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In this paper, the sixth in series, we continue our analysis of the interplay between non-Fermi liquid and
pairing in the effective low-energy model of fermions with singular dynamical interaction V (�m ) = ḡγ /|�m|γ
(the γ model). The model describes low-energy physics of various quantum-critical metallic systems at the
verge of an instability towards density or spin order, pairing of fermions at the half-filled Landau level, color
superconductivity, and pairing in SYK-type models. In previous papers I–V, we analyzed the γ model for γ � 2
and argued that the ground state is an ordinary superconductor, but there is an infinite number of local minima
of the condensation energy. We further argued that the condensation energy spectrum becomes continuous and
gapless, and superconducting Tc vanishes due to critical longitudinal gap fluctuations. In this paper, we consider
larger 2 < γ < 3. We show that the system moves away from criticality in that the condensation energy spectrum
again becomes discrete and gapless, and Tc becomes finite. Yet, we show that the gap functions for γ > 2 and
γ < 2 are topologically different as they live on different sheets of the Riemann surface. This makes γ = 2 a
topological quantum-critical point. We further show that the fermionic excitation spectrum for γ > 2 acquires a
new feature—a bound state at the edge of a continuum, with a macroscopic degeneracy, which is a fraction of
the total number of states in the system. We obtain the phase diagram on the (ωD, γ ) plane, where ωD is a mass
of a pairing boson, and on the (T, γ ) plane. The latter consists of two distinct superconducting phases at γ < 2
and γ > 2 and the intermediate pseudogap state of preformed pairs in between.
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I. INTRODUCTION

This paper continues our studies of the interplay between
non-Fermi liquid (NFL) and superconductivity for itinerant
fermions near a quantum-critical point (QCP) towards charge
or spin order. The key interaction between fermions in this
situation is mediated by soft bosonic order parameter fluc-
tuations. When soft bosons are slow compared to electrons
(e.g., when bosons are Landau-overdamped collective modes
of fermions), the low-energy physics is described by an effec-
tive dynamical model with four-fermion interaction V (�) ∝
1/|�|γ . At a QCP, when order parameter propagator is mass-
less, this form holds down to � = 0.

The model with V (�) ∝ 1/|�|γ has been nicknamed the
γ model. The exponent γ has particular values for a growing
number of specific microscopic realizations: γ = 0+ for 3D
quantum critical systems and for pairing of quarks, mediated
by gluon exchange, γ = 1/3 for a system near a nematic QCP
and for fermions at a half-filled Landau level, γ = 1/2 near
an antiferromagnetic QCP, γ = 0.68 for Sachdev-Ye-Kitaev
(SYK) model of N fermions coupled to equal number of
bosons, γ = 1 for pairing by propagating bosons, γ = 2 for
phonon-mediated pairing at vanishing Debye frequency, etc.
Microscopic models with varying γ have also been proposed.
We listed and discussed some microscopic models in the first
paper of the series (paper I). In all cases, the same interaction,

mediated by low-energy bosons, gives rise to fermionic self-
energy, which accounts for NFL behavior in the normal state,
and at the same time serves as the glue that binds fermions into
pairs. The two tendencies (NFL and SC) are intertwined as
they come from the same interaction, and compete with each
other: a fermionic self-energy makes fermions incoherent and
reduces the tendency to pairing, while if bound pairs develop,
they provide a feedback on the self-energy, which at lowest
frequencies recovers the Fermi liquid form, i.e., fermions be-
come propagating rather than diffusive excitations.

For dispersion-full fermions SC emerges in a particular
momentum channel, e.g., in a d-wave channel near an anti-
ferromagnetic QCP. However, once the pairing symmetry is
incorporated and momentum integration in the formulas for
the fermionic self-energy and the pairing vertex is carried
out, the effective low-energy model for different microscopic
realizations becomes the same one, specified only by the value
of γ . The sign ofV (�) is attractive, i.e., if fermions were free,
the ground state would necessarily be a superconductor.

In previous papers (Refs. [1–5]), which we refer to as
papers I–V, we treated γ as a parameter and analyzed the
interplay between NFL and pairing for γ � 2. In this paper
we consider 2 < γ < 3. For convenience of a reader, we list
some results of previous works, which form the base for the
analysis in this paper.
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FIG. 1. The set of condensation energies Ec,n for the solutions of the gap equation. For γ < 2 (a) and γ > 2 (c), the set is discrete and
|Ec,0| is the largest. For γ = 2 (b), the set is continuous: all Ec,n with finite n coincide with Ec,0, while Ec,n with n = ∞ form a continuous set.

(1) For any 0 � γ � 2, the ground state is a superconduc-
tor, i.e., superconductivity wins the competition with a NFL.
However, in distinction to the pairing of coherent fermions in
a Fermi liquid, the pairing of incoherent fermions is a thresh-
old phenomenon, and in an extended γ model with different
magnitudes of V (�) in the particle-hole and particle-particle
channels [V (�) and V (�)/N , respectively], there exists a
γ -dependent critical Ncr > 1 separating a SC state for N <

Ncr (including the original model with N = 1) and a NFL
ground state for N > Ncr.

(2) In another crucial distinction from pairing in a Fermi
liquid, the gap equation at a QCP at T = 0 has an infinite
set of solutions �n(ω), where n runs between 0 and ∞. At
zero frequency, �n(0) ∝ e−An are all finite ( A is γ -dependent
number). However, the n − th solution changes sign n times
along the Matsubara axis, ω ≡ ωm. The solutions are then
topologically distinct as each zero of �n(ωm) is a center of
a dynamical vortex on the upper complex plane of frequency.
The n = 0 solution is sign-preserving and its structure along
the Matsubara axis is similar to a conventional gap func-
tion in a Fermi liquid with attraction. The n = ∞ solution
has an infinitesimally small magnitude and is the solution
of the linearized gap equation. We presented the exact proof
that the solution of the linearized gap equation exists along
with the solutions of the nonlinear gap equation. Away from
a QCP, only a finite number of solutions remain, and above
a certain deviation from a QCP only the conventional n = 0
solution survives.

(3) Each solution from the infinite set at QCP evolves with
T and vanishes at a separate Tp,n. The largest Tp,0 ∼ ḡ. At large
n, Tp,n ∝ e−An. We presented strong numerical evidence for
the existence of the set of critical temperatures and showed
that the corresponding eigenfunctions change sign n times
along the Matsubara axis.

(4) For γ < 2, the set is discrete, and the largest condensa-
tion energy at T = 0 and the highest pairing temperature Tp is
for the n = 0 solution. In this respect, the ground state is still
a “conventional” superconductor in the sense that �0(ωm) is a
regular, sign-preserving function of the Matsubara frequency.
Phase fluctuations of �0(ωm) are weak in the same parameter
by which soft bosons are slow modes compared to fermions.

However, as γ increases towards 2, the other solutions be-
come progressively more relevant. Namely, the spectrum of
the condensation energy Ec,n becomes more dense and Ec,n

with n > 0 come closer to Ec,0. Simultaneously, the frequency
range, where �n(ωm) changes sign n times, shifts to progres-
sively smaller ωm ∝ (2 − γ ), while at larger frequencies all
�n(ωm) nearly coincide with �0(ωm).

(5) At γ = 2, a critical behavior emerges: all �n(ωm)
with finite n become undistinguishable from �0(ωm) at any
ωm > 0, while the solutions with n → ∞ form a continu-
ous spectrum �ξ (ωm). A continuous ξ is the product of n
and 2 − γ , and its value is determined by how the double
limit n → ∞ and γ → 2 is taken. This is similar to how a
continuous phonon spectrum emerges in the thermodynamic
limit from a discrete set of energy levels. The condensation
energy Ec,ξ also becomes a continuous function of ξ . A visual
picture is that an infinite set of Ec,n approaches Ec,0 at γ → 2
and touches it at γ = 2–0 [Fig. 1(a) and 1(b)]. This creates a
branch of gapless “longitudinal” fluctuations. We argued that
these fluctuations destroy phase coherence at any T > 0 and
give rise to pseudogap behavior at 0 < T < Tp, where Tp ∼ ḡ
is a would be transition temperature if the solutions with n > 0
didn’t exist. Away from a QCP, when a pairing boson has a gap
ωD, the superconducting temperature Tc ∝ ωD. This last result
applies to electron-phonon pairing at small ωD.

(6) Extra information about critical behavior emerging at
γ → 2 comes from the analysis of the gap equation on the
real axis. Here,V (�) ∝ eiπγ /2 is complex and hence �0(ω) is
also complex. For γ < 1, ReV (�) ∝ cos πγ /2 is positive (at-
tractive), and Re�0(ω) is a regular, sign-preserving function
of ω. The corresponding density of states (DOS) vanishes at
ω < � and is nonzero for larger frequencies, as is expected
on general grounds for the case when the pairing boson is
massless. For γ > 1, ReV (�) changes sign. We found that
in this situation there appears a finite frequency range where
the phase η0(ω) of �0(ω) = |�0(ω)|eiη0(ω) winds up by 2πm,
where m is an integer. The value of m increases in incre-
ments of one at γ > 1, and the increase accelerates as γ

approaches 2. As the consequence, the DOS develops a set
of maxima and minima in the range where the phase winds
up. We extended �0(z) to complex z in the upper half-plane

144509-2



INTERPLAY BETWEEN SUPERCONDUCTIVITY AND … PHYSICAL REVIEW B 104, 144509 (2021)

and traced the phase winding 2πm to the emergence of m
vortices at complex z; each vortex moves from the lower to the
upper frequency half-plane as γ increases, leaving a 2π phase
winding along the real axis. At γ = 2, the number of vortices
becomes infinite and the frequency range, where η0(ω) winds
up, extends to an infinity, where �0(z) develops an essential
singularity. Its presence is a must as otherwise an extension
from an infinite set of vortex points would give �0(z) = 0.
In explicit form, the gap function along the real frequency
axis at γ = 2 is �0(ω) ∼ ω/ sin φ0(ω + iδ), where φ0(x) is an
increasing function of the argument [6–8]. The DOS for such
�0(ω) consists of a set of δ-functional peaks at frequencies
where sin φ0(ω) = ±1. This is qualitatively different from a
continuum DOS for γ < 2. This clearly indicates that the
γ = 2 model is critical.

