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Odd frequency pairing in a quantum critical metal
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We analyze the possibility of odd-frequency pairing near a quantum critical point(QCP) in a metal. We
consider a model with dynamical pairing interaction V (�n) ∼ 1/|�n|γ (the γ model). This interaction gives
rise to a non-Fermi liquid in the normal state and is attractive for pairing. The two trends compete with each
other. We search for odd-frequency solutions for the pairing gap �(ωm ) = −�(ωm ). We show that for γ < 1,
odd-frequency superconductivity loses the competition with a non-Fermi liquid and does not develop. We show
that the pairing does develop in the extended model in which interaction in the pairing channel is larger than
the one in the particle-hole channel. For γ > 1, we argue that the original model is at the boundary towards
odd-frequency pairing and analyze in detail how superconductivity is triggered by a small external perturbation.
In addition, we show that for γ > 2, the system gets frozen at the critical point towards pairing in a finite range
in the parameter space. This gives rise to highly unconventional phase diagrams with flat regions.
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I. INTRODUCTION

Superconductivity in an electronic system appears as a
result of a pairing instability, which gives rise to a forma-
tion and subsequent condensation of Cooper pairs. A state
with Cooper pairs is described by a complex gap function
�αβ (k, ω), where α and β are spin indices. The momentum
dependence of�αβ (k, ω) specifies a particular spatial channel
(s-wave, p-wave, d-wave, etc.) and the frequency dependence
determines the behavior of the spectral function, density of
states, and transport properties.

The gap function must satisfy the operational constraint
SP∗T ∗ = −1, imposed by fermionic statistics [1–5]. Here, S
is a spin permutation operation, which exchanges spin compo-
nents α and β, P∗ is a coordinate permutation operator, which
changes r into −r, and T ∗ is a time permutation operator,
which turns t into −t . The application of SP∗T ∗ = −1 sets
the condition

�αβ (k, ω) = −�βα (−k,−ω). (1)

It allows for two classes of gap functions, as has been first
noticed by Berezinskii [1]: even in frequency gap func-
tions, for which �αβ (k, ω) = −�βα (−k, ω) and the ones
odd in frequency, for which �αβ (k, ω) = �βα (−k, ω). For
even frequency pairing, T ∗ = 1, hence SP∗ = −1. Then, for
spin-singlet pairing (S = −1), spatial symmetry must be even
(s-wave, d-wave, etc), while for spin triplet pairing (S = 1), it
must be odd (p-wave, f -wave, etc.)

For odd-frequency pairing, the gap function is odd under
time permutation, T ∗ = −1, and the identity SP∗T ∗ = −1
requires that for spin singlet pairing spatial symmetry must
be p-wave, f -wave, etc., while for spin triplet pairing it must
be s-wave, d-wave, etc.

We emphasize that neither even-frequency nor odd-
frequency pairing breaks time-reversal symmetry as un-
der the action of antiunitary time reversal operator T̂ =
e−iπ Ŝy K̂ , where K̂ imposes complex conjugation, we have
T̂�αβ (k, ω)T̂−1 = �∗

αβ (k,−ω). For even frequency pairing
T̂�αβ (k, ω)T̂−1 can be restored back to �αβ (k, ω) by chang-
ing the phase of �αβ (k, ω) = |�αβ (k, ω)|eiφ from φ to −φ,
while for odd-frequency pairing, the corresponding change is
φ → π − φ.

Odd-frequency superconductivity is a rare phenomenon,
yet there have been multiple efforts to detect it in nature,
particularly in disordered superconductors [6,7], heterostruc-
tures, and external driven fields [8–11]. One idea here is to
take an even-frequency superconductor and put it in contact
with an external source, which breaks time-reversal symmetry
and creates a “field” for an odd-frequency gap component.
This was proposed to develop near the interface between
a conventional s-wave superconductor and a ferromagnet
[12,13] and for an s-wave superconductor in a magnetic field,
before FFLO state sets in Refs. [14–16]. Another idea is to
induce an odd-frequency gap component near the interface
between a triplet superconductor and a normal metal due to
the breakdown of even/odd rule under coordinate permutation
near the interface [17–23]. Yet another idea is to combine
disorder and a closeness to an ordinary s-wave superconduc-
tivity and explore fluctuation-induced preemptive instability
towards an odd-frequency pairing [7]. Besides, odd-frequency
pairing was argued to develop in the vicinity of ordered states
with broken time-reversal or translation symmetry [24].

A spontaneous development of an odd-frequency super-
conductivity without an external “field” requires an attraction
in the odd-frequency channel, but even if this is the case,
one has to overcome three obstacles. First, because an odd-
frequency gap vanishes at zero frequency, there is no Cooper
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logarithm, and hence a nonzero solution of the gap equa-
tion can emerge only if the coupling is strong enough. We
note that this argument holds for one-component systems For
multicomponent systems with, e.g., for a system of itinerant
electrons, coupled to charge-neutral spinons [25], spinon-
mediated interaction between itinerant fermions may lead
to odd-frequency pairing. Second, if the coupling is strong,
fermionic self-energy is also strong, and it acts against pairing
by reducing the magnitude of the pairing kernel. Third, in
many cases, an attraction in the odd-frequency channel is
accompanied by a similar-in-strength attraction in the even-
frequency channel. An even-frequency pairing then develops
at a higher T because of Cooper logarithm and, once devel-
oped, acts against odd-frequency pairing by again reducing
the magnitude of the kernel for off-frequency pairing.

The first two obstacles are quite generic and one needs
to analyze specific models to see whether they can be over-
comed. In particular, it was argued that the destructive effect
from the self-energy can be reduced if the irreducible inter-
action in the pairing channel is stronger than the one in the
particle-hole channel [26–29]. The third obstacle can poten-
tially be eliminated by bringing the system to the end point of
an even-frequency pairing by varying the strength of an instant
Hubbard repulsion, which negatively affects even-frequency
pairing but does not influence odd-frequency paring channel.
Along these lines, it was conjectured that an odd-frequency
pairing may develop near the end point of even-frequency
p-wave superconductivity [30] and near the end point of
phonon-mediated s-wave superconductivity [31].

In multiband/muliorbital systems, there is an additional
band/orbital index, which has to be treated on equal footings
with the spin index. it was argued [32–34] that a hybridization
between different bands/orbitals can lead to a realization of an
odd-frequency pairing. Finally, a somewhat different pairing
state, also termed as odd-frequency superconductivity, has
been proposed to develop in the Kondo-lattice model, due to
the process involving three-body scattering [35–37], and in
the Kondo-Heisenberg model [16,38].

In this paper, we analyze odd-frequency pairing for a set
of quantum-critical systems, in which the pairing is mediated
by a critical gapless boson [39–67]. Such an interaction is
strongly frequency dependent, and the gap equation allows,
at least in principle, both even-frequency and odd-frequency
solutions. We specifically consider a set of critical systems,
in which an effective dynamical four-fermion interaction
V (�m), channeled into a proper spatial channel, scales as
V (�m) ∝ 1/|�m|γ (the γ model). For the discussion of the
application of this model to various fermionic systems see,
e.g., Ref. [68]. For even-frequency, spin-singlet, and spa-
tially even pairing channels, the γ model has been analyzed
in several recent publications [68–76]. Here, we analyze
odd-frequency pairing for the same set of models. If the
pairing interaction is mediated by charge fluctuations, the
odd-frequency pairing in γ model can be in the spin-triplet
channel which is spatially even, or it can be in the spin-singlet
channel which is spatially odd. For the pairing mediated by
spin-fluctuations, the odd-frequency pairing develops in the
spin-singlet channel of which the spatial symmetry is odd.
For definiteness, we assume that even-frequency pairing is
eliminated by, e.g., strong frequency-independent repulsive

component of the interaction, and consider how an odd-
frequency pairing potentially emerges due to the exchange
of a gapless dynamical boson, thus circumventing the third
problem mention above.

We argue that in the canonical γ model with the same
interaction V (�m) in the particle-hole and particle-particle
channels, odd-frequency pairing does not develop because
fermionic self-energy keeps the attractive pairing interaction
below the threshold. For electron-phonon interaction (the case
γ = 2), this has been obtained previously for a finite Debye
frequency (see Ref. [3] and references therein). Our results
show that this holds even when a pairing boson becomes
massless. However, odd-frequency pairing does develop in the
model with different interactions in the two channels, if the
one in the pairing channel is larger. For γ < 1, this happens
when ratio of the two interactions exceeds a certain threshold.
For γ > 1, the pairing develops immediately once the pairing
interaction exceeds the one in the particle-hole channel. A
recent study of vertex corrections to Elishberg theory for the
γ = 2 model with electron-phonon attraction and Hubbard
repulsion did find [29] that the dressed interaction in the
particle-particle is larger than the dressed interaction in the
particle-hole channel.

Below we express our results in terms of D(ω) = �(ω)/ω,
which is an even function of frequency, and in many respects
is the analog of �(ω) for even-frequency pairing.

We study odd-frequency pairing in the γ model separately
for γ < 1 and γ > 1. For γ < 1, we model nonequivalence of
the interactions in particle-particle and particle-hole channels
by multiplying the pairing interaction by the factor 1/N and
treating N as a parameter, smaller than one. By analyzing the
linearized gap equation, we find the critical Ncr (γ ) < 1 that
separates a non-Fermi liquid ground state at N > Ncr and a
superconducting ground state at N < Ncr (more accurately, a
state with a nonzero pairing gap).

We next solve the nonlinear gap equation at N < Ncr and
analyze how D(ωm) depends on ωm. For odd-frequency pair-
ing out of a Fermi liquid, �(ωm) ∝ ωm at small ωm, hence
D(ωm) tends to a constant. We argue that at a QCP the low-
frequency behavior is different: D(ωm) diverges as 1/|ωm|d ,
where d depends on γ and for γ < 1 satisfies 0 < d < γ .
This particular dependence on frequency can be probed by
measuring the specific heat, which at low T scales as T 1−γ .
On the real frequency axis, this leads to a nonanalytic density
of states (DoS) at small frequencies: N (ω) ∝ ωd . To obtain
N (ω) at arbitrary ω, we analytically continue D0(ωm) onto
the real axis using Pade approximants. We obtain a complex
D(ω) = D′(ω) + iD′′(ω) and show that D′(ω) passes through
zero at a frequency where D′′(ω) ≈ 1. This gives rise to
a sharp peak in N (ω), reminiscent of edge singularity for
even-frequency pairing. We note in passing that there is no
zero-bias peak in our case, in distinction to some models of
odd-frequency pairing out of a Fermi liquid in S/N and S/F
heterostructures [20,77].

