2
ρu2 + ρΦ + ε

)
u + p · u+ 1

μ0
E × B

)
=0.

(2.55)
It is useful here to note that the Poynting electromagnetic energy flux is

F em = 1
μ0

E × B = B2

2μ0
u + u · MB. (2.56)

The resulting energy balance equation on a volume V(t) moving with the fluid is given
by

d
dt

∫
V(t)

(
1
2
ρu2 + ρΦ + ε + 1

2μ0
B2

)
d3x = −

∮
∂V(t)

u · (p + MB) · n̂ dA (2.57)

in terms of the magnetic pressure tensor (2.4). The flux terms in (2.57) represent the rate
at which the total pressure tensor p + MB does work on the fluid. Note that there is no
contribution due to advection of the total energy density. Further discussion is provided in
§ 6.1.1 (see also Padhye 1998; Anco & Dar 2009, 2010). In addition, note that if the total
pressure tensor has no perpendicular component at the moving boundary, i.e. (p + MB) ·
n̂ = 0, then the moving energy integral will be conserved (i.e. a constant of the motion).
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2.4. Cross-helicity
The cross-helicity transport equation for a CGL plasma is obtained by taking the scalar
product of uwith Faraday’s equation (2.6) plus the scalar product ofBwith the momentum
equation (2.2), in the following form. By a standard cross-product identity, Faraday’s
equation can be written

∂

∂t
B − B · ∇u + u · ∇B + (∇ · u)B = 0. (2.58)

The momentum equation minus u times the mass continuity equation (2.1) yields the
velocity equation:

d
dt
u = − 1

ρ
∇ · (p + MB) − ∇Φ, (2.59)

where−(1/ρ)∇ · p is the acceleration due to the anisotropic pressure. Forming and adding
the respective scalar products with u and B then gives the equation for cross-helicity
density u · B as

∂

∂t
(u · B) + ∇ ·

[
(u · B)u +

(
Φ − 1

2
u2

)
B

]
= −B ·

(
1
ρ

∇ · p
)

, (2.60)

where u = |u|.
The thermodynamic form of this transport equation (2.60) is obtained by using the

equation

−∇ · p = B × (∇ × Ω) − Ω(∇ · B) + ρ(T∇S − ∇h), (2.61)

which relies on the Pfaffian equation (first law of thermodynamics) (2.15) for a CGL
plasma with an internal energy e(ρ,B, S), where, from the thermodynamic relations
(2.18a–c), T = eS is the gas temperature and h = ερ = e + ρeρ is the enthalpy of the fluid:

h = 3p‖+2p⊥
2ρ

. (2.62)

Here

Ω = pΔ

B
τ . (2.63)

Note that the case Ω = 0 corresponds to the MHD limit in which the anisotropy vanishes,
pΔ = p‖ − p⊥ = 0. A derivation of the pressure divergence equation (2.61) is given in
Appendix B. An alternative derivation is provided within the EP formulation of the CGL
equations in § 4.1 and Appendix E. The scalar product of this equation with (1/ρ)B
reduces to

−B ·
(
1
ρ

∇ · p
)

= B · (T∇S) − ∇ · (hB) (2.64)

using Gauss’ law (2.7). As a result, the cross-helicity density transport equation in
thermodynamic form is simply

∂

∂t
(u · B) + ∇ ·

[
(u · B)u +

(
Φ + h − 1

2
u2

)
B

]
= B · (T∇S). (2.65)
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The term on the right-hand side of the cross-helicity transport equation (2.65) can be
written in a conserved form through use of the equation

∂

∂t
(φ∇S · B) + ∇ · [(φ∇S · B)u] = (∇S · B)

d
dt

φ, (2.66)

which holds for any scalar variable φ and follows from Faraday’s equation (2.6) and the
entropy equation (2.5). This leads to the non-local cross-helicity density conservation law

∂

∂t
(w · B) + ∇ ·

[
(w · B)u +

(
Φ + h − 1

2
u2

)
B

]
= 0, (2.67)

in terms of
w = u + r∇S, (2.68)

where r is a non-local variable obtained by integrating the temperature T back along the
path of the Lagrangian fluid element. Specifically,

dr
dt

= −T, r = −
∫ t

T dt, (2.69a,b)

where d/dt = ∂/∂t + u · ∇ is the Lagrangian time derivative.
The non-local conservation law (2.67) yields a moving cross-helicity balance equation

(cf. Appendix C):

d
dt

∫
V(t)

w · B d3x = −
∮

∂V(t)

(
Φ + h − 1

2
u2

)
B · n̂ dA (2.70)

on a volume V(t) moving with the fluid. Note that if B is perpendicular to the boundary,
i.e. B · n̂ = 0, then the cross-helicity integral

∫
V(t) w · B d3x is conserved in the flow.

An alternative form of the non-local conservation law (2.67) is obtained by directly
taking the divergence of the pressure tensor p using the gyrotropic expression (2.10a–c),
and combining it with the gradient of the enthalpy (2.62). As shown in Appendix B, this
gives

B ·
(
1
ρ

∇ · p − ∇h
)

= −
(
p‖
2ρ

B · ∇ ln c‖(S) + p⊥
ρ
B · ∇ ln c⊥(S)

)

= −
(
p‖
2ρ

B · ∇S̄‖+p⊥
ρ
B · ∇S̄⊥

)
(2.71)

in terms of the adiabatic integrals (2.13a,b) and (2.37). Expression (2.71) is equivalent
to −B · (T∇S) through the temperature expression (2.32). Instead, if we use the gas law
temperatures (2.49) and the specific heats (2.51) associated with p‖ and p⊥, then we can
write

B ·
(
1
ρ

∇ · p − ∇h
)

= − (
T‖B · ∇S‖+T⊥B · ∇S⊥

)
(2.72)

in term of the gas law entropies (2.37). Substituting expression (2.72) into the
cross-helicity density transport equation (2.65) yields

∂

∂t
(u · B) + ∇ ·

[
(u · B)u + B

(
Φ + h − 1

2
u2

)]
= B · (T‖∇S‖+T⊥∇S⊥). (2.73)

This result (2.73) can be also derived using the Newcomb (1962) action principle for CGL
plasmas shown in § 4.
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The corresponding non-local cross-helicity density conservation law is given by

∂

∂t
(w̃ · B) + ∇ ·

[
(w̃ · B)u + B

(
Φ + h − 1

2
u2

)]
= 0, (2.74)

where
w̃ = u + r‖∇S‖+r⊥∇S⊥, (2.75)

with r‖ and r⊥ being non-local variables defined by the equations:

dr‖
dt

= −T‖,
dr⊥
dt

= −T⊥. (2.76a,b)

The non-local cross-helicity density conservation law for MHD analogous to equation
(2.67) was developed in Webb et al. (2014a,b), Webb (2018), Webb & Anco (2019),
Yahalom (2017a,b) and Yahalom & Qin (2021). A topological interpretation of the
generalised cross-helicity conservation law has been found in terms of an MHD
Aharonov–Bohm effect in Yahalom (2017a,b). Yahalom (2013) discussed a topological
interpretation of magnetic helicity as an Aharonov Bohm effect in MHD.
If B · ∇S = 0, then the non-local conservation law (2.67) reduces to a local cross-

helicity density conservation law given by r = 0 and w = u. This result is analogous to
the local cross-helicity conservation law in MHD (e.g. Webb 2018; Webb & Anco 2019).
It is interesting to note that the velocity equation (2.59) can be written in the suggestive

form:
du
dt

= T∇S − ∇h + J̃ × B
ρ

− ∇Φ, (2.77)

where

J̃ ≡ J − ∇ × Ω = ∇ × B̃
μ0

, B̃ ≡ B
(
1 − μ0pΔ

B2

)
. (2.78a,b)

This (2.77) turns out to arise directly from the non-canonical Hamiltonian formulation
presented in § 5.1.

2.5. Magnetic helicity
In ideal MHD and in ideal CGL plasmas, Faraday’s equation (2.6) written in terms of the
electric field

∂B
∂t

+ ∇ × E = 0 (2.79)

can be uncurled to give E = −u × B in the form

E = −∇φE − ∂A
∂t

= −(u × B) where B = ∇ × A. (2.80)

The uncurled form of Faraday’s equation (2.80) implies

∂A
∂t

+ E + ∇φE = 0. (2.81)

Combining the scalar product of Faraday’s equation (2.79) with A plus the scalar product
of the uncurled equation (2.81) with B yields the magnetic helicity transport equation

∂

∂t
(A · B) + ∇ · (E × A + φEB) = 0, (2.82)
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which can also be written in the form

∂

∂t
(A · B) + ∇ · [(A · B)u + (φE − u · A)B] = 0. (2.83)

The total magnetic helicity for a volume V(t) moving with the fluid is given by

HM =
∫
V(t)

A · B d3x. (2.84)

It satisfies the moving balance equation (cf. Appendix C)

dHM

dt
= −

∮
∂V(t)

(φE − A · u)B · n̂ dA, (2.85)

where n̂ is the outward unit normal of the moving boundary ∂V(t). Thus, if B is
perpendicular to the boundary, i.e. B · n̂ = 0, then HM is conserved in the flow. This
discussion applies both to ideal MHD and also to ideal CGL plasmas. (e.g. Kruskal &
Kulsrud 1958; Woltjer 1958; Moffatt 1969; Berger & Field 1984; Moffatt & Ricca 1992;
Arnold & Khesin 1998).
It is beyond the scope of the present exposition to discuss the issues of how to define the

relative magnetic helicity for volumes V for which B · n �= 0 on ∂V (e.g. Berger & Field
1984; Finn & Antonsen 1985, 1988; Webb et al. 2010). Similar considerations apply to
field line magnetic helicity (e.g. Prior & Yeates 2014) and absolute magnetic helicity (e.g.
Low 2006, 2011; Berger & Hornig 2018).
It is of interest to note that, under gauge transformations (i.e. A → A + ∇χ and

φE → φE − ∂χ/∂t for an arbitrary function χ(t, x)), the moving balance equation is gauge
invariant, but the magnetic helicity integral changes by addition of a boundary integral:
HM → HM + ∮

∂V(t) χB · n̂ dA. However, if the electric field potential φE satisfies the gauge

φE = A · u, (2.86)

then the moving flux of the magnetic helicity vanishes and the resulting (gauge-dependent)
magnetic helicity HM is conserved in the flow. This gauge turns out to hold precisely when
A is advected by the flow, which is shown in the following subsection.

2.6. Lie dragged (advected) quantities
A quantity, a, is Lie dragged by the fluid flow if its advective Lie derivative vanishes:(

∂

∂t
+ Lu

)
a = 0, (2.87)

where Lu is the ordinary Lie derivative with respect to the vector field u (e.g. Tur &
Yanovsky 1993; Webb et al. 2014a; Anco & Webb 2020). For a scalar quantity, its
advective Lie derivative reduces to its material derivative

d
dt

= ∂

∂t
+ u · ∇. (2.88)

For quantities that are vector fields or differential forms, the advective Lie derivative also
contains a rotation-shear term which involves ∇u.
In CGL plasmas, S is an advected scalar, as are the double adiabatic integrals (2.13a,b).

There are two basic advected non-scalar quantities: the differential form α = ∇S · dx ≡
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∇iS dxi and the vector field b = (1/ρ)B ≡ bi ∇i (note the vector field b is a directional
derivative operator). The contraction of the vector field b with the co-vector or differential
form α is a scalar (note that ∇i� dx j = δij , and b�α = biαi ≡ bi∇iS). Note that b is
Lie dragged with the flow, (this statement is equivalent to Faraday’s equation, when
one takes into account the mass continuity equation: i.e. (∂t + Lu)b = 0 which implies
∂tb + [u, b] = 0). Here α is a one-form or co-vector, that is Lie dragged with the flow.
The inner product of the vector field b with the one-form α is a scalar invariant which is
advected with the flow (e.g. Tur & Yanovsky 1993). Thus, the quantities

B · ∇S
ρ

,
B · ∇S̄‖

ρ
,

B · ∇S̄⊥
ρ

(2.89a–c)

are advected scalars in CGL plasmas.
The gauge (2.86) in which the magnetic helicity integral is conserved is equivalent to

Lie dragging the one-form α = A · dx with the fluid flow:(
∂

∂t
+ Lu

)
(A · dx) =

(
∂A
∂t

− u × B + ∇(A · u)

)
· dx = 0, (2.90)

which vanishes due to the uncurled form of Faraday’s equation (2.80) combined with
equation (2.86). Holm & Kupershmidt (1983a,b) used this advected-A gauge in the
formulation of non-canonical Poisson brackets for MHD and for multi-fluid plasmas (see
also Gordin & Petviashvili 1987, 1989; Padhye & Morrison 1996a,b; Padhye 1998).

3. The Lagrangian map

In a Lagrangian formulation of MHD and CGL plasmas, fluid elements are given labels
that are constant in the fluid flow. The simplest labelling consists of initial values x0 = x(0)
for integrating the flow equations of a fluid element

dx(t)
dt

= u(x(t), t), (3.1)

in which the fluid velocity u is assumed to be a known function of x and t. In general, fluid
labels are given by functions a = a(x0).
A Lagrangian map is an invertible mapping from the Lagrangian fluid labels a to

the Eulerian position coordinates x(t) = X (a, t) for the motion of a fluid element. For
simplicity, we take x and a = x0 to be expressed in terms of Cartesian coordinates
x = (x, y, z) and x0 = (x0, y0, z0). Then, the Lagrangian map takes the form

x = X (x0) (3.2)

with the t dependence being suppressed in the notation. Invertibility implies that the
Jacobian of this map is non-degenerate:

J = det(Xij) �= 0 where Xij ≡ ∂Xi(x0)

∂x j
0

. (3.3)

We write Yij to denote the inverse of the matrix Xij, whereby

YikXkj = XikYkj = δij (3.4)

https://doi.org/10.1017/S0022377822000642 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000642


Action principles for CGL plasmas 17

with δij denoting the components of the identity matrix. Recall the standard formulae:

Yij = J−1Aji, XjiAki = AikXij = Jδjk,
∂J
∂Xij

= Aij, (3.5a–c)

where Aij = cofac(Xij) is the cofactor matrix of Xij. In addition, note that

J̇ = ∂J
∂Xij

Ẋij = Aij
∂Ẋi

∂x j
0

. (3.6)

3.1. Map formulae
We now formulate the maps between the CGL plasma variables ρ, S, B, p‖ and p⊥ and
their Lagrangian counterparts ρ0(x0), S0(x0), B0(x0), p‖(x0) and p⊥(x0), respectively.
The density ρ0 of a fluid element with label x0 is related to the Eulerian density by the

mass conservation equation

ρ d3x = ρ0 d3x0, (3.7)

where d3x = J d3x0. This implies

ρ = ρ0

J
. (3.8)

From Newcomb (1962) the Cartesian components of Bi in the Eulerian frame are related
to the Lagrangian magnetic field component Bk

0 by the equation:

Bi = XikBk
0

J
. (3.9)

The derivation of (3.9) follows by noting

Bi dσi = Bk
0 dσ0k, (3.10)

d3x = dxi dσi = J d3x0 = J dxk0 dσok ≡ JYki dxi dσ0k. (3.11)

Equation (3.10) describes the conservation of magnetic flux, where dσi is the flux tube area
normal to the xi coordinate surface, and dσ0k is the flux tube area normal to the xk0 surface
in the Lagrangian frame. Equation (3.11) relates the volume elements d3x to d3x0. From
(3.11) one obtains

dσi = Aik dσ k
0 , (3.12)

for the transformation between the area elements dσi and dσ k
0 . The magnetic flux

conservation equation (3.10) now gives the transformation Bk
0 = AikBi which, in turn,

implies the transformation (3.9).
An alternative form of the relation (3.9) arises from the Lie dragged or frozen-in vector

field

b = Bi

ρ

∂

∂xi
= Bk

0

ρ0

∂

∂xk0
≡ Bk

0

ρ0
Xik

∂

∂xi
, (3.13)

which implies the transformation (3.9) between Bi and Bk
0. In (3.13) we use the modern

differential geometry notion of a vector field as a directional derivative operator (e.g.
Misner, Thorne & Wheeler 1973).
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From the relation (3.9), we have

B2 = ζ 2B2
0

J2
where ζ 2 = Xijτ

j
0Xikτ

k
0 (3.14)

in terms of the unit vector τ0 = B−1
0 B0 along the magnetic field B0 (cf. (2.3a–c)), with

B0 = |B0| being the magnetic field strength at x0. Hence, we obtain

B = ζ B0

J
, τ i = Bi

B
= Xijτ

j
0

ζ
. (3.15a,b)

The latter relation can be inverted to obtain τ 0 in terms of τ through the formulae (3.5a–c):

τ i
0 = ζ

J
Ajiτ

j. (3.16)

Next, from the double adiabatic conservation laws (2.11a,b), we have the frozen-in
quantities

p⊥
ρB

= p⊥0

ρ0B0
,

p‖B2

ρ3
= p‖0B2

0

ρ3
0

. (3.17a,b)

By combining these equations with (3.15a,b) and (3.8), we obtain

p‖= p‖0
Jζ 2

, p⊥=p⊥0ζ

J2
, (3.18a,b)

which gives the respective relations between the pressures p‖0 and p⊥0 at a fluid element
with label x0 and the Eulerian pressures p‖ and p⊥.
Finally, we note that the Eulerian entropy S is equal to the entropy S0 at a fluid element

with label x0, since S is frozen-in by the transport equation (2.5).

