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Abstract

The risk of overparameterized models, in particular deep neural networks, is often double-
descent shaped as a function of the model size. Recently, it was shown that the risk as a function
of the early-stopping time can also be double-descent shaped, and this behavior can be explained
as a super-position of bias-variance tradeoffs. In this paper, we show that the risk of explicit
L2-regularized models can exhibit double descent behavior as a function of the regularization
strength, both in theory and practice. We find that for linear regression, a double descent shaped
risk is caused by a superposition of bias-variance tradeoffs corresponding to different parts of
the model and can be mitigated by scaling the regularization strength of each part appropriately.
Motivated by this result, we study a two-layer neural network and show that double descent can
be eliminated by adjusting the regularization strengths for the first and second layer. Lastly,
we study a 5-layer CNN and ResNet-18 trained on CIFAR-10 with label noise, and CIFAR-100
without label noise, and demonstrate that all exhibit double descent behavior as a function of
the regularization strength.

1 Introduction

The bias-variance tradeoff has long been a useful principle for selecting and tuning machine learning
models. This principle suggests to choose a model sufficiently large to have low bias, but not too
large to have small variance. In practice, however, machine learning models seemingly operate
beyond this tradeoff. Deep neural networks operate in the overparameterized regime where the
model is capable of expressing any given signal, even random noise [Zha+17], but still generalize
well. Increasing the model size beyond the interpolation point often decreases the test error beyond
the classical U-shaped curve, hence forming a double descent shaped risk curve [Opp95; Bel+19].

Machine learning algorithms are often regularized during training to improve performance, and
similar to model size, the amount of regularization can control a bias-variance tradeoff. Indeed,
recently, double descent behavior was reported as a function of training epochs and weight de-
cay [Nak+20]. Understanding such double descent behavior is important because it can be critical
for good performance, especially for learning from noisy labels [Arp+17; YH20].

The perhaps most popular regularization technique is to add an explicit !2-norm penalty to the
training loss (i.e., a term λ‖θ‖22), or training with weight decay, in deep learning semantics. Double
descent as a function of the regularization parameter λ has been reported for a ResNet-18 network
trained on CIFAR-10 with label noise [Nak+20, Figure 22], but a theoretical understanding and a
more extensive empirical study covering a variety of models is still lacking.

In this paper, we therefore study the risk of !2-regularized models as a function of the regular-
ization strength λ, both in theory and practice. Our contributions are as follows:

• Our empirical results show that various neural networks regularized with an !2-penalty λ‖θ‖22
can exhibit double descent shaped risk curve as a function of 1/λ. That is, the risk or test error
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Figure 1: Test performance of a 5-layer convolution network when trained on the CIFAR-10 dataset
with 20% label noise. Left: Performance as a function of the inverse regularization parameter 1/λ if
the network is trained with !2-regularization until convergence. Right: Performance as a function
of the training epochs when the network is trained without !2 regularization. Both: In both cases,
the network exhibits double descent behavior as a function of both the regularization by λ and
regularization by early stopping the training.

first decreases, then increases, and then decreases again as a function of 1/λ (see Figure 1).
This frequently occurs when training on noisy data, but can also occur when training standard
models (a CNN) on a standard noise-less dataset (CIFAR-100).

• Next, we consider a linear ridge regression model and theoretically characterize the risk as a
function λ. We show that when the features have different scales, similarly to early-stopped
least squares studied in [HY21], the risk of the ridge regression solution as a function of 1/λ
is a superposition of bias-variance tradeoffs, which yields a double descent behavior.

• Finally, we consider a non-linear two-layer neural network and provide numerical examples
where double descent occurs as a function of 1/λ and, motivated by our theory in the linear
case, eliminate the double descent by utilizing differently scaled λ values for the two layers.
Eliminating double descent is interesting as it typically improves the performance of the best
model.

While conceptually our results for explicit !2-regularization parallel those for early stopping
developed in our earlier paper [HY21], early-stopping and !2-regularization often behave quite dif-
ferently: Figure 1 shows the test error of a 5-layer CNN as a function of 1/λ when trained on the
noisy CIFAR-10 dataset, and contrasts this to the test error as a function of the training epochs
(with no !2-regularization). Note that the test error as a function of (inverse) regularization strength
exhibits a double descent behavior and regularization with early stopping exhibits a double descent
behavior (as shown before by [Nak+20]), but the effect of !2-regularization and early stopping is not
the same as the !2-regularization allows attaining the same best-case performance in two distinct
regimes, whereas the early stopped risk does not.

2



2 Related works

Double descent as a function of the model size has been theoretically established for linear regres-
sion [Has+19; BHX20; Mit19] and for random feature regression [MM19; D’A+20]. Double descent
has also been studied as a function of training time [HY21; Zha+21] and sample complexity [Nak19].
Nakkiran et al. [Nak+20] have provided several empirical examples of epoch-wise, sample-wise, and
regularization-wise double descent for deep networks. Beyond double descent, multiple decent has
also been shown and characterized in the paper [LRZ20; HY21].

A recent line of theoretical model-wise double descent works studied the behavior of the risk,
specifically by decomposing the risk into bias and variance terms [Jac+20; Yan+20; D’A+20; LR20;
LRZ20]. Several works have further decomposed bias-variance terms with respect to the different
sources of randomness in training, such as the optimization process or data distribution [Nea+19;
AP20b]. Our model also relies on the interaction between the data and the model parameters to
study double descent.

For epoch-wise double descent, Heckel and Yilmaz [HY21] characterized the risk as a function of
the training time as a superposition of multiple bias-variance tradeoffs, which yields double descent
for misaligned features. For a setup with misaligned features, we show an analogous result where
we decompose the risk as a function of 1/λ as a superposition of bias-variance tradeoffs.

Generalization and training dynamics of deep networks with !2 regularization in the form of
weight decay has been a topic of interest, particularly regarding finding optimal setups, such as
finding the optimal weight matrix based on the data prior for weighted regularization [WX20].
Nakkiran et al. [Nak+21] have shown that optimal !2 regularization can mitigate model-wise and
sample-wise double descent, analytically for linear regression and empirically for CNNs.