We argue that Ncr is a multicritical point, below which
there emerges an infinite discrete set of topologically dif-
ferent odd-frequency functions Dn(ω) with n = 0, 1, 2, . . .
The magnitude of Dn(ω → 0) is the largest for n = 0 and at
large enough n decreases as e−An, A = O(1). A topological
distinction betweenDn(ω) with different n shows most clearly
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on the Matsubara axis, where Dn(ωm) can be made real by a
proper choice of an overall phase. The function Dn(ωm) has n
nodes at finite positive ωm, and the equal number of nodes
at negative ωm. Each node of Dn(ωm) is a center of a 2π
vortex in the complex frequency plane, hence the Dn(ωm) has
n vortices on the positive part of the Matsubara axis. Each
vortex on the Matsubara axis induces a shift of the phase η(ω)
of the gap function on the real axis �(ω) = |�(ω)|eiη(ω) by
π between ω = 0 and ω = ∞. The total phase variation in
the presence of n vortices is η(∞) − η(0) = πγ /2 + nπ This
can be potentially measured by Angle-resolved photoemission
spectroscopy (ARPES) [78].

As a proof that the infinite set of Dn(ωm) does exist, we
obtain the exact analytical solution at T = 0 for the end-point
of the set,Dn=∞. We also obtain numerically the onset temper-
atures Tp,n for the gap functions with 0 � n � 8. We show that
these Tp,n are nonzero and decay exponentially with n, like
Dn(0) at T = 0. We show that all Tp,n vanish at N = Ncr.1 We
emphasize that an infinite set ofDn(ωm) exists only for pairing
at a QCP, when a pairing boson is massless. For odd-frequency
pairing out of a Fermi liquid away from a QCP, the number
of solutions becomes finite. The number of solutions depends
on the distance to a QCP, and above a certain distance only
D0(ωm) survives, i.e., the gap equation has a single solution.

We then extend the analysis to γ > 1. We argue that for
these γ , Ncr = 1, i.e., the canonical model with equal inter-
action in particle-particle and particle-hole channels is critical
for odd-frequency pairing. We show that the pairing emerges
for arbitrary N < 1, and the onset temperature for the pairing
scales as Tp ∼ (1/N − 1)1/(γ−1). We find that, like the case of
γ < 1, there exists an infinite number of solutions, of which
the onset temperatures Tp,n are not identical, although scale in
the same way with 1/N − 1. Then, for each γ > 1, there is a
universal tower of onset temperatures for pairing in different
topological sectors, specified by n. We show that a similar
behavior holds at T = 0, if we keep bosonic mass ωD finite:
there is a set of critical ωD, all of order (1 − N )1/(γ−1), but
with different n-dependent prefactors.

We show that the scaling relations Tp,n ∝ (1/N − 1)1/(γ−1)

and ωD,n ∝ (1/N − 1)1/(γ−1) emerge because for γ > 1 and
N < 1, the gap equation contains infrared singularities, and
a finite T or a finite ωD act to regularize these singularities.
We also discuss another extension of the model with γ > 1
to nonequal interactions in the pairing and the particle-hole
channel, which does not induce infrared singularities. Using
this extension, characterized by the parameter M, we find
Mcr (γ ), at which odd-frequency superconductivity emerges.
We show that it emerges simultaneously for all n � 0 for
1 < γ < 2, but a new physics emerges for γ > 2, and, as a
result, the order with n = 0 emerges prior to ordering in other
topological sectors.

1This is similar, but not identical to the even-frequency pairing,
where Tp,n with n � 1 vanish at N = Ncr, but Tp,0 only vanishes at
N → ∞. The reason for this behavior is a special role of fermions
with the first Matsubara frequencies ±πT for even-frequency pair-
ing. We show that for odd-frequency pairing fermions with ωm =
±πT are not special. As a consequence, Tp,0 vanishes at the same
N = Ncr as other Tp,n.

The paper is organized as follows. In Sec. II, we con-
sider two most frequently cited examples of pairing at a
QCP—pairing by nematic and antiferromagnetic fluctuations
in 2D. We show that in both cases there is an attraction in
the odd-frequency channel, and the gap equation is formally
identical to the one for even-frequency pairing. In Sec. III,
we introduce a generic γ model for odd-frequency pairing
at a QCP and extend it to N 	= 1. In Sec. IV, we consider
the range 0 < γ < 1. In Secs. IVA–IVC, we analyze the
linearized and the nonlinear gap equation on the Matsubara
axis and establish the condition for odd-frequency pairing. We
show that these exists a set of topologically distinct solutions
�n(ω), each with its own onset temperature Tp,n. We obtain
the exact solution at T = 0 for n = ∞ and discuss in some
length the solution at n = 0, for which the condensation en-
ergy is the largest. In Sec. IVD, we analytically continue the
gap function with n = 0 to the real frequency axis. We obtain a
complex D0(ω) and use it to obtain the DoS N (ω). In Sec. VI,
we extend the analysis to γ > 1. In Sec. VIA, we discuss
how the solutions with different n appear one-by-one once
we consider the limit when 1 − N and T (or bosonic mass
ωD) are both vanishingly small, but the ratio (1/N − 1)/T γ−1

stays finite. In Sec. VI C, we discuss hidden physics at γ > 2.
To unravel it we extend the model with γ > 1 to nonequal
interactions in the particle-particle and particle-hole channels
without introducing infra-red singularities. We present our
conclusions in Sec. VII.

II. EXAMPLES OF ODD-FREQUENCY PAIRING AT A QCP

In this section, we analyze the two most known examples
of pairing near a QCP in a 2D metal—pairing by Ising-
nematic charge fluctuations and by antiferromagnetic spin
fluctuations. We adopt the same strategy as for even-frequency
pairing: introduce the pairing vertex�(ωm, k) and the fermion
self energy �(ωm, k), and assume that a critical boson is
overdamped and is slow compared to a fermion near a Fermi
surface. This approximation allows one to understand the pair-
ing and its competition with non-Fermi liquid by analyzing
the set of two coupled Eliashberg equations for �(ωm, k) and
�(ωm, k). After momentum integration, which can be done
explicitly, the set reduces to two coupled equations for �(ωm)
and �(ωm). We show that the equations have the same form
for even-frequency and odd-frequency pairing, but for odd-
frequency pairing, �(ωm) obeys �(−ωm) = −�(ωm).

A. Pairing at a 2D Ising-nematic QCP

The susceptibility of an Ising-nematic order parameter is
peaked at momentum q = 0, and its low-energy dynamics is
determined by Landau damping into particle-hole pairs. At
a charge-nematic QCP, the effective four-fermion interaction,
mediated by a massless boson, is

Veff(q,�m) = geff

q2 + 

|�m|
|q|

, (2)

where geff is fermion-boson coupling and 
 = geffm/(πvF )
(for a parabolic dispersion of fermions, ξk = (k2 −
k2F )/(2m)). As we said, we assume that a Landau overdamped
boson is a slow mode compared to a low-energy fermion. One
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can verify that this holds when geff 
 EF . In this situation,
one can approximate Veff by its value for q = 2kF sin θ/2,
connecting points k and p on the Fermi surface (p = k + q,
pk = k2F cos θ ). In a lattice system, 
 depends on the angle
between q and a particular direction in the Brillouin zone, but
this dependence does not change the results qualitatively and
we proceed assuming a rotational invariance.

The Eliashberg equation for the pairing vertex is the same
in spin-singlet and spin-triplet channels. It is

�(ωn, θk ) = πT
∑
ωm

∫
pd pdθp

(2π )2
�(ωm, θp)

ξ 2
p + �̃2(ωm) + �2(ωm, θp)

× Veff(θp − θk, ωm − ωn). (3)

Here �̃(ωm) = ωm + �(ωm), θk and θp are the angles with
respect to some arbitrary chosen direction in the Brillouin
zone, and Veff(θp − θk, ωm − ωn) is obtained by substitut-
ing q = 2kF sin( θp−θk

2 ) into Eq. (2). We will assume and
then verify that relevant values of ωn and ωm are of order
geff 
 EF . Typical |θk − θp| are then parametrically small
in geff/EF . To leading order in geff/EF , one can then ap-
proximate �2(ωm, θp) in the r.h.s. of (3) by �2(ωm, θk ) and
explicitly integrate over θk − θp and by ξp. In doing this, we
do not distinguish between even- and odd-frequency pair-
ing. Performing the integration, we obtain 0 + 1 dimensional
equation for �(ωn, θk ):

�(ωn, θk ) = πT
∑
ωm

�(ωm, θk )√
�̃2(ωm) + �2(ωm, θk )

×
(

ḡ

|ωn − ωm|
)1/3

, (4)

where ḡ = 1
162

√
3π2 g

2
eff/EF . We see that �(ωn, θk ) doesn’t

actually depend on θk , hence the gap equation does not dis-
tinguish between (i) even-frequency spin-singlet pairing, for
which � is even under θk → π + θk , and odd-frequency spin-
singlet pairing, for which � is odd under θk → π + θk and
(ii) between even-frequency spin-triplet pairing, for which �

is odd under θk → π + θk , odd-frequency spin-triplet pairing,
for which � is even under θk → π + θk An alternative way to
see this is to divide the Fermi surface into patches and verify
that fermions from different patches don’t talk to each other
[79].

For the interaction mediated by Ising spin fluctuations at
a spin-nematic QCP, the gap equation is again the same for
even- and odd-frequency pairing vertices. The only difference
with the charge case is that now there is an extra factor of 3
for the self-energy and the overall factor of either −3 or 1 for
spin-singlet and spin-triplet pairing (see Fig. 1). A nonzero
�(ωn, θk ) is then only possible for the spin-singlet pairing
in both even-frequency and odd-frequency channels. For odd-
frequency channel, spatial symmetry is odd (p-wave, etc.)

B. Pairing at a 2D antiferromagnetic QCP

The pairing interaction, mediated by soft antiferromagnetic
fluctuations, is peaked at momentum Q = (π, π ), and its dy-

FIG. 1. (a) Pairing vertex with spin-spin interaction. α, β, γ , λ

are spin indices. For spin-singlet pairing, we have iσ y
αβσαγ · σβλ =

−3iσ y
γ λ, while for spin-triplet pairing, we have (σ

iiσ y )αβσαγ · σβλ =
(σ iiσ y )γ λ. (b) Self-energy with spin-spin interaction. The presence
of the extra factor of 3 can be seen from contracting the internal spin
index

∑
β σαβ · σβα = (σ2)αα = 3.

namics again comes from Landau damping:

V s f
αβ;γ δ (q,�m) = V s f (q,�m)σαγ σβ,δ,

V s f (q,�m) = geff
(q − Q)2 + 
s f |�m| . (5)

The gap equation for spin-singlet pairing is

�(ωn, k) = −3T
∑
ωm

∫
d2p
(2π )2

�(ωm, p)

ξ 2
p + �̃2(ωm) + �2(ωm, p)

× Vs f (k − p, ωn − ωm). (6)

The factor “−3” originates from spin summation (Fig. 1). Its
presence implies that an s-wave solution is impossible.