3.2. Lagrangian variational principle and Euler–Lagrange equations
The Lagrangian variational principle for MHD and for CGL plasmas was obtained in
Newcomb (1962):

A =
∫ t1

t0

∫
V
L d3x dt =

∫ t1

t0

∫
V0

L0 d3x0 dt, (3.19)

where L is the Lagrangian in Eulerian variables and L0 is its counterpart arising through
the Lagrangian map. Here V is a fixed spatial domain and [t0, t1] is a fixed time interval. In
general, L will be given by the kinetic energy density minus the potential energy density
for a fluid element. The kinetic energy density for both MHD and CGL plasmas is simply
1
2ρu

2, with u = |u|. Subtracting this expression from the total energy density for a CGL
plasma (cf. the moving energy balance equation (2.57))

H ≡ 1
2
ρu2 + ρΦ + ε + 1

2μ0
B2 (3.20)

yields the potential energy density ρΦ + ε + (1/2μ0)B2, where ε is the internal energy
density (2.12). Thus, a CGL plasma has the Lagrangian

L = 1
2
ρu2 − ρΦ − ε − 1

2μ0
B2, (3.21)

where, for the sake of completeness, we have included the energy contributed by an
external gravitational potential Φ(x) (e.g. which would arise from the gravitational field
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of the Sun in the case of solar and interplanetary physics). The corresponding Lagrangian
L0 is obtained from the relation L d3x = L0 d3x0 = LJ d3x0, which gives

L0 = JL. (3.22)

Substituting the Eulerian expressions (3.21), (3.18a,b), (3.14), (3.8) and (3.2) into L0, and
then using expression (2.12) for the internal energy density in terms of the pressures p‖
and p⊥, we obtain

L0 = ρ0(x0)
(
1
2
|Ẋ |2 − Φ(X )

)
−

(
p‖0(x0)
2ζ 2

+ p⊥0(x0)ζ
J

)
− ζ 2B0(x0)2

2μ0J
. (3.23)

The Euler–Lagrange equations of the resulting action principle (3.19) for a CGL plasma
are obtained by variation of the Cartesian components Xi of the Lagrangian map (3.2),
modulo boundary terms: δA/δXi = 0. In essence, we work in a reference frame moving
with the fluid flow, where the dynamics is described in terms of how the Eulerian position
x of the frame varies with the fluid labels x0 and the time t through the Lagrangian
map (3.2). Equivalently, the Euler–Lagrange equations are given by applying to L0 the
Euler operator (variational derivative) EXi in the calculus of variations, where Xi(x j

0, t) is
a function of x j

0 and t. Thus,

δA
δXi

≡ EXi(L0) = ∂L0

∂Xi
− ∂

∂t

(
∂L0

∂Ẋi

)
− ∂

∂x j
0

(
∂L0

∂Xij

)
= 0, (3.24)

where ∂/∂t and ∂/∂x j0
act as total derivatives. (See § 6 for more details of variational

calculus.) In Appendix C, we show that when (3.24) is simplified and expressed in terms
of Eulerian variables, it reduces to the Eulerian momentum equation (2.2).

3.3. Hamilton’s equations
We now derive the corresponding Hamilton formulation of the Euler–Lagrange equation
(3.24) for a CGL plasma. Here we write Xi = xi for simplicity.
First, the generalised momentum is defined as

πi = ∂L0

∂ ẋi
= ρ0ẋi. (3.25)

Next, the Hamiltonian density is defined by the Legendre transformation:

H0 = πkẋk − L0. (3.26)

After substitution of the CGL Lagrangian (3.23) along with ẋi in terms of the momentum
(3.25), we then obtain the expression

H0 = πiπi

2ρ0
+ ρ0Φ(x) + p‖0

2ζ 2
+ p⊥0ζ

J
+ XijXikB

j
0B

k
0

2μ0J
. (3.27)

In Eulerian variables, this expression is given by

H0 = JH, (3.28)

where H is the Eulerian total energy density (3.20). The resulting Hamiltonian equations
of motion consist of

ẋi = δH
δπi

, π̇i = −δH
δxi

, (3.29a,b)
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which yield the momentum relation (3.25) and the Euler–Lagrange equation (3.24), where
the Hamiltonian function is defined as

H =
∫
V
H0 d3x0 =

∫
V
H d3x. (3.30)

As in ordinary Hamiltonian mechanics, with the use of the canonical variables qi = xi
and pi = πi, Hamilton’s equations (3.29a,b) can be written in a canonical Poisson bracket
formulation:

Ḟ = {F ,H} =
∫ (FqiHpi − FqiHpi

)
d3x0. (3.31)

Here F is a general functional of qi and pi (see Morrison 1982). There is an equivalent,
non-canonical Poisson bracket that employs only Eulerian variables, which we present
in § 5.

4. EP action principle

In this section, we formulate the EP action principle for the CGL plasma equations. We
follow the developments in Holm et al. (1998), Webb et al. (2014b), which provide the
EP formulation for MHD. The main difference for a CGL plasma compared with MHD is
that the internal energy density ε = ρe (cf. (2.16a,b)) depends on ρ, S and B, whereas for
MHD it depends only on ρ and S.
The Lagrangian and Hamiltonian action principles in § 3 are based on a reference frame

that is attached to fluid elements, whereby the Eulerian position x of the frame is a function
of fluid element labels x0 and time t, as given by the Lagrangian map (3.2). In contrast,
the EP action principle is based on the use of a fixed Eulerian reference frame, in which
the motion of a fluid element is given by inverting the Lagrangian map so that the fluid
element label x0 becomes a function of x and t. To set up this formulation, it is convenient
to introduce the notation

gx0 = x (4.1)

with g at any fixed time t representing an element in the group of diffeomorphisms
on Euclidean space in Cartesian coordinates x and x0. Note that g has an inverse g−1

defined by g−1x = x0, whereas g|t=0 is just the identity map. In (4.1) and the sequel, the
t dependence of g and x0 is suppressed for simplicity of notation; an overdot stands for
˙= ∂/∂t. The diffeomorphism group will be denoted G ≡ Diff(R3).

The coordinate components of a fluid element label, xi0, represent advected quantities:(
∂

∂t
+ u · ∇

)
xi0 = 0. (4.2)

From (4.1) and (4.2), we see that

ẋi0 = ( ˙(g−1)x)i = −(g−1ġg−1x)i = −(g−1ġx0)i = −u · ∇xi0. (4.3)

Hence, we obtain
g−1ġ = u · ∂x, (4.4)

which can be viewed as both a left-invariant vector field in the tangent space of G
and the directional derivative along the fluid flow in Euclidean space. The property
of left-invariance means that, for any fixed element h in G, g → hg implies η →
(hg)−1 ˙(hg) = g−1h−1hġ = g−1ġ = η, with ḣ ≡ 0.
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Compared with the Lagrangian formulation, whose dynamical variable is x(x0, t), the
EP formulation uses the dynamical variables ρ, S, B and u, which are functions of x
and t. Variations of the EP variables are defined through variation of the inverse
Lagrangian map, g, in the following way.
We consider a general variation δg and define

η ≡ g−1δg (4.5)

which represents a left-invariant vector field on the group G. Similarly to the identification
(4.4), we can write

η = η · ∂x (4.6)

viewed as the directional derivative associated with δg, where η is an Eulerian vector
field. (In general, ·∂x identifies Eulerian vector fields in Euclidean space with left-invariant
vector fields on the diffeomorphism group G.)
Now, the variation δg is intended to leave the fixed Eulerian reference frame unchanged,

whereby δx ≡ 0. Taking the corresponding variation of the inverse Lagrangian map (4.1)
yields δxi0 = δ(g−1x)i = −(g−1(δg)g−1x)i = −ηxi0. Thus, because xi0 is a function of x j

and t, we obtain
δxi0 = −η · ∇xi0 = −Lηxi0, (4.7)

where Lη is the Lie derivative with respect to the Eulerian vector field η.
More generally, the same Lie derivative operation is used to define the variation of any

advected quantity (a scalar, a vector or a differential form), a:

δa = −Lηa, (4.8)

where a satisfies the advection equation (2.87). Expressions for the induced variations of
ρ, S, B can then be deduced by considering advected quantities in terms of those variables
(cf. §§ 2.6 and 3.1). The basic advected quantities in a CGL plasma are

S, (1/ρ)B, ρ d3x, B · n̂ dA, (4.9a–d)

where dA is the area element on a surface moving with the fluid. (These quantities are
also referred to as a Cauchy invariant.) As S is advected, its variation is given directly
by (4.8). Advection of ρ d3x combined with δxi = 0 implies that (δρ) d3x = δ(ρ d3x) =
−Lη(ρ d3x) = −(Lηρ + ρ∇ · η) d3x due to the well-known expansion/contraction
formula Lv(d3x) = ∇ · v d3x holding for any vector field v. Thus, we have

δS = −η · ∇S, (4.10)

δρ = −∇ · (ρη). (4.11)

Next, because (1/ρ)B is advected, this gives

δ

(
B
ρ

)
= −Lη

(
B
ρ

)
= (Lηρ)B

ρ2
− LηB

ρ

= −(δρ)B
ρ2

+ δB
ρ

. (4.12)

Thus, after substituting δρ from (4.11), we obtain

δB = −(∇ · η)B − LηB = B · ∇η − ∇ · (ηB) = ∇ × (η × B), (4.13)

where LηB = [η,B] is the commutator of vector fields.
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Finally, the induced variation of u is given by combining the equations

(δu) · ∂x = δ(g−1ġ) = −g−1(δg)g−1ġ + g−1(δ̇g) = −η · ∂x ⊗ u · ∂x + g−1(δ̇g) (4.14)

and
(δ̇g) = ˙(gη) = ġη + gη̇ = g(u · ∂x ⊗ η · ∂x + η̇ · ∂x). (4.15)

This yields
δu · ∂x = η̇ · ∂x − [η · ∂x,u · ∂x] = (

η̇ − Lηu
) · ∂x, (4.16)

where [·, ·] is the commutator of vector fields which coincides with the Lie bracket. Thus,
we obtain the variation:

δu = η̇ − Lηu = (∂/∂t + Lu)η = d
dt

η ≡ ∂η

∂t
+ [u, η] . (4.17)

4.1. The EP equation
For CGL plasmas, the EP action principle is given by

J =
∫ t1

t0

∫
V
L d3x dt, (4.18)

where L is the Lagrangian density (3.21). Here V is a fixed spatial domain and [t0, t1] is
a fixed time interval. The stationary points of this action principle, δJ = 0, under the
variations (4.17), (4.10), (4.11) and (4.13) of the respective variables u, S, ρ and B, turn
out to yield the Eulerian momentum equation (2.2), as we now show.
The derivation of the stationary points is non-trivial because of the form of the

variations in terms of η given by (4.5) and (4.6). Specifically, the variation of J needs
to be put into the form

δJ =
∫ t1

t0

〈η,F〉 dt =
∫ t1

t0

∫
V
η · F d3x dt (4.19)

modulo boundary terms, where F = F · ∂x is both a left-invariant vector field in the
tangent space of G and the directional derivative along a vector field F in Euclidean space.
Then, because η is an arbitrary vector field (corresponding to an arbitrary variation δg),
the equation yielding the stationary points of J is F = 0.
We now proceed to find δJ and F . A general expression is available for F in Holm et al.

(1998), which involves the diamond operator, �, defined by property〈
δL
δa

� a, η
〉

= −
〈
δL
δa

,Lη(a)
〉
, (4.20)

where, as earlier, a is an advected quantity. It will be instructive to instead show how to
obtain F from the variation (4.17), (4.10), (4.11) and (4.13) directly using the Eulerian
variables.
From the Lagrangian density (3.21), we obtain

δL
δu

= ρu,
δL
δS

= −εS = −ρT,
δL
δρ

= 1
2
u2 − ερ − Φ = 1

2
u2 − h − Φ,

δL
δB

= −εBτ − B
μ0

=
(
pΔ

B2
− 1

μ0

)
B ≡ − 1

μ0
B̃,

⎫⎪⎪⎬
⎪⎪⎭ (4.21)

using the thermodynamic relations (2.18a–c), where T is the temperature and h is the
enthalpy (2.62) and pΔ = p‖ − p⊥ is the pressure anisotropy. Here we have also used the

https://doi.org/10.1017/S0022377822000642 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000642


Action principles for CGL plasmas 23

identity δB = τ · δB, with τ = B/B being the unit vector along B. Note that B̃ is related
B by (2.78a,b). The main difference in these variational derivative expressions (4.21)
compared with the MHD case is the addition of the anisotropy term in δL/δB, i.e. B is
replaced by B̃.
The total variation of L is given by combining the products of the variational derivatives

(4.21) and the corresponding variations (4.17), (4.10), (4.11) and (4.13). This yields

δL = δL
δu

· δu + δL
δS

δS + δL
δρ

δρ + δL
δB

· δB

= ρu · (
η̇ − Lηu

) − ρT (−η · ∇S) +
(
1
2
u2 − h − Φ

)
(−∇ · (ρη))

− 1
μ0

B̃ · (∇ × (η × B)) . (4.22)

The next step is to bring each term into the form (4.19), modulo a total time derivative and
a total divergence, using integration by parts. The first term in expression (4.22) expands
out to give

ρu · η̇ + ρuu : ∇η − ρ(η · ∇u) · u = η ·
(

−∂(ρu)

∂t
− 1

2
ρ∇(u2) − ∇ · (ρuu)

)

+ ∂(ρu · η)

∂t
+ ∇ · (ρ(u · η)u) . (4.23)

Similarly, the third term in (4.22) yields

η · (
ρ∇ (

1
2u

2 − h − Φ
)) + ∇ · (− (

1
2u

2 − h − Φ
)
ρη

)
. (4.24)

The second term in (4.22) simply gives

η · (ρT∇S) . (4.25)

The last term in (4.22) can be rearranged by cross-product identities:

(B × η) ·
(

1
μ0

∇ × B̃
)

+ ∇ ·
(

1
μ0

B̃ × (η × B)

)
, (4.26)

and

(B × η) ·
(

1
μ0

∇ × B̃
)

= η ·
(

− 1
μ0

B ×
(
∇ × B̃

))
. (4.27)

Now, combining the four terms (4.27), (4.25), (4.24) and (4.23) and discarding the total
derivatives, we obtain

δL = η ·
(

−∂(ρu)

∂t
− ∇ · (ρuu) + ρ(T∇S − ∇h − ∇Φ) − 1

μ0
B ×

(
∇ × B̃

))
(4.28)

modulo total time derivatives and total divergences. This yields the desired relation∫
V
δL d3x =

∫
V
η · F d3x = 〈η,F〉 , (4.29)
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with

F = −∂(ρu)

∂t
− ∇ · (ρuu) + ρ(T∇S − ∇h − ∇Φ) − 1

μ0
B ×

(
∇ × B̃

)
. (4.30)

The equation F = 0 resulting from the variational principle (4.19) is called the EP
equation. It is equivalent to the Eulerian momentum equation (2.2), after the pressure
divergence identity (2.61) is used. A direct derivation of this identity is provided in
Appendix B. Alternatively, (4.30) can be viewed as showing how the pressure divergence
identity arises from the variational principle (4.19). Appendix E derives the identity (2.61)
and the EP equation F = 0 using the approach of Holm et al. (1998).
Holm & Kupershmidt (1986) studied a corresponding Hamiltonian form of the CGL

plasma equations for both relativistic and non-relativistic flows; however, details of the EP
formulation were not covered.