Many works used neural-tangent-kernels (NTKs) [JGH18], to study the double descent behavior,
as a function of the network width [AP20a] and training epochs [HY21], as well as to understand
the dynamics of !2-regularized neural network training [Wei+19; LG20]. Lewkowycz and Gur-Ari
[LG20] demonstrated that the NTK deviates significantly from initialization after a time that is
inversely proportional to the regularization strength.

3 Ridge regression risk as a function of the regularization parame-

ter

We start with studying the risk of the ridge regression estimator with regularization parameter λ,
for fitting a linear model to data generated by a Gaussian linear model. We show that the risk
as a function of 1/λ is a superposition of U-shaped bias-variance tradeoffs. If the features of the
Gaussian linear model have different scales, those bias-variance tradeoff curves can add up to a
double (or multiple) descent shaped risk curve.

3.1 Data model and risk

We consider the same linear regression setup as Heckel and Yilmaz [HY21]. Consider a regression
problem, and suppose data is generated from a Gaussian linear model as y = 〈x,θ∗〉+ z, where x ∈
Rd is a zero-mean Gaussian feature vector with diagonal co-variance matrix Σ = diag(σ2

1 , . . . ,σ
2
d),

and z is independent, zero-mean Gaussian noise with variance σ2. We are given a training set
D = {(x1, y1), . . . , (xn, yn)} consisting of n data points drawn iid from this Gaussian linear model.
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Consider a linear estimator parameterized by a vector θ̂ ∈ Rd which predicts the label associated

with a feature vector x as ŷ =
〈

x, θ̂
〉

. The (mean-squared) risk of this estimator is

R(θ̂) = E

[
(

y −
〈

x, θ̂
〉)2

]

,

where the expectation is over an example (x, y) drawn independently (of the training set) from the
underlying linear model. The risk of the estimator can be written as a function of the variances of
the features and of the coefficients of the underlying true linear model, θ∗ = [θ∗1, . . . , θ

∗
d], as

R(θ̂) = σ2 +
d
∑

i=1

σ2
i (θ

∗
i − θ̂i)

2. (1)

3.2 Risk of the ridge regression estimator

Consider the ridge regression estimator defined as

θ̂λ = argmin
θ

1

2

n
∑

i=1

(〈xi,θ〉 − yi)
2 +

λ

2
‖θ‖22.

We show that in the underparameterized regime, where d & n, the risk of the ridge regression
estimate, R(θ̂λ), is very well approximated by

R̄(θ̃λ) = σ2 +
d
∑

i=1

σ2
i (θ

∗
i )

2

(
λ

σ2
i + λ

)2

+
σ2

n
σ2
i

(
σi

σ2
i + λ

)2

︸ ︷︷ ︸

Vi(λ)

, (2)

as formalized by the theorem below. We focus on the underparameterized regime because only in
that regime a linear estimator can have small risk for data generated from a linear model (with non-
vanishing features). We consider the overparameterized regime in a more general setting empirically
in the next section.

Theorem 1. With probability at least 1−2d−5−2de−n/8−e−d−2e−32 over the random training set
generated by a linear Gaussian model with parameters θ∗ and Σ, the difference of the !2-regularized
least squares risk and the risk expression in (2) is at most

∣
∣
∣R(θ̂λ)− R̄(θ̃λ)

∣
∣
∣ ≤ c

[
maxi σ8

i

mini(σ2
i + λ)4

d

n
·

((
mini σ2

i + λ

maxi σ2
i

+ 1

)

‖Σθ
∗‖2 +

d log d√
n

σ

)2

+

√
d

n
σ2

]

.

(3)

Here, c is a numerical constant.

Theorem 1 establishes that the risk R(θ̂λ) is well approximated by the expression R̄(θ̃λ), provided
the model is sufficiently underparameterized (i.e., d/n is small).

As a consequence, the risk of the ridge regression solution, as a function of 1/λ, is a superposi-
tion of U-shaped bias variance tradeoffs. This yields double descent whenever the features of the
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Figure 2: Ridge regression risk for a two-feature Gaussian linear model as a function of the
inverse regularization strength parameter λ. a: Two U-shaped bias-variance tradeoffs Vi(λ) for
the parameters θ∗1 = 1.5,σ1 = 1 (bias-variance 1) and θ∗2 = 10,σ2 = 0.15 (bias-variance 2), along
with their sum (1+2) which determines the risk. b: Same plot, but this time the bias-variance
tradeoff V2(λ) is shifted to the left by increasing the inverse regularization strength 1/λ2 according
to Proposition 1 (yielding bias-variance tradeoff 3), so that its minimum overlaps with that of bias-
variance tradeoff 1. This eliminates double descent and gives better performance. c: The resulting
risk curves before and after elimination, demonstrating that the minimum of the risk after double
descent elimination is smaller than before elimination.

underlying data have different scales. This follows from noting that the term σ2
i (θ

∗
i )

2
(

λ
σ2
i +λ

)2
in

the RHS of (2) increases in λ, whereas the other term σ2

n σ2
i

(
σi

σ2
i +λ

)2
decreases in λ. See Figure 2(a)

as an example.

3.3 Eliminating double descent with scaled regularization

We next show that double descent can be eliminated by utilizing differently scaled λ for different
parts (parameters) of the model. For this, we consider a generalized ridge regression problem where
we allow different regularization strength to be used for each parameter (sometimes called Tikhonov
regularization). Specifically, we let

θ̂Λ = argmin
θ

1

2

n
∑

i=1

(〈xi,θ〉 − yi)
2 + ‖Λθ‖22, (4)

where Λ is a Rd×d diagonal matrix containing regularization parameters
√
λi along its diagonal.

Proposition 1. For the generalized ridge regression problem described above, the minimum of the
risk expression minλ1,...,λd

R̄(θ̃Λ) is achieved by choosing the regularization strengths associated with

different features as λi =
σ2

n (θ∗i )
−2.