In this paper, we analyze the gap equation on the other
side of the critical point, at γ > 2. We show that at low
enough T , the system has long-range superconducting order,
the spectrum of the condensation energy is a discrete one,
and Ec,n with n > 0 bounce back, recreating the gap between
the largest Ec,0 and other Ec,n [Fig. 1(c)]. This mirrors the
case γ < 2. However, we show that superconducting states
at γ < 2 and γ > 2 are topologically different as the gap
functions in these two cases live on different sheets of the
Riemann surface.

The evidence for the topological distinction comes from
the analysis of the analytic structure of the gap function
�0(z) in the complex plane of frequency, at z = ω′ + iω′′.
Causality requires �0(z) to be analytic in the upper half-plane.
We solve for �0(ωm) on the Matsubara axis and extend the
gap function to complex z using Pade approximants (with
high enough accuracy to reproduce the known �0(ω) along
the real axis for γ = 2). For γ < 2, the resulting �0(z) is
analytic in the upper half-plane of frequency and has poles
in the lower half-plane, i.e. is the correct gap function. For
γ > 2, the gap function obtained this way, which we label as
�̃0(z), is analytic in the lower half-plane and has poles in the
upper half-plane. To obtain the correct �0(z) one then needs
to “invert” the lower and the upper half-planes. In practice
this is achieved by taking �0(ω) immediately above the real
axis to be �̃∗

0(ω) immediately below the real axis, that is, by
moving the gap function onto a different sheet of the Riemann
surface upon crossing from the lower to the upper half-plane.
Because �̃∗

0(z) is analytic in the lower half-plane, Kramers-
Kronig relations between �′

0(ω) and �′′
0 (ω) are satisfied. The

analytic �0(z) is then obtained by continuing �0(ω) into
the upper half-plane using Cauchy relation. In practice, this
implies that in the upper half-plane, �0(z) = [�̃(z∗)]∗. We
present complimentary evidence for the transformation of the
n = 0 gap function onto a different sheet of the Riemann
surface from the analytical analysis of �0(ω) on the real
axis.

We show that only the n = 0 gap function moves to a
different sheet of the Riemann surface. The functions �n(z)
with n > 0 remain on the same sheet of the Riemann surface
for γ < 2 and γ > 2. This separation between n = 0 and
n > 0 leads to peculiar behavior of the condensation energies
Ec,n with γ . Namely, for γ < 2, all Ec,n vanish simultaneously
once the pairing interaction reduces below a certain threshold;
for γ > 2, Ec,n with n > 0 vanish at the threshold, but Ec,0

FIG. 2. Phase diagram in variables T and γ for 0 � γ < 3 and
ωD = 0. There are two topologically distinct superconducting phases
SC I and SC II, in which the gap functions live on different sheets
of the Riemann surface, and a nonsuperconducting phase with pre-
formed pairs in between.

remains finite, i.e., the n = 0 solution survives when all other
solutions vanish.

Our key result is that the topological distinction between
γ < 2 and γ > 2 gives rise to the measurable effect—the
DOS at γ > 2 develops a nonintegrable singularity (an “in-
finite” peak) at the lower edge of the continuum. This edge
singularity can be interpreted as a bound state between a
fermion and a pairing field [6]. For a lattice system with a
finite total number of states, the total weight of the edge sin-
gularity is finite, but is a fraction the total number of states in
the system, i.e., the bound state is macroscopically degenerate.

We extend the analysis of the gap function and the DOS to
the case when a boson has a finite mass, which we label as ωD

by analogy with the phonon case. We show that the “infinite”
peak survives up to a finite ωD, i.e., the new structure is stable
against small perturbations and occupies a finite region in the
phase diagram.

The phase diagrams for the γ model in variables (T, γ ) at
ωD = 0 and in (ωD, γ ) at T = 0 are shown in Figs. 2 and 3
(see also Fig. 27 below). To obtain these phase diagrams, we
combined the results for γ > 2 with the results for 0 � γ � 2
of previous papers from the series, Refs. [1–5]. At T = 0, the
two superconducting phases SC I and SC II merge at the criti-
cal γ = 2. SC I is a superconducting phase with conventional
properties, and SC II is the new SC state with edge singularity
in the DOS. At a finite temperature, there is an interme-
diate regime between the two ordered phases, where long
range superconducting order is destroyed by “longitudinal”
gap fluctuations, associated with the presence of an infinite
set of low-energy local minima in the condensation energy. In
this regime, fermions form bound pairs, but the pairs remain
incoherent and do not superconduct. The observables in this
regime display pseudogap behavior, e.g., fermionic spectral
function has a peak at the gap value, but the spectral weight
below the gap remains finite.

The structure of the paper is the following. In the next
section, we briefly review the γ model and present the gap
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FIG. 3. The phase diagram in variables ωD and γ at T = 0K .
There is a single line of a topological transition, which emerges at
ωD = 0 and γ = 2. The DOS in SC II has a nonintegrable edge
singularity.

equation along the Matsubara axis and in real frequencies. In
Sec. III, we analyze the gap equation along the Matsubara axis
and show that for γ > 2 it still has an infinite number of topo-
logically distinct solutions, �n(ωm), with n = 0, 1, 2 . . . ,
like for smaller γ . We present the exact solution of the lin-
earized gap equation, �∞(ωm), in Sec. III A 2 we discuss
the structure of the n = 0 solution. In Sec. III A 3 we use
the results of Sec. III A 1 to obtain discrete solutions of the
nonlinear gap equation, �n(ωm) (Sec. III A 3). In Sec. III B,
we extend the model to nonequal interactions in particle-hole
and particle-particle channels, taking special care to avoid
introducing unphysical divergencies. We show that for γ < 2,
all �n(ωm) disappear once the pairing interaction drops below
a certain threshold, while for γ > 2, the solutions with n > 0
disappear at the threshold, but the one with n = 0 survives.
In Sec. IV, we extend the gap function from the Matsubara
axis into the complex plane of frequency and discuss how the
n = 0 solution moves into a different sheet of the Riemann
surface at γ > 2, while the solutions with n > 0 remain on
the same Riemann surface as for γ < 2. Here we also discuss
the structure of dynamical vortices and the set of topological
transitions, when vortices move one by one into the upper
half-plane of frequency as γ → 2 from either side. In Sec. V,
we analyze the analytic gap function �0(ω) for γ > 2 im-
mediately above the real axis, with particular emphasis to its
form near ω = ω0, where �0(ω) = ω. We first present, in
Sec. V A, an approximate treatment, in which we replace the
integral gap equation by the differential one and keep only the
lowest derivatives of �(ω). We show that at ω ∼ ω0, �0(ω)
is entirely real and �0(ω)/ω − 1 scales as (ω0 − ω − i0)4.
In Sec. V A 1, we obtain the DOS for this �0(ω) and show
that it has an infinite peak at ω0. In Sec. V B, we present
more accurate treatment, in which we include higher-order
derivatives of �0(ω). We show that the form of �0(ω) near ω0

get modified, yet the DOS still has a nonintegrable singularity.
In Sec. V C, we show that the singularity in the DOS can be
extracted directly from the integral gap equation. In Sec. VI,
we extend the analysis to finite mass of a boson and show that
the singularity in the DOS survives in a finite range of ωD.

We summarize our results in Sec. VII, combine them with
earlier results for smaller γ , and present the phase diagram
of the γ model. The phase diagram in (T, γ ) plane contains
two different superconducting phases and an intermedi-
ate regime of preformed pairs with pseudogap behavior of
observables.

Some technical details of calculations are moved to the
Appendices. Throughout the paper we use ωm for fermionic
frequency along the Matsubara axis (a continuous variable at
T = 0 and a discrete one at a finite T , ωm = πT (2m + 1)), ω

for fermionic frequency along the real axis, and z = ω′ + iω′′,
ω′′ > 0, for complex frequency in the upper half-plane. We
use the notation �0(z) for the n = 0 gap function both for
γ < 2 and γ > 2 with the understanding that these gap func-
tions live on different sheets of the Riemann surface.

II. MODEL AND ELIASHBERG EQUATIONS

The γ model is an effective model that describes
low-energy fermions with dynamical interaction V (�m) ∝
1/|�m|γ . This model is obtained from an underlying model
of itinerant dispersion-full fermions with interaction medi-
ated by a soft boson near a charge or spin QCP, after one
integrates over momenta in the expressions for the fermionic
self-energy and the pairing vertex. When collective bosons
are slow modes compared to fermions (e.g., when they are
Landau overdamped by fermions), the momentum integration
factorizes between the one transverse to the Fermi surface,
which involves only fermionic propagators, and the one along
the Fermi surface, which involves the bosonic propagator
between points on the Fermi surface and converts it into the
local propagator. At a QCP, the local bosonic propagator is
massless, and its frequency dependence is singular, 1/|�m|γ .
The dimensionless interaction, mediated by this boson, is then
V (�m) = ḡγ /|�m|γ , where ḡ is the effective fermion-boson
coupling constant. The exponent γ is determined by the type
of the underlying microscopic model. We refer a reader to
paper I for the list of specific examples [1].