5. Non-canonical Poisson bracket

Morrison & Greene (1980, 1982) and Holm & Kupershmidt (1983a,b) obtained the
non-canonical Poisson bracket for ideal MHD, which involves the basic variables ρ, σ ≡
ρS,M ≡ ρu and B:

{F ,G}MHD = −
∫
V

{
ρ

(FM · ∇Gρ − GM · ∇Fρ

) + σ (FM · ∇Gσ − GM · ∇Fσ )

+ M · (FM · ∇GM − GM · ∇FM) + B · (FM · ∇GB − GM · ∇FB)

+ B · ((∇FM) · GB − (∇GM) · FB)
}
d3x, (5.1)

where F and G are arbitrary functionals, and subscripts denote a variational derivative.
This bracket is bilinear, antisymmetric and obeys the Jacobi identity.
It turns out the CGL plasma Poisson bracket obtained by Holm & Kupershmidt (1986),

{F ,G}CGL has the same form as the MHD plasma Poisson bracket except that the
thermodynamics and internal energy e(ρ, S,B) are completely different in the two cases.
Holm & Kupershmidt (1986) obtained the bracket:

{F ,G}CGL = −
∫
V

{
ρ

(FM · ∇Gρ − GM · ∇Fρ

) + σ (FM · ∇Gσ − GM · ∇Fσ )

+ M · (FM · ∇GM − GM · ∇FM) + B · (FM · ∇GB − GM · ∇FB)

+ B · ((∇FM) · GB − (∇GM) · FB)
}
d3x. (5.2)

An overview of Hamiltonian systems is given in Morrison (1998). Banerjee & Kumar
(2016) provides a Dirac bracket approach to the MHD Poisson bracket. The property that
the MHD bracket is linear in the dynamical variables ρ, σ , M and B has an important
mathematical relationship to semi-direct product Lie algebras, which is explained in Holm
et al. (1983, 1998) for general fluid systems.
The variables appearing in the CGL non-canonical Poisson bracket consist of

ρ, σ, M, B. (5.3a–d)

The analysis in Appendix D starts from the canonical bracket

{F ,G} =
∫
V

(Fq · Gp − Fp · Gq
)
d3x0 (5.4)

involving canonical Hamiltonian variables (q, p) ≡ (x(x0, t),π(x0, t)) where π = ρ0ẋ is
the canonical momentum (cf. § 3.3). The main steps consist of using the Lagrangian
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map (3.2) to obtain a transformation to the non-canonical variables (5.3a–d), followed by
applying a variational version of the chain rule to the variational derivatives with respect to
(q, p) (see e.g. Zakharov & Kuznetsov 1997). These steps are carried out by working in a
fixed Lagrangian frame, while the corresponding Eulerian frame given by the Lagrangian
map undergoes a variation, which includes varying Cartesian basis vectors associated to
the components of x. This general approach is described in a short communication by
Holm et al. (1983).
In the following, we give an alternative more succinct derivation of the CGL Poisson

bracket (5.2). It leads to the same Poisson bracket as that obtained in Appendix D. Note
that the canonical bracket (5.4) can be written in the form

{F ,G} =
∫ (Fx · Gp − Fp · Gx

) d3x
J

. (5.5)

Here q ≡ x. The transformation of variational derivatives between the canonical variables
and the new variables (5.3a–d) is effected by noting that

δF =
∫

1
J

(Fx · �x + Fp · �p
)
d3x

=
∫ (

F̂ρδρ + F̂M · δM + F̂σ δσ + F̂B · δB
)
d3x, (5.6)

where F̂(ρ,M, σ,B) ≡ F(q, p) is the functional F(q, p) expressed in terms of the new
variables (ρ,MT, σ,BT)T. Here δψ denotes the Eulerian variation of ψ and �ψ denotes
the Lagrangian variation of ψ .
Using the transformations

�J = J∇ · �x, �M = �p
J

− M(∇ · �x),

δM = �p
J

− ∇j
(
�x jM

)
, δρ = −∇ · (ρ�x), δσ = −∇ · (σ�x),

δB = ∇ × (�x × B) − �x(∇ · B), x

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.7)

in (5.6) gives the formulae

Fx = J
[
(∇F̂M) · M + σ∇F̂σ + ρ∇F̂ρ + (∇F̂B) · B − (B · ∇)F̂B − (∇ · B)F̂B

]
,

Fp = F̂M ,

⎫⎬
⎭

(5.8)
for the transformation of variational derivatives from the old variables (x, p) to the new
variablesM , σ , ρ and B. Using the expressions (5.8) for Fx and Fp in (5.5) and dropping
the hat accents, the Poisson bracket (5.5) reduces to

{F ,G} = {F ,G}CGL −
∫
V
∇ · [B (GM · FB − GB · FM)] d3x. (5.9)

Dropping the last pure divergence term in (5.9) (which converts to a surface integral over
the boundary by Gauss’s theorem), (5.9) reduces to the CGL Poisson bracket (5.2), which
applies in the general case where ∇ · B �= 0 (i.e. the Jacobi identity applies for the bracket
(5.2)), which is the analogue of the Morrison & Greene (1982) bracket in MHD.
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The CGL bracket (5.2) shares the same main features as the MHD bracket: it is bilinear,
antisymmetric and obeys the Jacobi identity. A verification of the Jacobi identity can be
given using functional multi-vectors (Olver 1993) in the same way as for the MHD bracket
(e.g. Webb 2018, Chapter 8). An alternative verification of the Jacobi identity for the MHD
bracket is given in Morrison (1982); see also Chandre (2013), Chandre et al. (2013), as
well as Holm & Kupershmidt (1983a,b) who used the magnetic vector potential A in the
advected gauge (2.90).
In general, any Poisson bracket can be expressed in a cosymplectic form which defines

a corresponding Hamiltonian (cosymplectic) operator. Using non-canonical Eulerian
variables Z, the cosymplectic form is given by

{F ,G} =
∫
V
FZTDGZ d3x, (5.10)

in whichD is the Hamiltonian (matrix) operator, where T denotes the transpose. Note that,
in the case Z = (q, p), this operator reduces to the skewmatrixD = (

0 I
−I 0

)
. Antisymmetry

of the bracket (5.10), {F ,G} + {G,F} = 0, corresponds to D being skew-adjoint; the
Jacobi identity, {{F ,G},H} + {{H,F},G} + {{G,H},F} = 0, corresponds to D having
a vanishing Schouten bracket with itself (Olver 1993).
Taking

Z = (
ρ, σ,Mi,Bi

)
, (5.11)

with Mi and Bi denoting the components of M and B, respectively, in Cartesian
coordinates xi, we see that the cosymplectic form (5.10) of the CGL bracket (5.2) after
integration by parts is given by the Hamiltonian operator:

D = −

⎛
⎜⎜⎝

0 0 ∇ j ◦ ρ 0
0 0 ∇ j ◦ σ 0

ρ∇i σ∇i M j∇i + ∇ j ◦ Mi Bj∇i − δijBk∇k

0 0 ∇ j ◦ Bi − δij∇k ◦ Bk 0

⎞
⎟⎟⎠ , (5.12)

where ◦ denotes operator composition (i.e. ∇ ◦ a = (∇a) + a∇). Here ∇k acts as the total
derivative with respect to xk. Note that the minus sign in (5.12) is due to the overall minus
sign in the CGL Poisson bracket (5.2) which follows the sign convention used in the MHD
bracket (5.1) in Morrison & Greene (1980, 1982).
We can convert (5.12) into vector notation by identifying ∇iF = gradF = ∇F, ∇ jF j =

divF = ∇ · F and ∇ jFk − ∇kF j = curlF = ∇ × F .

5.1. Non-canonical Hamiltonian equations
A non-canonical Poisson bracket (5.10) provides a Hamiltonian formulation once a
Hamiltonian functional H is chosen. The formulation involves expressing the dynamical
variables Z(x, t) formally as functionals

Z(x′, t) ≡
∫
V
Z(x′, t)δ(x − x′) d3x (5.13)

and writing Hamilton’s equations in the form

∂Z
∂t

= {Z,H}. (5.14)
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Using the explicit expression (5.10) for the bracket yields

∂Z

∂t
= D δH

δZ
(5.15)

in terms of the Hamiltonian operatorD.
The appropriate Hamiltonian for describing CGL plasmas is given by the conserved

total energy (cf. § 2.3):

H =
∫
V
H d3x, (5.16)

where H is the Eulerian total energy density (3.20). Substituting this Hamiltonian into
the non-canonical Hamilton’s equations (5.15) can be shown to yield the CGL plasma
equations (2.1)–(2.6) and (2.8)–(2.9).

5.2. Casimirs
In a non-canonical Hamiltonian system, a functional C = ∫

V C d3x satisfying the equation

{C,F} ≡ 0 for all functionals F (5.17)

is called a Casimir. Existence of a non-trivial Casimir C �≡ 0 indicates that the Poisson
bracket is degenerate. Correspondingly, the Hamiltonian operator D in the cosymplectic
form of the bracket (5.10) will have a non-trivial kernel:

DCZ ≡ 0, (5.18)

where CZ ≡ δC/δZ. Note that a Casimir is a conserved integral, because the time evolution
of any functional is given by the Hamiltonian equations (5.14):

d
dt
C = ∂C

∂t
= {C,H} = 0. (5.19)

Casimirs are useful in stability analysis of steady flows and plasma equilibria (e.g. Holm
et al. 1985; Hameiri 2004). The conservation (5.19) holds modulo boundary integrals, and
an investigation of boundary conditions is needed for a Casimir to be a strictly conserved
integral (i.e. a constant of motion).
All Casimirs can be determined by solving (5.17), or alternatively (5.18) (see, e.g.,

Hameiri (2004) and Padhye & Morrison (1996a,b) for the MHD case). For CGL plasmas,
we obtain the Casimir determining equations:

∇ j(ρCM j) = ∇ · (ρCM) = 0, ∇ j(σCM j) = ∇ · (σCM) = 0,

ρ∇iCρ + σ∇iCσ + Mj∇iCM j + ∇ j(MiCM j) + Bj∇iCBj − Bj∇jCBi

≡ ρ∇Cρ + σ∇Cσ + (∇CM) · M + ∇ · (CMM) + (∇CB) · B − B · ∇CB = 0,

∇ j(BiCM j) − ∇j(BjCMi) = ∇ × (B × CM) = 0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.20)

where ∇ (∇k) acts as the total derivative with respect to x (xk). This is an overdetermined
system of linear partial differential equations for

C =
∫
V
C(t, x, Z,∇Z, . . . ,∇lZ) d3x, (5.21)

with Z denoting the dynamical variables (5.11). The system can, in principle, be integrated
to find C explicitly, once a differential order l for the dependence of C on derivatives of the
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variables is chosen. Note that solutions of the divergence form C = ∇ · F lead to C being
a boundary integral which can be assumed to be trivial if suitable boundary conditions are
imposed. This classification problem is beyond the scope of the present work.

5.3. Mass, cross-helicity and magnetic helicity Casimirs
The well-known Casimirs for ideal barotropic MHD are the mass integral, the
cross-helicity integral and the magnetic helicity integral. CGL plasmas with an isentropic
equation of state e = e(ρ,B) possess these same Casimirs:

C1 =
∫
V
ρ d3x, C2 =

∫
V
u · B d3x, C3 =

∫
V
A · B d3x. (5.22a–c)

In the more physically realistic case with an equation of state e = e(ρ, S,B), C1 and C3
still hold as Casimirs, but C2 turns out to be a Casimir only in the case B · ∇S = 0, as we
show shortly.
Physically, the mass integral C1 is the total mass of the plasma; the cross-helicity

integral C2 describes the linking of the fluid vorticity and magnetic field flux tubes; and
the magnetic helicity integral C3 describes the knotting, linking and twist and writhe of
the magnetic flux tubes (see,e.g., Berger & Field 1984; Moffatt & Ricca 1992; Hameiri
2004). (Also see, e.g., Yoshida (2016), for interesting applications). In a fixed volume
V with a boundary ∂V , C1 is conserved, ∂C1/∂t = 0, if u has no normal component at
the boundary (cf. § 2.3). Conservation of C3, ∂C3/∂t = 0, holds if, in addition, B has no
normal component at the boundary, whereas the cross-helicity integral C2 is conserved,
∂C2/∂t = 0, only with the further condition B · ∇S = 0 (cf. §§ 2.4 and 2.5).

5.4. Advected Casimirs
In general, Casimirs can be sought by looking among advected scalars, θ , because the
corresponding scalar integral

∫
V(t) ρθ d3x will be conserved on volumes V(t) moving with

the flow. This implies that, on a fixed volume V , the integral
∫
V ρθ d3x will be conserved

up to a flux integral − ∮
∂V ρθu · n̂ dA that vanishes if u has no normal component at the

boundary ∂V and, therefore,
∫
V ρθ d3x will satisfy the Casimir property ∂C/∂t = 0. Note

that this property is necessary but not sufficient for
∫
V ρθ d3x to be a Casimir, because

there are conserved integrals such as the total energy and angular momentum that do not
belong to the kernel of the Poisson bracket.
For CGL plasmas, the basic advected scalars are S, S̄‖, S̄⊥. Additional advected scalars

are provided by Ertel’s theorem: if θ is an advected scalar, then so is B · ∇θ/ρ. This yields
the advected quantities (2.89a–c) shown in § 2.6.
One can show that

C4 =
∫
V
ρf (S, θ) d3x where θ = B · ∇S

ρ
, (5.23)

is an advected Casimir, for any function f (S, θ). We omit the proof.

6. Noether’s theorem and conservation laws

Conservation laws of the CGL plasma equations (2.1) to (2.10a–c) can be derived from
Noether’s theorem applied to the Lie point symmetries of the Lagrangian variational
principle (3.19). A brief discussion of the MHD case was outlined inWebb &Anco (2019).
The CGL plasma conservation laws differ in comparison with the MHD conservation
laws mainly in the form of pressure tensor: in particular, the MHD isotropic gas pressure
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tensor p = p I is replaced by the non-isotropic CGL plasma pressure tensor p = p⊥I +
( p‖ − p⊥)ττ .
Appendix H gives a description of Noether’s first theorem, for a differential equation

system described by an action principle as developed by Bluman & Kumei (1989). The
analysis uses canonical Lie symmetry operators X in which both the dependent and
independent variables change in the Lie transformation, and also the evolutionary form
of the symmetry operator denoted by X̂ in which the independent variables do not change,
but the dependent variables and the derivatives of the dependent variables change. The
prolongation operators prX and pr X̂ are described, and used to derive Noether’s first
theorem similar to Bluman&Kumei (1989). More recent derivations of Noether’s theorem
using pr X̂, are given by Bluman & Anco (2002) and Olver (1993).
In § 6.1 we use a recent form of Noether’s theorem to derive conservation laws using the

evolutionary form of the prolonged symmetry operator pr X̂. In § 6.2 we obtain the same
results from the classical form of Noether’s theorem given in Appendix H. Although the
recent form of Noether’s theorem, is conceptually more appealing, it is not any simpler
than the classical form of Noether’s theorem. The classical form of Noether’s theorem
is perhaps easier to understand, as it relates directly back to the invariance of the action
integral under Lie and divergence transformations.

6.1. Noether’s theorem and evolutionary symmetries
To use Noether’s theorem, we need to obtain the Lie point symmetries of the Lagrangian
variational principle (3.19). As this variational principle employs the variables xi =
Xi(x j

0, t) given by the Cartesian components of the Lagrangian map (3.2), a Lie point
symmetry acting on the coordinate space (t, x j

0, x
i) has the form

t → t + εξ t + O(ε2), xi → xi + εξ i + O(ε2), xi0 → xi0 + εξ i
0 + O(ε2) (6.1a–c)

with ε denoting the parameter in the point symmetry transformation, where ξ i, ξ i
0, ξ

t are
functions of t, x j

0, x
i. The infinitesimal transformation corresponds to the generator

X = ξ i ∂

∂xi
+ ξ i

0
∂

∂xi0
+ ξ t ∂

∂t
(6.2)

whereas the finite transformation (6.1a–c) is given by exponentiation of the generator,
(t, xi, xi0) → exp(εX)(t, xi, xi0).
To be a symmetry, a generator (6.2) must leave the variational principle invariant

modulo boundary terms. This is equivalent to the condition that the change in the
Lagrangian must satisfy (Ovsjannikov 1978; Ibragimov 1985)

prXL0 = ξ tDtL0 + ξ i
0Dxi0L0 + DtΛ

t
0 + Dxi0Λ

i
0 (6.3)

where the operators Dt = ∂/∂t + ẋi∂/∂xi + · · · and Dxi0 = ∂/∂xi0 + xji∂/∂x j + · · · denote
total derivative operators with respect to the independent variables t and xi0 and Dxi

denotes the partial derivative with respect to xi keeping x0 and t constant. Here Λt
0

and Λi
0 are arbitrary potentials, that arise in Noether’s theorem, because the variational

derivative of a perfect derivative term has zero variational derivative. The first two terms
on the right-hand side of (6.3) represent the Lie derivative LXL0 using the chain rule
for differentiation. The terms involving total derivatives of L0 on the right-hand side of
(6.3) can be understood to arise from the change in the spatial domain V0 and the time
interval [t0, t1] in the variational principle (3.19) under the action of an infinitesimal
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point transformation (6.1a–c). On the left-hand side of (6.3), pr denotes prolongation
to the extended coordinate space (t, x j

0, x
i, ẋi, xij) (i.e. jet space) in which ẋi and xij are

coordinates that correspond to Ẋi(x j
0, t) and ∂Xi(x j

0, t)/∂x
j
0 on solutions xi = Xi(x j

0, t) of
the Euler–Lagrange equations (3.24) of the variational principle. An explicit formula for
the components of prX will not be needed if we express the invariance condition (6.3)
by using the characteristic form of the generator in which only the dependent variables xi
undergo a transformation

X̂ = ξ̂ i ∂

∂xi
, ξ̂ i = ξ i − ξ tẋi − ξ

j
0x

ij, (6.4a,b)

which arises from how X acts on solutions xi = Xi(x j
0, t). The relationship between the two

forms (6.4a,b) and (6.2) is that prX = pr X̂ + ξ tDt + ξ i
0Dxi0 . Hence, (6.3) becomes (Olver

1993; Bluman & Anco 2002)

pr X̂(L̂0) = DtΛ
t
0 + Dxi0Λ

i
0, (6.5)

where
L̂0 = L0|X=x (6.6)

is a function of t, x j
0, x

i, ẋi, xij. The prolongation pr X̂ is given by simply extending X̂
to act on ẋi and xij through the total derivative relations pr X̂(ẋi) = Dt(X̂xi) = Dtξ

t and
pr X̂(xij) = Dxj0

(X̂xi) = Dxj0
ξ i.