In Figure 2b, we show that double descent can be eliminated, and that this improves the
optimal risk, by utilizing the regularization parameters in Proposition 1. Note that double de-
scent is eliminated by picking the optimal regularization strength associated with feature j as

5



λ̄opt = λj =
σ2

n (θ∗j )
−2 and scaling the regularization strengths of the rest of the features proportion-

ally with (θ∗j/θ
∗
i )

2 to align the minima of the U-shaped bias-variance tradeoff curve Vi(λi) with the

minima of the bias-variance tradeoff curve of the jth feature V (λ̄opt).
Note that the optimal regularization strength does not depend on the variances of the features,

i.e., at the optimal regularization point, the effect of the feature variances on the bias and variance
components of the risk is equal in magnitude, i.e., the tradeoff does not depend on the feature
variances other than a constant scaling factor for the both bias and variance terms (see SM C.6).

3.4 Relation to early stopping

As already illustrated in Figure 1, in general, !2 regularization and early stopping have a different
effect. However, they can have a similar [AKT19], and even equivalent effect in very particular
setups. For example, for the linear model studied so far, Tikhonov regularization and early stopping
has the same effect if we adjust the regularization strength parameters associated with individual
parameters.

Consider the Tikhonov estimator defined in (4). Also consider the estimator which applies t steps
of gradient descent to the non-regularized loss

∑n
i=1(〈xi,θ〉−yi)2, and suppose that each parameter

θi is updated with an associated stepsize of ηi. This estimator, denoted by θ̂t corresponds to early-
stopping least-squares. This estimator was studied by Heckel and Yilmaz [HY21] and shown to have
risk

R(θ̂t) ≈ σ2 +
d
∑

i=1

σ2
i (θ

∗
i )

2(1− ηiσ
2
i )

2t +
σ2

n
(1− (1− ηiσ

2
i )

t)2

︸ ︷︷ ︸

Ui(t)

. (5)

As formalized by the following proposition, if λi are chosen based on the feature variance σi and
the corresponding stepsize ηi, then the risk expressions for the corresponding Tikhonov estimator
and early-stopped least squares are equivalent:

Proposition 2. Let Λ = diag(
√
λ1, . . . ,

√
λd) with λi =

σ2
i

1−(1−ηiσ2
i )

t −σ2
i . Then the risk of Tikhonov

regularized least-squares is equal to the risk of early-stopping the gradient descent iterations applied
to the non-regularized loss at time t as given in equation (5).

The above proposition characterizes the requirement such that the bias variance tradeoff curves
induced by regularized-least squares are equivalent when using !2 regularization or regularization by
early stopping. However, note that this requires the regularization parameters λi to be dependent on
the feature variances σ2

i . In general, where the regularization parameters and stepsizes are the same
for each parameter, the risk corresponding to regularization by early stopping and !2 regularization
is different.

4 Double descent in !2-regularized two-layer neural networks

In this section, we study the risk of a two layer network with weight decay (i.e., !2-penalty), on data
drawn from a Gaussian linear model with a diagonal covariance matrix. We first show empirically
that the risk as a function of the regularization parameter has a double descent curve if the variances
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of the Gaussian model’s features decay at a geometric rate, and that the double descent can be
eliminated by penalizing the weights in the first and second layers differently.

While it would be nice to explain this theoretically, this is not possible with current linearization
techniques: we show that regularization-wise double descent in neural networks occurs outside of
the regime where the network dynamics can be characterized by an associated linear model (often
called the neural-tangent-kernel (NTK) regime.

4.1 Risk of an overparameterized two-layer network exhibits double descent

We consider a two-layer neural network with relu-nonlinearities, f(x) = relu(W1x)w2, where W1 ∈
Rk×d and w2 ∈ Rk are the weights in the first and second layer. The network is trained with
gradient descent on the mean-squared error loss with !2-penalty on data drawn from the linear
model introduced in Section 3.1 with a diagonal covariance matrix with geometrically decaying
covariances and Gaussian zero-mean additive noise. For each value of the regularization parameter
λ, we initialize the network with standard Kaiming initialization and train until convergence with
stepsize η = 5e− 3.

Figure 3 shows that the resulting risk follows a double descent curve as a function of 1/λ.
Figure 3 also shows that the risk of early-stopped gradient descent, while operating in the same
range of values, does not exhibit double descent. This again illustrates that !2 regularization and
regularization by early stopping in general result in different risk curves, as formalized in the previous
section for linear models.

Recall that double descent for linear models occurs because different features are scaled dif-
ferently, and can be mitigated by scaling λi appropriately, as formalized in Proposition 1 and
demonstrated in Figure 2. Motivated by this result, we hypothesize that the first and second layers
of the two-layer neural network overfit the noise at different scales. Thus, utilizing properly scaled
λ1 and λ2 for the parameters in the first and second layers should mitigate double descent and
potentially improve performance.

In Figure 3, we show that double descent is indeed eliminated by using a larger λ for the second
layer and that the best performance (i.e., the performance achieved at the optimal regularization
point) is improved relative to the best performance for the risk curve where double descent is
not eliminated. Note that in the linear case studied in Section 3.3, when the parameters of the
underlying data model are known or can be estimated, the optimal λi, i.e. per feature regularization
strength, can be found analytically. In contrast, for neural networks, this requires treating per-layer
regularization strengths as hyperparameters and tuning them accordingly.

4.2 Double descent occurs outside the linear regime in neural networks

Given our theoretical results for the linear model, and the similar empirical behavior of linear models
and neural networks, it is tempting to think that the behavior of the two-layer network from the
previous section (and potentially deeper networks) can be described theoretically by linearizing the
network around the initialization, and studying the linearized model as a proxy for the actual non-
linear network. This regime is known as the NTK regime [JGH18] because the model behaves like
a kernel method with a kernel associated with the neural network called neural tangent kernel.