The interactionV (�m) is sign-preserving on the Matsubara
axis and singular at �m → 0. It gives rise to two competing
effects: (i) a NFL behavior in the normal state and (ii) an
attraction in one or more pairing channels (chosen within the
original model with momentum and frequency-dependent in-
teraction). The two trends are described by coupled equations
for the fermionic self-energy �(ωm) and the pairing vertex
�(ωm) (see papers I–IV for the exact forms of these equa-
tions). One can replace these two equations by the equation for
the pairing gap �(ωm) = �(ωm)/(1 + �(ωm)/ωm) and the
inverse quasiparticle residue Z (ωm) = 1 + �(ωm)/ωm. One
advantage of using � instead of � is that the equation for
�(ωm) can be expressed solely in terms of �(ωm′ ). In explicit
form, the nonlinear gap equation is

�(ωm) = ḡγ πT
∑
ωm′

�(ωm′ )− �(ωm)ωm′
ωm√

(ωm′ )2 + �2(ωm′ )

1

|ωm′ − ωm|γ , (1)

Another advantage of using � instead of � is that a potentially
singular contribution from V (�m → 0), i.e., from ωm′ → ωm,
is eliminated by vanishing numerator. The cancellation holds
both at a finite T and at T = 0. At a finite T , the would
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be divergent contribution comes from the term with m′ = m
in the summation over discrete m′. It vanishes, because the
numerator vanishes exactly at m = m′, and this holds even if
we keep a small mass in the bosonic propagator in intermedi-
ate calculations. We note in passing that the term with V (0)
describes thermal fluctuations, whose role for the pairing par-
allels that of non-magnetic impurities. The cancellation of the
thermal contribution can then be viewed as a realization of the
Anderson theorem. At T = 0, the integral

∫
dω′/|ω − ω′|γ

is singular for γ > 1, but the singular behavior is elimi-
nated as the expansion of the numerator yields compensating
(ω − ω′)2. The frequency integral then remains convergent as
long as γ < 3, which we consider here.

At the onset of the pairing, when �(ωm) is infinitesimally
small, the gap equation reduces to

�(ωm) = ḡγ πT
∑
ω′
m

(
�(ω′

m)

ω′
m

− �(ωm)

ωm

)
sgn(ωm)

|ω′
m − ωm|γ . (2)

At zero temperature, one can replace the sum over ω′
m in (1)

and (2) by the integral πT
∑

ω′
m

→ (1/2)
∫
dω′

m.
The gap equation on the real axis is obtained by applying

spectral representation to Eq. (1) [see Refs. [6,7,9] and papers
I, IV, and V for details]. It takes the form

�(ω)B(ω) = A(ω) +C(ω), (3)

where the functions A(ω), B(ω), and C(ω) are given by
Eqs. (18) and (19) in Sec. V along with Fig. 4.

III. SOLUTION OF THE GAP EQUATION ALONG THE
MATSUBARA AXIS

In this section, we present two sets of results. First, we
show that at T = 0, there exists an infinite number of topo-
logically distinct solutions of the nonlinear gap equation. We
label these solutions as �n(ωm), where an integer n indicates
how many times �n(ωm) changes sign along the positive
Matsubara axis. We recall that we previously found that an
infinite discrete set of solutions exists for 0 < γ < 2 (papers
I–IV) and becomes continuous at γ = 2 (paper V). Here we
show that the set again becomes a discrete one for γ > 2. In
simple words, condensation energies Ec,n with n > 0 come
closer to Ec,0 as γ approaches 2, “touch” it at γ = 2, where the
condensation energy becomes a continuous function, and then
pull back at larger γ , leaving Ec,0 the largest and separated
by the gap from other Ec,n. Second, we show that the be-
havior of �0(ωm) before and after “touching” is qualitatively
different. Namely, for γ < 2, �0(ω) disappears simultane-
ously with other �n(ωm) once the pairing interaction drops
below some critical value. For γ > 2, �0(ω) remains nonzero
when all other �n(ωm) vanish. To demonstrate this explicitly,
we extend the model and introduce a parameter M, which
distinguishes between the strength of the interaction in the
particle-particle and the particle-hole channel (M = 1 in the
original model). For γ < 2, �n(ωm) with all n, including n =
0, vanish for M < Mcr (γ ) [see Eq. (12)]. For γ > 2, �n(ωm)
with n > 0 still vanish for M < Mcr (γ ), but �0(ωm) remains
finite down to M = 0 and vanishes there in a highly nontrivial
manner. Later, in Sec. V, we analyze the gap function on the
real axis and show that the n = 0 solution does change qual-

FIG. 4. The integration contour for C(ω) in Eq. (19) for γ > 2.
The contour bypasses the point �m = 0, where the interaction V (ω)
is singular and

∫
d��ImV (ω) diverges.

itatively compared to that for γ < 2 and yields qualitatively
different structure of the density of states.

A. Discrete set of �n(ωm) for γ > 2

1. Solution of the linearized gap equation

We begin by showing that the solution of the linearized gap
equation at T = 0 still exists for γ > 2, like for smaller γ . We
label this solution �∞(ωm) as the corresponding gap function
changes sign an infinite number of times as a function of ωm.

At T = 0, the linearized gap equation (2) reads

�∞(ωm) = ḡγ

2

∫ ∞

−∞
dωm′

(
�∞(ωm′ )

ωm′
− �∞(ωm)

ωm

)

× sgn(ωm′ )

|ωm′ − ωm|γ . (4)

Candidate solutions of this equation can be identified analyti-
cally at frequencies much larger and much smaller than ḡ. At
large ωm 	 ḡ, one can pull out 1/|ωm|γ from the integral and
obtain �∞(ωm) ∝ 1/|ωm|γ . At small ωm 
 ḡ, the solution is
a combination of two power-laws �(ωm) ∝ |ωm|a1,2 . Substi-
tuting this form into (4) we find the condition on a:∫ ∞

−∞
dx

|x|a − sgn(x)

|x − 1|γ = 0. (5)

For γ � γcr � 2.81, a1,2 are complex-conjugated numbers,
γ /2 ± iγ β, where β is determined from

1 − γ

2

�
(

γ

2 + iβγ
)
�

(
γ

2 − iβγ
)

�(γ )

(
1 + cosh(πγβ )

cos(πγ /2)

)
= 1.

(6)

(γcr is the solution of this equation for β = 0). We
plot β = β(γ ) in Fig. 5. The gap function �∞(ωm) =
|ωm|γ /2(C|ω|iγ β +C∗|ω|−iγ β ) oscillates as a function of
ln |ωm| as (C = |C|eiφ)

�∞(ωm 
 ḡ) = |C||ωm|γ /2 cos(β ln |ωm| + φ), (7)

where φ is a free phase factor in this approximation. The
infrared behavior is the same as we previously found for
smaller γ . It is tempting to use φ as a tool that allows one
to smoothly connect the limits of large and small ωm. There
is no guarantee that this is possible as the gap equation is
integral rather than differential. In papers I–V, we went a
step further and obtained the exact solution of the linearized
gap equation at T = 0. It reproduces 1/|ωm|γ behavior at
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FIG. 5. The parameter β, which sets the periodicity of logarith-
mic oscillation of �∞(ωm ) at the smallest ωm, as a function of γ . It
remains nonzero up to critical γcr � 2.81.

large ωm and log-oscillations at small ωm with some partic-
ular φ. This eventually allows us to obtain a discrete set of
solutions of the nonlinear gap equation, �n(ωm), in which
�∞(ωm) is the smallest member. Here, we borrowed com-
putational technique from papers I-V and obtained the exact
solution �∞(ωm) for γ > 2 (up to γcr = 2.81). The exact
solution again matches with analytical high-frequency and
small-frequency forms, with some γ -dependent parameter φ.
We show �∞(ωm) for representative γ = 2.5 in Fig. 6. Note
that because logarithmic oscillations extend down to ωm = 0,
�∞(ωm) changes sign an infinite number of times, what justi-
fies labeling it as n = ∞ solution.

2. Sign-preserving solution

We now consider the opposite limit–the sign-preserving,
n = 0 solution of the nonlinear gap equation. We obtained
this solution numerically and show the results in Fig. 7. In
Fig. 7(a), we show �0(ωm) for several representative 2 < γ <

3. We see that the �0(ωm) has a finite value at ωm = 0 and
monotonically decreases with increasing ωm. This is similar
to the behavior of �0(ωm) at smaller γ . In Fig. 7(b), we show
�0(0) versus γ . For a generic γ between 2 and 3, �0(0) ∼ ḡ.
At γ → 3, �0(0) diverges logarithmically (Ref. [10]). For
completeness, in Figs. 7(c) and 7(d) we show the corre-
sponding onset temperature for the pairing Tp,0 and the ratio

FIG. 6. The gap function �∞(ωm ) along the Matsubara axis, for
γ = 2.5. The inset shows logarithmic oscillations in the infrared
limit.

FIG. 7. (a) The numerical solution for the gap function �0(ωm )
for 2 < γ < 3 at temperature T = 10−3ḡ. [(b)–(d)] The amplitude
of �0(0), the onset temperature Tp,0, and the ratio �0(0)/Tp,0 as
functions of γ . The dashed vertical line marks the critical γcr, above
which the solutions with n > 0 do not exist.