In turn, this form (6.5) of the invariance condition can be expressed succinctly as

Exi(pr X̂(L̂0)) = 0 (6.7)

using the Euler–Lagrange operator Exi which has the property that it annihilates a function
iff the function is given by a total divergence with respect to t and x j

0. The formulation (6.7)
can be used as a determining equation to find all Lie point symmetries of the variational
principle (3.19). (See Olver (1993) and Bluman & Anco (2002) for a general discussion.)
Each Lie point symmetry (6.1a–c) gives rise to a conservation law through combining

the condition (6.5) and Noether’s identity

pr X̂(L̂0) = ξ̂ iExi(L0) + DtWt + Dxi0W
i, (6.8)

where

Wt = ξ̂ j ∂L̂0

∂ ẋ j
, Wi = ξ̂ j ∂L̂0

∂xji
. (6.9a,b)

Thus, we obtain the following statement of Noether’s theorem.

PROPOSITION 6.1. If the Lagrangian variational principle (3.19) is invariant up
to boundary terms under an infinitesimal point transformation (6.1a–c), then the
Euler–Lagrange equations (3.24) of the variational principle possess a conservation law

DtI t
0 + Dxi0I i

0 = 0 (6.10)

in which the conserved density and the spatial flux are given by

I t
0 = (

Λt
0 − Wt

)∣∣
x=X , I i

0 = (
Λi

0 − Wi
)∣∣

x=X , (6.11a,b)

using (6.5) and (6.9a,b).
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Explicit expressions for ∂L̂0/∂ ẋ j = (∂L0/∂Ẋ j)|X=x and ∂L̂0/∂xji = (∂L0/∂Xji)|X=x are
provided by (C1) in Appendix C. Note that the conservation law is a local continuity
equation which holds when xi = Xi(x j

0, t) satisfies the Euler–Lagrange equations (3.24).
On solutions, Dt|x=X = ∂/∂t and Dxi0 |x=X = ∂/∂xi0 (acting as total derivatives).
We remark that (6.11a,b) can be derived alternatively using the canonical form of a

symmetry generator (6.2), which requires computing the prolongation. See Webb & Zank
(2007) and Webb & Anco (2019) for the MHD case. The canonical symmetry approach to
conservation laws for the CGL system is also described in Appendix H.

6.1.1. Eulerian form of a Lagrangian conservation law
A Lagrangian conservation law (6.11a,b) can be expressed equivalently as an Eulerian

conservation law (Padhye 1998)

∂tΨ
t + ∇iΨ

i = 0 (6.12)

whose conserved density and spatial flux are given by

Ψ t = 1
J
I t
0

∣∣
x=X , Ψ i = 1

J

(
uiI t

0 + XikIk
0

)∣∣
x=X (6.13a,b)

on solutions xi = Xi(x j
0, t) of the Euler–Lagrange equations (3.24). This form

(6.12)–(6.13a,b) of a conservation law is appropriate for considering conserved integrals

d
dt

∫
V
Ψ t d3x = −

∮
∂V

Ψ · n̂ dA (6.14)

on a fixed spatial domain V in the CGL plasma.
In general, an Eulerian conservation law is a continuity equation of the form (6.12)

holding on the solution space of the CGL plasma equations (2.1)–(2.10a–c). The
corresponding conserved integral (6.14) has the physical content that the rate of change
of the integral quantity

∫
V Φ t d3x in V is balanced by the net flux leaving the boundary of

V . It is often physically useful to consider instead a spatial domain V(t) that moves with
the plasma. The form of the conservation law for moving domains is given by

d
dt

∫
V(t)

Ψ t d3x = −
∮

∂V(t)
Γ · n̂ dA (6.15)

in terms of the moving flux

Γ = Ψ − uΨ t = 1
J
X · I0. (6.16)

Note that the moving integral quantity
∫
V(t) Ψ

t d3x will be an invariant (i.e. a constant
of motion) when the net moving flux vanishes on the boundary ∂V(t). (See Anco &
Webb (2020) for a discussion of moving domain conservation laws and invariants in
fluid mechanics.) The equivalence between the conservation laws (6.14) and (6.15) can
be derived by writing the continuity equation (6.12) in terms of the material (co-moving)
derivative (2.88): dΦ t/dt = −(∇ · u)Φ t − ∇ · (Φ − Φ tu), where (∇ · u) represents the
expansion or contraction of an infinitesimal volume d3x moving with the fluid (see, e.g.,
Anco & Dar 2009, 2010).
Now, rather than seeking to find all Lie point symmetries, we consider two main classes:

kinematic and fluid relabelling. Kinematic symmetries are characterised by the generator

https://doi.org/10.1017/S0022377822000642 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000642


32 G.M. Webb, S.C. Anco, S.V. Meleshko and G.P. Zank

(6.1a–c) having ξ i
0 = 0, with ξ t and ξ i being functions only of t, xi. Fluid relabelling

symmetries have ξ i = ξ t = 0 in the generator (6.1a–c), with ξ i
0 being a function only of

t, xi0.
A useful general remark is that any Lie point symmetry of a variational principle

corresponds to a Lie point symmetry of the Euler–Lagrange equations, because invariance
of a variational principle means that its extremals are preserved. Thus, one way to
find all Lie point symmetries of a variational principle is by first obtaining the Lie
point symmetries of the Euler–Lagrange equations and, second, checking which of those
symmetries leaves invariant the variational principle.
Before deriving conservation laws using the above analysis, it is useful to note that there

are three basic steps in the analysis.

(i) First it is necessary to determine for a given Lie symmetry, whether the Lie
invariance condition (6.5) for the action can be satisfied by choosing the potentials
Λt

0 and Λi
0. Here the left-hand side of (6.5) for the action pr X̂(L0) is evaluated for

the symmetry operator X.
(ii) Determine the surface vector components Wt and Wi that occur in the Noether

identity (6.8), whereWt andWi are given by (6.9a,b) (recall ẋ j = ∂x j(x0, t)/∂t = u j

and xji = ∂x j/∂xi0). Then using Proposition 6.1 one can obtain the Lagrangian
conservation law (6.10) with conserved density I t

0 and flux I i
0 given in (6.11a,b).

(iii) Determine the Eulerian form of the conservation law using the results of Padhye
(1998) described by (6.12) and (6.13a,b).

6.1.2. Lie invariance condition
The Lie invariance condition for the action in (6.5) may be written in the form

J

{
∇ · (ρξ̂)

[
Φ + h − 1

2
u2

]
+ ρu ·

(
dξ̂
dt

− ξ̂ · ∇u

)
+ ρT ξ̂ · ∇S

− B̃
μ0

·
[
∇ × (ξ̂ × B) − ξ̂∇ · B

]

+∇ ·
{
ρξ̂

[
1
2
u2 − (h + Φ)

]
+ ξ̂ · (p + MB) + 1

μ0

(
ξ̂ × B

)
× B̃

}}

= DtΛ
t
0 + Dxj0

(
Λ

j
0

)
. (6.17)

Here we use the notation ξ̂ ≡ ξ̂ 0 in the fluid re-labelling symmetry case. The Lie
invariance condition (6.17) also applies for the general Lie symmetry case, including
the Lie point Galilean symmetry cases, the fluid relabelling symmetry cases and other
more general cases. The derivation of (6.17) from (6.5) is outlined in Appendix G. In the
general case ξ̂ i = ξ i − (ξ tDt + ξ s

0Dxs0)x
i. The Lie invariance condition (6.17) is similar to

the Eulerian Lie invariance condition for the action used by Webb & Anco (2019) for the
case of MHD. Here the evolutionary form of the symmetry operator X is used rather than
the canonical symmetry operator used by Webb & Anco (2019).

6.1.3. Galilean symmetries
The Eulerian form of the CGL plasma equations (2.1)–(2.10a–c) clearly indicates that

they possess the Galilean group of Lie point symmetries whenΦ = 0, which are generated
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by (Rogers & Ames 1989; Fuchs 1991)

P0 = ∂

∂t
, Pi = ∂

∂xi
, Ki = t

∂

∂xi
+ ∂

∂ui
, Ji = εijk

(
x j ∂

∂xk
+ u j ∂

∂uk
+ Bj ∂

∂Bk

)
.

(6.18a–d)
These generators describe a time translation (P0), space translations (Pi, i = 1, 2, 3),
Galilean boosts (Ki, i = 1, 2, 3) and rotations (Ji, i = 1, 2, 3), respectively, about the x, y
and z axes. As shown in appendix F, the only additional Lie point symmetries admitted by
(2.1) to (2.10a–c) consist of scalings. Hence, Galilean symmetries and scaling symmetries
comprise all kinematic Lie point symmetries of the CGL plasma equations.
The Galilean symmetries (6.18a–d) have a corresponding Lagrangian form

XP0 = ∂

∂t
, XPi = ∂

∂xi
, XKi = t

∂

∂xi
, XJi = εijkx j ∂

∂xk
. (6.19a–d)

Note that the prolongation of these Lagrangian generators to ẋi = Ẋi = ui through
the Lagrangian relation (3.1) for the fluid velocity yields the corresponding Eulerian
generators (6.18a–d) acting on the variables (t, xi, ui). As ξ i

0 = 0 for all of the generators
(6.19a–d), they are of kinematic type.
In the case when the gravitational potential Φ is non-zero, then the preceding generators

must satisfy the condition XΦ(xi) = 0 to be admitted as symmetries. For example, if Φ
is invariant under z-translation, then XP3 and XK3 are symmetries; if Φ is invariant under
z-rotation, then XJ3 is a symmetry; and if Φ is spherically symmetric, then XJi , i = 1, 2, 3,
are symmetries.

6.1.4. Galilean conservation laws
It is straightforward to show that each Galilean generator (6.19a–d) satisfies the

condition (6.7) for invariance of the Lagrangian variational principle (3.19) when Φ = 0
and thereby yields a conservation law (6.10).
Specifically, time translation (XP0 ) has ξ̂ i = −ẋi and, thus, pr X̂P0L0 = −ẍi∂L0/∂ẋi −

ẋij∂L0/∂xij = −DtL0 due to ∂L0/∂t = 0. This gives Λt
0 = −L0, Λi

0 = 0, which yields
conservation of energy

I t
0 = Ẋ j ∂L0

∂Ẋ j
− L0 = H0, I i

0 = Ẋ j ∂L0

∂Xji
, (6.20a,b)

with H0 being the Hamiltonian (3.27).
Space translations (XPj) have ξ̂ i = δij and, thus, pr X̂PjL0 = 0 due to ∂L0/∂xi = 0 (where

we neglect gravity) combined with Dtξ̂
i = 0 and Dxj0

ξ̂ i = 0. Hence, Λt
0 = 0, Λi

0 = 0,
which yields conservation of momentum

I t
0 = − ∂L0

∂Ẋ j
, I i

0 = − ∂L0

∂Xji
. (6.21a,b)

Galilean boosts (XKj) have ξ̂ i = tδij and, thus, pr X̂KjL0 = ρ0ẋ j = Dt(ρ0x j). This gives
Λt

0 = ρ0x j, Λi
0 = 0, yielding conservation of Galilean momentum (centre of mass)

I t
0 =

∫
∂L0

∂Ẋ j
dt − t

∂L0

∂Ẋ j
, I i

0 = −t
∂L0

∂Xji
. (6.22a,b)

Rotations (XJj) have ξ̂ i = ε ikjxk. This leads to pr X̂JjL0 = 0, because L0 depends on xi

only through the scalars |ẋi| and |Xijτ
j
0 | which are rotationally invariant. Thus Λt

0 = 0,
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Λi
0 = 0, which yields conservation of axial angular momentum

I t
0 = εjklxk

∂L0

∂Ẋl
, I i

0 = εjklxk
∂L0

∂Xli
. (6.23a,b)

The set of Galilean conservation laws (6.20a,b) to (6.23a,b) can be written in a unified
form through use of the observation that

Λt
0 = ξ̇ j

∫
∂L0

∂Ẋ j
dt − ξ tL0, Λi

0 = 0, (6.24a,b)

with

ξ t = a0, ξ i = ai1 + ai2t + ak3εijkx
j, (6.25a,b)

where a0, ai1, a
i
2 and ai3 (i = 1, 2, 3) are arbitrary constants (parameterising the respective

Galilean symmetry generators (6.19a–d)). Hence, we have

I t
0 = ξ̇ j

∫
∂L0

∂Ẋ j
dt − ξ tL0 − (ξ j − ξ tẊ j)

∂L0

∂Ẋ j
, I i

0 = −(ξ j − ξ tẊ j)
∂L0

∂Xji
. (6.26a,b)

The resulting set of Eulerian conservation laws (6.12)–(6.13a,b) takes the form

Ψ t = Hξ t − ρu jξ j + ρx jξ̇ j, (6.27)

Ψ i = uiΨ t − (ξ j − ξ tu j)
(
pij + Mij

B

)
, (6.28)

where we have used

∂L0

∂Ẋ j
= ρ0u j,

∫
∂L0

∂Ẋ j
dt = ρ0x j,

∂L0

∂Xjk
=

(
pjl + Mjl

B

)
Alk, (6.29a–c)

which follow from expressions (C1) and (C6) in Appendix C, along with the formulae
(3.5a–c) and (3.8). Here pij and Mij

B represents the components of the CGL non-isotropic
pressure tensor (2.3a–c) and the magnetic pressure tensor (2.4), respectively. Note that
H = ρ|u|2 − L is the Hamiltonian (3.20).
In the MHD case, pij is replaced by the components of the isotropic MHD gas pressure

tensor p δij.
The preceding derivations may be summarised as follows.

(i) Time translation symmetry (a0) yields energy conservation, for which

Ψ t = H = ρ

(
1
2
|u|2 + Φ(x)

)
+ ε + B2

2μ0
,

Ψ =
(
1
2
ρ|u|2 + ε + ρΦ

)
u + p · u + 1

μ0
E × B,

Γ = Ψ − uH = (p + MB) · u,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.30)

where E = −u × B is the electric field strength, and E × B/μ0 is the Poynting flux.
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(ii) Space translation symmetry (ai1, i = 1, 2, 3) yields momentum conservation with

Ψ t = −M = −ρu, Ψ = −T,

Γ = Ψ − uΨ t = − (p + MB) ,

}
(6.31)

where
T = ρuu + p + MB (6.32)

is the CGL plasma stress tensor.
(iii) Galilean boost symmetry yields centre of mass conservation, with

Ψ t = ρx − tM = ρ(x − tu), Ψ = ρux − tT,

Γ = Ψ − u(ρx − tM) = −t (p + MB) .

}
(6.33)

(iv) Rotational symmetry yields angular momentum conservation, with

Ψ t = x × M = ρx × u, Ψ = x × T,

Γ = Ψ − u(x × M) = x × (p + MB) ,

}
(6.34)

where M = ρu is the momentum density vector.

6.1.5. Fluid relabelling symmetries
Fluid relabelling symmetries correspond to transformations (6.1a–c) that change the

Lagrangian fluid labels x0, but leave the Eulerian variables and x and t invariant: xi0 →
xi0 + εξ i

0 + O(ε2), where ξ i
0 = ξ i

0(t, x
j
0). The symmetry generator has the form

X = ξ i
0

∂

∂xi0
. (6.35)

For evaluating the condition for invariance of the Lagrangian variational principle (3.19),
we need the characteristic form of the generator:

X̂ = ξ̂ i
0∂xi, ξ̂ i

0 = −ξ
j
0x

ij. (6.36a,b)

To proceed we use the formulation (6.5) instead of (6.7), which allows for consideration
of functions Λt

0, Λi
0 that can involve non-localpotentials. This generality is necessary to

derive the cross-helicity conservation law (2.67)–(2.68) which involves the temperature
potential (2.69a,b).