Unfortunately, double descent as a function of λ occurs outside of the regime where a linear
approximation is accurate, as we discuss here.
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Figure 3: Left: Risk of the two-layer neural network trained on the linear data with a diagonal
covariance matrix with geometrically decaying singular values and added noise with !2 regularization
as a function of the inverse regularization parameter 1/λ. The risk exhibits the double descent
behavior. Right: Same risk as a function of the training iterations t for λ = 0. The early-stopped
risk does not yield a double descent behavior. Both: Training dynamics of regularization by early
stopping cannot be approximated by the solutions of the corresponding !2 regularization problem.

Consider a neural network with parameter vector θ and input x, denoted by fθ(x). Suppose
we train the network on a dataset {(x1, y1), . . . , (xn, yn)} by applying gradient descent to the !2-
regularized least-squares loss

Lλ(θ) =
1

2

n
∑

i=1

(fθ(xi)− yi)
2 +

λ

2
‖θ‖22

until convergence. The predictions of the network in a small radius around the initialization θ0 are
well described by the linear approximation fθ ≈ J(θ − θ0) + fθ0 , where

fθ =





fθ(x1)
. . .

fθ(xn)



 and J =





∇θfθ(x1)
. . .

∇θfθ(xn)



 (6)

are the prediction of the network and the Jacobian of the network at initialization, respectively.
The linear approximation is only accurate in a radius around the initialization, in which each
individual parameter changes very little. However, as we argue in more detail in the supplement,
the individual parameters change too much for this approximation to be accurate (see Figure 7,
left), unless the singular values of the Jacobian are large relative to λ. However, we note that the
individual parameters change too much for this approximation to be accurate, unless the singular
values of the Jacobian are large relative to λ. If the singular values are sufficiently large for the
NTK approximation to be accurate, however, the regularization has a vanishing effect, and in the
regime where the regularization has a vanishing effect, no double descent occurs. We refer to SM D
for a more detailed analytical discussion.

5 Double descent in deep networks

We next study a 5-layer CNN and ResNet-18 to demonstrate that regularization-wise double descent
occurs in standard deep learning settings. We first look at the test error of a 5-layer CNN trained on
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Figure 4: Regularization-wise double descent for models and datasets of more practical interest:
(Left) Test performance of ResNet-18 as a function of the inverse regularization parameter (1/λ)
when trained on the CIFAR-10 dataset with 20% label noise exhibits double descent; (Right) Test
performance of the 5-layer CNN as a function of the inverse regularization parameter (1/λ) when
trained on the CIFAR-100 dataset with no label noise also exhibits (subtler) double descent

the CIFAR-10 dataset with 20% label noise as a function of the regularization strength, or weight
decay.We also compare this curve to the unregularized training curve as a function of training
epochs, which also exhibits double descent, to demonstrate that the two regularizations function
distinctively differently.

Our results in Figure 1 show that the test error as a function of regularization strength follows a
double descent curve.Moreover, while there is a clear optimal λ value where the minimum test error
is achieved in the small λ regime, which coincides with the typical values of weight decay used in
practice, a similar performance can be achieved in the much larger λ regime.

Note that double descent can be potentially eliminated with more regularization. Nakkiran et
al. [Nak+21] showed that sample-wise double descent can be eliminated by employing optimal !2-
regularization. We report that regularization-wise double descent can also be eliminated by employ-
ing early-stopping in conjunction with weight decay and epoch-wise double descent by employing
optimally-tuned weight decay (see SM A, Figure 5).

Moreover, in both cases, eliminating the double descent improves the performance compared to
the case where !2 regularization or early stopping is individually applied.

While CNNs are commonly used for vision applications, standard architectures feature more
complex mechanisms, such as residual links, and hence the training dynamics of such models can
significantly vary from that of the simple 5-layer CNN. We therefore also study the test error of
the ResNet-18 model trained on the CIFAR-10 dataset with 20% label noise. We show that, in
Figure 4 (left), the test error for ResNet-18 also exhibits double descent even though the achieved
performance across all λ values is better for ResNet-18 than the 5-layer CNN as can be expected.
Moreover, similarly to the case of the 5-layer CNN, a similar test error can be achieved at both
small and large λ regimes.

For deep learning models trained on image classification datasets, the double descent phe-
nomenon is primarily observed when the model is trained on noisy data. For example, epoch-wise
double descent [Nak+20; HY21] has only been observed in practical setups when training on noisy
data (i.e., data with label noise).
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We next show that regularization-wise double descent can also occur in more practical settings,
i.e. when there is no label noise, which is the most common situation in practice. Our results in
Figure 4 (right) show that the test error of the 5-layer CNN trained on the CIFAR-100 dataset with
no label noise also exhibits double descent, albeit in a less pronounced manner. This is expected,
since higher levels of noise in general lead to a more pronounced double descent curve.

6 Conclusion

In this work, we studied regularization-wise double descent in an effort to bring its understanding
to the same level as the previously well-studied model-wise, epoch-wise and sample-wise double
descents. We demonstrated that the test error of standard deep networks trained on standard
image classification datasets can follow a double descent curve as a function of !2 regularization
strength (weight decay) both when there is label noise (CIFAR-10) and without any label noise
(CIFAR-100).

We show that regularization-wise double descent can be explained as a superposition of bias-
variance tradeoffs pertaining to different features of the data (for a linear model) or parts of the
neural network, and that double descent can be eliminated by scaling the regularization strengths
accordingly.

Code

Code to reproduce the experiments is available at https://github.com/MLI-lab/regularization-wise_double_d
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Figure 5: Comparison of individually or jointly applied regularization by early stopping and weight
decay: Test performance of the 5-layer convolution network when trained on the CIFAR-10 dataset
with 20% label noise. Left: Performance as a function of the regularization strength for training
with (solid) weight decay only—WD—and (dashed) weight decay together with early stopping—
WD and ES. Left: Performance as a function of the training epochs for (solid) standard training
and (dashed) training with weight decay. Both: Better performance is achieved by jointly utilizing
weight decay and early stopping—WD and ES.