Because (π, π ) is a lattice wave vector, one has to consider
lattice dispersion and a noncircular Fermi surface. Motivated
by the cuprates, we consider the Fermi surface, shown in
Fig. 2(a). The momentum Q connects eight points on this
Fermi surface (hot spots) kh.s. either directly or via Umklapp.
For geff 
 EF , one can safely neglect fermions located away
from hot regions and focus on fermions in the patches around
hot spots.

To overcome the overall minus sign in the r.h.s. of (6), we
search for �(ωm, k) which satisfy the condition �(ωm, kh.s. +
Q) = −�(ωm, kh.s.). The difference between even- and odd-
frequency pairing in this situation is in the parity of �(ωm, k).
For even-frequency pairing, we must have �(ωm,−k) =
�(ωm, k), while for odd-frequency pairing, the Berezinskii
rule imposes the condition �(ωm,−k) = −�(ωm, k). A sim-
ple experimentation shows that in the even-frequency case,
�(ωm, k) has dx2−y2 symmetry, with nodes along Brillouin
zone diagonals [Fig. 2(b)], while in the odd-frequency case,
�(ωm, k) has p-wave symmetry [Fig. 2(c)]. For both cases,
one can set k = kh.s. in Eq. (6), approximate �(ωm, p)
by �(ωm, kh.s. + Q) = −�(ωm, kh.s.), and explicitly integrate
over the two components of momenta: over the one transverse
to the Fermi surface in the kernel and over the one along the
Fermi surface in the interaction. This yields

�(ωn) = πT
∑
ωm

�(ωm)√
�̃2(ωm) + �2(ωm)

(
ḡ

|ωn − ωm|
)1/2

,

(7)
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FIG. 2. (a) Fermi surface of hot spot model. When the interaction is peaked at Q = (π, π ), there are 8 hot spots on the Fermi
surface which can be pair-connected by momentum Q either directly or via Umklapp. (b) For spin-singlet even-frequency paring, we must
have �(ωm,−k) = �(ωm, k), thus the pairing symmetry is most likely d-wave. (c) For spin-singlet odd-frequency pairing, we must have
�(ωm, k) = �(−ωm, −k) = −�(ωm, −k). In this situation the pairing symmetry is obviously p-wave.

where ḡ = 9
16π g

2
eff/(
s f v

2
F ) and �(ωn) = �(ωn,kh.s.). We

emphasize that this equation holds for both even- and odd-
frequency pairing. To differentiate between the two, one has
to move away from hot regions and solve for the gap on the
full Fermi surface. For geff 
 EF , the pairing vertex along the
full Fermi surface is induced by �(ωn,kh.s.), and for both
even-frequency and odd-frequency pairing the onset pairing
temperature, obtained from the full Fermi surface analysis,
differs little from the one obtained by solving Eq. (7).

The same analysis can be performed for other cases of
pairing at a QCP with the same result—after the momen-
tum integration the equation for the dynamical pairing vertex
�(ωm) has the same form for even-frequency and odd-
frequency pairing.

III. MODEL

We analyze odd-frequency pairing using the same strategy
as for even-frequency one. Namely, we consider an itiner-
ant fermion system close to a QCP towards charge or spin
ordering and assume that the dominant interaction between
fermions is mediated by soft fluctuations of an order param-
eter that condenses at the transition. The resulting effective
4-fermion interaction is attractive for odd-frequency pairing.
The same interaction, however, gives rise to a singular self-
energy, which leads to incoherent non-Fermi liquid (NFL)
behavior in the normal state. These two tendencies compete
in the sense that a NFL behavior in the normal state reduces
the pairing kernel, while once fermion pair, low-energy exci-
tations become gapped, and the self-energy recovers a Fermi
liquid form.

We assume, like in earlier studies (see Ref. [68] and ref-
erences therein), that order parameter fluctuations are slow
modes compared to fermions, and that there exists a small
parameter, which allows one to neglect vertex corrections. In
this situation, one can select the most attractive spatial pairing
channel and explicitly integrate over momentum along and
transverse to the Fermi surface. After this, the problem re-
duces to the analysis of 0 + 1 dimensional coupled dynamical
integral equations for the pairing vertex �(ω) and fermionic

self-energy �(ω). On the Matsubara axis, these equations are
[we use �̃(ωn) ≡ ωn + �(ωn)]

�(ωm) = πT
∑
n

�(ωn)√
�̃(ωn)2 + �(ωn)2

V (|ωn − ωm|),

(8)

�̃(ωm) = ωm + πT
∑
n

�̃(ωn)√
�̃(ωn)2 + �(ωn)2

V (|ωn − ωm|),

(9)

where V (|ωn − ωm|) = V (�m) is the effective local dynami-
cal interaction, taken for fermions on the Fermi surface and
integrated over momentum transfer along the Fermi surface.
Equations (8) and (9) are similar to the Eliashberg equa-
tions for electron-phonon interaction, and we will be calling
them Eliashberg equations. We refer to Ref. [68] for the
discussion of the model and the justification of the Eliashberg-
type theory.

The pairing gap �(ωm) is related to the pairing vertex as

�(ωm) = �(ωm)
ωm

ωm + �(ωm)
. (10)

We emphasize that the two equations (8)-(9) have the same
form for even-frequency and odd-frequency pairing. Below
we focus on odd-frequency solution for �(ωm).

In a Fermi liquid, V (�m) is a constant at small �m. There
is no solution for odd-frequency pairing for a near-constant
V (�m), hence the system remains in the normal state. As
the system approaches a QCP, V (�m) acquires progressively
stronger dependence on �m. This allows one to search for
odd-frequency solutions �(−ωm) = −�(ωm).

At a QCP, V (�m) can be generally written as V (�m) =
(ḡ/|�m|)γ , where ḡ is an effective coupling constant with
dimension of energy, and γ > 0 is an exponent. The two
examples, considered in the previous section, correspond to
γ = 1/3 and γ = 1/2, respectively.
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The two Eliashberg equations can be rearranged into the
equation for the pairing gap �(ωm) and the quasiparticle
residue Z (ωm) = �̃(ωm)/ωm = 1 + �(ωm)/ωm:

�(ωm) = πT
∑
ωn

�(ωn) − �(ωm)
ωn
ωm√

ω2
n + �2(ωn)

(
ḡ

|ωm − ωn|
)γ

,

(11)

Z (ωm) = 1 + πT

ωm

∑
ωm

ωn√
ω2
n + �(ωn)2

(
ḡ

|ωm − ωn|
)γ

.

(12)

Observe that the numerator in (11) vanishes at n = m.
This holds even if the bosonic propagator has a finite mass.
Treating a QCP as the limit when a bosonic mass vanishes,
we can then safely eliminate the term with m = n from the
right-hand side (r.h.s.) of (11). Physically this implies that
thermal fluctuations do not affect the gap equation, similar to
nonmagnetic impurities in the even frequency s-wave case.
This does not hold for Z (ωm), which at a finite T does con-
tain a singular thermal contribution from ωm = ωn. This term
has to be properly regularized. The same is true for � and
�, which do require regularization. Below we focus on the
solution of the equation for the gap function �(ωm). This
equation does not require a regularization for γ < 3, which
we only consider.

Extension to N �= 1

The set of Eliashberg equations (8) and (9) assumes that
exactly the same effective dynamical interaction V (�m) ap-
pears in the particle-particle and the particle-hole channel.
Previous works on even-frequency pairing have shown that
one can get better understanding of the interplay between
pairing and non Fermi liquid by analyzing a generalized γ

model with nonequal interactions in the two channels. This
can be rigorously done by extending the original U(1) model
to matrix SU(N ) (Ref. [80]). For such a model, the Eliashberg
equation for the self-energy remains intact, but in the one
for the pairing vertex there appears a factor 1/N in the r.h.s..
We follow earlier works on even-frequency pairing (see e,g.,
Ref. [68] and references therein) treat N as a continuous pa-
rameter, which measures relative strength of the interactions
in the particle-particle and the particle-hole channel. If N > 1,
the interaction in the particle-hole channel is stronger, while
if N < 1, the one in the particle-particle channel is stronger.

As we said, our primary goal is the analysis of the gap
equation. The extension to N 	= 1 changes this equation to

�(ωm) = πT
∑
ωn

1
N �(ωn) − �(ωm)

ωn
ωm√

ω2
n + �2(ωn)

(
ḡ

|ωm − ωn|
)γ

.

(13)
The extension has to be done carefully to avoid generating a
singular thermal contribution. The way to do this is to first
eliminate the n = m term in the gap equation (11) and only
then extend the model to N 	= 1.

For odd-frequency pairing, it is convenient to re-express
Eq. (13) in terms ofD(ωm) = �(ωm)/ωm, which in this case is
an even function of frequency and in this respect is similar to

the gap function for even-frequency pairing. The equation for
D(ωm) is

D(ωm)ωm = πT
∑
n 	=m

(
1
N D(ωn) − D(ωm)

)
sign(ωn)√

1 + D2(ωn)

×
(

ḡ

|ωm − ωn|
)γ

. (14)

At T = 0, the frequency summation is replaced by the inte-
gration:

D(ωm)ωm = 1

2

∫
dωn

(
1
N D(ωn) − D(ωm)

)
sign(ωn)√

1 + D2(ωn)

×
(

ḡ

|ωm − ωn|
)γ

. (15)

To understand whether an odd-frequency pairing emerges
above a QCP, one needs to analyze the linearized gap equation

D(ωm)ωm = πT
∑
n 	=m

(
1

N
D(ωn) − D(ωm)

)
sign(ωn)

×
(

ḡ

|ωm − ωn|
)γ

(16)

and check whether it acquires a nonzero solution at some
T = Tp.

To simplify the notations, we will be calling the equa-
tion for D(ωm) the gap equation. we will also measure, T ,
ωm, and � in units of ḡ.

IV. SOLUTIONS ON MATSUBARA AXIS, γ < 1

A. Linearized equation at T = 0: Ncr

We first analyze the linearized gap equation at zero temper-
ature. The goal here is to find whether there exists a critical
Ncr separating a non-Fermi liquid ground state and a super-
conducting ground state. At T = 0, the gap equation in (16)
becomes

D(ωm)ωm = 1

2

∫ ∞

−∞
dωn

(
1

N
D(ωn) − D(ωm)

)
sign(ωn)

|ωm − ωn|γ .