�0(0)/Tp,0. The results are consistent with what has been
reported earlier [10,11]. At large frequencies, �0(ωm) scales
as 1/|ωm|γ . This form can be straightforwardly extracted from
the gap equation in the same way as for the n = ∞ solution,
by pulling out 1/|ωm|γ from the integrand. For the n = 0
solution, this gives

�0(ωm) = Qγ ,0

(
ḡ

|ωm|
)γ

, (8)

where

Qγ ,0 =
∫ ∞

0

dω′
m�0(ω′

m)√
�2

0(ω′
m) + (ω′

m)2
. (9)

Substituting �0(ωm) ∝ 1/|ωm|γ , we find that the integral is
ultra-violet convergent, what justifies pulling out 1/|ωm|γ . For
a generic γ between 2 and 3, the frequency integral in (9)
converges at ω′

m ∼ �0(0) ∼ ḡ, hence Qγ ,0 is of order ḡ. We
show Qγ ,0 in Fig. 8. We see that it is indeed of order ḡ.

3. Discrete set of solutions

For γ < 2, we showed in papers I–IV that �∞(ωm) and
�0(ωm) are the two end points of an infinite discrete set of
solutions �n(ωm). A gap function labeled by n changes sign n
times along the positive Matsubara axis. The set becomes con-
tinuous at γ = 2 (paper V). Here we show that an infinite set
of �n(ωm) exists also for γ > 2, but again becomes discrete.

To demonstrate this, we search for the solution of the non-
linear gap equation by expanding to infinite order in �(ωm′ )
in Eq. (1). This yields

�(ωm) =
∞∑
j=0

ε2 j+1�(2 j+1)(ωm), (10)
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FIG. 8. Qγ ,0, defined in Eq. (9), as a function of γ ∈ (2, 3). We
used �0(ωm ) from Fig. 7 as an input or the calculation of Qγ ,0. The
dashed vertical line marks γc = 2.81.

where �(1)(ωm) = �∞(ωm) from Eq. (7), ε is a parameter,
which we adjust to get a solution. The two limits we con-
sidered earlier correspond to an infinitesimally small ε, when
�(ωm) = ε�∞(ωm), and to some finite ε = ε0 for the n = 0
solution.

In general, the conditions on ε are obtained by substituting
�(ωm) from Eq. (10) into Eq. (1), solving iteratively for
�(2 j+1) in terms of �(2 j′+1) and j′ < j, and requiring that the
series converge. For a BCS superconductor, the solution exists
only for a single value of ε. For the γ model with γ � 2,
the solutions exist for a discrete set of εn for γ < 2 and for
arbitrary 0 < ε < εmax for γ = 2.

For γ > 2, we find that the solutions exist for a discrete set
of εn, of which ε0 is the largest. This is very similar to the case
γ < 2. The details of the calculations are rather involved and
we moved them to Appendix E.

We also compute the condensation energy for different
solutions using the expression for the free energy in the γ

model in paper I. The set of condensation energies Ec,n is
discrete, and, as one could expect, the largest condensation
energy is for the n = 0 solution. This again is very similar
to what we previously found for γ < 2. We illustrate this in
Fig. 1(c).

B. Decoupling of the n = 0 solution from the set

So far, our results for γ > 2 parallel those for γ < 2. In
both cases, there exists a discrete set of �n(ωm) with integer
n, ranging from 0 to ∞. Each solution corresponds to a local
minimum in the condensation energy, and Ec,0 is the largest.

We now show that the analogy is only partially correct,
and there is one crucial feature on which the two cases differ
qualitatively. Namely, we argue that for γ < 2, the solutions
with all n behave as one set, while for γ > 2, the n = 0
solution decouples from the set and behaves differently from
the solutions with n > 0. What we mean here is that for

FIG. 9. The temperature Tp,1, below which the n = 1 solution
appears, as a function of γ . Observe that Tp,1 is a nonmonotonic
function of γ . It initially increases with γ , reaches a maximum at
γ � 1, and then decreases and vanishes at γ = γcr = 2.81. The onset
temperatures Tp,n with n > 1 show similar behavior.

smaller γ , all �n(0) disappear simultaneously once we extend
the model and reduce the strength of the pairing interaction
below a certain value (more on this below). For γ > 2, the
solutions with n > 0 disappear under the same conditions, but
the one with n = 0 survives. This distinction can be seen al-
ready in the original γ model. As we said before, the solution
with n = ∞ exists only up to γcr = 2.81 [12]. We argue that
all solutions with noninfinite n > 0 also disappear at this γ .
To prove this, we compute the corresponding onset pairing
temperatures Tp,n. In Fig. 9, we plot Tp,1 as a function of γ . We
see that it vanishes at γ = γcr. We verified that Tp,2 vanishes
as well. This leaves little doubt that all Tp,n with n > 0 vanish
at γcr. The vanishing of Tp,n>0 in turn implies that at T = 0
all �n>0(ωm) also vanish simultaneously at γcr. However, we
see from Figs. 7(b) and 7(c) that Tp,0 and the gap function
�0(ωm) at T = 0 remain finite at this γ , the only signature of
γcr in these figures is a kink in the γ dependence of Tp,0 and
of �0(0). Clearly then, the n = 0 solution decouples from the
set of �n(ωm) with n > 0.

1. Extended γ model

To see this more clearly and also to understand the differ-
ence between γ < 2 and γ > 2, we extend the γ model in the
same way as in papers IV and V, by introducing a parameter
M 
= 1, which separates the pairing interaction and the one in
the particle-hole channel. The original γ model, in which both
interactions are V (�m), corresponds to M = 1. We introduce
M 
= 1 in such a way that the pairing interaction gets weaker at
M < 1. The extension has to be done carefully to avoid emerg-
ing singularities from

∫
dωm′/|ωm − ωm′ |γ , which cancel out

in the gap equation at M = 1 [see Eq. (1)].
We already used this extension for different purposes in

papers IV and V. There, we derived the modified gap equation:

D(ω̄m)

(
ω̄m + 1 − M

2

∫
dω̄′

m

|ω̄m − ω̄′
m|γ

(
signω̄m√

1 + D2(ω̄m)
− signω̄′

m√
1 + D2(ω̄′

m)

))
= 1

2

∫
dω̄′

m

|ω̄m − ω̄′
m|γ

D(ω̄′
m) − D(ω̄m)√

1 + D2(ω̄′
m)

signω̄′
m

(11)
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FIG. 10. The critical value of the parameter M in Eq. (11) as a
function of γ The gap functions �n(ωm ) are nonzero for M > Mcr .
At γ � 2, Mcr is the same for all n � 0. At γ > 2, critical M is zero
for the n = 0 solution (red dots) and is finite for solutions with n � 1
(blue line).

where D(ω̄m) = �(ωm)/ωm, ω̄m = ωm/ḡM and ḡM = ḡ/M1/γ .
At M = 1, Eq. (11) reduces to Eq. (1)

The extended model has the same structure of solutions as
the original one: there is a discrete set of solutions �n(ωm)
for γ < 2 and γ > 2 and a continuous set for γ = 2. The
end point, �∞(ωm) is the solution of the linearized gap equa-
tion. Like for the original model, at small ωm, �∞(ωm) ∝
|ωm|γ /2 cos(β ln |ω̄m|γ + φ). The parameter β must be real,
which restricts M to M � Mcr (γ ). The critical value is

Mcr (γ ) = 1 − γ

2

�2
(

γ

2

)
�(γ )

(
1 + 1

cos(πγ /2)

)
. (12)

We plot Mcr versus γ in Fig. 10. The solution with n = ∞
exists in the blue area in this figure. The boundary crosses
M = 1 at γcr = 2.81, as we found earlier.

We obtained numerically the onset temperatures for the
pairing Tp,n(M ). For γ � 2, we found that all Tp,n vanish
at the same M = Mcr. This implies at T = 0, �n(ωm) with
all n, including n = 0, vanish upon approaching the critical
line Mcr (γ ) from above. We show the behavior of �0(ωm) in
Fig. 12(a) and illustrate this result in Fig. 11(a). For γ = 2,
Mcr = 0. The set is continuous, and all gap functions from

FIG. 11. The onset temperatures Tp,n for the gap functions
�n(ωm ) for (a) γ < 2 and (b) γ > 2.

FIG. 12. The gap function �0(ωm ), obtained by the numerical
solution of Eq. (11), for various values of M and γ = 1.5 and
2.5, representative of γ < 2 and γ > 2, respectively. For γ = 1.5,
�0(ωm ) vanishes continuously at M = Mcr > 0. For γ = 2.5, it re-
mains finite for all M > 0 and vanishes discontinuously at M = 0.

the set vanish upon approaching Mcr = 0 from above [see
Fig. 11(b)].

For γ > 2, the result is different. The onset temperatures
Tp,n with n > 0 still vanish at Mcr > 0, along with the corre-
sponding �n(ωm) at T = 0. However, Tp,0 and �0(ωm) remain
finite at Mcr [see Fig. 11(b) for illustration]. We show the
numerical results for �0(ωm) at different M in Fig. 12(b)
for representative γ = 2.5 (Mcr = 0.192). This clearly shows
that for γ > 2 the solution with n = 0 decouples from the set
of solutions with n � 1. A nonzero �0(ωm) exists down to
M = 0 (see Fig. 10), where it displays rather peculiar critical
behavior: �0(0) gradually tends to zero at M → 0, while the
full function �0(ωm) remains finite [see Fig. 12(b)] and at
M = 0+ becomes the end point of a continuum of solutions
(see Appendix F for details).

IV. THE GAP FUNCTIONS �n(z) AT COMPLEX
FREQUENCY

In this section, we argue that the ground states at γ < 2 and
γ > 2 are topologically different, i.e., γ = 2 is a quantum-
critical point of a topological transition. For this, we extend
the functions �n(ωm) from the Matsubara axis into the com-
plex plane of frequency. We first consider the n = 0 solution
and then other solutions with n > 0.