A Double descent behavior of deep networks in the presence of

both weight decay and early stopping

Here, we expand on the results provided in Figure 1 and show that both regularization-wise and
epoch-wise double descent can be eliminated by employing additional forms of regularization. Specif-
ically, in Figure 5, our results show that utilizing early stopping eliminates regularization-wise double
descent, whereas utilizing (tuned) weight decay eliminates the corresponding epoch-wise double de-
scent. Note that performance achieved in the case where early stopping and weight decay are used
together is much better than that obtained by using either weight decay or early stopping alone.

B Double descent as a function of dropout regularization

Our results showcasing the double descent behavior as a function of the !2 regularization strength
motivates the investigation of other types of regularization and whether double descent also occurs
for other explicit regularization methods. In Figure 6, we show the test error of the 5-layer CNN
with dropout added after the activations of each layer trained on the noisy CIFAR-10. The test error
exhibits a U-shaped curve as a function of the dropout probability with optimal dropout probability
pdropout = 0.4.

C Discussion and proof statements for linear ridge regression

In this section, we provide detailed analysis and proofs for the theoretical statements on the linear
ridge regression risk studied in Section 3.
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Figure 6: Test performance of the 5-layer convolution network as a function of the dropout proba-
bility when trained on the CIFAR-10 dataset with 20% label noise.

C.1 Intuition for the risk expression (2)

We first provide intuition on why the risk is governed by the risk expression given in (2).
First, note that the risk of the resulting estimator can be written as a function of the variances

of the features, σ2
i , and of the coefficients of the underlying true linear model, θ∗ = [θ∗1, . . . , θ

∗
d], as

R(θ̂λ) = σ2 +
d
∑

i=1

σ2
i (θ

∗
i − θ̂λ,i)

2. (7)

which follows from noting that z and x are independently drawn.
Next, note that we aim to find the estimator which minimizes the ell2-regularized MSE loss

Lλ(θ) =
1

2
‖Xθ − y‖22 +

λ

2
‖θ‖22.

Recall that, as introduced in Section 3.1 , the matrix X ∈ Rn×d contains the scaled training fea-
ture vectors 1√

n
x1, . . . ,

1√
n
xn as rows, and y = 1√

n
[y1, . . . , yn] are the corresponding scaled responses.

Then, the solution of the !2 regularized problem can be found by simply setting the gradient of the
loss function to zero and solving for θ, which yields

θλ − θ
∗ = ((XTX+ λI)−1XTX− I)θ∗ + (XTX+ λI)−1XT z,

where z = [z1, . . . , zn] is the noise. As we formalize below, in the under-parameterized regime where
n + d, we have that XTX ≈ Σ2. Therefore the original solution is close to the proximal solution
θ̃λ defined by

θ̃λ − θ
∗ = ((ΣTΣ+ λI)−1ΣTΣ− I)θ∗ + (ΣTΣ+ λI)−1XT z, (8)

The proximal solution is close to the original solution obtained by solving for the minimizer of the
!2-regularized loss function. Note that, from (8), we get, for the i-th entry of θ̃λ

θ̃λ,i − θ
∗
i = x̃T

i z
1

σ2
i + λ

− λ

σ2
i + λ

θ
∗
i ,
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where x̃i is the i-th column of X (not the i-th example/feature vector!). Next note that, E
[

(x̃T
i z)

2
]

≈
σ2σ2

i because the entries of z are N (0,σ2) distributed, and the entries of x̃i are 1/
√
nN (0,σ2

i )
distributed. Using this expectation in the solution θ̃λ, and evaluating the resulting risk of those
iterates via the formula for the risk given by (7) yields the risk expression (2). The proof of
Theorem 1 in this appendix makes this intuition precise by formally bounding the difference of the
proximal solution θ̃λ to the original solution θλ.

C.2 Proof of Theorem 1

In this section, we provide the formal proof for Theorem 1.
The difference between the two risk terms can be further dissected into two separate terms:

∣
∣
∣R(θλ)− R̄(θ̃λ)

∣
∣
∣ ≤

∣
∣
∣R(θλ)−R(θ̃λ)

∣
∣
∣+
∣
∣
∣R(θ̃λ)− R̄(θ̃λ)

∣
∣
∣ . (9)

We bound the two terms on the RHS of (9) separately. We first provide a bound for the first
term with the lemma below.

Lemma 1. Define X̃ so that X = X̃Σ. Suppose that
∥
∥
∥I− X̃T X̃

∥
∥
∥ ≤ ε, with ε ≤ (mini σ2

i + λ)/2

Then

∣
∣
∣R(θλ)−R(θ̃λ)

∣
∣
∣ ≤ 4ε2

(
maxi σ4

i

mini(σ2
i + λ)2

)2((
mini σ2

i + λ

maxi σ2
i

+ 1

)

‖Σθ
∗‖2 +

∥
∥
∥X̃T z

∥
∥
∥
2

)2

(10)

We apply the lemma by first verifying its condition by referring to the derivations in [HY21,
Lemma 1]. Note that the entries of the matrix X̃ are iid Gaussians drawn from N (0, 1/n), and the
same concentration inequality from [FR13, Chapter 9] results in, for any β ∈ (0, 1),

P
[∥
∥
∥I− X̃T X̃

∥
∥
∥ ≥ β

]

≤ e−
nβ2

15
+4d.

With β =
√

75d
n we obtain that, with probability at least 1− e−d,

∥
∥
∥I− X̃T X̃

∥
∥
∥ ≤

√

75
d

n
.

We next bound
∥
∥
∥X̃T z

∥
∥
∥
2

with high probability:

Lemma 2. With X̃ previously defined such that X = X̃Σ, with probability at least 1− 2d(e−β2/2 +
e−n/8),

∥
∥
∥X̃T z

∥
∥
∥
2
≤ 2

d√
n
σβ
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Applying the lemma with β2 = 10 log(d), we obtain that with probability at least 1 − 2d−5 −
2de−n/8 − e−d we have

∣
∣
∣R(θλ)−R(θ̃λ)

∣
∣
∣ ≤ 4

75d

n

(
maxi σ4

i

mini(σ2
i + λ)2

)2((
mini σ2

i + λ

maxi σ2
i

+ 1

)

‖Σθ
∗‖2 + 2

d√
n
σ10 log d

)2

We finally bound the second term in (9):

Lemma 3. Provided that d/n ≤ maxi((σi + λ)/σ2
i )

4, with probability at least 1 − 4e−
β2

8 , we have
that

∣
∣
∣R(θ̃λ)− R̄(θ̃λ)

∣
∣
∣ ≤

σ2

n
β3

√
d, (11)

with R̄(θ̃λ) as defined in (2).