6.1.6. Noether’s theorem for fluid-relabelling conservation laws
The Lie invariance condition (6.17) in the fluid relabelling symmetry cases, may be

written in the form

J

{
∇ · (ρξ̂)

[
Φ + h − 1

2
u2

]
+ ρu ·

(
dξ̂
dt

− ξ̂ · ∇u

)
− B̃

μ0
·
[
∇ × (ξ̂ × B) − ξ̂∇ · B

]}

= Dt
(
Λt

0 − ρ0rξ 0 · ∇0S
) + Dxi0

(
Λi

0 − AkiGk
)
, (6.37)

where

G = ρξ̂

[
1
2
u2 − (h + Φ)

]
+ ξ̂ · (p + MB) + 1

μ0

(
ξ̂ × B

)
× B̃. (6.38)

For cross-helicity conservation, ξ̂ = −B/ρ and ξ 0 = B0/ρ0. Setting ∇ · B = 0 (Gauss’s
law), the left-hand side of (6.37) vanishes. The condition that the right-hand side of (6.37)
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vanish is satisfied by the choices

Λt
0 = ρ0rξ 0 · ∇S, Λi

0 = AkiGk, (6.39a,b)

where G is given by (6.38). Evaluating formulae (6.38) and (6.39a,b) gives the formulae

G = B
[
e + Φ − 1

2
u2 + B2

2μ0ρ

]
, (6.40)

Λt
0 = rB0 · ∇0S ≡ r(JB · ∇S), (6.41)

Λi
0 = Bi

0

[
h + Φ − 1

2
u2 + B2

2μ0ρ
− p‖

ρ

]
, (6.42)

where h = e + p‖/ρ is the enthalpy of the CGL plasma. Here ξ̂ = −B/ρ and ξ 0 = B0/ρ0,
which gives rise to the cross-helicity conservation laws described by (6.45a,b) and (6.46).
Noether’s theorem given by Proposition 6.1 now gives the following main result.

PROPOSITION 6.2. The Lagrangian variational principle (3.19) is invariant up to
boundary terms under the infinitesimal fluid relabelling transformation

xi0 → xi0 + εBi
0/ρ0 + O(ε2). (6.43)

The resulting conservation law (6.10)–(6.11a,b) of the Euler–Lagrange equations (3.24))
is obtained by using (6.41)–(6.42) for Λt

0 and Λi
0 and using the results

Wt
0 = ξ̂

j
0ρ0ẋ j = −JB · u, Wi

0 = ξ̂
j
0Aki

(
pjk + Mjk

B

)
= − 1

ρ

(
p‖− B2

2μ0

)
Bi
0. (6.44a,b)

Here Wt
0 and W

i
0 are given by (6.9a,b), in which the derivatives of L0 are given by (G2a–c).

This yields the conserved density and the flux

I t
0 = JB · (u + r∇S), I i

0 = Bi
0

(
h + Φ − 1

2u
2) . (6.45a,b)

The corresponding Eulerian conservation law (6.12)–(6.13a,b) is given by

Ψ t = B · (u + r∇S), Ψ = (
h + Φ − 1

2u
2)B + (B · (u + r∇S))u,

Γ = (
h + Φ − 1

2u
2)B.

}
(6.46)

This is the cross-helicity density conservation law (2.67)–(2.69a,b).

6.2. Classical Noether approach
In this subsection we use a classical version of Noether’s theorem (see, e.g., Bluman &
Kumei (1989) and Appendix H) to derive conservation laws for the CGL plasma action
(3.19) that uses the canonical Lie symmetry operator X̃ = prX rather than the evolutionary
form pr X̂. The canonical symmetry operator form of Noether’s theorem was used by
Webb & Zank (2007) and Webb & Anco (2019) for the MHD fluid case. In this approach
one searches for Lie transformations and divergence transformations that leave the action
(6.1a–c) invariant, where

L′
0 = L0 + εDαΛ̄

α
0 + O(ε2), (6.47)

is the divergence transformation. Here D0 = ∂/∂t and Di = ∂/∂xi0 are total partial
derivatives with respect to t and xi0. Note we use Λ̄α

0 and Λ̄α to denote the potentials,
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in order to distinguish them from the potentials used for the evolutionary potentials
in § 6.1.
The condition for the action to remain invariant under (6.1a–c) and (6.47) may be written

in the form (cf. Bluman & Kumei 1989):

prXL0 + L0

[
Dtξ

t + Dxj0

(
ξ
j
0

)]
+ DtΛ̄

0
0 + Dxj0

Λ̄
j
0 = 0, (6.48)

where

prXL0 = ξ t ∂

∂t
+ ξ s

0
∂

∂xs0
+ ξ k ∂

∂xk
+ ξ xkt

∂

∂xkt
+ ξ xkj ∂

∂xkj
+ · · · , (6.49)

is the prolonged, canonical Lie symmetry operator.
Here prX is related to pr X̂ by the equations (Ovsjannikov 1978; Ibragimov 1985;

Bluman & Kumei 1989)

prX = pr X̂ + ξα
0 Dα,

pr X̂ = ξ̂ k ∂

∂xk
+ Dα

(
ξ̂ k

) ∂

∂xkα
+ DαDβ

(
ξ̂ k

) ∂

∂xkαβ

+ · · · ,

⎫⎪⎬
⎪⎭ (6.50)

where the evolutionary symmetry generator ξ̂ i is given by (6.4a,b) and ξ t ≡ ξ 0
0 .

Noether’s theorem follows from Noether’s identity:

prXL0 + L0Dαξ
α
0 + DαΛ̄

α
0 = ξ̂ iExi (L0) + Dα

(
Wα + L0ξ

α
0

) + Dα

(
Λ̄α

0

)
, (6.51)

where Exi(L0) ≡ δJ /δxi is the variational derivative of the action J with respect to xi.
For the case of CGL plasmas, the surface terms Wα are given by

Wt ≡ W0 = ξ̂ j ∂L0

∂x j
t

, Wi = ξ̂ j ∂L0

∂xji
(6.52a,b)

(see Bluman & Kumei (1989) and Ibragimov (1985) for more general cases).
If the Lie invariance condition (6.48) is satisfied, then the left-hand side of (6.51)

vanishes and, consequently, the right-hand side of (6.51) must vanish. If, in addition, the
Euler–Lagrange equations Exi(L0) = 0 are satisfied, then (6.51) implies

Dα

(
Wα + L0ξ

α
0 + Λ̄α

0

) = 0, (6.53)

which is the conservation law of Noether’s first theorem, which applies if the
Euler–Lagrange equations Exi(L0) = 0 are independent, which is the case for a finite Lie
algebra of Lie point symmetries.
In the more general case where the symmetries depend on continuous functions

{φk(x0, t) : 1 � k � N}, then the Lie pseudo-algebra of symmetries is infinite
dimensional. In this case, Noether’s second theorem implies that the Euler–Lagrange
equations are not all independent, and that there exists differential relations between
the Euler–Lagrange equations (see, e.g., Olver (1993) and Hydon & Mansfield (2011)
for details). Noether’s second theorem, in some cases results in mathematically trivial
conservation laws. Charron & Zadra (2018) discuss Ertel’s theorem and Noether’s second
theorem.
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For the CGL plasma model, the Wα from (6.52a,b) are given by

Wt = ξ̂ jρ0u j, Wi = ξ̂ j
(
pjs + Mjs

B

)
Asi. (6.54a,b)

Substitution of (6.54a,b) for the Wα into Noether’s theorem (6.53) gives the Lagrangian
conservation law

∂I0

∂t
+ ∂I i

∂xi0
= 0, (6.55)

where
I0 = ρ0u jξ̂ j + ξ tL0 + Λ̄t

0,

I i = ξ̂ j
(
pjs + Mjs

B

)
Asi + ξ i

0L0 + Λ̄i
0,

⎫⎬
⎭ (6.56)

are the conserved density and flux.
The Lagrangian conservation law (6.55) corresponds to an Eulerian conservation law of

the form (6.12) (e.g. Padhye 1998) with conserved density Ψ t, and flux Ψ j given by

Ψ t = ρukξ̂ k + ξ tL + Λ̄0,

Ψ j = ξ̂ k
(
Tjk − Lδjk

) + ξ jL + Λ̄ j,

}
(6.57)

where
Tjk = ρu juk + pjk + Mjk

B ,

Λ̄0 = Λ̄0
0/J, Λ̄ j = (

u jΛ̄0
0 + xjsΛ̄s

0

)
/J.

}
(6.58)

The Lagrangian and Eulerian conservation laws for the Galilean group (§§ 6.1.2–6.1.3)
and the cross-helicity conservation law associated with the fluid relabelling symmetry
ξ̂ = −B/ρ (§§ 6.1.4–6.1.5) now follow from (6.56)–(6.58) for appropriate choices of
the potentials Λ̄t

0 and Λ̄
j
0 and of the symmetry generators ξ i, ξ i

0 and ξ t. Note that the
evolutionary symmetry potentials used in § 6.1 are different than those used in this
subsection (§ 6.2).

EXAMPLE 6.3. The time translation symmetry of the Lagrangian action (3.19), satisfies
the Lie invariance condition (6.48) by choosing

ξ t = 1, ξ i = 0, ξ s
0 = 0, ξ̂ i = −ui, Λ̄α

0 = 0, (6.59a–e)

where i, s = 1, 2, 3, and α = 0, 1, 2, 3 is a variational symmetry of the action (3.19).
The corresponding conservation law using Noether’s theorem results (6.57) is the energy
conservation law:

∂

∂t

[
1
2
ρ|u|2 + ε + B2

2μ0
+ ρΦ(x)

]

+ ∇ ·
[
ρu

(
1
2
|u|2 + Φ(x)

)
+ E × B

μ0
+ εu + p · u

]
= 0, (6.60)

where p is the CGL pressure tensor (2.3a–c), E = −u × B is the electric field strength
and E × B/μ0 is the Poynting flux.
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EXAMPLE 6.4. If the gravitational potential Φ(x) is independent of xj1 say, then the Lie
invariance condition (6.48) for a divergence symmetry of the action is satisfied, by the
choice

ξ i = δij1, ξ s
0 = ξ t = 0, ξ̂ i = δij1, Λ̄0

0 = Λ̄i
0 = 0, (6.61a–d)

and condition (6.48) reduces to the equation

−ρ0
∂Φ

∂xj1
= 0. (6.62)

Then using (6.47) we obtain the momentum conservation equation in the xj1 direction in
the form {

∂

∂t
(ρu) + ∇ ·

(
ρu ⊗ u + p + B2

2μ0
I − B ⊗ B

μ0

)}j1

= 0. (6.63)

In the case where gravity can be neglected (i.e. Φ = 0) the superscript j1 can be dropped
in (6.63). Technically, the conservation of momentum law appears more complicated in
non-Cartesian coordinates (e.g. in spherical geometry), where the metric tensor, the
covariant derivative and the affine connection play an important role.

EXAMPLE 6.5. The Galilean boost symmetry, with infinitesimal generators

ξ i = Ω it, ξ s
0 = 0, ξ t = 0, Λ̄0

0 = −ρ0(x0)Ω · x, Λ̄i
0 = 0, (6.64a–e)

(i, s = 1, 2, 3) and (6.57) gives rise to the centre of mass conservation law

∂

∂t
[Ω · ρ(ut − x)] + ∇ ·

[
Ω ·

{
ρ(ut − x) ⊗ u + t

[
p + B2

2μ0
I − B ⊗ B

μ0

]}]
= 0,

(6.65)
provided

Ωt · ∇Φ ≡ ξ · ∇Φ = 0. (6.66)

Thus, one obtains the centre of mass conservation law for Galilean boosts perpendicular
to the external gravitational field. Thus, for a spherically symmetric gravitational
potential (e.g. for the Sun), a Galilean boost conservation law exists for a boost ξ = Ωt
perpendicular to the radial direction.

EXAMPLE 6.6. The Lie transformation generators

ξ i = εijkΩ
jxk, ξ s

0 = ξ t = 0, ξ̂ i = ξ xi, Λ̄α
0 = 0, (6.67a–d)

give rise to the angular momentum conservation equation

∂

∂t
[Ω · (x × M)] + ∇ [Ω · (x × T] = 0, (6.68)

where
M = ρu and (x × T)pj = εpqkxqTkj, (6.69a,b)

define the mass flux or momentum density M and x × T respectively. The invariance
condition (6.48) for a divergence symmetry of the action, requires

X̃L0 = −ρ0(Ω × x) · ∇Φ + εkpsΩ
p

[
psk + B2

2μ0
δsk − BsBk

μ0

]
≡ −ρ0(Ω × x) · ∇Φ = 0. (6.70)
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Note that the second term in the first line of (6.70) vanishes because the term in large
square brackets is symmetric in s and k.
For the case where Ω = Ωez the condition (6.70) reduces to the equation

X̃L0 = −ρ0Ωr sin θ
∂Φ

∂φ
= 0, (6.71)

where (r, θ, φ) are spherical polar coordinates. Condition (6.71) is satisfied for Φ =
Φ(r, θ).

EXAMPLE 6.7. The fluid relabelling symmetry transformations

ξ i = 0, ξ t = 0, ξ s
0 = −Bs

0

ρ0
, ξ̂ i = Bi

ρ
≡ bi, (6.72a–d)

and the choices

Λ̄0 = r (B · ∇S) , Λ̄i = uiΛ̄0,
dr
dt

= −T, (6.73a–c)

for the gauge potentials Λ̄α (α = 0, 1, 2, 3), leave the action invariant (i.e. (6.48) is
satisfied). Using (6.57) to calculateΨ t and Ψ j gives the results (6.46) for the cross-helicity
conservation law (2.67)–(2.69a,b).

The above examples illustrate the use of the classical version of Noether’s first theorem
in obtaining conservation laws of the CGL equations.

7. Summary and concluding remarks

In this paper an investigation has been carried out of the ideal CGL plasma equations,
based in part on the Lagrangian variational formulation of Newcomb (1962), in which
there is an anisotropic pressure tensor, with pressure components p‖ and p⊥ parallel
and perpendicular to the magnetic field B, which satisfy the so-called double adiabatic
equations which, in turn, can be described by using entropy components: S‖ and S⊥ parallel
and perpendicular to B (e.g. Du et al. 2020).
The total energy conservation law, and the cross-helicity and magnetic helicity

conservation laws were obtained (§ 2). The total energy equation was decomposed into the
sum of three energy equations, namely the internal energy equation or co-moving energy
equation, the total kinetic energy equation and Poynting’s theorem (the electromagnetic
energy equation). The cross-helicity transport equation involves the effective enthalpy
h = ( p‖ + ε)/ρ of the gas associated with pressure work terms parallel toB. If the internal
energy density of the plasma per unit mass has the form e = e(ρ, S,B) ≡ ε/ρ (Holm &
Kupershmidt 1986; Hazeltine et al. 2013) one obtains a cross-helicity transport equation
of the form

∂

∂t
(u · B) +

[
(u · B)u + B

(
Φ + h − 1

2
u2

)]
= TB · ∇S, (7.1)

where T = eS is the temperature of the gas. IfB · ∇S = 0, then (7.1) is a local conservation
law. More generally, if the source term Q = TB · ∇S �= 0, (7.1) can be reduced to a
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non-local conservation law of the form

∂

∂t
(w · B) +

[
(w · B)u + B

(
Φ + h − 1

2
u2

)]
= 0, (7.2)

where

w = u + r∇S and
dr
dt

= −T. (7.3a,b)

Here d/dt = ∂/∂t + u · ∇ is the advective time derivative following the flow. The CGL
plasma conservation law (7.2) generalises the non-local, MHD cross-helicity conservation
law of Webb et al. (2014a,b) and Yahalom (2017a,b). Here Φ(x) is the potential for
an external gravitational field. Similar transport equations for cross-helicity to (7.1) and
(7.3a,b) were also developed in terms of the parallel and perpendicular temperatures T‖
and T⊥ defined as T‖ = p‖/(ρR) and T⊥ = p⊥/(ρR).
There are two different, but equivalent forms of the momentum (or force) equation

for the CGL system. The form of the momentum equation obtained by Newcomb (1962)
Lagrangian action principle reduces to the form

du
dt

= − 1
ρ

∇ · p + J × B
ρ

− ∇Φ, (7.4)

where J = ∇ × B/μ0 is the current. This equation is essentially the same as the MHD
momentum equation, except that the isotropic gas pressure tensor pI is replaced by the
anisotropic CGL pressure tensor p = p‖ττ + p⊥(I − ττ ). However,

∇ · p = − [B × (∇ × Ω) + ρ(T∇S − ∇h)] (7.5)

(e.g. (2.61), (B6) and (E12)) where

Ω = pΔ

B2
B, pΔ = p‖−p⊥, h = ε + p‖

ρ
. (7.6a–c)

Using ∇ · p from (7.5) and (7.6a–c) in (7.4) results in the CGL momentum equation in the
form

du
dt

= T∇S − ∇h + J̃ × B
ρ

− ∇Φ, (7.7)

where

J̃ = J − ∇ × Ω = ∇ × B̃
μ0

, (7.8)