(17)

We use the same strategy as for even-frequency pairing:
focus on low frequencies and search for power-law solution
for D(ωm) in the form D(ωm) ∝ |ωm|α , where α > −1. If
α is real, D(ωm) is sign-preserving and gradually evolves
from the bare infinitesimally small Dbare(ωm), as one can eas-
ily verify. The pairing susceptibility χpp = D(ωm)/Dbare(ωm)
then remains finite, hence there is no pairing instability. If,
however, the exponent α is complex, there must be two
complex conjugated exponents α = α′ ± iα′′. The real func-
tion D(ωm) then oscillates at small frequencies as D(ωm) ∼
|ωm|α′

cos(α′′ lnωm + φ), where φ is some number. An oscil-
lating behavior is incompatible with an iterative expansion
staring from Dbare(ωm), as iterations retain D(ωm) sign-
preserving, and implies that the system is unstable towards
pairing.

Substituting D(ωm) ∝ |ωm|α into (17) we find that at small
frequencies the D(ωm)ωm term in the left-hand side (l.h.s.) of
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FIG. 3. (a) Ncr as a function of γ for odd-frequency pairing. The
pairing develops for N < Ncr. (b) The function εβN in (20) for two
representative values of γ . The equation N = εβN has solutions when
N < Ncr, andNcr is the maximum value of εβN taken at βN = 0 (Ncr =
0.77 for γ = 0.5 and Ncr = 0.90 for γ = 0.7.).

(17) can be neglected, and the gap equation reduces to

1

2N

∫ ∞

−∞
dωn|ωn|α sign(ωn)

|ωm − ωn|γ = |ωm|α
∫ ∞

−∞
dωn

sign(ωn)

|ωm − ωn|γ .

(18)

Solving for α we find that it is real whenN > Ncr and complex
when N < Ncr, where

Ncr = 1 − γ

2
(γ )
|
(γ /2)|2

(
1

cos(πγ /2)
− 1

)
. (19)

The complex exponent for N < Ncr is α = γ /2 − 1 ± iγ βN ,
where βN is the solution of

N = εβN ,

εβN = 1 − γ

2
(γ )
|
(γ /2 + iγ βN )|2

(
cosh(πγβN )

cos(πγ /2)
− 1

)
. (20)

We plot Ncr (γ ) in Fig. 3(a). We see that Ncr exists, but is
smaller than one for all γ from the range 0 < γ < 1. This
implies that the canonical γ model with equal interactions in
the particle-hole and particle-particle channels remains stable
against the odd frequency pairing down to T = 0. However,
when the pairing interaction gets larger, the system eventually
becomes unstable towards pairing. In Fig. 3(b), we plot εβN

as a function of βN for two representative values of γ . We
see that N = εβN has two solutions ±βN when N < Ncr, and
βN increases as N decreases below Ncr. For N � Ncr, βN ∝
(Ncr − N )1/2.

On a more careful look we note that for N > Ncr, there are
actually two power-law solutions of (18) with real exponents
α1 and α2. At large N when the interaction in the pairing
channel is weak, α1 ≈ γ comes from integration over internal
ωn 
 ωm (an UV contribution), while the other α2 ≈ 2 comes
from integration over ωn 
 ωm (an IR contribution). The
latter is not connected to iterations starting from Dbare(ωm)
and from this perspective is an unphysical solution. As N
decreases, α1 and α2 move towards each other: α1,2 = γ /2 −
1 ± bN , where bN decreases from its value 1 − γ /2 at large
N . At N = Ncr, bN vanishes, and the two solutions merge. At
smaller N , bN becomes imaginary (iγ βN ), and α1,2 become
complex. Right at N = Ncr, a more accurate analysis of (18)
shows that there are again two solutions: D1(ωm) = |ωm|γ /2−1

0 0.05 0.1 0.15 0.2
-1/logT

p

0.4

0.5

0.6

0.7

0.77
0.8

0.9

N

=0.5
=0.7

FIG. 4. Tp(N ) from solving the linearized equation (16) for γ =
0.5 and 0.7. For better illustration, we plot −1/ ln Tp instead of
Tp on the horizontal axis. Both curves clearly extrapolate to their
corresponding Ncr in zero temperature limit.

and D1(ωm) = |ωm|γ /2−1 ln |ωm|. Just like for even-frequency
pairing, combining the two solutions at small frequencies
into D(ωm) = D1(ωm) + cD2(ωm) and using c as a parameter,
one can match the low-frequency form of D(ωm) with the
high-frequency form and obtain the solution of the linearized
gap equation for all ωm, as it should be the case at the onset
of superconductivity. The large frequency form of D(ωm) is
D(ωm) ∝ 1/|ωm|γ+2, as one straightforwardly extract from
(17).

The linearized gap equation at N = Ncr can actually be
solved exactly using the same approach as Ref. [68] (see more
on this below). The function D(ωm) is sign-preserving and
interpolates between two different power-law forms at small
and large frequencies.

B. linearized equation at a finite T

We solved the linearized gap equation at a finite T nu-
merically, focusing on the sign-preserving solution. We find
the critical temperature Tp(N ), at which the solution of the
linearized equation exists. We show Tp(N ) in Fig. 4 obtained
by numerically solving the linearized equation (16). We see
that Tp(N ) is nonzero for N < Ncr and terminates at N = Ncr.
This behavior is intuitively expected, yet we emphasize that
it differs from that for even-frequency pairing. There, Tp(N )
by-passes Ncr and terminates at N = ∞. The difference is
in the gap equation for the lowest Matsubara frequencies
ωm = ±πT . This contribution is generally a special one be-
cause the contribution to the gap equation from the fermionic
self-energy (the term with external D(ωm) in the r.h.s. of (17))
vanishes for ωm = ±πT as

∑
n 	=0 sign(2n + 1)/|2πTn|γ =

0. Hence, for ωm = ±πT , there is no competitor to pairing.
For even-frequency pairing, the interaction between fermions
with ωm = πT and ωm = −πT is attractive, and solving for
Tp, one obtains Tp = (1/2π )(1/N )1/γ , i.e., Tp vanishes at N =
∞ rather than at N = Ncr. This creates a special re-entrance
behavior of the gap function, which emerges at Tp but then
vanishes at T = 0. For odd-frequency pairing, the interaction
between fermions with ωm = πT and ωm = −πT is repulsive
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FIG. 5. D(ωm ) obtained from the numerical solution of the non-
linear gap equation for γ = 0.5, N = 0.5 and T = 10−3. The insets
show small and large ωm behaviors of D(ωm ).

as�(−πT ) = −�(πT ). Because of repulsion, fermions with
ωm = ±πT are not relevant for the pairing. The latter comes
from fermions with other ωm, for which self-energy is finite
and at a small but finite T is of the same order as at T = 0. In
this situation, the line Tc(N ) terminates at N = Ncr

C. Nonlinear gap equation

The full nonlinear gap equation (14) can be solved by
numerical iterations. The gap function emerges at Tp and
reaches maximum value at T = 0. We show D(ωm) at small
T ∼ 10−3ḡ for representative γ = 1/2 and N = 0.5 < Ncr in
Fig. 5. This gap function is sign-preserving, which implies
that the oscillations in the pairing susceptibility are all elimi-
nated by a finite D(ωm) Below we analyze this gap function at
T = 0 both analytically and numerically, at the lowest possi-
ble temperature. We verified that for such D(ωm) the iteration
procedure is fully convergent.

At large frequencies D(ω) scales as 1/|ωm|5/2, as is ex-
pected (5/2 = 2 + γ for γ = 0.5). At small frequencies, one
would naively expect that odd-frequency �(ωm) should be
linear inωm and henceD(ωm) should approach a finite value at
ωm → 0. Figure 5 however shows that D(ωm) is actually non-
analytic and diverges at ωm → 0. This singular behavior can
be understood analytically. Indeed,D(ωm) ≈ const atωm → 0
does not satisfy the gap equation (14) at T = 0, as both sides
of this equation contain ωm as the overall factor, and the
prefactor in the l.h.s. if finite, but the one in the r.h.s. diverges
as

∫
dωn/|ωn|γ+1. Searching for a singular D(ωm) ∝ 1/|ωm|d

with 0 < d < 1, we find that the gap equation is satisfied if

(1 − γ )

2
Qγ (d ) = 1

N
, (21)

where

Qγ (d ) =
∫ ∞

0
dxxd

(
1

|x − 1|γ − 1

(x + 1)γ

)

= B(d + 1, 1 − γ ) + B(1 − γ , γ − 1 − d )

− B(d + 1, γ − 1 − d ), (22)

FIG. 6. (a) The function Fγ (d ) = (1 − γ )Qγ (d )/2 for different
γ and 0 < d < γ . In the two limits, Fγ (0) = 1 and Fγ (γ ) diverges.
In between, Fγ (d ) monotonically increases with d . This behavior
guarantees that the equation Fγ (d ) = 1/N has a solution for any
N < Ncr < 1. (b) Comparison between D(ωm ) ∼ 1/|ωm|d and the
numerical solution of the full nonlinear gap equation at small fre-
quencies. The agreement is perfect, but holds only for low enough
frequencies.

where B(p, q) is the Beta function. We plot (1 − γ )Qγ (d ) for
different γ in Fig. 6(a). This function is equal to one for d =
0, increases with d and diverges at d = γ . This guarantees
that Eq. (21) has a solution at some 0 < d < γ for any N <

Ncr < 1. We also numerically confirmed the small-ωm scaling
of D(ωm) in Fig. 6(b), via a direct comparison between the
numerical solution of the nonlinar equation and 1/ωd

m with d
determined from (21).

The dependence D(ωm) ∼ 1/|ωm|d with d < γ affects the
behavior of physical observables, e.g., the specific heat. We
computed the free energy of an odd-frequency superconductor
and found that at small T it scales as T 2−γ . Consequently, the
specific heat C(T ) ∝ T 1−γ .

D. Gap function on the real axis

To obtain spectral observables, like the fermionic density
of states (DOS) or the spectral function, we need to know
the function D(ω) on the real axis. We obtained it using
two procedures: (i) Pade approximants method and (ii) by
transforming the gap equation to the real axis and solving it
there. In the second procedure, we followed the same steps
as for even frequency pairing. We obtain the same results for
D(ω) in both ways. Below we show the results obtained by
Pade approximants. The quality of this method is tested by
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FIG. 7. The gap function D(ω) = D′(ω) + iD′′(ω) along the real axis for γ = 0.5, N = 0.5 and γ = 0.8, N = 0.8, at different tempera-
tures. Left panels and right panels show the behavior at small and large ω, respectively.

first obtaining D(ω) on the real axis from D(ωm) and then
re-evaluating D(ωm) by Cauchy formula and comparing with
the original D(ωm). The relative difference between the two is
at most 10−7.