A. The n = 0 solution

To begin with, we borrow the results of earlier works [6–9]
and our previous analysis for γ � 2 in papers IV and V on
the evolution of �0(ω) = �′

0(ω) + i�′′
0 (ω) at T = 0 along

the real axis (more accurately, infinitesimally above the real
axis). This analysis have shown that as γ approaches 2, �′

0(ω)
undergoes sharp changes near particular ωk , k = 1, 2, . . .

from large positive to large negative values, while �′′(ω) ∝
(−1)k+1 sharply increases near these points and gets strongly
reduced in between ωk (see the plots of �0(ω) in Fig. 13). A
simple experimentation shows that this behavior is reproduced
if we set

�0(ω) ≈ Ak
(−1)k

ω − ωk + iγk
(13)
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FIG. 13. ln(|�0(z)|) in the complex plane of frequency and �′
0(ω) and �′′

0 (ω) along the real axis for several γ � 2. The gap function
�0(z) has been obtained by first solving the gap nonlinear gap equation on the Matsubara axis and then extending to complex z using Pade
approximants. In the plots of ln(|�0(z)|), the red dashed line is along z = r exp(iθγ ) with θγ = π/2 − π/γ . To our numerical accuracy, all
poles are on this line. The line of poles rotates towards the real axis as γ approaches 2. Bright blue spots are the positions of zero of �0(z).
The total number of poles and the number of zeros in the first and the fourth quadrants of z must be the same. Along the real axis, both �′

0(ω)
and �′′

0 (ω) oscillate with frequency. At γ = 1.99, the complex function �0(ω) is well described by (13).

where γk > 0. Extending this form to the complex plane, we
immediately find that �0(z) has a set of poles in the lower
half-plane, at z = ωk − iγk . In the left panels in Fig. 13, we
show ln(|�0(z)|) in the first and fourth quadrants, obtained
by high-accuracy Pade approximants [13]. We clearly see
that there is a set of poles in the lower half plane. To nu-
merical accuracy, the set is along the line z′/z′′ = tan π/γ <

0. The same plots also show that �0(z) displays two sets
of zeros, surrounding each line of poles. This is consistent
with our earlier analysis in paper IV, where we obtained the
zeros of �0(z) in the upper half-plane by analytical continu-
ation from the real axis. The total number of zeros and the
poles is the same as one can verify by using the identity∫
dωm[d ln �0(ωm)/dωm] = 0 and computing the integral by

closing the integration contour over a semicircle in the com-
plex plane in the first and the fourth quadrants [14] We note in
passing that as long as γ < 2, the number of zeros in the upper
half-plane is finite. Because each zero gives rise to 2π phase
variation on the real axis (see paper IV), the phase winding
of �0(ω) saturates at large ω, where both �′

0(ω) and �′′
0 (ω)

become sign-preserving and scale as 1/ωγ .
As γ moves closer to 2, the direction of the line of

poles in the lower half-plane moves towards the real axis
and γk in Eq. (13) get smaller. At γ = 2 − 0, we have on
the real axis �0(ω) = ω/ sin φ0(ω + i0), where φ0(ω + i0) is
well approximated by φ0(ω + i0) = (ω + i0)2/(π ḡ2) at ω �
ḡ (Refs. [5–7]). Expanding near ωk = π ḡ

√
k, we obtain

�0(ω) ≈ π

2

(−1)k

ω − ωk + i0
. (14)

We see that at γ = 2 − 0, the poles approach the real axis.

We now move to γ > 2. Let’s label the gap function, which
gradually evolves from γ < 2, as �̃0(z). By continuity, we
expect �̃0(z) to possess poles in the upper half-plane. Using
Pade approximants we find exactly this behavior: the line of
poles is now located in the upper half-plane along the direction
|z′|/z′′ = tan π/γ > 0. We show this in Fig. 14. Obviously,
this �̃0(z) does not satisfy causality. In Fig. 15 we show that
the phase of �̃0(ω) winds up along the real axis by multiples
of % − 2π instead of +2π .

To obtain the correct gap function �0(z), analytic in the
upper half-plane, we use the fact that while �̃0(z) has poles
in the upper half-plane, it is analytic in the lower half-plane.
For such function, the modified Kramers-Kronig relations and
the Cauchy relation between �0(ωm) with ωm < 0 and �̃′′

0 (ω)
immediately below the real axis are

�̃′
0(ω) = − 1

π
P

∫
dx

�̃′′
0 (x)

x − ω
,

�0(ωm) = − 1

π

∫
dx

�̃′′
0 (x)

x − iωm
. (15)

Because the gap function on the Matsubara axis is symmetric
with respect to ωm → −ωm, the last relation can be ex-
tended to positive ωm and compared with the original �̃0(ωm),
which we extended to complex plane using Pade approxi-
mants. We show in Fig. 16 that the two functions coincide
with high accuracy. The near-perfect agreement is a strong
indication that there are no additional poles in the lower
half-plane.
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FIG. 14. Same as in Fig. 13, but for γ � 2. The function �̃0(z) has been obtained from �0(ωm ) using Pade approximants. The poles of
�̃0(z) are along the red dashed line, directed along |ω′|/ω′′ = tan π/γ > 0. For γ > 2, this line is in the upper half-plane. The zeros of �̃0(z)
below and above the pole line do exist, but are outside the plot range. We argue in the text that the physical gap function �0(z) = [�̃(z∗)]∗.

Equation (15) suggests a simple way to find the actual
�0(z), analytic in the upper half-plane. For this one has
to move to a different sheet of the Riemann surface by
choosing �0(ω) immediately above the real axis to be equal
to �̃∗

0(ω − i0), taken immediately below the real axis, and
then analytically continue �0(ω) into the upper half-plane
using the Cauchy relation �0(z) = (1/π )

∫
dx�′′

0 (x)/(x − z).
Equation (15) ensures that �0(z) is analytic for z′′ > 0. One
can easily verify that �0(z) = [�̃(z∗)]∗. In the full complex
plane �0(z) has poles in the lower half-plane along the direc-
tion |z′|/z′′ = − tan π/γ < 0 and zeros in both half-planes.
As γ increases further, the line of poles of �0(z) moves deeper
into the lower half-plane and the number of zeros in the upper
half-plane decreases and vanishes above a certain γ > 2. In
this respect, the behavior of the analytic gap function for

FIG. 15. The variation of the phase of �̃0(ω) = |�̃0(ω)|eiη̃0(ω).
As the poles of �̃0(z) are in the upper half-plane (see Fig. 14), its
phase along real axis winds up by multiples of −2π instead of +2π .

γ > 2 mimics that for γ < 2. However, the functions �0(z)
at γ < 2 and γ > 2 live on different sheets of the Riemann
surface and are therefore topologically different, separated by
a topological quantum-critical point at γ = 2. We illustrate
this in Fig. 17.

B. The solutions with n > 0

We now argue that other �n(z) with n > 0 remain on
the same sheet of the Riemann surface through γ = 2 and
therefore for γ > 2 are located on the different sheet than the
n = 0 solution. This naturally explains why the n = 0 solution
survives at above critical γ = 2.81, when all solutions with
n > 0 vanish.

To demonstrate this, we consider γ = 2 and borrow the
results of paper V on the structure of the gap functions from
the continuum spectrum away from the minimum of the con-
densation energy. At γ > 2, these gap functions become the
gap functions of discrete states with some n > 0.

The states of the continuous spectrum are characterized by
a continuous variable ξ . In paper V, we analyzed the form of
�ξ (ω) along the real axis. At ω larger than ḡ, we obtained

�ξ (ω) ≈ ω

sin[φ(ω) + i ln (1 + ξ )]
, (16)

where φ(ω) ≈ ω2/(π ḡ2). At ξ = 0, Eq. (16) reduces to
�0(ω) = ω/ sin (ω2/(π ḡ2), which we used in the previous
section. At large ξ , �ξ (ω) ∝ ωeiω

2/(π ḡ2 ) is the solution of the
linearized gap equation.

Equation (16) can be straightforwardly extended to the
complex plane by just replacing ω by z = ω′ + iω′′. Analyz-
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FIG. 16. Comparison between the original �0(ωm ) and the one obtained using (15).

ing �ξ (z), we obtain that it has poles in the lower half-plane,
at z = zm = am + ibm, where

bm = −π ḡ

√
m

2

[(
1 + ln2 (1 + ξ )

π2m2

)1/2

− 1

]1/2

,

am = ±ḡ2 π

2

ln (1 + ξ )

bm
. (17)

At small ξ , bm ≈ −ξ ḡ/(2
√
m) and am ≈ ±π ḡ

√
m. At large

ξ , bm ≈ −ḡ
√

π ln ξ/2 and am ≈ ±bm for m < ln ξ/π and
bm ≈ −ḡ(ln ξ )/(2

√
m) and am ≈ ±π ḡ

√
m for m > (ln ξ )/π .

We show the location of the poles at different ξ in Fig. 18.
We see that they are indeed in the lower half-plane, at a finite
distance from the real axis.