For the proof of Lemma 3 we refer the reader to the proof of [HY21, Lemma 2] and note
that (3) can be obtained by following the same steps with the additional assumption regarding the
underparameterization as stated in Lemma 3.

We note that the assumption of the lemma is generally satisfied as we operate in the under-
parameterized regime and poses no strict restriction on the setup. Applying the two bounds (10)
and (11) to the RHS of the bound (9) concludes the proof. The remainder of the proof is devoted
to proving Lemma 1.

C.3 Proof of Lemma 1

Recall that the solutions of the original and closely related problem are given by

θλ − θ
∗ = ((XTX+ λI)−1XTX− I)θ∗ + (XTX+ λI)−1XT z,

θ̃λ − θ
∗ = ((Σ2 + λI)−1Σ2 − I)θ∗ + (Σ2 + λI)−1XT z.

Note that X = X̃Σ, where we defined X̃ which has iid Gaussian entries N (0, 1/n). With this
notation, and using that Σ is diagonal and therefore commutes with symmetric matrices, we obtain
the following expressions for the residuals of the two solutions:

Σθλ −Σθ
∗ = Σ((Σ2X̃T X̃+ λI)−1Σ2X̃T X̃− I)θ∗ + (Σ2X̃T X̃+ λI)−1Σ2X̃T z,

Σθ̃λ −Σθ
∗ = Σ((Σ2 + λI)−1Σ2 − I)θ∗ + (Σ2 + λI)−1Σ2X̃T z.

The difference between the residuals is

Σθλ −Σθ̃λ = Σ2((Σ2X̃T X̃+ λI)−1X̃T X̃− (Σ2 + λI)−1)Σθ
∗

+Σ2((Σ2X̃T X̃+ λI)−1 − (Σ2 + λI)−1)X̃T z.

= Σ2(Σ2X̃T X̃+ λI)−1(I − X̃T X̃)Σθ
∗

+Σ2((Σ2X̃T X̃+ λI)−1 − (Σ2 + λI)−1)(Σθ
∗ − X̃T z).
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Where, we added and subtracted Σ2(Σ2X̃T X̃ + λI)−1Σθ∗ and re-arranged the terms. We

bound the norm of the difference between the residuals
∥
∥
∥Σθλ −Σθ̃λ

∥
∥
∥
2

by applying Cauchy-Schwarz

inequality to the corresponding terms of the RHS of the equation above. We have, for the first term,
∥
∥
∥Σ2(Σ2X̃T X̃+ λI)−1(I − X̃T X̃)Σθ

∗
∥
∥
∥ ≤

∥
∥Σ2

∥
∥

∥
∥
∥(I − X̃T X̃)

∥
∥
∥

∥
∥
∥(Σ2X̃T X̃+ λI)−1

∥
∥
∥‖Σθ

∗‖2

≤ max
i

σ2
i ε

1

mini σ2
i (1− ε) + λ

‖Σθ
∗‖2

(i)
≤ 2ε

maxi σ2
i

mini σ2
i + λ

‖Σθ
∗‖2

where we used 1− ε ≤ ‖X̃T X̃‖ ≤ 1 + ε and (i) follows by the assumption ε ≤ mini(σ2
i + λ)/2 both

of which follow from the conditions of the lemma.
We next bound the norm of the second term in the difference between the residuals. We have,

∥
∥
∥Σ2((Σ2X̃T X̃+ λI)−1 − (Σ2 + λI)−1)(Σθ

∗ − X̃T z)
∥
∥
∥

≤
∥
∥Σ2

∥
∥

∥
∥
∥(Σ2X̃T X̃+ λI)−1 − (Σ2 + λI)−1

∥
∥
∥

∥
∥
∥Σθ

∗ − X̃T z
∥
∥
∥
2

(i)
≤ max

i
σ2
i

∥
∥
∥(Σ2X̃T X̃+ λI)−1

∥
∥
∥

∥
∥
∥Σ2(I− X̃T X̃)

∥
∥
∥

∥
∥(Σ2 + λI)−1

∥
∥

∥
∥
∥Σθ

∗ − X̃T z
∥
∥
∥
2

≤ max
i

σ2
i

1

mini(σ2
i (1− ε) + λ)

1

mini(σ2
i + λ)

∥
∥Σ2

∥
∥

∥
∥
∥I− X̃T X̃

∥
∥
∥

∥
∥
∥Σθ

∗ − X̃T z
∥
∥
∥
2

≤ 2ε
maxi σ4

i

mini(σ2
i + λ)2

(

‖Σθ
∗‖2 + ‖X̃T z‖2

)

where the last inequality follows by the assumption ε ≤ mini(σ2
i + λ)/2, and (i) follows by

noting that the matrix Σ2X̃T X̃ + λI can be viewed as a perturbation of the non-singular matrix
Σ2 + λI such that Σ2X̃T X̃+λI = (Σ2 + λI)−Σ2(I− X̃T X̃), and applying a standard bound from
the literature (see [HJ12, Chapter 5, Equation 5.8.1]) on the difference of the inverse of the two
matrices. Combining the two bounds yields (10), which concludes the proof.