B̃ = B
[
1 − μ0pΔ

B2

]
. (7.9)

In the form (7.7) the anisotropic pressure force term −∇ · p/ρ has been partly transformed
into the modified force J̃ × B/ρ where J̃ = (∇ × B̃)/μ0 in which B̃ is the modified
magnetic induction B̃. The form of J̃ suggests that −∇ × Ω could be interpreted as a
magnetisation current.
It is interesting to note that B̃ = B(1 − μ0pΔ/B2) < 0 if pΔ = ( p‖ − p⊥) > B2/μ0,

which corresponds to the firehose instability threshold (e.g. Stix 1992; Hunana et al.
2016; Hunana & Zank 2017). The mirror instability threshold for the CGL plasma model
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does not correspond to plasma kinetic theory. For the CGL plasma model with zero
electron pressure (i.e. cold electrons) the mirror instability occurs if p⊥ − p‖ > (5/6)p⊥ +
p‖pB/p⊥, whereas kinetic theory gives the threshold for the instability as p⊥ − p‖ >
p‖pB/p⊥ where pB = B2/(2μ) is the magnetic pressure. Note the firehose instability occurs
if the parallel pressure dominates the perpendicular pressure. Similarly if p⊥ dominates
p‖ one obtains the mirror instability.
In the approaches of Hazeltine et al. (2013) and Holm & Kupershmidt (1986), the

internal energy density per unit mass, e satisfies the first law of thermodynamics, in the
form

T dS = de + p‖ dτ +
(
pΔ

ρB

)
dB. (7.10)

The variational formulation of Newcomb (1962) does not explicitly require (7.10) to apply.
The Lagrangian action principle ofNewcomb (1962) leads to the correct momentum
equation for the CGL plasma, and to a Hamiltonian formulation of the equations in
Lagrangian variables.
The Lagrangian variational principle for ideal CGL plasmas obtained by Newcomb

(1962) was used in § 3 to obtain a canonical Hamiltonian formulation of the equations
based on the canonical coordinates q = x(x0, t) and the canonical momentum π =
ρ0ẋ(x0, t), and also to establish that stationary variations of the action give the CGL
momentum equation in both its Lagrangian and Eulerian forms.
Section 4 provides an EP action principle derivation of the CGL momentum equation

(see also Appendix E, which uses the approach of Holm et al. 1998).
By transforming the canonical Poisson bracket for the CGL system of § 3, to

non-canonical physical variables leads to the non-canonical Poisson bracket for the CGL
system of § 5. The detailed transformation formulae from the canonical coordinates to
the physical variables ψ = (ρ, σ,M,B)T is described in Appendix D. By writing the
non-canonical Poisson bracket in cosymplectic form, leads to a system of equations for
the Casimirs C, as solutions of the Poisson bracket equation: {C,K} = 0 where K is
an arbitrary functional of the physical variables. The Casimirs satisfy Ct = {C,K} = 0.
Hamiltonian dynamics of the system takes place on the symplectic leaves C = const. of
the system.
The classical Casimirs for ideal fluids and plasmas are the mass conservation integral,

the cross-helicity integral for barotropic flows and the magnetic helicity. For the CGL
plasma case, there is effectively one entropy function that is Lie dragged with the flow,
because S‖ and S⊥ are assumed to be functions only of S. In principle, a more complicated
bracket would arise, if one used the possibility that the adiabatic integrals for p⊥ and
p‖ depended on other scalar invariants that are advected with the flow. For example, the
integrals (2.13a,b) could also depend on the scalar invariant B · ∇S/ρ. This possibility
was not explored in the present paper.
The links between Noether’s theorem and conservation laws for CGL plasmas are

developed (§ 6). The evolutionary symmetry form of the Lie invariance condition for
the action is used. This approach differs from the canonical symmetry operator form
of the invariance condition (e.g. Webb & Anco (2019), see also Appendix H). In the
evolutionary form of the symmetry operator, the independent variables are frozen and
all the Lie transformation changes are restricted to changes in the dependent variables and
their derivatives (see,e.g., Ibragimov 1985; Olver 1993; Bluman & Anco 2002). In the
canonical symmetry approach, both the dependent and independent variables and their
derivatives change.
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The CGL plasma equations admit the Galilean Lie point symmetry group, and three
extra scaling symmetries (Appendix F). The Galilean group leads to: (i) the energy
conservation law due to time translation invariance of the action; (ii) the momentum
conservation equations due to space translation invariances; (iii) the conservation of
angular momentum due to rotational invariance about some given rotation axis; and (iv)
the uniform centre of mass conservation law which is due to invariance under Galilean
boosts. These conservation laws are derived using the evolutionary form of Noether’s
theorem.
The non-local cross-helicity conservation law (6.45a,b)–(6.46) (see also (2.67)) arises

from a fluid relabelling symmetry with generators ξ̂ = −B/ρ and ξ 0 = B0/ρ0 and with
non-trivial potentials Λt

0 and Λi
0. It is a non-local conservation law that depends on the

Lagrangian time integral of the temperature back along the fluid flow trajectory. The
cross-helicity conservation law for MHD, is a local conservation law for the case of a
barotropic gas (i.e. p = p(ρ)), but is a non-local conservation law for the non-barotropic
case where p = p(ρ, S) (see also Yahalom (2017a,b); Yahalom & Qin (2021) for a
topological interpretation). The CGL entropies S‖ and S⊥ are not constants, but are
non-trivial scalars that are advected with the background flow.
Lingam et al. (2020) studied extended variational principles of MHD (and CGL)

type including gyro-viscous effects (i.e. higher-order finite Larmor radius effects in
the collisionless limit). A single gyro-viscous term is added to the usual action. The
gyro-viscous term alters the total momentum density, but it does not alter the divergence of
the mass flux. The total momentum density has the form:M c = M + M∗, whereM = ρu
is the mass flux and M∗ has the form M∗ = ∇ × L∗, where L∗ is the internal angular
momentum of the particle (L∗ = (2m/e)μ and μ = μτ is the vector form of the particle
adiabatic moment. These ideas are related to papers by Newcomb (1972, 1973, 1983),
Morrison, Lingam&Acevedo (2014) and others. Our analysis can be extended in principle
to include gyro-viscosity in the collisionless limit. However, to what extent the action
principle approach, reproduces the kinetic plasma and fluid approaches to gyro-viscosity
requires further investigation.
Analysis of the CGL plasma equations using Clebsch potentials (e.g. Zakharov &

Kuznetsov 1997; Yahalom 2017a, b; Webb 2018, Ch. 8; Yahalom & Qin 2021) may yield
further insights. Similarly, further study of the Lie symmetries the CGL plasma equations
would be useful. Investigation of conservation laws for the CGL equations by using Lie
dragging remains open for further investigation.
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Appendix A

In this appendix, we briefly discuss the derivation of the CGL plasma equations. These
equations were originally derived by Chew et al. (1956) and later by many authors
(e.g. Kulsrud 1983; Ramos 2005a,b). Some of the derivations use the adiabatic drift
approximation, but others simply involve taking moments of the collisionless Vlasov
equation or Boltzmann equation over the particle momenta. We use the latter approach.
Following Hunana et al. (2019a,b), we introduce the velocity phase space distribution

function f (x, v, t) of the particles where dN = f (x, v, t) d3v d3x is the number of particles
in a volume of phase space at the point (x, v) at time t, with velocity volume element d3v
and position volume element d3x. The lower order moments of the velocity distribution
function averaged over all velocities v are defined as

n =
∫

f d3v,

nu =
∫

f v d3v,

pij =
∫

f (vi − ui)(v j − u j) d3v,

qijk =
∫

f (vi − ui)(v j − u j)(vk − uk) d3v,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A1)

where n is the particle number density, u is the fluid velocity, and in Cartesian coordinates,
pij represents the components of the pressure tensor p and qijk represents the components
of the heat flux tensor q. Note that both of these tensors are symmetric.
From adiabatic motion of guiding centre theory, the pressure tensor p at lowest order

can be written in the form

p = p‖ττ + p⊥ (I − ττ ) + Π, (A2)

where τ = B/B is the unit vector along the magnetic field, p‖ and p⊥ are the gyrotropic
components of p parallel and perpendicular to the magnetic field B and Π represents the
non-gyrotropic components of p. In the limit of a strong background magnetic field B in
which the particle gyro-radius is rg � L where L is the scale length for variation of B, and
for times T � TΩ where TΩ is the gyro-period, the particle distribution is approximately
gyrotropic while the non-gyrotropic pressure Π can be neglected to first order in rg/L and
TΩ/T .
Hereafter, AS = A + AT denotes the symmetrised form of A, where T denotes the

transpose.
Taking the first moment of the Vlasov equation with respect to v gives the pressure

tensor equation

∂p

∂t
+ ∇ · (u ⊗ p + q) + (p · ∇u)S + q

mc
(B × p)S = 0, (A3)

where

(B × p)ik = εijlBjplk. (A4)
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The equations for the parallel pressure p‖ and perpendicular pressure p⊥ obtained from
(A3) respectively reduce to

∂p‖
∂t

+ ∇ · (
p‖u

) + 2p‖ττ : ∇u + ττ : (∇ · q) − Π :
d
dt

(ττ ) + (Π · ∇u)S : ττ = 0,
(A5)

and

∂p⊥
∂t

+ ∇ · ( p⊥u) + p⊥∇ · u − p⊥ττ : ∇u + 1
2

(Tr (∇ · q) − ττ : (∇ · q))

+ 1
2

(
Tr (Π · ∇u)S + Π :

d
dt

(ττ ) − (Π · ∇u)S : ττ

)
= 0. (A6)

Neglecting the non-gyrotropic component Π of the pressure tensor, and neglecting the
heat flux tensor components q gives the simplified CGL plasma equations for p‖ and p⊥ as

∂p‖
∂t

+ ∇ · (
p‖u

) + 2p‖ττ : ∇u = 0, (A7)

∂p⊥
∂t

+ ∇ · ( p⊥u) + p⊥∇ · u − p⊥ττ : ∇u = 0. (A8)

The double adiabatic equations (2.8) for p‖ and p⊥ follow by combining these transport
equations (A7) and (A8) with the mass continuity equation (2.1) in the form

d
dt

ρ = −ρ∇ · u, (A9)

and the magnetic field strength equation

d
dt
B = −(∇u) : (I − ττ )B (A10)

which comes from Faraday’s equation (2.6).

Appendix B

In this appendix, we derive the two equivalent forms of the pressure divergence
equation (2.61) and (2.71) used in the derivation of the corresponding forms of the
cross-helicityconservation law (2.67) and (2.74). Throughout we take ∇ · B = 0.
We start from the non-zero terms on the right-hand side of (2.61):

B × (∇ × Ω) + ρ(T∇S − ∇h). (B1)

By applying a standard cross-product identity on the first term in (2.61), we expand

B × (∇ × Ω) =
[
∇

(pΔ

B
τ
)]

· τB − Bτ · ∇
(pΔ

B
τ
)

= ∇pΔ − (τ · ∇pΔ) τ

+ pΔ [−τ · ∇τ + (∇τ ) · τ − ∇ lnB + (τ · ∇ lnB) τ ] . (B2)

In this expression, the second and third terms combine into −τ · ∇(pΔτ ); the fourth term
vanishes (∇τ ) · τ = ∇( 12τ · τ ) = 0 since τ is a unit vector; and with the Gauss’ law
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equation written as ∇ · τ = −τ · ∇ lnB, the last term can be expressed as −pΔ(∇ · τ )τ .
Thus, (B2) reduces to

B × (∇ × Ω) = ∇pΔ − pΔ∇ lnB − ∇ · ( pΔττ ) . (B3)

Next, we expand the remaining term in (B1) by using the Pfaffian differential equation
(2.15) in the gradient form:

∇e = T∇S + p‖
ρ

∇ ln ρ − pΔ

ρ
∇ lnB. (B4)

This yields

ρ(T∇S − ∇h) = ρ

(
∇(e − h) − p‖

ρ
∇ ln ρ + pΔ

ρ
∇ lnB

)
= −∇p‖+pΔ∇ lnB, (B5)

by using expressions (2.62) for enthalpy and (2.16a,b) for internal energy. Finally, we
combine the terms (B5) and (B3), which gives

B × (∇ × Ω) + ρ(T∇S − ∇h) = −∇p⊥−∇ · ( pΔττ ) = −∇ · p (B6)

because the pressure tensor (2.10a–c) can be written in terms of pΔ as

p = p‖ττ + p⊥(I − ττ ) = p⊥I + pΔττ . (B7)

This yields the first form of the pressure divergence equation (2.61).
We derive the second form of the pressure divergence equation (2.71) by starting from

the terms on its left-hand side
∇ · p − ρ∇h. (B8)

Expanding the first term in (B8) by use of the gyrotropic expression (B7), we obtain

∇ · p = ∇p⊥+ττ · ∇pΔ + pΔ (τ∇ · τ + τ · ∇τ ) . (B9)

The scalar product of this expression with τ yields

τ · (∇ · p) = τ · (∇p‖−pΔ∇ lnB
)

(B10)

through the Gauss’ law equation in the form ∇ · τ = −τ · ∇ lnB. The second term in
(B8) can be expanded using the enthalpy (2.62). After taking the scalar product with τ ,
this gives

−ρτ · ∇h = −τ · ∇ (
3
2p‖+p⊥

) + (
3
2p‖+p⊥

)
τ · ∇ ln ρ. (B11)

The combined terms (B10) and (B11) yield

τ · (∇ · p − ρ∇h) = −τ · ∇ (
1
2p‖+p⊥

) − pΔτ · ∇ lnB + (
3
2p‖+p⊥

)
τ · ∇ ln ρ. (B12)

Now, we substitute the gradient of the expressions for p‖ and p⊥ in terms of adiabatic
integrals (2.37):

∇p‖=p‖
(∇ ln c‖(S) + 3∇ ln ρ − 2∇ lnB

)
,

∇p⊥=p⊥ (∇ ln c⊥(S) − ∇ ln ρ − ∇ lnB) .

}
(B13)

Then (B12) reduces to the form

τ · (∇ · p − ρ∇h) = − 1
2p‖τ · ∇ ln c‖(S) − p⊥τ · ∇ ln c⊥(S), (B14)

which gives the pressure divergence equation (2.71) after we use the relations (2.29a,b)
for the adiabatic integrals in terms of S̄‖ and S̄⊥.
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Appendix C

In this appendix, we show how the Eulerian momentum equation (2.2) is obtained from
the Euler–Lagrange equation (3.24) of the Lagrangian (3.23). We follow the approach in
Newcomb (1962).
From expression (3.23), we have

∂L0

∂Xi
= −ρ0

∂Φ

∂Xi
,

∂L0

∂Ẋi
= ρ0Ẋi,

∂L0

∂Xij
=

(
p‖0
ζ 4

− p⊥0

ζJ

)
Xikτ

k
0 τ

j
0 +

(
p⊥0ζ

J2
+ ζ 2B2

0

2μ0J2

)
Aij − XikBk

0B
j
0

μ0J
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(C1)

which uses expression (3.14) for ζ 2, and the derivative expression in (3.5a–c) for J. Then,
substituting the derivatives (C1) into the Euler–Lagrange equation (3.24), we obtain

EXi(L0) = −ρ0
∂Φ

∂Xi
− ∂

∂t

(
ρ0Ẋi

) − ∂

∂x j
0

((
p⊥0ζ

J2
+ ζ 2B2

0

2μ0J2

)
Aij

)

− ∂

∂x j
0

((
p‖0
ζ 4

− p⊥0

ζJ
− B2

0

μ0J

)
Xikτ

k
0 τ

j
0

)
. (C2)

To proceed, we need the derivative identity:

Aij
∂

∂x j
0

f = ∂

∂x j
0

(
Aijf

) = J
∂f
∂Xi

= J ∇if |x=X (C3)

holding for any function f (see Newcomb 1962). This identity arises from the middle
property in (3.5a–c) as follows. Differentiating with respect to xk0 gives ∂J/∂x j

0 =
Xij∂Aik/∂xk0 + Aik∂Xij/∂xk0. By using commutativity of partial derivatives ∂Xij/∂xk0= ∂Xik/∂xk0 and substituting Jacobi’s formula for derivative of a determinant ∂J/∂xi0 =
Ajk∂Xjk/∂xi0, we find ∂Aik/∂xk0 = 0. This leads to the identity (C3), after applying the chain
rule and again using the middle property in (3.5a–c).
There are two main steps for simplifying (C2). First, through relations (3.14), (3.16) and

(3.18a,b), followed by use of the identity (C3), we can express the two divergence terms in
(C2) in the form:

∂

∂x j
0

((
p⊥ + B2

2μ0

)
Aji

)
= J

∂

∂Xi

((
p⊥ + B2

2μ0

))
, (C4)

∂

∂x j
0

(
J
ζ 2

(
pΔ − B2

μ0

)
ζ τiτ

j
0

)
= ∂

∂x j
0

((
pΔ − B2

μ0

)
τiτ

kAkj

)

= ∂

∂Xk

((
pΔ − B2

μ0

)
τiτ

k

)
. (C5)

Note these terms imply that

∂L0

∂Xij
= Akj

(
δik

(
p⊥+ B2

2μ0

)
+

(
pΔ − B2

μ0

)
τiτk

)
. (C6)
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Second, from the density relation (3.8) and the fluid element flow equation (3.1), we see
that in (C2) the first term is simply

− Jρ
∂Φ

∂Xi
, (C7)

while the second term can be expressed as

−
(
J̇ρui + J

d
dt

(ρui)
)

= −ρuiAkj
∂Ẋk

∂x j
0

− J
(
(ρui)t + Ẋ j∇j(ρui)

)
= −J

(
(ρui)t + ∇j(ρuiu j)

)∣∣
x=X (C8)

by use of relation (3.6).
Thus, the Euler–Lagrange equation (C2) becomes

EXi(L0) = −J
(

ρ∇iΦ + (ρui)t + ∇i

(
p⊥ + B2

2μ0

)
+ ∇j

((
pΔ − B2

μ0

)
τiτ

j

))∣∣∣∣
x=X

.