At smaller ω < ḡ, �ξ (ω) is given by the series of com-
plex oscillation functions. Although we didn’t find the exact
expression for �ξ (ω) for these frequencies, it is qualitatively
reproduced by the same functional form as in (16), but with
φ(ω) = β ln (ω/ḡ)2, where β = βξ scales as

√
ξ at small ξ

and saturates at β ≈ 0.38 at large ξ . Replacing again ω by z
and expressing z as z = |z|eiψ , we find after simple algebra
that �ξ (z) contains an additional set of poles at small z, but
these poles are again located in the lower half-plane. At small
ξ , the poles are at |zk| = ḡe−kπ/(2β ), k = 1, 2 . . . , along the
directions when either ψ or π − ψ equal −ξ/(2β ) ∼ ξ 1/2.
These directions are close to the real axis, but still away from
it. For large ξ , the expression for |zk| remains the same, but ψ

increases and approaches −π/2, i.e., the poles move towards
Matsubara axis.

FIG. 17. An illustration of the analytical properties of the gap function �0(z), when there is a line of poles in the complex plane. (a) γ < 2
The function �0(z), obtained from �0(ωm ) by Pade approximants (sheet 1), is analytic in the upper half-plane and has poles in the lower
half-plane, The function �̃0(z) = [�0(z∗)]∗ lives on the different sheet of the Riemann surface (sheet 2). It is analytic in the lower half-plane
and has poles in the upper half-plane. Out of the two, �0(z) on sheet 1 is the physical gap function. (b) γ > 2. Now Pade approximants (sheet
1) give �̃0(z), which is analytic in the lower half-plane. In turn, the function �0(z) from sheet 2 is analytic in the upper half-plane and is now
the physical gap function.
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FIG. 18. The location of the poles of the gap function �ξ (z) for
ξ = 0.01, 1, and 100. We extended Eq. (16) to complex z and for
simplicity used the approximate interpolation form of the function
φ(z): φ(z) = β ln(z/ḡ)2 + z2/(π ḡ2), where β = βξ scales as

√
ξ at

small ξ and saturates at β � 0.38 at large ξ . The first and the second
term in φ(z) determine the location of the poles at |z| < ḡ and |z| > ḡ,
respectively.

We note in passing that along the Matsubara axis, �ξ (ωm)
oscillates and contains nodes. At small ξ , the nodes are located
at |ωm| ∼ ḡe−(k−1/2)π/(2β ) with k ∈ Z. At ξ → 0, the nodes
and the poles of �ξ (z) approach z = 0, where they annihilate
at ξ = 0, leaving a regular �0(z) at small z. We illustrate this
behavior in Fig. 19.

V. GAP EQUATION ALONG THE REAL FREQUENCY AXIS

We now address the issue of whether there are any qual-
itative differences in the behavior of observables at T = 0
between γ < 2 and γ > 2. In both cases, the condensation
energy is the largest for the n = 0 solution, so we focus on the
form of �0(z). For definiteness, we consider the original γ

model with M = 1. The behavior of the extended model with
M 
= 1 is quite similar, as long as M > 0.

We found earlier in this paper that while the functional
forms of �0(z) are almost symmetric with respect to γ − 2,
the gap functions �0(z) at γ < 2 and γ > 2 live on different
sheets of the Riemann surface.

We argue below that this topological distinction gives rise
to a qualitative change in the behavior of the DOS, which at
γ > 2 develops a nonintegrable singularity at the lower edge
of the continuum. We show that this feature is robust against
weak perturbations, in particular it survives when a pairing
boson is massive, as long as the mass is below a certain finite
threshold.

To demonstrate this, we analyze the form of the gap
function �0(ω) at γ > 2. At the smallest and the largest
frequencies, �0(ω) can be obtained by direct rotation from the
Matsubara axis, i.e., by replacing iωm by ω + i0+. However,
at intermediate ω � ḡ, which we will be interested in, this pro-
cedure is inadequate, as explained in Refs. [4–8], and one has
to solve the full nonlinear gap equation (3), for which �0(ωm)
is an input. This equation, �(ω)B(ω) = A(ω) +C(ω), con-
tains three functions of frequency, A(ω), B(ω), andC(ω). The
functions A(ω) and B(ω) are expressed in terms of �0(ωm) as

A(ω) = πT
∑
ωm>0

D0(ωm)√
1 + D2

0(ωm)

×
(

ḡγ

(ωm + iω)γ
+ ḡγ

(ωm − iω)γ

)
,

B(ω) = 1 + iπ

ω
T

∑
ωm>0

1√
1 + D2

0(ωm)

×
(

ḡγ

(ωm + iω)γ
− ḡγ

(ωm − iω)γ

)
, (18)

where, we remind, D0(ωm) = �0(ωm)/ωm. Using the fact that
�0(ωm) is a monotonically decreasing function of frequency,
one can make sure that at ω � ḡ, A(ω) and B(ω) are well
approximated by A(ω) � Qγ ,0(ḡ/|ω|)γ cos πγ

2 , where Qγ ,0 is
given by Eq. (9), and B(ω) � 1. The function C(ω) on the
other hand is expressed in terms of the gap function in real

FIG. 19. A schematic plot of the location of zeros (solid circles) and poles (open circles) of �n(z) with n = 5 near z = 0. A zero of �n(z)
gives rise to 2π anticlockwise variation of the phase of the gap function and in this respect acts as a vortex, and a pole of �n(z) gives rise
to −2π anticlockwise variation and acts as an antivortex. As γ → 2, both vortices and anti-vortices move closer to z = 0. At γ = 2, they
annihilate at z = 0, leaving a regular �ξ=0(z) at small z.

144509-12



INTERPLAY BETWEEN SUPERCONDUCTIVITY AND … PHYSICAL REVIEW B 104, 144509 (2021)

frequencies as

C(ω) = iḡγ sin
(πγ

2

) ∫ |ω|

0+

d�

�γ

D0(|ω| − �) − D0(|ω|)√
1 − D2

0(|ω| − �)
.

(19)
The 0+ in the lower limit of the integral in (19) implies that
special care is needed to properly treat the limit � → 0, as
the integrand in (19) is of order 1/�γ−1 at small �, and∫
d�/�γ−1 is infrared divergent. The divergence is elimi-

nated by slightly shifting the integration contour into the upper
half-plane of frequency, as shown in Fig. 4 (see Appendix A
for details). One can verify that this is equivalent to integrating
in (19) along the real axis down to an infinitesimally small but
finite ε and subtracting from the integral

−1

γ − 2

1

εγ−2

dD0(ω)
dω√

1 − D2
0(ω)

. (20)

The gap equation (3) is an integral equation on �0(ω).
In papers IV and V, we converted this equation into
the differential equation by Taylor expanding the inte-
grand in (19). We use the same approach here. We follow
Refs. [6,7] and express the gap function as �0(ω) =
ω/ sin φ0(ω), where φ0(ω) is in general a complex function
of frequency. At γ = 2 + 0, C(ω) = (π ḡ2/2)φ̇0/ sin φ0(ω) =
(π ḡ2/2)φ̇0D0(ω). The equation on φ0 then reduces to φ̇0 =
(2/π ḡ2)(ω + Q2,0(ḡ/ω)2 sin φ0(ω)). The solution of this
equation is a monotonically increasing real function φ0(ω)
(Ref. [6]).

For γ 
= 2, the expansion of C(ω) in powers of φ̇0 yields
an infinite number of terms, all with prefactors O(γ − 2) at
γ ≈ 2. To get some physical insight, below we first follow
paper IV and consider the toy model, in which keep only the
first of these terms, the one with φ̇2

0 . Then we consider the
actual gap equation and sum up series of terms with higher-
order derivatives and higher powers of φ̇0. We show that the
structure of the gap function changes somewhat, compared
with the toy model, but the outcome remains largely the same.

A. Expansion to order φ̇2
0 (ω)

For convenience, we keep γ close to 2 and keep only terms
linear in 2 − γ . Expanding in the integrand for C(ω) to order
φ̇2

0 , we express the gap equation as

φ̇0 + ωδφ̇2
0 tan φ0 = 2

π ḡγ

(
ωγ−1 − Qγ ,0

ḡγ

ω2
eiπγ /2 sin φ0

)
,

(21)

where δ = (γ − 2)/2 and φ0 = φ0(ω).
We are interested in the behavior of φ0(ω) at ω � ḡ, where

our approximations for A(ω) and B(ω) are valid. The initial
condition for (21) can be set at some ω < ḡ, where φ0 < π/2.
Solving Eq. (21) at larger ω � ḡ, we find that φ0(ω) increases
and remains real as long as it is smaller than π/2. In this
range, Qγ ,0 is parametrically smaller than ω and can be safely
neglected. Eq. (21) then becomes the quadratic equation on
φ̇0. Solving it and choosing the solution that matches the

FIG. 20. The function φ0(ω) at ω ≈ ω0 for (a) γ = 1.9 and
(b) 2.1, from the numerical solution of Eq. (21).

initial condition, we obtain

φ̇0 = − 1

2δω tan φ0

[
1 −

√
1 + 8δ tan φ0

π

(
ω

ḡ

)γ
]
. (22)

A simple analysis of this equation shows that the behavior of
φ0(ω) at γ < 2 and at γ > 2 differ in one particular aspect.
At γ < 2 (i.e., δ < 0), the imaginary part of φ0(ω) emerges at
(8/π )|δ| tan φ0(ω/ḡ)γ = 1, before φ0 reaches π/2. A straight-
forward analysis of Eq. (22) shows that at larger ω, φ0(ω)
becomes complex, and both φ′(ω) and φ′′(ω) are positive and
increase with frequency as ωγ/2. At even larger ω, the Qγ ,0

term in (21) becomes relevant. At these ω, φ′(ω) saturates
and φ′′(ω) keep increasing, but logarithmically. The high-
frequency behavior yields �0(ω) ∝ 1/ωγ , consistent with the
fact that at large frequencies the transformation from �0(ωm)
to �0(ω) is a simple rotation.