C.4 Proof of Lemma 2

We have

∥
∥
∥X̃T z

∥
∥
∥
2
=

∣
∣
∣
∣
∣

d
∑

l=1

(x̃T
l z)

2

∣
∣
∣
∣
∣

1/2

≤
d
∑

l=1

∥
∥x̃T

l z
∥
∥
2

Conditioned on z, the random variable x̃T
i z is zero-mean Gaussian with variance ‖z‖2/n. Thus,

P
[

|x̃T
i z| ≥

‖z‖
2√
n
β
]

≤ 2e−β2/2. Moreover, as provided in (13), with probability at least 1 − 2e−n/8,
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‖z‖22 ≤ 2σ2. Combining the two with the union bound, we obtain

P

[

|x̃T
i z|2 ≥

2σ2

n
β2

]

≤ 2e−β2/2 + 2e−n/8.

Utilizing the union bound again, we obtain

∣
∣x̃T

l z
∣
∣ ≤ 2

d√
n
σβ

which holds with probability at least 1− 2d(e−β2/2 + e−n/8).

C.5 Proof of Lemma 3

For proving Lemma 3, we follow a similar argument to [HY21, Lemma 3]. We have

R(θ̃λ) = σ2 +
d
∑

i=1

σ2
i

(

σiθ
∗
i

λ

σ2
i + λ

+
σi

σ2
i + λ

x̃T
i z

)2

︸ ︷︷ ︸

Zi

.

Where,
∑d

i=1 Zi corresponds to an off-centered chi-squared distribution with the Zi. The random

variable Zi, conditioned on z, is a squared Gaussian with variance upper bounded by
‖z‖

2√
n

and has
expectation

E [Zi] = σ2
i (θ

∗
i )

2

(
λ

σ2
i + λ

)2

+
‖z‖22
n

(
σi

σ2
i + λ

)2

By a standard concentration inequality of sub-exponential random variables (see e.g. [Wai19, Chap-
ter 2, Equation 2.21]), we get, for β ∈ (0,

√
d) and conditioned on z, that the event

E1 =
{∣
∣
∣
∣
∣

d
∑

i=1

(Zi − E [Zi])

∣
∣
∣
∣
∣
≤ ‖z‖22

n

√
dβ

}

(12)

occurs with probability at least 1 − 2e−
β2

8 . With the same standard concentration inequality for
sub-exponential random variables, we have that the event

E2 =
{∣
∣
∣‖z‖22 − σ2

∣
∣
∣ ≤

σ2β√
n

}

(13)

also occurs with probability at least 1−2e−
β2

8 . By the union bound, both events hold simultaneously
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with probability at least 1− 4e−
β2

8 . On both events, we have that

∣
∣
∣R(θ̃t)− R̄(θ̃t)

∣
∣
∣ =

∣
∣
∣
∣
∣

d
∑

i=1

(Zi − E [Zi]) +
1

n

(

‖z‖22 − σ2σ2
i

)
(

σi
σi + λ

)2
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣

d
∑

i=1

(Zi − E [Zi])

∣
∣
∣
∣
∣
+

d

n
max

i

[
(

σi
σi + λ

)2

|‖z‖22 − σ2σ2
i |
]

≤
‖z‖22
n

√
dβ +

d

n

1√
n
σ2βmax

i

[
(

σi
σi + λ

)2

σ2
i

]

≤ 2σ2

n

√
dβ +

d

n

1√
n
σ2βmax

i

[
(

σi
σi + λ

)2

σ2
i

]

≤ 2σ2

n

√
dβ +

d

n

1√
n
σ2βmax

i

(
σ2
i

σi + λ

)2

(i)
≤ σ2

n
β3

√
d.

where (i) follows from the assumption d/n ≤ maxi((σi + λ)/σ2
i )

4, which concludes the proof of our
lemma.

C.6 Proof of Proposition 1

Here, we provide the formal proof for Proposition 1.
Note that we consider the generalized ridge regression problem, but with a diagonal regulariza-

tion matrix Λ (i.e. Tikhonov regularization). Specifically, Λ is the Rd×d diagonal matrix containing
regularization parameters

√
λi pertaining to each different features along its diagonal.

It then directly follows from the proof of Theorem 1 in Section C.2, by simply replacing λI
with Λ1/2, that the risk for the above generalized ridge regression problem is well estimated by the
following expression:

R̄(θ̃Λ) = σ2 +
d
∑

i=1

σ2
i θ

2
i,∗

(
λi

σ2
i + λi

)2

+
σ2

n
σ2
i

(
σi

σ2
i + λi

)2

︸ ︷︷ ︸

Vi(Λ)

, (14)

We consider the set of values {λ1, . . . ,λd} that minimizes the risk expression in (14). Since
R̄(θ̃Λ) contains a summation of terms pertaining to each feature, we take the derivative of R̄(θ̃Λ)
with respect to λi:
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∂

∂λi
R̄(θ̃Λ) =

∂

∂λi



σ2 +
d
∑

j=1

Vj(Λ)





=
∂Vi(Λ)

∂λi

= 2σ2
i θ

2
i,∗

(
λi

σ2
i + λi

)
(σ2

i + λi)− λi

(σ2
i + λi)2

− 2
σ2

n
σ2
i

(
σi

σ2
i + λi

)
σi

(σ2
i + λi)2

=
2σ4

i θ
2
i,∗λi − 2σ2σ4

i /n

(σ2
i + λi)3

.

Setting it above to 0, we get

λi =
σ2

n
θ−2
i,∗ . (15)

Plugging this back into the expression at (14), we get the risk at the optimal scaling as

R̄(θ̃Λopt) = σ2 +
d
∑

i=1

σ2
i θ

2
i,∗

σ4

n2
θ−4
i,∗

(

1

σ2
i +

σ2

n θ−2
i,∗

)2

+
σ2

n
σ2
i

(

σi

σ2
i +

σ2

n θ−2
i,∗

)2

= σ2 +
d
∑

i=1

σ2

n
σ2
i

(

σi

σ2
i +

σ2

n θ−2
i,∗

)2

(
σ2

n
θ−2
i,∗ + σ2

i )

= σ2 +
σ2

n

d
∑

i=1

σ2
i

σ2
i +

σ2

n θ−2
i,∗

.