(C9)
The stationary points of the action principle are given by the equation EXi(L0) = 0.
From expression (C9), the resulting equation coincides with the Eulerian momentum
equation (2.2).
Note that, in terms of the Lagrangian variables, the Euler–Lagrange equation (C2) is a

nonlinear wave system for Xi(x j
0, t), where Xij = ∂Xi/∂x j

0 and Aij = J−1(∂Xi/∂x j
0)

−1. (See
also Golovin (2011), Webb et al. (2005b) and Webb & Anco (2019) for the MHD case).

Appendix D

Eckart (1963) used the Lagrangian map and Jacobians to describe fluids. Lundgren
(1963) used Eulerian and Lagrangian variations in MHD and in plasma physics (see
also Newcomb 1962). In Lundgren (1963) a small parameter ε is used to describe the
variations, where the physical quantity ψ has the functional form: ψ = ψ(x, x0, ε) in
which x = X (x0, t) is the Lagrangian map. Eulerian (δψ) and Lagrangian (�ψ) variations
of ψ are defined as

δψ = lim
ε→0

(
∂ψ

∂ε

)
x

, �ψ = lim
ε→0

(
∂ψ

∂ε

)
x0

. (D1a,b)

Thus, for an Eulerian variation, δψ is evaluated with x held constant, whereas for a
Lagrangian variation �ψ , x0 is held constant. Thus, δx = 0 and �x0 = 0.
Using the chain rule for differentiation, it follows that

δψ = �ψ + δx0 · ∇0ψ,

�ψ = δψ + �x · ∇ψ.

}
(D2)

Dewar (1970) used a variational principle for linear Wentzel–Kramers–Brillouin (WKB)
MHD waves in a non-uniform background plasma flow. Webb et al. (2005a) used a
variational principle to describe non-WKB waves in a non-uniform background flow.
Webb et al. (2005b) used similar ideas to describe nonlinear waves in a non-uniform flow
by variational methods.
In this appendix, we describe the use of Eulerian and Lagrangian variations in defining

the Poisson bracket for CGL plasmas.
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We derive the CGL plasma non-canonical bracket (5.2) starting from the canonical
Poisson bracket (5.4). This canonical bracket is properly defined in a Lagrangian frame,
i.e. a physical reference frame moving with the fluid flow, where all quantities are
functions of the fluid element labels xi0 and time t. Non-scalar quantities (e.g. vectors,
differential forms, tensors) are expressed in terms of their components with respect to the
Cartesian basis vectors of this frame (corresponding to the coordinates xi0, i = 1, 2, 3).
These components are designated by a subscript 0.
The canonical bracket (5.4) has the component form

{F ,G} =
∫ (FqiGpi − FpiGqi

)
d3x0, (D3)

where qi = xi(x0, t) and pi = πi(x0, t) comprise the canonical coordinates and momenta,
with πi = ρ0ẋi, as used in formulating Hamilton’s equations (3.29a,b). Note that the fluid
element motion is expressed through the relation

ẋi(x0, t) = ui(x(x0, t), t). (D4)

HereF and G are functionals which depend on qi, pi, as well as a set of advected quantities
a(x j

0, t) which are used in describing the dynamics.
For a CGL plasma, the basic advected quantities are listed in (4.9a–d). We take

a = (S0,B0/ρ0, ρ0 d3x0). (D5)

Note we assume S‖ and S⊥ are functionals of s. Accordingly, functionals will be expressed
as

F =
∫

F0(Z0) d3x0 (D6)

in terms of the Lagrangian variables

Z0 = (q, p, a). (D7)

The non-canonical Poisson bracket (5.2) employs the Eulerian variables (5.11). The
transformation from Lagrangian variables (D7) to these Eulerian variables is effected in
the following four steps.
Firstly, the Eulerian form of a functional (D6) is given by

F =
∫

F(Z) d3x (D8)

with Z = (ρ, σ,B,M). The vector variables here will be expanded in components with
respect to the Eulerian basis vectors corresponding to xi viewed as coordinates in an
Eulerian frame. It will be convenient to take the basis vectors to be derivative operators
(via the standard correspondence between vectors and directional derivatives, e.g. Schutz
(1980)):

x = xi∂xi, x0 = xi0∂xi0 . (D9a,b)

Second, using the notation in Newcomb (1962), we define �xi to represent a variation
of xi(x0, t) in which xi0 and t are held fixed: �xi0 = 0 and �t = 0. Note that �xi will itself
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be some function of xi0 and t; we write it in the Eulerian form:

�xi(x0, t) = ε i(x, t) (D10)

where, on the right-hand side, xi is regarded as a function of xi0 and t. Likewise, �πi =
�(ρ0ẋi) = ρ0δẋi is a corresponding variation of πi(x0, t), where ρ0 is unchanged because
it is a function of only xi0 and t. In Eulerian form:

�πi(x0, t) = J(x)ρ(x)�ui(x, t), (D11)

using the relation (D4) and the advection result (3.8), where J is the determinant of the
Jacobian matrix of partial derivatives of xi(x0, t) (cf. (3.3)).
The third step is to derive formulae for the variation of the Eulerian variables Z. These

formulae depend on the specific tensorial nature of each variable and will be obtained
through the variation of the advected variables (D5) in component form. Hereafter we
suppress the t dependence in all variables and quantities whenever it is convenient.
We start with the scalar field S0. Since it is advected (i.e. frozen in), this implies S(x) =

S0(x0). Applying a variation (D10), we consequently see that

�S(x) = �S0(x0) = 0. (D12)

Next we consider ρ(x) d3x, which is properly viewed as an advected differential 3-form
(see, e.g., Schutz 1980). Its advection property is expressed by (3.8). As x0 and t are held
fixed, a variation (D10) yields

Δ(ρ(x)J(x)) = J(x)�ρ(x) + ρ(x)�J(x) = 0. (D13)

Now we use the variation of the determinant relation d3x = J(x) d3x0, which is given by
�d3x = ∂xi(�xi) d3x = (�J(x)) d3x0. This yields the result

�J(x) = J(x)∂xiε i(x). (D14)

Substituting this variation into (D13), we obtain

�ρ(x) = −ρ(x)∂xiε i(x). (D15)

Last we consider the vector field b(x) ≡ B(x)/ρ(x), which has the advection property
(3.13). We use this property in component form: bi(x)∂xi = bi0(x0)∂xi0 . Again, because all
of the quantities on the right-hand side are held fixed in a variation (D10), we see that

Δ(bi(x)∂xi) = (�bi(x))∂xi + bi(x)�∂xi . (D16)

To determine �∂xi , we use the coordinate basis relation ∂xi� dx j = δ
j
i where δ

j
i is the

Kronecker symbol. Taking the variation gives �∂xi� dx j = −∂xi��dx j, where

�dx j = d�x j = dε j(x) = dxk∂xkε j(x). (D17)

As �∂xi must have the form of a linear transformation, say φi
k, applied to ∂xk , we find

φi
k∂xk� dx j = φi

j = −∂xi� dxk∂xkε j(x) = −∂xiε
j(x). Thus, we have

�∂xi = −∂xiε
j(x)∂x j . (D18)

Substituting this formula into (D16) yields

�bi(x) = b j(x)∂x jε i(x). (D19)
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By applying the variations (D12), (D15) and (D19) to the quantities σ(x) = ρ(x)S(x)
and Bi(x) = ρ(x)bi(x), we readily obtain

�σ(x) = −σ(x)∂xiε i(x), (D20)

and
�Bi(x) = −(∂x jε

j(x))Bi(x) + Bj(x)∂x jε i(x). (D21)

To complete the derivation of δZ, we also need to find the variation of Mi(x) =
ρ(x)ui(x), which can be obtained directly from the relation (D4). Taking the variation
of this relation yields

�ui(x) = ∂t�xi(x0) = dε i(x)/dt. (D22)

This result implies that �Mi(x) = (�ρ(x))ui(x) + ρ(x)(�ui(x)) = ρ(x)[dεi(x)/dt −
(∂x jε

j(x))ui(x)], and thus we obtain

�Mi(x) = ρ(x)
d
dt

ε i(x) − Mi(x)∂x jε j(x) = ρ(x)∂tε i(x) + Mj(x)∂x jε i(x) − Mi(x)∂x jε j(x).

(D23)
Now, the fourth step consists of transforming the variational derivatives Fqi ≡ δF/δxi

and Fpi ≡ δF/δπi into an equivalent form with respect to the Eulerian variables that
comprise Z. Consider a variation of a functional F . From (D6), we obtain

�F =
∫ (

F0 qi�xi + F0 pi�πi
)
d3x0 =

∫ (
J−1F0 qiε

i + F0 piρ
d
dt

ε i
)
d3x, (D24)

where we have used (D10)–(D11) and (D22), along with �a = 0 which holds because the
quantities (D5) comprising a are advected. Similarly, from (D8), we obtain

�F =
∫ ((

Fρ�ρ + Fσ�σ + FBi�Bi + FMi�Mi
)
J + FδJ

)
d3x0

=
∫ ((

F − Fρρ − Fσσ − FBiBi − FMiMi
)
∂x jε

j + FBiB j∂x jε
i + FMiρ

d
dt

ε i
)
d3x

=
∫ ((

ρ∂x jFρ + σ∂x jFσ + Mi∂x jFMi + Bi∂x jFBi − ∂xi(FBjBi)
)
ε j + FMiρ

d
dt

ε i
)
d3x,

(D25)

where we have substituted (D15), (D20), (D21) and (D23), integrated by parts, and then
used the cancellation

Fρ∂x jρ + Fσ ∂x jσ + FBi∂x jBi + FMi∂x jMi − ∂x jF = 0 (D26)

which holds by the chain rule. Finally, from the two expressions (D24) and (D25), we
equate the coefficients of εi, and likewise the coefficients of dε i/dt, because εi and dε i/dt
are arbitrary functions of x. This yields the key result

F0 qi = (
ρ∂xiFρ + σ∂xiFσ + Mj∂xiFM j + Bj∂xiFBji − ∂x j(FBiB j)

)
J,

F0 pi = FMi,

}
(D27)

which are the transformation formulae for the variational derivatives.
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Substitution of these formulae (D27) into the canonical bracket (D3) gives

{F ,G} =
∫ (

GMj

(
ρ∂x jFρ + σ∂x jFσ + Mi∂x jFMi

+Bi∂x jFBi − ∂xi(FBjBi)
) − FMj

(
ρ∂x jGρ + σ∂x jGσ

+Mi∂x jGMi + Bi∂x jGBi − ∂xi(GBjBi)
))
d3x

=
∫ (

ρ(GMj∂x jFρ − FMj∂x jGρ) + σ(GMj∂x jFσ − FMj∂x jGσ )

+ Mi(GMj∂x jFMi − FMj∂x jGMi) + Bi(GBj∂x jFBi − FBj∂x jGBi)

+Bi(FBj∂xiGM j − GBj∂xiFM j)
)
d3x (D28)

after integration by parts to remove derivatives off of Bi. This completes the derivation
of the CGL Poisson bracket, which is the counterpart of the MHD bracket Morrison &
Greene (1982). Note that, for using the bracket (D28), we can convert all terms into vector
notation as shown in (5.2).
Equations (D4) for ẋi(x0, t) and (D10) for the variation δxi(x0, t) can be set up in an

alternative way by means of the Lagrangian map (4.1), using diffeomorphisms g(t) on
Euclidean space similarly to the set up for the EP action principle in § 4. However, here
the variations are not the same as those used for the EP action principle, because those
variations took place in the Eulerian frame and involved fixing xi, with xi0 being a function
of x and t. To proceed, we view g(t), at any fixed time t, as an element in the group
of diffeomorphisms G ≡ Diff(R3) acting on Euclidean space in terms of the Cartesian
coordinates xi0. The Lagrangian map (4.1) then can be expressed in component form:

xi(x0, t) = g(t)xi0. (D29)

(Concretely, g can be thought of as a matrix in the fundamental representation of the
group G.) Thus, we can write

εi(x, t) = δ(g(t)xi0) = (δg(t)g−1(t))xi = (δg(t)g−1(t))i, (D30)

ui(x, t) = ∂t(g(t)xi0) = (gt(t)g−1(t))xi = (gt(t)g−1(t))i, (D31)

where

δg(t)g−1(t) ≡ (δg(t)g−1(t))i∂xi, gt(t)g−1(t) ≡ (gt(t)g−1(t))i∂xi (D32a,b)

represent right-invariant vector fields on the group G, which are identified with Eulerian
vector fields (directional derivatives) at the point xi in Euclidean space. Note the property
of right-invariance means that, for any fixed element h in G, g → gh implies δgg−1 →
δ(gh)(gh)−1 = δghh−1g−1 = δgg−1 and gtg−1 → (gh)t(gh)−1 = gthh−1g−1 = gtg−1, due
to ∂th = δh ≡ 0. The variation of the Eulerian variables Z can be shown to arise from
using the push-forward action of g(t), and the pull-back action of g(t)−1, on scalar fields,
vector fields, differential forms and tensor fields in the Lagrangian frame.
A closer connection to the variations used for the EP action principle arises if the

variations derived in (D12), (D15), (D20), (D21) and (D23), are reformulated in the
following way. A variation of any one of these quantities, δZ(x), can be expressed as
the sum of a contribution from varying only its dependence on xi, in addition to a
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contribution from varying Z with xi being unchanged. For example, consider δS(x) =
(δS)(x) + (δxi)∂xiS(x). The pointwise contribution is given by

(δS)(x) = δS(x) − ε i(x)∂xiS(x) = −ε i(x)∂xiS(x) ≡ �S(x) (D33)

from the total variation (D12). Likewise, δρ(x) = (δρ)(x) + (δxi)∂xiρ(x) leads to

(δρ)(x) = −∂xi(ρ(x)ε i(x)) ≡ �ρ(x) (D34)

from the total variation (D15). As another example, δBi(x) = δ(Bi)(x) + (δx j)∂x jBi(x)
gives

(δBi)(x) = δ(Bi(x)) − ε j(x)∂x jBi(x) = −∂x j(ε
j(x)Bi(x)) + Bj(x)∂x jε i(x) ≡ �Bi(x)

(D35)
using the total variation (D21). When the analogous pointwise variations are considered
for the components of the advected quantities (D5), we see that they take the form of a Lie
derivative:

(δS)(x) = −LεS(x), (δbi)(x) = −Lεbi(x), (δρeijk)(x) = −Lε(ρ(x)eijk). (D36a–c)

Note that here we have expressed the volume element as a 3-form: d3x = eijkdxi∧ dx j∧ dxk,
where eijk is the Levi–Civita symbol. The Lie derivative in the variations (D36a–c) denotes
the standard Lie derivative formula in component form. These formulae can be written
more properly by including the basis vectors: e.g. (δbi(x))∂xi = −Lε(bi(x)∂xi), where the
Lie derivative then acts in the standard geometrical way. This result coincides with the
general formulation in Holm et al. (1983). In addition, it shows that the variations of the
non-advected Eulerian variables given by (D34) and (D35) can be expressed in terms of
Lie derivatives:

�ρ(x) = −(∂iε
i)ρ(x) − Lερ(x), �Bi(x) = −(∂x jε

j)Bi(x) − LεBi(x). (D37a,b)

These formulae are used in the classical work of Newcomb (1962). They can be used
to derive the transformation formula (D27) for the variational derivatives by taking a
pointwise variation of a functional:

�F =
∫ (

Fρ�ρ + Fσ�σ + FBi�Bi + FMi�Mi
)
d3x, (D38)

which differs from (D27) by lacking a contribution from varying the volume element.
Nevertheless, this leads to the same expression (D28) for the bracket (cf. the cancellation
of terms (D26)).