In Fig. 7, we show the numerical results for D(ω) =
D′(ω) + iD′′(ω) for two values of (γ ,N ). We recall that we
set D(ωm) = �(ωm)/ωm to be real. By Cauchy relation we
then have on the real axis D′(−ω) = D′(ω) and D′′(−ω) =
−D′′(ω), i.e., D′(ω) is even and D′′(ω) is odd. This is similar
to the case of even-frequency pairing, where for real �(ωm),
�′(ω) is even and �′′(ω) is odd. We also note in passing that
there a qualitative difference between odd-frequency super-
conductivity and even-frequency gapless superconductivity.
For the latter, the pairing gap vanishes at ω = 0, but is even in
frequency. Then D(ωm) is odd, and by Cauchy relation on the
real axis D′(ω) is odd and D′′(ω) is even.

Back to our case. At small and large frequencies, a simple
rotation of the Matsubara axis expression yields D′(ω) =
cos(πd/2)/|ω|d and D′′(ω) = sgn(ω) sin(πd/2)/|ω|d .
At large frequencies, D′(ω) = − cos(πγ /2)/|ω|2+γ and
D′′(ω) = −sgn(ω) sin(πγ /2)/|ω|2+γ (d = 0.335 for
(γ ,N ) = (0.5, 0.5) and d = 0.45 for (γ ,N ) = (0.8, 0.8).)
Comparing these two forms, we immediately find that both D′
and D′′ have to change sign between small and large ω. These
small and large frequency behaviors can be clearly seen in
Fig. 7.

We use D(ω) on the real axis to obtain the DOS

N (ω) = Re

(
1√

1 + D(ω)D∗(−ω)

)
. (23)

To the best of our knowledge, this expression was first ob-
tained in Ref. [4].

We show N (ω) in Fig. 8 for the two different (γ ,N )
from Fig. 7. In both cases, we see that the DOS is strongly
reduced at small ω and has a has a sharp peak at ω � 1.
Both features can be understood analytically. The reduction
of N (ω) at small ω is the consequence of the fact that at
T = 0, both D′ and D′′ diverge at ω → 0 as 1/|ω|d , hence
N (ω) ∝ |ω|d . The peak at ω � 1 comes about because in this
frequency range D′′(ω) is much larger than D′(ω), and at the
same time |D′′(ω)| < 1 (see the small-ω behaviors in Fig. 7).
Keeping only D′′ in (23) and using D′′(−ω) = −D′′(ω), we
obtain

N (ω) ≈ Re

(
1√

1 − |D′′(ω)|2
)

. (24)

Obviously, N (ω) is enhanced in this frequency range, and the
maximum enhancement is where |D′′(ω)| is the largest.

We also see from Fig. 8 that as temperature increases, the
peak position in N (ω) shifts to a smaller frequency. We veri-
fied that it vanishes at T = Tp. In “high-Tc” language, the DOS
displays BCS-like “gap closing” behavior. This is in variance
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FIG. 8. The DOS N (ω), normalized to its normal state value N0, at various temperatures for (γ ,N ) = (0.5, 0.5) and (0.8,0.8).

with the DOS in the same γ model for even frequency case.
There, N (ω) displays the “gap filling” behavior in a range of
temperatures below Tp. On a more careful look, we found that
the difference is again related to the special role of fermions
with ω = ±πT for even frequency case and the lacking of
such special role for odd-frequency case.

We note in passing that in our case there is no peak
in N (ω) at ω = 0 (i.e., no zero bias anomaly). Such peak
has been theoretically predicted for odd-frequency pairing in
heterostructures, like s-wave superconductor/ferromagnet or
p-wave superconductor/normal metal. We argue therefore that
a peak in N (ω) at ω = 0 can’t be used as a generic fingerprint
of odd-frequency pairing.

V. MULTIPLE SOLUTIONS OF THE GAP EQUATION

For even-frequency pairing, we have shown in recent pub-
lications [68,72–76] that the sigh-preserving �(ωm), is not the
only solution of the gap equation at T = 0, but rather the end
point of an infinite discrete set of solutions. The other end
point is the solution of the linearized gap equation, which still
exists for N < Ncr, as we explicitly demonstrated in Ref. [68].
We now show that the same holds for odd-frequency pairing,
i.e., that the sign-preserving D(ωm) is the end point of a
discrete but infinite set of solutions. For a generic solution in
the set, the function D(ωm) changes sign n times along the
positive Matsubara axis. We label such solution as Dn(ωm).
The sign-preserving solution is then D0(ωm).

We present two elements of the proof that such set exists.
First, we present the exact solution of the linearized gap
equation for N < Ncr. The solution changes sign an infinite
number of times along the positive Matsubara axis and in our
nomenclature is D∞(ωm). This is the other end point of the
discrete set of Dn(ωm). Second, we solve the linearized gap
equation at a finite T without restricting to sign-preserving
solutions and find a number of onset temperatures Tp,n for
Dn(ωm), which change sign n times at positive ωm. Because
each zero along the Matsubara axis is a center of a dynam-
ical vortex, gap functions with different n are topologically

distinct, i.e., Dn(ωm) cannot gradually transform into a gap
function with some other n.

A. Exact solution of the linearized gap equation
at T = 0 and N < Ncr

Earlier we argued that at N = Ncr, the solution of the
linearized gap equation at small frequencies: D(ωm) ∝
1/|ωm|1−γ /2(1 + c ln |ωm|), has a free parameter c. We
demonstrated that this parameter can be chosen to obtain
the solution at all frequencies, which smoothly interpolates
between this form and the high-frequency form D(ωm) ∼
1/|ωm|2+γ . This is an expected result as by general reasoning
the linearized gap equation should have a nontrivial solution
right at N = Ncr.

Let’s now move to N < Ncr. For superconductivity com-
ing out of a Fermi liquid, it is natural to assume, even for
odd-frequency pairing, that there should be the solution of
the nonlinear gap equation, but no solution of the linearized
gap equation. However, in our case of pairing out of NFL,
the situation is different. As we found above, if we consider
small frequencies [the ones for which �(ωm) > ωm], we find
the solution of the linearized gap equation in the form

D∞(ωm) = 1

2|ωm|1−γ /2
(C|ωm|iγ βN +C∗|ωm|−iγ βN )

= |C|
|ωm|1−γ /2

cos(γ βN ln |ωm| + φ), (25)

where βN is given by (20) and φ is the phase of the infinites-
imally small complex factor C = |C|eiφ . We see that at small
frequencies D∞(ωm) oscillates an infinite number of times as
a function of lnωm (hence the subindex n = ∞). However, we
also see that it contains a free parameter—this time the phase
φ. The issue then is whether one can choose a particular φ

and obtain the solution for D∞(ωm) at all frequencies, like for
N = Ncr.

The answer is affirmative—we found the exact solution of
the linearized gap equation at T = 0. The solution has the
form of Eq. (25) at small frequencies, with some particular
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FIG. 9. Red lines - the exact solution of the linearized gap equa-
tion, D∞(ωm ) in (26), at T = 0 for (a) γ = 0.5, N = 0.6 < Ncr =
0.768 and (b) γ = 0.8 N = 0.9 < Ncr = 0.945. The insets show
D∞(ωm ) at large frequencies. The blue lines are approximate so-
lutions D∞,L (ωm ), described in the text. The approximate solution
almost coincides with the exact one at small ωm, but becomes invalid
for ωm � 1.

γ -dependent φ, and scales as D∞(ωm) ∝ 1/|ωm|γ+2 at large
frequencies. The solution is obtained using the same compu-
tational procedure as for even-frequency pairing. We skip the
details of the derivation (they follow Refs. [68,74–76]) and
just present the result. The function D∞(ωm) is expressed as

D∞(ωm) = 1

|ωm|

×
∫ ∞

−∞
dβ

cos[β ln(ωγ
m|1 − γ |) + I (β )]√

cosh[π (β − βN )] cosh[π (β + βN )]
,

(26)

where βN is the solution of (20) and

I (β ) = 1

2

∫ ∞

−∞
dβ ′ ln

∣∣∣∣1 − 1

N
εβ ′

∣∣∣∣ tanh(π (β ′ − β )), (27)

where εβ is given in (20). We plot �∞(ωm) in Fig. 9. We
see that �∞(ωm) oscillates down to smallest frequencies, as a
function of ln |ωm| and decays as 1/|ωm|γ+2 at high frequen-
cies.

FIG. 10. (a) The first five solutions to the linearized gap equa-
tion for γ = 0.5 and at various temperatures. For better illustration
we plot N versus −1/ ln(Tp,n). As T → 0 (and hence −1/ ln(T ) →
0), all curves will terminate at Ncr = 0.768, consistent with T = 0
analysis. (b) Linear dependence of ln(Tp,n) on n for a particular γ =
0.5 and N = 0.5, which indicates Tp,n decays with n exponentially.

To better understand the crossover between the low-
frequency and high-frequency behavior, we also plot in Fig. 9
the full “local” D∞,L(ωm), which we obtained by adding to
the low-frequency form (25) the series, obtained by expand-
ing in |ωm|γ , with the coefficients evaluated by restricting to
contributions from internal ωn comparable to ωm (in prac-
tice this implies that we regularized formally UV divergent
integrals by the 
 functions, see Refs. [73,74] for details).
These series are D∞,L = |ω|γ /2−1Re

∑∞
k=0Ck|ωm|γ k , where

Ck = C
∏k

m=1
1

Iγ (m) , and

Iγ (m) = 1

2

[
1

N

(
B

(
1 − γ ,

γ

2
+ γm + iγ βN

)
+ B

(
1 − γ ,

γ

2

− γm − iγ βN

)
− B

(
γ

2
+ γm+ iγ βN ,

γ

2

− γm− iγ βN

))
− 2

1− γ

]
. (28)

We see from Fig. 9 that local series correctly describe the
exact solution up to ωm = O(1). The series, however, fail at
higher frequencies. In this range, the dominant contribution to
D∞(ωm) comes from the nonlocal UV terms, which account
for the crossover to high-frequency behavior.

B. Multiple onset temperatures Tp,n for N < Ncr

The complimentary evidence for an infinite set of solutions
comes from more sophisticated analysis of the linearized gap
equation at a finite T . We solved the matrix equation in Mat-
subara frequencies using the hybrid approach, which allows
one to reach very low temperatures (see Ref. [72] for details).
We found a number of onset temperatures, Tp,n, in addition
to Tp,0 in Fig. 4. The first few solutions for n = 0, 1, 2, 3 and
4 are shown in Fig. 10(a). The corresponding eigenfunction
�n(ωm) changes sign n times along the positive Matsubara
axis, which leaves little doubt that Tp,n is the onset temperature
for the n-th member of the infinite set at T = 0. Although
difficult to obtain zero temperature result, from Fig. 10(a),
we can see that all Tp,n smoothly extrapolates to N = Ncr at
T = 0. This implies that N = Ncr, T = 0 is a critical point
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FIG. 11. (Left) Result of numerical analysis of the gap equation (31) for infinitesimally small D(ωm ) on the (aγ , γ ) plane. The solution
exists at a set of lines aγ ,n. Above each line, there appears a nonzero Dn(ωm ) with n nodes at positive ωn. We illustrate this in the right panel.

of an infinite-order, below which an infinite number of so-
lutions emerges simultaneously. Moreover, Fig. 10(b) shows
that for a particular γ and N , Tp,n decays exponentially with
increasing n.