For γ > 2(δ > 0), the solution changes. Now φ0 remains
real up to a frequency, ω0, where φ0 = π/2 and tan φ0 di-
verges. An elementary analysis of (22) shows that φ̇0 vanishes
upon approaching this point and

φ0 = π

2
− 1

2πδ

ω
γ−2
0

ḡγ
(ω− ω0)2− 1

8πδ2

ω
γ−3
0

ḡγ
(ω− ω0)3 + ....

(23)
At larger ω > ω0, Eq. (22) does not have a solution. To obtain
φ0(ω) at such ω, one has to choose another solution of the
quadratic equation on φ̇0

φ̇0 = − 1

2δω tan φ0

[
1 +

√
1 + 8δ tan φ0

π

(
ω

ḡ

)γ
]
, (24)

which implies that �0(ω) moves to a different sheet of the
Riemann surface.

Solving (24) we find that at ω � ω0, φ0(ω) remains real
and is still given by Eq. (23). We verified this result by solving
the full Eq. (21) numerically. In Fig. 20, we show the numer-
ical results for γ = 1.9 and 2.1. We see that, at γ = 1.9, Re
φ0(ω) increases monotonically and Im φ0(ω) emerges before
Re φ0(ω) reaches π/2. At γ = 2.1, φ0(ω) remains real and
varies quadratically near ω0, where φ0(ω0) = π/2.
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FIG. 21. (a) Solution of full differential equation Eq. (21) with the Q0,γ term included, at γ = 2.7. Gray lines show asymptotic behavior
at large frequencies, consistent with Eq. (26). (b) The real and the imaginary parts of the gap function �0(ω) = ω/ sin φ0(ω). (c) The phase
η0(ω) = Arg[�0(ω)].

The function φ0(ω) remains real up to frequency ω1 > ω0,
at which it reduces down to φ0 = 0. At around this frequency,

φ0 �
√

2

δω1
(ω1 − ω − i0+) + 4

3π

ω
γ−1
1

ḡγ
(ω1 − ω) + . . .

(25)
When ω exceeds ω1, a negative φ′′

0 emerges and gradually in-
creases in amplitude. The real part φ′

0 also becomes negative.
At larger frequencies φ′

0 ∼ φ′′
0 ∼ −ωγ/2/

√
πδḡγ . We verified

this behavior by solving Eq. (24) numerically, see Fig. 21(a).
We clearly see that φ′′

0 (ω) emerges at ω = ω1 and both φ′
0

and φ′′
0 scale as ωγ/2 at larger ω. As |φ′′

0 | increases, sin φ0

also increases, and above a certain frequency the Qγ ,0 term
in the right-hand side (r.h.s.) of Eq. (21) cannot be neglected.
At even larger frequencies, the two terms balance each other,
and we obtain

φ′
0 = −2mπ − (γ − 1)

π

2
,

φ′′
0 = − ln

2ḡ

Q0,γ

− (1 + γ ) ln
ω

ḡ
. (26)

where m is the number of vortices in the first quadrant (m = 2
for particular γ = 2.7 in Fig. 21). This yields �0(ω) ∝ 1/ωγ

at the largest frequencies, as it should be.
We plot Re�0(ω) and Im�0(ω) in Fig. 21(b) and the phase

η0(ω) of �0(ω) = |�0(ω)|eiη0(ω) in Fig. 21(c). The phase
undergoes two slips by 2π at positive ω, consistent with the
existence of two vortices on the upper half-plane of frequency.

1. Density of states

The density of single-electron states is defined as
N (ω) = (−N0/π )ImGl (ω), where N0 is the DOS in the
normal state and Gl (ω) is the (retarded) local single-electron
Green’s function. To be specific, we consider the case of
dispersion-full fermions with pairing mediated by a massless
collective bosonic excitation. In this case, the local Green’s
function is obtained by integrating over momentum transverse
to the Fermi surface. In the Eliashberg theory, which assumes
that fermionic bandwidth is the largest scale in the problem,

the momentum integration is converted into the integration
over fermionic dispersion εk near the Fermi surface and is
approximated by (2π )−d

∫
ddk = N0

∫
dεk , where d is the

spatial dimensionality of the system, and extends to infinite
limits. Then

Gl (ω) = −iπ

√
ω2

ω2 − �2
0(ω)

, (27)

In terms of φ0(ω), N (ω) = N0Re
√

− tan2 φ0.
One can easily verify that the DOS vanishes at small fre-

quencies, as expected for a superconductor with a finite gap,
and is nonzero at frequencies ω > ω1, where Im φ0(ω) is
finite. It is tempting to call ω1 a spectral gap, by analogy
with a BCS/Eliashberg superconductor. For γ < 2, there are
no other features in the DOS, although there is a structure
inside the continuum. For γ > 2, there is also a continuum
above ω1, but in addition, there appears a bound state inside
the gap, at ω = ω0 < ω1. At this frequency tan φ0 diverges
and a nonzero N (ω) emerges once we shift ω into the up-
per frequency half-plane by an infinitesimally small amount.
Moreover, because N (ω) ∼ Im[1/(ω − ω0 + i0)2], the inte-
gral of the DOS over an infinitesimally narrow range around
ω0 diverges. The prefactor for the divergent term (the capac-
ity of the level) scales as δ = γ − 2. For a lattice system
with a finite total number of states, the total weight of the
bound state is finite, but is a function of the total number of
states per unit volume, i.e., the bound state is macroscopically
degenerate.

We show the result of numerical evaluation of the DOS for
representative γ = 2.1 in Fig. 22. We clearly see that the DOS
has a continuum, which starts at ω1, and an in-gap bound state
at ω0 < ω1. The weight of the bound state is comparable to
the total weight of the continuum.

B. Equation for φ0(ω) with derivatives to all orders

We now analyze the full equation for φ0(ω), with infinite
series of higher-order derivatives in the left-hand side (l.h.s.).
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FIG. 22. The density of states N (ω) for φ(ω) determined by
Eq. (21). We set γ = 2.1.

These derivatives appear in combination with higher powers
of tan φ0, which diverges at ω = ω0, hence it is a’priori un-
clear whether the bound state with a macroscopic degeneracy
survives. We show below that it does survive.

The analysis is rather involved and we present the details in
Appendix C. There are two types of terms in the expansion of
C(ω) in the derivatives of φ0(ω): terms with higher powers
of φ̇0, combined with higher powers of tan φ0, and terms
with higher derivatives of φ0, see Eq. (C2). We argue in Ap-
pendix C that the terms with higher derivatives are irrelevant,
but the terms with higher powers of φ̇0 must be kept. These
last terms form series in X = ωφ̇0 tan φ0 in the form

C(ω) = ḡγ

ωγ−2

sin πγ

2

2 − γ
D(ω)φ̇0

[
1+ γ − 2

2(3 − γ )
X− γ − 2

2(4 − γ )
X 2

+ γ − 2

2(5 − γ )
X 3 + . . .

]
. (28)

The series in Eq. (28) sum up into hypergeometric function
2F1(1, 2 − γ , 3 − γ ,−X ). Substituting into the gap equation
and again neglecting the Qγ ,0 term, we obtain the differential
equation on φ0(ω) in the form

1

2
φ̇0[1 +2 F1(1, 2 − γ , 3 − γ ,−X )] = 2

π ḡγ
ωγ−1. (29)

This equation is valid as long as X remains positive,
i.e., as long as φ0 < π/2. We assume and then verify
that φ0(ω) increases with ω and remains real up to a fre-
quency ω0, at which it reaches π/2. At ω � ω0, X is large
and the asymptotic expansion of a Hypergeometric func-
tion yields 2F1(1, 2 − γ , 3 − γ ,−X ) ≈ X γ−2�(3 − γ )�(γ −
1). Substituting into (29) and solving for φ0(ω) near ω0, we
obtain

φ0(ω) � π

2
− 4

π

(
ω0

ḡ

)γ Bγ (1 − ω/ω0)γ−1

1 + Bγ (1 − ω/ω0)γ−2 , (30)

Bγ = 1

(γ − 1)γ−1�(3 − γ )�(γ − 1)
. (31)

For γ < 2, this yields

φ0(ω) � π

2
− 4

π

(
ω0

ḡ

)γ ((
1 − ω

ω0

)

− 1

B̄γ

(
1 − ω

ω0

)3−γ

+ . . .

)
, (32)

where B̄γ = 3−γ

�(3−γ )�(γ−1) .

The derivative φ̇0 remains finite and positive at ω = ω0.
It is then natural to expect that φ′(ω) continue increasing
at ω > ω0, i.e., X jumps from +∞ to −∞. Simultaneously
φ′′

0 (ω) becomes nonzero due to subleading term in (32). There
is an ambiguity about the sign of φ′′

0 (ω) as the Hypergeomet-
ric function 2F1(1, 2 − γ , 3 − γ ,−X ) has a branch cut along
X ∈ (−∞,−1]. Extending X to X ± i0 [equivalent to shifting
ω to ω ± i0 in Eq. (30)], leads to two conjugate solutions,
which reside on different sheets of the Riemann surface of
2F1(1, 2 − γ , 3 − γ ,−X ). The correct sheet has to be chosen
to preserve the analyticity of �0(ω) = ω/ sin φ0(ω) in the
upper half-plane. A simple analysis shows for this φ′′

0 (ω) must
be positive near ω0. For γ < 2, we verified that analysis shows
that the natural extension ω to ω → ω + i0 is the correct one.
Using it, we obtain at ω � ω0,

φ′
0(ω) ≈ π

2
+ 4

π

(
ω0

ḡ

)γ ( ω

ω0
− 1

)
,

φ′′
0 (ω) ≈ 4

π B̄γ

(
ω0

ḡ

)γ

sin[π (2 − γ )]
( ω

ω0
− 1

)3−γ

. (33)

We see that indeed φ′′(ω) > 0.
For γ > 2, we have at ω < ω0

φ0(ω) � π

2
− 4

π
Bγ

(
ω0

ḡ

)γ ((
1 − ω

ω0

)γ−1

−Bγ

(
1 − ω

ω0

)2γ−3
+ . . .