C.7 Proof of Proposition 2

Proof of Proposition 2 follows directly by equating the terms in the summation of the risk expression
given in (8) for the generalized ridge regression problem and the risk expression of the early-stopped
least squares given in (5), as studied in Heckel and Yilmaz [HY21].

It is straightforward to see that the terms inside the respective summations become equal when

λi are chosen as λi =
σ2
i

1−(1−ηiσ2
i )

t − σ2
i .

D Details of how double descent occurs outside the linear regime

in neural networks

In this section, we discuss in more detail how the individual parameters of a network with p many
parameters trained by applying gradient descent with stepsize η to the !2-regularized least-squares
loss with regularization strength λ change across gradient descent iterations.

Note that for an overparameterized network, the network Jacobian J ∈ Rn×p is a wide matrix
that typically has full row rank (albeit the small singular values can be very small). Let J = UΣVT
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be the singular value decomposition of the Jacobian, where V ∈ Rp×n are the right-singular vectors.
Note that only the directions of the parameter vector θ ∈ Rp that align with the right-singular
vectors V impact the predictions of the linear model of the network, however the parameter vector
also changes in the directions of the orthogonal complement of the right singular vectors, denoted
by V⊥ ∈ Rp×(p−n), due to the !2-penalty. Specifically, with ṼT = [VT ,VT

⊥], the parameter update
θt at gradient iteration t takes the form

θt = Ṽ

(

I− η

[

Σ2 + λI 0
0 λI

])t

ṼT
θ0 + η

t−1
∑

τ=0

Ṽ

([

Σ2 + λI 0
0 λI

])τ

ṼTJTy

= Ṽ

(

I− η

[

Σ2 + λI 0
0 λI

])t

ṼT
θ0 +Vdiag(. . . ,

σi
σ2
i + λ

(1− (1− η(σ2
i + λ))t), . . .)UTy

Then, the norm of the change in the parameters that is relevant to fitting the data is

∥
∥VT (θt − θ0)

∥
∥
2

2
=

n
∑

i

(1− (1− η(σ2
i + λ))t)2

(

− 1

σi
〈ui,Jθ0〉+

σi
σ2
i + λ

〈ui,y〉
)2

. (16)

Note that the convergence rate for the above depends primarily on the smallest singular value σmin.
For a sufficiently small stepsize, we have (1 − η(σ2

i + λ))t ≈ exp(−ηt(σ2
i + λ)), which means that

this part converges when exp(−ηt(σ2
min + λ)) gets close to zero. This is the part that is relevant to

fitting the data and if initialized appropriately, this change is not more than O(n).
We next consider the change of the coefficient vector that is not relevant to fitting the training

data:

∥
∥VT

⊥(θt − θ0)
∥
∥
2

2
= (1− (1− ηλ)t)2

∥
∥VT

⊥θ0
∥
∥
2

2
(17)

≈ (1− e−ηλt)2O(p).

Therefore, the change in the coefficients for any λ is on the order of p, and hence is not contained
within a small radius around the initialization, where the NTK approximation accurately captures
the dynamics of the nonlinear network, unless 1 − e−ηλt is very small (see Figure 7 (left) for an
illustration).

In order to observe how this translates to the relationship between the smallest singular value of
the network Jacobian σmin, and λ, consider the following assumption on 1− e−ηλt being sufficiently
small as parameterized by a small number δ, i.e. 1−e−ηλt ≤ δ. We then have λ ≤ −1

ηt ln(1− δ) ≈ δ
ηt .

Note that we are also interested in the training regime until the network is close to convergence.
This occurs when exp(−ηt(σ2

min + λ)) ≈ 0 or exp(−ηt(σ2
min + λ)) ≤ ε for small ε. This in turn leads

to the condition σ2
min ≥ 1/ε−δ

ηt .
Based on these conditions on the σmin and λ, in order for the change in the parameters to be

confined in a small radius around the network initialization, we need σ2
min + λ. Based on our

empirical observations, in the regime where double descent is observed, λ is much greater than σ2
min

and the above condition does not hold.
While in this section we study how the parameters of a network change throughout the training

for any λ with respect to a fixed kernel, a similar result was shown for how the associated neural
tangent kernel changes across gradient flow time t (iterations) with respect to λ (see [LG20, Theorem
1]). Specifically, Lewkowycz and Gur-Ari [LG20] have shown that, when gradient flow is applied
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Figure 7: Left: The norm of the change in the parameters that is relevant to fitting the data (solid)
and not relevant to fitting the data (dashed) for large and small values of λ. The results show that
the parameters primarily change in the directions that are not relevant for fitting the data when λ
becomes larger. This moves the neural network outside of the NTK regime (see SM D for details).
Right: Distribution of the gradients corresponding to the first layer parameters of the network at
the first gradient iteration (t = 1) for λ = 0.001. The red curve (scaled back ∼3 times for the sake
of visualization) corresponds to the data setup where the difference in the scales of the data features
is suppressed, hence resulting in no double descent behavior. The blue curve corresponds to the
setting where the features are scaled as discussed before with double descent present as a function
of the regularization strength. The results indicate that the dynamics of the network is different
from the very beginning for the two regimes even for small λ.

to the !2-regularized MSE loss, the singular values of the kernel decay exponentially from the
initialization with respect to λt, whereas the singular vectors remain static. This is in agreement
with our discussion that σ2

min + λ is needed for a fixed kernel at initialization to accurately capture
the training dynamics of the non-linear network throughout the course of the gradient descent.

Lastly, we show that even for small λ, the linearization (or NTK approximation) is not a good
approximation for the network in a setup where regularization-wise double descent occurs. Specif-
ically, when the disparity between the variances across the features of the data is sufficiently large
to yield double descent, the change in the parameters of the network is large even for small λ. This
can be seen in Figure 7 (right) for a two layer neural network. As indicated by the blue curve here,
in the setting where the underlying data structure has differently scaled features and double descent
is observed, the parameters change significantly from the initialization early on during the training
even at smaller regularization strength. Note that, based on the decay of the kernel, this is not
projected to occur until t ∼ 103 for λ = 0.001 given in this example.
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