VI. CASE γ > 1

We see from Fig. 3 that Ncr approaches 1 at γ → 1. The
issue we discuss now is what happens for larger values of the
exponent γ . A formal answer is that the line Ncr (γ ) coincides
with N = 1 for all γ > 1, and the transition upon variation of
N becomes strongly first order: for N > 1, the only solution
of the gap equation (15) is D(ωm) = 0, while for N < 1 it is
D(ωm) = ∞ for any ωm. This bizarre behavior comes about
because the gap equation at T = 0 and N 	= 1 contains a
divergent piece.

On a more careful look we note that the divergence in the
gap equation at T = 0 is an unphysical element of Eliashberg
theory at a QCP as it originates from the divergence in the
fermionic self-energy. The latter must be regularized to avoid
an unphysical behavior of the spectral function. A way to do

FIG. 12. The gap functions Dn(ωm ) for critical aγ ,n with n =
0, 1, 2 for representative γ = 1.5.

this is to analyze Eliashberg theory either at a finite T or a
finite bosonic mass ωD and treat T = 0 theory at a QCP as a
limit when T and/or ωD are vanishingly small but still finite.
As long as T or ωD are nonzero, both the self-energy and the
gap equation are free from divergencies.

Below we apply this strategy to analyze the gap equation at
a generic N . We show in Sec. VI B that there is a set of
continuous transitions at 1/Ncr,n − 1 ∝ T γ−1 when T is used
as a regularization, or 1/Ncr,n − 1 ∝ ω

γ−1
D , when ωD is used

as a regularization. Once N gets smaller than Ncr,n, the system
becomes unstable towards pairing with a gap function Dn(ωm)
with n nodes along the positive Matsubara half-axis.

We next show that on top of this, there are new features
in the system behavior at γ > 2. Namely, pairing correlations
become nearly divergent already at N < Ncr,n, and the pairing
gap remains very small up to some other N > Ncr,n and then
rapidly increases. In other words, at vanishing T and ωD, the
system remains frozen at the critical point towards pairing
with Dn(ωm) in some range of N around Ncr,n. To see this
clearly, in Sec. VI C, we introduce an additional parameter
into the γ model and obtain a generalized phase diagram, in
which the emergence of the range around Ncr,n can be seen as
a flattening of particular critical line.

A. Regularization by a finite temperature and/or bosonic mass

Like we said, the r.h.s. of the gap equation (15) diverges at
N 	= 1. The divergence comes from the integration over ωn ≈
ωm. Approximating the numerator in Eq. (15) by its value at
ωn = ωm and pulling it out of the integral over ωm, we obtain
the singular piece in the r.h.s of Eq. (15) in the form

1 − N

2N

D(ωm)signωm√
1 + D2(ωm)

∫
dωn

|ωm − ωn|γ . (29)

There are two ways to regularize this divergence: one can
either keep T small but finite, or keep a nonzero bosonic mass
(i.e., move the system slightly away from a QCP). In the first
case,

∫
dωm is replaced by 2πT

∑
n 	=m without the n = m

term as the latter cancels out (see Sec. III). In the second
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FIG. 13. The location of the onset lines for the first five solutions in (N,T ) and (N, ωD ) planes (top and bottom) for three representative
values of γ > 1, obtained by solving numerically the gap equation (30). We set ωD = 0 (top) and set T = 5 × 10−5 (bottom). We see that the
critical lines follow Tp,n ∝ (1/N − 1)1/(γ−1) and ωD,n ∝ (1/N − 1)1/(γ−1), as expected from the solution of the simplified Eq. (31) (see Fig. 11).
The plots are in a log-log scale, the dashed lines are guides to the scaling behavior.

case, the gap equation at T = 0 is obtained by replacing
1/|ωm − ωn|γ with 1/[(ωm − ωn)2 + ω2

D]
γ /2, in which case,

the integral in (29) becomes of order 1/(ωD)γ−1. When T and
ωD are both finite, the gap equation becomes

D(ωm)ωm = πT
∑
ωn

1
N D(ωn) − D(ωm)√

1 + D2(ωn)

× sgn(ωn)∣∣(ωm − ωn)2 + ω2
D

∣∣γ /2 . (30)

For small T , ωD and 1 − N , we keep these terms only in
the would-be-divergent piece. Moving it to the l.h.s., one can
approximate the gap equation as

D(ωm)

(
ωm − aγ√

1 + D2(ωm)

)

= 1

2

∫
dωm

D(ωn) − D(ωm)√
1 + D2(ωn)

sgn(ωn)

|ωm − ωn|γ , (31)

where

aγ = 1/N − 1

(2πT )γ−1
ζ (γ ) for regularization by T,

aγ = 1/N − 1

ω
γ−1
D

√
π
[(γ − 1)/2]

2
(γ /2)
for regularization by ωD.

(32)
We verified numerically that Eqs. (30) and (31) have identical
solutions at aγ = O(1), which are relevant to our discussion.
Below we chiefly present the solution of Eq. (31).

B. Solution of the regularized gap equation

To obtain the boundary of the region where D(ωm) is
nonzero, we again analyze the linearized gap equation, i.e.,
Eq. (31) with infinitesimally small D(ωm). Like before, we
search for power-law solution D(ωm) ∝ |ωm|α at small fre-
quencies. We obtain α1 = 0 and α2 = γ − 2, independent on
aγ . We then note that a nonzero T and/or ωD sets the boundary
condition that D(ωm) must be a constant at ωm = 0 and its
expansion around ωm = 0 must be analytic. This selects the
single solution with α1 = 0.

For γ < 1 at N > Ncr we also selected a single solution
with a real exponent at small ωm, and then argued that this
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FIG. 14. The first solution D0(ωm ) of Eq. (33) for γ = 1.8 and
γ = 2.5. The red curves show the correct solutions which satisfy the
boundary condition. This happens when aγ = aγ ,0 so we have aγ ,0 =
0.638 for γ = 1.8 and aγ ,0 = 0.71 for γ = 2.5. For comparison, we
also show the eigenfunctions with aγ slightly deviating from these
critical values.

solution cannot be smoothly connected to another power-law
behavior at high frequencies, hence the solution of the lin-
earized gap equation does not exist. Here, the situation is
less obvious because in Eq. (31) we have the parameter aγ

which we can vary. This aγ does not affect the behavior of
D(ωm) at both small and large frequencies, but controls the
transformation between small and high-frequency forms.

In Fig. 11, we present the numerical solution of the lin-
earized gap equation. We see that there is a discrete set of lines
in the (aγ , γ ) plane, where the solution satisfying boundary
conditions exists. Above each line, there appear a nonzero
Dn(ωm) with n nodes at positive ωn. We demonstrate this in
Fig. 12 for a representative γ = 1.5. These gap functions are
topologically distinct, which implies that they can be treated
separately. Note that the critical lines aγ ,n all emerge from
aγ = 0 at γ = 1 and evolve continuously with γ . In Fig. 13,
we present the phase boundaries by solving the gap equa-
tion (30) in the original variables T, ωD and N . We see that
the critical lines follow Tp,n ∝ (1/N − 1)1/(γ−1) and ωD,n ∝
(1/N − 1)1/(γ−1), as expected from Fig. 11. The canonical
model with N = 1 remains in the normal state, but the pairing
instabilities develop for any N < 1 at proper T and/or ωD.

FIG. 15. The gap functions Dn(ωm ) obtained by solving the
differential equation Eq. (33) (red dotted line) and the origi-
nal gap equation Eq. (31) (blue solid line). The critical value
of aγ ,n are 0.557836, 1.31383, 1.96301 in the former case and
0.65826, 1.5775, 2.4586 in the latter case.

The existence of a discrete set of aγ ,n can be
understood analytically, at least at a qualitative level.
For this we approximate

∫
dωnsgnωn/|ωm − ωn|γ ≈

2γ (
∫ ωm

0 dωnωn/ω
γ+1
m + ∫ ∞

ωm
dωnωm/ω

γ+1
n ) and convert

the integral gap equation (31) into the differential one. The
linearized differential gap equation is

D̄′′(x)x2(x + 1 + γ /2 − aγ x
1−1/γ )

+ D̄′(x)
2x

γ
((γ − 1)x − 1 − γ /2 − aγ (γ − 2)x1−1/γ )

− D̄(x)
2

γ

(
x − 1 − γ /2 − 3(γ − 1)

2γ
aγ x

1−1/γ

)
= 0,

(33)

where x = |ωm|γ and D̄(x) = D(x)x2/γ . The two boundary
conditions are D̄(x) ∝ x2/γ at small x (i.e., D(ωm) = const)
and D̄(x) ∝ 1/x (i.e., D(ωm) ∝ 1/|ωm|2+γ ) at large x. A
generic solution of Eq. (33) can be readily obtained numer-
ically for arbitrary aγ and even analytically at aγ = 0. For a
generic aγ , a solution that satisfies the boundary condition at
small x does not satisfy the one at large x. However, for a
discrete set of aγ = aγ ,n, we did find the solutions that satisfy
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both boundary conditions. The corresponding D̄(x) change
sign n times at positive x, in full agreement with the earlier
analysis.2 As an illustration, in Fig. 14, we show the gap
function D0(ωm) for two values of γ at aγ ≈ aγ ,0. We clearly
see that there exist particular aγ ≡ aγ ,0, when the gap func-
tion satisfies the boundary conditions at x = 0 and x → ∞.
In Fig. 15, we compare the solutions of the differential and
integral gap equations for n = 0, 1, and 2. with the one from
solving the original gap equation Eq. (31). We see that the
corresponding gap functions agree, except for irrelevant fine
features.

C. Hidden degeneracy at γ > 2

Figure 11 shows that critical lines aγ ,n gradually pass
through γ = 2. At a first glance this seems quite natural
as the small-frequency form D(ωm) = const, which we
used as a boundary condition, imposed by finite T and/or
ωD, holds for all values of γ > 1. At the same time, there
is a special behavior at γ = 2: the exponents α1 = 0 and
α2 = γ − 2 merge, and the two low-frequency forms become
D(ωm) = const and D(ωm) = ln(|ωm|/ḡ). The merging of the
two exponents and the emergence of a ln(|ωm|/ḡ) is similar to
what we earlier found at the critical N at γ < 1 and identified
with the onset of an order. There is a qualitative difference
between that case of N = Ncr, γ < 1 and the present case
N = 1, γ = 2 in that at N < Ncr the two exponents became
complex, while here the exponents remain real for γ > 2 and
just pass through each other.