Appendix E

In this appendix, we outline the general approach of Holm et al. (1998) on the EP
variational principles, with application to CGL plasmas. The action is of the form:

J =
∫

L[u, a] d3x dt. (E1)

The stationary points of A are given by δJ = 0, where the variables a are advected
quantities (2.87) subject to the variations

δa = −Lη(a). (E2)

Here η is an arbitrary, sufficiently differentiable vector field. Alternatively, η arises from a
Lagrangian map as discussed in § 4.
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For the CGL plasma case, the Lagrangian density L[u, a] is given by (3.21), where the
a are the advected quantities S, ρ d3x, B/ρ ≡ b (cf. (4.9a–d)). The magnetic flux 2-form
Bx dy ∧ dz + By dz ∧ dx + Bz dx ∧ dy is a Lie dragged invariant of the flow (Webb et al.
2014a). (Note p‖, p⊥ and e are defined in terms of ρ, S and B via the equation of state
for e(ρ, S,B)). The expression for the action J is the same as in (4.18). From (E2) and
(4.9a–d), the variation δa is obtained:

δS = −LηS = −η · ∇S,

δρ d3x = −Lη(ρ d3x) = −∇ · (ρη) d3x,

δB = ∇ × (η × B) − η(∇ · B).

⎫⎪⎬
⎪⎭ (E3)

The variational equation δJ = 0 is expressed as:

δJ =
∫

〈η,F 〉 d3x dt = 0, (E4)

which can be shown to imply for arbitrary η that

F = ∂

∂t

(
δL
δu

)
+ ad∗

u

(
δL
δu

)
R

− δL
δa

� a = 0 (E5)

(see Holm et al. (1998) for details). This is the general form of the EP equation. The
diamond operator � is defined by the property (4.20).
For the CGL plasma action principle, the EP equation (E5) has the form

∂

∂t
(ρu) + ∇ · (ρu ⊗ u) + ρ∇

(
1
2
u2

)
= δL

δa
� a. (E6)

The term in (E6) involving the diamond operator can be determined from the variation∫
δL
δa

δa d3x =
∫ (

δL
δρ

δρ + δL
δS

δS + δL
δB

· δB
)
d3x

=
∫ (

δL
δρ

[−∇ · (ρη)] + δL
δS

[−η · ∇S]

+ δL
δB

· [∇ × (η × B) − η(∇ · B)]
)
d3x

=
∫

η ·
[
ρ∇ δL

δρ
− δL

δS
∇S + B ×

[(
∇ × δL

δB

)
− δL

δB
(∇ · B)

]]
d3x, (E7)

where boundary integral terms have been discarded. From (E7) and (E4), we identify the
diamond operator term (δL/δa) � a as being the term in the square brackets. Substituting
the variational derivatives of L, which are given by (4.21), we obtain

δL
δa

� a = ρ

(
T∇S − ∇h + ∇

(
1
2
u2 − Φ

))
+ J × B

+ B
μ0

(∇ · B) + B × (∇ × Ω) − Ω(∇ · B), (E8)
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where

J = ∇ × B
μ0

, Ω = pΔ

B
τ , τ = B

B
. (E9a–c)

The auxiliary calculations

B × (∇ × Ω) = −pΔτ · ∇τ − pΔ (I − ττ ) · ∇(lnB) + (I − ττ ) · ∇pΔ,

∇ · p = ∇p⊥+pΔ ((∇ · τ )τ + τ · ∇τ ) + ττ · ∇pΔ,

∇ · B = B (∇ · τ + τ · ∇ lnB) ,

⎫⎪⎬
⎪⎭ (E10)

and the thermodynamic relation

ρ (T∇S − ∇h) = p�∇(lnB) − ∇p‖, (E11)

can be combined to give the identity

B × (∇ × Ω) − Ω(∇ · B) + ∇ · p + ρ (T∇S − ∇h) = 0. (E12)

This equation was derived in (B6).
Substituting the identity (E12) into (E8) gives:

δL
δa

� a = ρ∇
(
1
2
u2

)
− ρ∇Φ + J × B + B

μ0
∇ · B − ∇ · p, (E13)

which, when used in the EP equation (E6) yields the Eulerian momentum equation (2.2).

Appendix F

In this appendix, we summarise the complete Lie point symmetry group for the CGL
system (2.1)–(2.9). We restrict attention to the case where there is no gravity (i.e. Φ = 0 in
(2.2)). (For the general theory of Lie point symmetries, see Ovsjannikov 1978; Ibragimov
1985; Olver 1993; Ovsjannikov 1994; Bluman & Anco 2002; Golovin 2009; Bluman,
Cheviakov & Anco 2010.)
The independent and dependent variables in (2.1)–(2.9) consist of t, xi, ρ, ui, Bi, S, p‖

and p⊥. Thus, every Lie point symmetry arises from a generator of the form

X = ξ t∂t + ξ i∂xi + ξρ∂ρ + ξ ui∂ui + ξBi
∂Bi + ξ S∂S + ξ p‖∂p‖ + ξ p⊥∂p⊥ (F1)

under which (2.1)–(2.9) are invariant on the space of solutions. Here

ξ t, ξ i, ξρ, ξ ui, ξBi
, ξ S, ξ p‖, ξ p⊥ (F2)

are functions of the independent and dependent variables. For computational purposes, it
is easiest to work with the characteristic form of the generator in which only the dependent
variables undergo a transformation:

X̂ = ξ̂ ρ∂ρ + ξ̂ ui∂ui + ξ̂Bi
∂Bi + ξ̂ S∂S + ξ̂ p‖∂p‖ + ξ̂ p⊥∂p⊥ (F3)

where
ξ̂ v = ξv − ξ tvt − ξ ivxi (F4)

for each dependent variable v = (ρ, ui,Bi, S, p‖, p⊥). The generator X̂ has the convenient
property that it commutes with total derivatives with respect to t, xi, and so the
prolongation of X̂ acting on derivatives of v is easy to compute.
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The determining equations for Lie point symmetries are given by applying prX̂ to
each equation (2.1)–(2.9) and evaluating the resulting system on the solution space of
(2.1)–(2.9) which is carried out by putting (2.1)–(2.9) into a solved form with respect to a
set of leading derivatives. (See Olver (1993) for a general discussion.) The resulting system
of determining equations then splits with respect to all derivative variables that appear in
the system. This yields an overdetermined linear system of equations for the functions
(F2). The system can be solved straightforwardly by use of computer algebra (e.g. Maple
or Mathematica).
The Lie point symmetry generators are found to be given by the 10 Galilean

transformation generators (6.18a–d) and the following 3 scaling generators

S1 = t∂t + xi∂xi,

S2 = t∂t + 2ρ∂ρ − ui∂ui,

S3 = 2ρ∂ρ + 2p⊥∂p⊥ + 2p‖∂p‖ + Bi∂Bi .

⎫⎪⎪⎬
⎪⎪⎭ (F5)

In terms of the quantities p = ( p‖ + 2p⊥)/3 and pΔ = p‖ − p⊥, the third scaling symmetry
has the equivalent form:

S3 = 2ρ∂ρ + 2p∂p + 2pΔ∂pΔ
+ Bi∂Bi . (F6)

For comparison, the Lie point symmetries for MHD (Rogers & Ames 1989; Fuchs
1991) are given by the 10 Galilean transformation generators (6.18a–d) and the 2 scaling
generators S1 and S2 plus a scaling generator S3′ = 2ρ∂ρ + 2p∂p + Bi∂Bi which differs from
S3 by omitting the term involving pΔ.
A full study of subalgebras of the Galilean Lie algebra was given in Ovsjannikov (1978,

1994, 1999) and Grundland & Lalague (1995).

Appendix G

Here we derive the Lie invariance condition (6.17) for the action, which follows
from (6.5). We start from the appropriate expansion for pr X̂L0:

pr X̂(L0) = ξ̂ i ∂L0

∂xi
+ Dt

(
ξ̂ i

) ∂L0

∂ ẋi
+ Dxj0

(
ξ̂ i

) ∂L0

∂xij
. (G1)

The derivatives of L0 in (G1) are given in Appendix C, namely

∂L0

∂Xi
= −ρ0

∂Φ

∂xi
,

∂L0

∂Ẋi
= ρ0ui,

∂L0

∂Xij
= (p + MB)

ik Akj. (G2a–c)

Using (G2a–c) in (G1) gives

pr X̂(L0) = −ρ0ξ · ∇Φ + Dt

(
ξ̂
)

· ρ0u + Dxj0

(
ξ̂ i

)
(p + MB)

ik Akj

≡ ρJui
[
dξ̂ i

dt
− ξ̂ · ∇ui

]
+ R1, (G3)
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where

R1 = −ρ0ξ̂ · ∇Φ + ρ0ξ̂ · ∇
(
1
2
u2

)
+ Dxj0

(
ξ̂ i

)
(p + MB)

ik Akj

≡ J
{
∇ ·

(
ρξ̂

) (
Φ − 1

2
u2

)
− ∇ ·

[
ρξ̂

(
Φ − 1

2
u2

)]}
+ Dxj0

(
ξ̂ i

)
(p + MB)

ik Akj.

(G4)

By noting that

∇k
(
pik

) = − {B × (∇ × Ω) − Ω∇ · B + ρ (T∇S − ∇h)}i , (G5)

and

∇k
(
Mik

B

) = −
{
J × B + B

∇ · B
μ0

}i

. (G6)

We obtain

AkjDx j0

(
ξ̂ i

)
(p + MB)

ik = J
{
Dxk

[
ξ̂ i (p + MB)

ik
]

+ ρξ̂ · (T∇S − ∇h)

+ξ̂ · [B × (∇ × Ω) − Ω∇ · B] + ξ̂ ·
[
J × B + B

∇ · B
μ0

]}
.

(G7)

Noting

J̃ = J − ∇ × Ω = ∇ × B̃
μ0

, B̃ = B
(
1 − μ0pΔ

B2

)
, (G8a,b)

we obtain the equations

ξ̂ · [B × (∇ × Ω) − Ω∇ · B] + ξ̂ · [
J × B + B(∇ · B)/μ0

]
= J̃ ·

(
B × ξ̂

)
+ (ξ̂ · B̃)∇ · B/μ0

= 1
μ0

{
∇ ×

[(
ξ̂ × B

)
× B̃

]
− B̃ ·

[
∇ × (ξ̂ × B) − ξ̂∇ · B

]}
. (G9)

In the derivation of (G9) we used the identity

∇ · (A × C) = (∇ × A) · C − (∇ × C) · A, (G10)

with A = ξ̂ × B and C = B̃.
Using (G9) in (G7) gives

AkjDx j0

(
ξ̂ i

) (
pik + Mik

B

) = J

{
Dxk

[
ξ̂ i

(
pik + Mik

B

)] + ρξ̂ · [T∇S − ∇h]

+∇ ·
[

(ξ̂ × B) × B̃
μ0

]
− B̃

μ0
·
[
∇ × (ξ̂ × B) − ξ̂∇ · B

]}
.

(G11)

Using (G11) in (G4) gives a simplification of R1, which can in turn be used to obtain
pr X̂(L0) in (G1). Substitution of the resultant pr X̂(L0) in (6.5) gives (6.17) as the condition
for Lie invariance of the action.
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Appendix H

In this appendix, we provide a derivation of Noether’s first theorem, using the approach
of Bluman & Kumei (1989). This analysis should be useful for readers not acquainted with
the classical approach to Noether’s first theorem. These ideas are used in § 6.2 to describe
Noether’s theorem.
Consider a system of differential equations in the dependent variables uα (1 � α � m)

and independent variables xi (1 � i � n) of the form

Rs(xi, uα, uα
i , u

α
ij , . . .) = 0, 1 � s � m, (H1)

the subscripts in uα
i , u

α
ij , . . ., denote partial derivatives with the respect to the independent

variables xi (1 � i � n), which arise from extremal variations of the action

J[u] =
∫

Ω

L
(
x, uα

i , u
α
ij , . . .

)
dx, (H2)

which remain invariant under infinitesimal Lie transformations of the form

x′i = xi + εξ i, u′α = uα + εηα, L′ = L + ∇iΛ
i. (H3a–c)

The variation of J[u] is defined as

δJ =
∫

Ω ′
L′ (x′,u′, u′α

i , u
′α
ij , . . .

)
dx′ −

∫
Ω

L
(
x,u, uα

i , u
α
ij , . . .

)
dx, (H4)

where Ω is the region of integration. The variation δJ to O(ε) in (H4) reduces to

δJ = ε

∫
Ω

(
prXL + LDiξ

i + DiΛ
i
)
dx + O(ε2). (H5)

The term LDiξ
i in (H5) represents changes in the volume element:

dx′ = [
1 + εDiξ

i + O(ε2)
]
dx. (H6)

The Lie derivative term:

prXL =
(

ξ i ∂

∂xi
+ ηα ∂

∂uα
+ ηα

i
∂

∂uα
i

+ ηα
ij

∂

∂uα
ij

+ · · ·
)
L, (H7)

describes the changes in L(x, uα, uα
i , u

α
ij , . . .) due to the Lie transformations of xi and uα

in (H3a–c), in which the form of L does not change. The term DiΛ
i describes changes

of J due to changes in the form of L due to a divergence transformation (under such a
transformation the action remains invariant). From (H5) the action J[u] remains invariant
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under the Lie transformations (H3a–c) to O(ε) if

prXL + LDiξ
i + DiΛ

i = 0. (H8)

It turns out that there is an equivalent extended Lie symmetry operator, pr(X̂), of the
form

pr(X̂) = η̂α ∂

∂uα
+ Di

(
η̂α

) ∂

∂uα
i

+ DiDj
(
η̂α

) ∂

∂uα
ij

+ · · · , (H9)

called the evolutionary operator (e.g. Olver 1993) which describes Lie transformations:

x′i = xi, u′α = uα + εη̂α, (H10a,b)

where
η̂α = ηα − ξ jDjuα. (H11)

The operator pr(X̂) is related to pr(X) by the formula

pr(X) = pr(X̂) + ξ jDj, (H12)

where Dj = d/dx j is the total, partial derivative with respect to x j. From (H9), we obtain
the formulae

u′α
i = uα

i + εDi
(
η̂α

)
, u′α

ij = uα
ij + εDiDj

(
η̂α

)
, (H13a,b)

for the transformation of partial derivatives under pr(X̂). These transformations are
different from the transformations of derivatives formulae under the canonical prolonged
symmetry operator prX, namely

ηα
i ≡ pr(X)uα

i = pr X̂uα
i + ξ jDjuα

i = Di
(
η̂α

) + ξ juα
ji, (H14)

and similarly for transformations of the higher-order derivatives of uα.
Evaluation of δJ[u] using pr(X̂) gives the variational equation:

δJ = ε

∫ (
pr X̂L

)
dx = ε

∫ [
DiWi[u, η̂] + η̂γEγ (L)

]
dx, (H15)

from which it follows that

pr(X̂)L = DiWi[u, η̂] + η̂γEγ (L), (H16)

where the Wi[u, η̂] are surface terms given by

Wi[u, η̂] = η̂γ δL
δuγ

+ η̂
γ

j
δL
δuγ

ji
+ η̂

γ

jk
δL
uγ

jki
+ · · · , (H17)

and δL/δψ is given by

δL
δψ

≡ Eψ(L) = ∂L
∂ψ

− Di

(
∂L
∂ψi

)
+ DiDj

(
∂L
∂ψij

)
− · · · . (H18)

Here Eψ denotes the Euler operator or variational derivative with respect to ψ used in the
Calculus of variations. In particular, the equations

Eγ (L) = ∂L
∂uγ

− Di

(
∂L
∂uγ

i

)
+ DiDj

(
∂L
∂uγ

ij

)
− · · · = 0, (H19)

are the Euler–Lagrange equations for the variational principle δJ = 0.
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Using pr(X)L from (H12), the Lie invariance condition (H8) for the action reduces to

pr(X̂)L + Di
(
Lξ i + Λi

) = 0. (H20)

Using (H16) for pr(X̂)L in (H20) we obtain the Noether theorem identity:

η̂γEγ (L) + Di
[
Wi[u, η̂] + Lξ i + Λi

] = 0. (H21)

For the case of a finite point Lie group of symmetries (i.e. for a finite number of point
symmetries η̂γ ), for which the Euler–Lagrange equations Eγ (L) = 0 are satisfied, and
(H21) reduces to the conservation law

Di
[
Wi[u, η̂] + Lξ i + Λi

] = 0, (H22)

associated with Noether’s first theorem.
If the symmetries η̂γ depend on continuous functions {φk(x : 1 � k � N}, then the

Lie pseudo-algebra of symmetries is infinite dimensional. In this case Noether’s second
theorem implies that the Euler–Lagrange equations are not all independent and that there
exists differential relations between the Euler–Lagrange equations (see, e.g., Olver (1993)
and Hydon & Mansfield (2011) for details).
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