Still, the merging of the exponents α1 and α2 at γ = 2
suggests to look at the system behavior around γ = 2 more
carefully. Below we argue that while the phase diagram in
Fig. 11 with lines aγ ,n, separating ordered and disordered
states within each topological sector, is correct at T > 0 or
ωD > 0 for any value of γ , the behavior near each of these
lines is different between γ < 2 and γ > 2. Namely, for
γ > 2, there exists a finite range of aγ above each line, where
Dn(ωm) is finite but its magnitude is small in T and/or ωD and
vanishes when T, ωD → 0. We show this in Fig. 16.

To understand this behavior, we further extend the model
by additionally splitting interactions in the particle-particle
and particle-hole channel in such a way that this does not
introduce divergencies for γ > 1. This has been introduced
in Refs. [73,75,76] as a divergencies-free extension to M 	= 1
of the γ model for N = 1 and T = ωD = 0. Here, we apply
the same extension to the model with a finite, but small N 	= 1
and small T and/or ωD, i.e., to a model with finite aγ . Our goal

2The term with the first derivative can be eliminated by changing
variables, after which the differential equation in Eq. (33) be-
comes an effective Schrödinger equation −ψ ′′(x) +Vaγ

(x)ψ (x) =
0 along the half-axis x � 0. Here Vaγ

(x) = [g2(x)/g1(x)]2/4 −
g3(x)/g1(x) + [g2(x)/g1(x)]′/2 is the effective potential, which de-
pends on aγ and in the two limits reduce to V (x = 0) = +∞ and
V (x → +∞) → 0. The functions gi(x) (i = 1, 2, 3) are the terms
multiplying D̄′′(x), D̄′(x), and D̄(x) in Eq. (33), respectively. Like
in the Schrödinger equation, the discrete set of aγ ,n is selected by the
requirement that D̄(x) ∝ 1/x at large x, i.e., the solution is normaliz-
able.

FIG. 16. The modified phase diagram in (aγ , γ ) plane. A
nonzero Dn(ωm ) still emerges above aγ ,n, as in Fig. 11, but the mag-
nitude of Dn(ωm ) remains small in the shaded region and vanishes
at T = ωD → 0. Outside the shaded region, Dn(ωm ) remains finite at
T = ωD → 0. Regimes of strong pairing fluctuations are not shown
here, but displayed in Fig. 24.

is to introduce a parameter which would allows us to vary the
linearized gap equation near aγ ,n and detect properties, which
are not visible in the original model.

The extension to M 	= 1 and the derivation of the gap
equation for the original model with N = 1 is presented in
the Appendix C in Ref. [73]. Performing the same analysis
for the model with a nonzero aγ , we extend the gap equation
(31) to

D(ωm)

(
ωm − aγ + 1 − M

2

∫
dω′

m

|ωm − ω′
m|γ

×
(

sgnωm√
1 + D2(ωm)

− sgnω′
m√

1 + D2(ω′
m)

))

= 1

2

∫
dω′

m

|ωm − ω′
m|γ

D(ω′
m) − D(ωm)√
1 + D2(ω′

m)
sgnω′

m, (34)

where the frequency unit has been taken as ḡ/M1/γ . For M =
1, Eq. (34) reduces to (31). Note that this gap equation is free
from infra-red singularities at any M.

Our goal is to obtain the phase diagrams in (M, aγ ) plane
for γ < 2, γ = 2, and γ > 2, analyze the behavior atM close
to 1, and extract from that additional features in the phase
diagram of the nonextended model withM = 1.

Like we did earlier, we consider the linearized gap equa-
tion at small frequencies. One can easily verify that the two

094506-15



WU, ZHANG, ABANOV, AND CHUBUKOV PHYSICAL REVIEW B 106, 094506 (2022)

exponents α1 and α2 do depend on M and are the solutions of

M = 
(2 − γ )
(−α + γ − 1)


(−α)

+ π
(α + 1)(csc(π (α − γ )) − csc(πγ ))


(γ − 1)
(α − γ + 2)
− 1. (35)

We show the exponents α1 and α2 as functions ofM in Fig. 17.
Following the exponents all the way to M → −∞, where
the pairing interaction is weak and a nonzero α emerges due
to either ultraviolet (UV) singularity (internal ω′

m are much
larger than external ωm) or IR singularity (internal ω′

m are
much smaller than external ωm), we see that α1 ≈ γ is an UV
exponent and α2 ≈ −2 is an IR exponent. The two exponents
remain real as long as M < Mcr, where

Mcr = π (csc (πγ /2) − 2 csc(πγ ))
(γ /2)


(1 − γ /2)
(γ − 1)
− 1. (36)

At a critical M, the two exponents merge at α1,2 = γ /2 − 1 and become complex at M > Mcr, which is the same behavior as
around N = Ncr for γ < 1. We plotMcr as a function of γ in Fig. 18. We see thatMcr is larger than 1 for both γ < 2 and γ > 2,
but is equal to 1 at γ = 2. In analytical form, the second derivative of the function M(α, γ ) over α at α = γ /2 − 1 is

∂2M

∂α2

∣∣∣∣
α=−1+γ /2

= 2π sin2
(

πγ

4

)



(
γ

2

)(
π2 csc3

(
πγ

2

) + 2 csc(πγ )
(
ψ (1)

(
1 − γ

2

) − ψ (1)
(

γ

2

)))



(
1 − γ

2

)

(γ − 1)

.

It is zero at γ = 1, monotonically decreases for γ > 1 and
diverges as 4

γ−3 at γ = 3.
In Fig. 19, we show the numerical solution of Eq. (34),

obtained at T ∼ 10−10ḡ for γ = 1.5, which is a representative
of γ < 2. Panel (b) on this figure is the expected behavior
at T = 0+. There is a set of critical lines aγ ,n(M ),which at
T = 0+ all terminate at M = Mcr. These lines cross M = 1
at a set of aγ ,n, the same as in Fig. 16. The observation, most
essential to our current analysis, is in Fig. 20, where we plot
the gap functions Dn(ωm) with n = 0 and 1 for critical aγ ,n

at some M < Mcr. Extracting the exponent at small ωm at
variousM (see the insets of Fig. 20), we find with high degree
of accuracy that it is UV exponent α1 from Fig. 17 for all
M < Mcr. This holds for both M < 1, where α1 > 0 and for
1 < M < Mcr, where α1 < 0. We see from Fig. 19 that the
solution of the gap equation, subject to the boundary condition
Dn(ωm) ∝ |ωm|α1 , exists for aγ larger than some threshold
value. At the threshold, M = Mcr, and the exponents α1 and
α2 merge. At smaller M a nonzero Dn(ωm) emerges because
the exponents become complex.

Let’s now repeat the same calculation for γ > 2. We show
the results in Figs. 21 and 22. From the numerical solution
at small but finite T [Figs. 21(a) and 21(b)] and its extension
to T = 0+ [Figs. 21(c) and 21(d)], we see that while for any
T > 0, the line aγ ,n crossesM = 1 at aγ = aγ ,n, as in Fig. 19,
the line aγ ,0 flattens up at M ≈ 1 below some a01γ > aγ ,0 and
the line aγ ,n with n > 0 flattens up between an−1,n

γ < aγ ,n and
an,n+1

γ > aγ ,n and then continues at 1 < M < Mcr as aγ ,n−1.
At T = 0+, the flat region coincides withM = 1.

Analyzing the low-frequency behavior of Dn(ωm), we find
that for M > 1 and M < 1, Dn(ωm) ∝ |ωm|α1 , where α1 =
α1(M ) is the UV exponent from Fig. 17. This exponent is pos-
itive for all M < Mcr, hence Dn(ωm) vanishes at ωm = 0. At
M → 1, α1 = γ − 2 > 0. This behavior is different from the
one at aγ = aγ ,n, where Dn(0) = const. 	= 0. This last behav-
ior is described by the IR exponent α2, which for γ > 2 passes
through zero atM = 1. Not surprisingly then, the line aγ ,n(M )
reaches M = 1 at a different value aγ = an,n+1

γ > aγ ,n. Fur-

ther, we see from Figs. 22(c)–22(e) that at a01γ < aγ < a12γ
(M � 1), the function D1(ωm) at small ωm contains both ex-
ponents α1 = γ − 2 and α2 = 0. We verified that this holds
for otherDn(ωm), e,g., at aγ < a01γ ,D0(ωm) = a′ + b′|ωm|γ−2,
where a′ vanishes at aγ = a01γ [Fig. 22(b)] and b′ vanishes
at aγ = aγ ,1 [Fig. 22(a)]. This implies that at T = 0+ (and
ωD = 0), the model with M = 1, which is the one we are
interested in, becomes critical in the sense that the aγ axis gets
divided into ranges an−1,n

γ < aγ < an,n+1
γ , where the system

remains at the onset of pairing in a topological sector specified
by n. We illustrate this in Fig. 23.

At any T > 0, the flattening at M = 1 is not exact, and
the line aγ ,n is slightly above M = 1 for aγ < aγ ,n and
slightly below it at aγ ,n < aγ < an,n+1 [see Fig. 21(b)]. Ex-
actly at M = 1 the system then experiences strong pairing
fluctuations, but no finite Dn(ωm) in the first range, while
in the second range Dn(ωm) is nonzero, but very small (the
shaded region in Fig. 16). We show the phase diagram in the
(T, 1 − N ) plane for a representative γ > 2 in Fig. 24 [the
phase diagram in the (ωD, 1 − N ) plane is quite similar]. The
two regimes of (i) near-infinitely strong pairing fluctuations
and (ii) vanishingly small Dn(ωm) are in a finite window
around Tp,n.

Finally, the case γ = 2 is the boundary line between γ < 2
and γ > 2. We show the corresponding behavior in Figs. 25
and 26. For γ = 2,Mcr = 1 and α1 = α2 = 0 atM = 1. In this
case, an−1,n

γ = aγ ,n. The line aγ ,n(M ) reaches M = 1 at aγ =
aγ ,n and remains atM = 1 at smaller aγ . The functionDn(ωm)
at M = 1 scales at low frequencies as a + b ln(|ωm|/ḡ) for
arbitrary aγ < aγ ,n. The coefficient b vanishes at aγ = aγ ,n,
where Dn(ωm) tends to a constant at ωm = 0 [see Figs. 26(b)
and 26(d)]. At aγ → 0, the frequency range where Dn(ωm)
changes sign n times shrinks to smaller ωm and vanishes at
aγ = 0. These topologically distinct solutions Dn merge into
the same one Dex(ωm) in this limit, which can be obtained
exactly using the same computational procedure as we used at
N = Ncr for γ < 1. We show the result for the exact Dex(ωm)
in Fig. 27.
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VII. CONCLUSION AND DISCUSSION

In this paper, we studied odd-frequency pairing induced by
the electron-electron interaction, mediated by a gapless col-
lective boson at a QCP. The pairing interaction in this case is
a function of a frequency transfer, and it allows for two types
of solutions: even-frequency gap and odd-frequency gap func-
tions. We argued that at a QCP, the gap equation has the same
form for even-frequency and odd-frequency pairing, despite
that the spatial structure of the gap function is even vs odd.
We demonstrated this on two examples of pairing at a QCP
in 2D: pairing by Ising-nematic fluctuations and by (π, π )
antiferromagnetic fluctuations. In both cases, we obtained
the same gap equation for even-frequency and odd-frequency
pairing. The gap equation contains an effective dynamical
interaction V (�) = (ḡ/|�|)γ , where γ = 1/3 for a nematic
QCP and 1/2 at an antiferromagnetic QCP. On the Matsubara
axis, where the gap function �(ωm) can be set as real, the
even- and odd-frequency solutions are�(ωm) = �(−ωm) and

FIG. 17. The exponent α1 (blue solid) and α2 (red dashed) of the
possible power-law solutions at low-frequency of the gap equation as
a function ofM, where (a) γ = 1.5, (b) 2, and (c) 2.5. Insets are zoom
in aroundM = 1.

FIG. 19. The phase diagram in the (M, aγ ) plane for γ = 1.5.
There is a set of critical lines aγ ,n(M ), above which pairing develops
in a topological sector specified by n. (a) Numerical solution of
Eq. (34) at T = 10−10ḡ, ωD = 0; (b) expected result at T = 0+,
ωD = 0. In the last case we expect all aγ ,n(M ) to reach M = Mcr

at some minimal n-dependent aγ and remain at Mcr at smaller aγ .

�(ωm) = −�(−ωm), respectively. For odd-frequency solu-
tion, it is more convenient to analyze D(ωm) = �(ωm)/ωm as
the latter is even in frequency.

In our analysis, we treated the exponent γ as a param-
eter and analyzed odd-frequency pairing as a function of
γ . The model with V (�) ∝ 1/|�|)γ was dubbed the “γ
model,” and we used this notation throughout this paper.
We assumed that an even-frequency gap function is sup-
pressed by an additional frequency-independent repulsive
interaction and focused on the odd-frequency solution for
the gap.

The key physics of odd-frequency pairing near a QCP
is the same as for even-frequency one—there is a compe-
tition between a tendency to pair and a tendency to form
a non-Fermi liquid with incoherent quasiparticles. Both ten-
dencies originate from the same interaction, which gives rise
to pairing when inserted in to the particle-particle channel,

FIG. 18. The boundary line Mcr (γ ) on the (M, γ ) plane. The
ordered state exists for M > Mcr. Pairing in a topological sector,
specified by n, actually develops earlier aγ exceeds some threshold
value (see text).
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FIG. 20. The gap functions D0(ωm ) at aγ = aγ ,0(M ) and D1(ωm ) at aγ = aγ ,1(M ) for γ = 1.5 andM = 0.95, 1, and 1.005. Insets shows
the gap function in logarithmic coordinates, where the black dashed lines indicate the expected power-law behavior ωα1

m , where α1 is the UV
exponent from Fig. 17.

FIG. 21. The phase diagram in the (M, aγ ) plane for γ = 2.5.
(a) Numerical solution of Eq. (34) at T = 10−10, ωD = 0; (c) ex-
pected result at T = 0+, ωD = 0. (b) and (d) show zoomed behavior
near M = 1. This phase diagram is qualitatively different from that
for γ < 2. Namely, at a small but finite T the critical line aγ0 flattens
up at M ≈ 1 below some a01γ > aγ ,0, while the line aγ ,n flattens up
between an−1,n

γ < aγ ,n < an,n+1
γ and then continues at 1 < M < Mcr

as aγ ,n−1. At T = 0+, the flat region coincides with M = 1. Still, at
any T > 0, the line aγ ,n crossesM = 1 at aγ = aγ ,n.

and to non-Fermi liquid when inserted into the particle-hole
channel. A competition stems from the fact that fermionic
incoherence reduces the pairing kernel, while pairing removes
spectral weight from low energies and renders a Fermi liquid
behavior.

We found that in the original γ model, the tendency to-
wards non-Fermi liquid is stronger for any γ < 3, which
we studied, i.e., the ground state is a non-Fermi liquid.
However, if the fully dressed interactions in the particle-
particle and particle-hole channels are different, and the one in
particle-particle channel is larger, the ground state may be an
odd-frequency superconductor. To analyze this, we rescaled
the interaction in the particle-particle channel by a factor 1/N
and treated N as a model-dependent parameter. We found
that the pairing develops once N is smaller than some Ncr.
The value of Ncr and the system behavior around this N
are different for γ < 1 and γ > 1, which we considered sep-
arately.

For γ < 1, we found thatNcr depends on γ . The lineNcr (γ )
departs from Ncr (0) = 0 and increases monotonically towards
Ncr (1) = 1. This implies that the threshold coupling required
for odd-frequency pairing, is infinitely large at γ = 0 and
becomes equal to one at γ = 1. We analyzed in detail the
development of a finite D(ωm) at N � Ncr (γ ) and found, in
similarity to the even-frequency pairing, that the instability
develops when at low frequencies the pairing susceptibility
starts oscillating. Mathematically this is caused by the emer-
gence of complex exponents for a power-law form of D(ωm)
at small frequencies. Such pairing mechanism is qualitatively
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FIG. 22. The gap functions D0(ωm ), D1(ωm ) and D2(ωm ) at various values of aγ for γ = 2.5 andM ≈ 1. The functions D0(ωm ) at aγ = a01γ
and D1(ωm ) at aγ = a12γ behave at small frequencies as |ωm|γ−2 (= |ωm|0.5). At aγ = aγ ,n, the corresponding Dn(ωm ) tend to constant values at
ωm = 0 and are analytic at small ωm. At intermediate a01γ < aγ < aγ ,1, D1(ωm ) behaves at small frequencies as a + b|ωm|1/2.

different from the BCS one and has a special feature: an
infinite number of topologically different solutions Dn(ωm)
emerge simultaneously below Ncr. A topological distinction
comes about becauseD(ωm) has n nodal points along the Mat-
subara frequency axis in the upper half-plane of frequency.
Each nodal point is the core of a dynamical vortex [74],
hence Dn(ωm) is the gap function with n vortices. We found
the sequence of onset temperatures Tp,n, where Dn(ωm) first
emerges.

The n = 0 solution is sign-preserving and vortex-free.
We found that for this solution the onset temperature Tp,0
is the largest, and the condensation energy at T = 0 has
the largest negative value. The condensation energy for so-
lutions with n > 0 is smaller by magnitude. We analyzed
the forms of the n = 0 gap function at T = 0 both on the
Matsubara and the real frequency axis. On the Matsubara

FIG. 23. The case γ > 2. The original model with M = 1 re-
mains critical at T = 0+ towards pairing in a topological sector
specified by n in the interval an−1,n

γ < aγ < an,n+1
γ .

axis, D0(ωm) behaves as 1/|ωm|γ+1 at large frequencies and
as 1/|ωm|d at small frequencies, where 0 < d < γ < 1, i.e.,

FIG. 24. The case γ > 2, T = 0+, 1 − N = 0+ The region near
the critical Tp,n ∝ (1 − N )1/(γ−1) for the gap function Dn(ωm ) in the
(T,N ) plane. In one of the two shaded regions around Tp,n the system
has near-infinite pairing fluctuations, in the other Dn(ωm ) is nonzero,
but vanishingly small. The phase diagram in the (ωD,N ) plane is
quite similar.
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FIG. 25. The phase diagram in the (M, aγ ) plane for γ = 2.
(a) Numerical solution of Eq. (34) at T = 10−10, ωD = 0; (b) ex-
pected result at T = 0+, ωD = 0. In the last case, a critical line
aγ ,n(M ) approaches M = 1 at aγ = aγ ,n and remains at M = 1 at
smaller aγ .

D0(ωm) diverges at ωm = 0. The exponent d decreases mono-
tonically as N moves towards Ncr, but tends to a finite value.
On the real axis, the implication of this result is that the
quasiparticle density of states N (ω) vanishes at ω = 0. We
found that N (ω) scales as ωd at small frequencies and has
a maximum at ω ∼ ḡ (which is the only energy scale in
the problem). The temperature evolution of N (ω) is rather
conventional: as T increases, the peak frequency gradually
decreases.

FIG. 26. The gap functions D0(ωm ) (panels a,b) and D1(ωm )
[(c) and (d)] at γ = 2 and M = 1. Each function scales at low
frequencies as a + b ln(|ωm|/ḡ) for arbitrary aγ < aγ ,n. The coeffi-
cient b vanishes at aγ = aγ ,n, where Dn(ωm ) tends to a constant at
ωm = 0 [(b) and (d)]. Insets indicate the logarithmic behavior at small
frequencies.

FIG. 27. The exact solution of the linearized integral gap
equation, Dex (ωm ), for γ = 2 and M = N = 1 (aγ = 0). At
small ωm, Dex (ωm ) scales as ln(ωm/ḡ), at large ωm it decays
as 1/ω4

m.

At γ > 1, we found Ncr = 1 independent on γ . We ar-
gued that for any N < 1, there exists a discrete set of
pairing instabilities at Tp,n ∼ (1 − N )1/(γ−1)/aγ ,n, where aγ ,n

increases with n. The same holds at T = 0 when the
bosonic mass ωD is nonzero: the instabilities develop at
a discrete set of ωD ∼ (1 − N )1/(γ−1)/aγ ,n. We obtained
this behavior analytically and confirmed numerically that
it holds.

We further argued that although the transition lines vary
smoothly with γ , i.e., the coefficients aγ ,n are continuous
functions of γ > 1, there is a qualitative distinction in the
low-T behavior at γ < 2 and at γ > 2. In the latter case, for
each n the pairing susceptibility becomes near-infinitely large
in a finite range of T < Tp,n, and the magnitude of Dn(ωm)
becomes vanishingly small in a finite range of T < Tp,n. We
illustrate this behavior in Fig. 24. At N = 1 − 0 and T = 0+,
this creates a range of (1 − N )/T γ−1, where the system gets
frozen at the instability towards pairing in a topological sector
specified by n.

This last result has interesting implications to field-theory
analysis of pairing instabilities out of a non-Fermi liq-
uid as it shows that under some conditions the pairing
instability at a QCP does not require complex expo-
nents. We call for more studies to better understand this
effect.
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