)
. (34)

For ω > ω0, a simple experimentation shows that, to preserve
analyticity, we need to extend ω → ω − i0, i.e., choose the
solution on a different sheet of the Riemann surface. We then
obtain

φ′
0(ω) ≈ π

2
+ 4

π
Bγ

(
ω0

ḡ

)γ

cos[π (γ − 2)]
( ω

ω0
− 1

)γ−1
,

(35)

φ′′
0 (ω) ≈ 4

π
Bγ

(
ω0

ḡ

)γ

sin[π (γ − 2)]
( ω

ω0
− 1

)γ−1
. (36)

Then

D0(ω) = 1

sin φ0(ω)
= 1 + A

(
ω0 − ω + i0

ω0

)2(γ−1)

, (37)

where A is positive and O(1). This is rather similar to the sit-
uation for the toy model. The new element is that now φ′′

0 (ω)
develops immediately above ω0, i.e., there is no frequency
range where φ0(ω) bends down. We show the numerical solu-
tion of Eq. (29) in Fig. 23.

1. Density of states

We see from (37) that for γ > 2, D0(ω) approaches 1 at
ω = ω0 with zero derivative. This is similar to the behavior of
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FIG. 23. Solution of the modified gap equation Eq. (29) around
ω0, where (a) γ = 2.3 and (b) γ = 2.1. Gray dotted line shows the
solution at γ = 2: φ0(ω) = ω2/π .

φ0 in the toy model, although the exponent remains smaller
than 2 for all γ < 3. We now show that the vanishing of the
derivative gives rise to a nonintegrable singularity in the DOS
at ω = ω0. Indeed, near ω = ω0, the DOS has the form

N (ω)

N0
= ḡγ

ω0

π sin(π (γ − 2))

4Bγ

�(ω − ω0)

(ω − ω0)γ−1 , (38)

where �(x) is the unit step function. In distinction from the
toy model, the continuum in the DOS is present for all ω >

ω0. Still,
∫ ∞
ω0

dωN (ω) diverges at the lower limit, i.e., the DOS
contains a nonintegrable singularity at ω = ω0 + 0. As we
said, for a lattice system this implies that the number of states
within a tiny interval above ω0 is some function of the total
number of states per unit volume. Because N (ω) ∝ (γ − 2),
the fraction initially increases linearly with γ − 2.

We show the DOS for several γ in Fig. 24. We see that
the DOS vanishes below ω0, forms a continuum above this
frequency, and displays a sharp edge singularity with the
weight comparable to the total weight of the continuum.

We note in passing that for smaller γ between 1 and
2 the DOS still diverges at ω = ω0 + 0 with the fractional
exponent γ − 1, but the singularity is now integrable, like
in a BCS superconductor. We also note that for γ 
= 2, the
pole of the Green’s function yields dispersing excitations with
ω − ω0 ∝ eiπ/2(γ−1)|ξ̄ |1/(γ−1), where ξ̄ is the fermionic dis-
persion (

∫
ddk/(2π )d = N0

∫
d ξ̄ ). One can easily make sure

that the edge singularity at γ > 2 is related to the fact that the
exponent 1/(γ − 1) < 1. For γ = 2, we have ω − ωp ∝ i|ξ̄ |,
where ωp is the position of the peak in the DOS. In this
situation, the spectral function near ωp remains peaked at
exactly ω = ωp even at a finite ξ̄ . This is consistent the DOS
consisting of discrete levels.

2. Continuity at γ = 2 + 0

We see from Eq. (30) that at γ = 2 + 0, the frequency
dependence of φ0(ω) becomes ω2/π (which corresponds to
taking γ → 2 keeping ω away from ω0), like at γ = 2 (see
Refs. [5–7]). We show the numerical solution of Eq. (29) in
Fig. 23. We see that the behavior of φ0(ω) at γ > 2 con-
tinuously approaches that at γ = 2: Im φ0(ω) gradually gets
smaller and Re φ0(ω) approaches ω2/π . Simultaneously, the
maxima in the continuum in the DOS get sharper and at
γ = 2 + 0 evolve into a discrete set of δ-functional peaks, see
Fig. 24. We emphasize that the continuity at γ → 2 does not
hold in our approximate treatment in the previous subsection
and emerges only after we sum up infinite series in φ̇0 tan φ0.

On a more closer look, we find that the analysis at γ →
2 + 0 needs extra care. In this limit, the series in X yields to
first order in δ

C(ω) = π ḡγ

2ωγ−2
D(ω)φ̇0

[
1 + δ

(
X − X 2

2
+ X 3

3
+ . . .

)]

= π ḡγ

2ωγ−2
D(ω)φ̇0[1 + δ ln (1 + X )], (39)

where, we remind, δ = (γ − 2)/2. Substituting into the gap
equation and restricting to ω ∼ ω0, we obtain

φ̇0[1 + δ ln (1 + ωφ̇0 tan φ0)] = 2

π ḡγ
ωγ−1. (40)

Solving this equation, we find that φ0(ω) ≈ (2/πγ )(ω/ḡ)γ

up to an exponentially short distance to ω0, and within this
distance

φ0(ω) � π

2
+ 2

πδ

(
ω0

ḡ

)2 1 − ω/ω0

ln(1 − ω/ω0 − i0+)
. (41)

We see that φ0(ω) still approaches π/2 with zero derivative,
but vanishes only logarithmically. The Im φ0(ω) does develop
immediately above ω0 like at larger γ , but in the immediate

FIG. 24. Evolution of DOS, obtained by solving Eq. (29) for different γ , approaching γ = 2 from above. The red dotted line is the analytic
result, Eq. (38).
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vicinity of ω0, Im φ0(ω) is parametrically small compared to
Reφ0 by 1/| ln(ω − ω0). If we were to neglect Im φ0(ω), we
would find that Re φ0(ω) monotonically increases with ω, as
(ω/ḡ)2/π , and just flattens in exponentially small regions near
the frequencies where φ0(ω) = π/2 + pπ .

Finally, we consider the terms with higher derivatives, like
φ̈0, ˙̇φ̇0, etc. For definiteness, let’s restrict to γ � 2 and com-
pare these terms with (γ − 2)φ̇ lnX . Each term with a higher
derivative gets renormalized by series in X . We evaluate the
series in Appendix C. At large X , which we are interested
in, the series for each term have the same asymptotic form
and reduce each prefactor by 1/2. Including these terms with
rescaled prefactors, we find that the last term in Eq. (39)
changes to

1 + δ[ln(1 + X ) + K], (42)
where

K = ω

φ
(1)
0

(
1

2!
φ

(2)
0 − ω

3!2
φ

(3)
0 + ω2

4!3
φ

(4)
0 + . . .

)
, (43)

where φ
(m)
0 is the m-th derivative of φ0(ω). We assume and

then verify that at large X , i.e., at ω ≈ ω0, the inclusion of
the K term only changes the prefactor for the second term
in Eq. (41). To see this, we assume that at ω slightly be-
low ω0, φ0(ω) = π/2 + Q(ω0 − ω)/ ln (1 − ω/ω0) with Q =
4ω

γ−1
0 /[π (γ − 2)ḡγ ], and compute the series for K using this

form of φ0. A straightforward analysis then yields

K = − 1

2 lnX
F (X ), (44)

where

F (X ) = 2X
∞∑
m=0

(−1)mXm

(m + 1)2(m + 2)

= −2(Li2(−X ) + ln(1 + X )(1 + 1/X ) − 1) (45)
and Li2(−X ) is a polylogarithm. At large X , Li2(−X ) ≈
(−1/2) ln 2X . Substituting into Eq. (44), we obtain K ≈
−(1/2) lnX . Substituting into Eq. (42), we see that the lnX
dependence survives, only the prefactor drops by a factor of
2. Then Eq. (41) remains valid, with extra 2 in the prefactor
for the second term. At the largest X , for which δ lnX 	 1,
the analysis requires more care. We verified that the end result
remains the same terms with higher derivatives do not change
qualitatively the expression for φ(ω).

C. Extraction of the nonintegrable singularity in the DOS
directly from the integral gap equation

We next show that the nonintegrable singularity in the DOS
can be obtained directly from the integral equation (3). For
this, we first rewrite this equation in the form, which takes care
of the regularization of the formal divergence of the integral
for C(ω) in Eq. (19):

�(ω) = 1

2

∫
dωm

(−(iωm − ω)2)γ /2

�(ωm) − �(ω) iωm
ω√

ωm
2 + �2(ωm)

+ sin(πγ /2)

γ − 2

(
Ḋ(ω)

∫ ω

0

ġ(�)d�

(ω − �)γ−2
− (2 − γ )

×
∫ ω

0
d�

D(�) − D(ω) + (ω − �)Ḋ(ω)

(ω − �)γ
g(�)

)
,

(46)

where

g(ω) = 1√
D2(ω) − 1

. (47)

We take as an input the evidence from the numerical analysis
that at small ω, �(ω) is real, and that there exists ω0, at which
�(ω0) = ω0. At this point, we have

�(ω0) = ω0, D(ω0) = 1.

Let’s assume that for ω just below ω0 we have

D(ω) = 1 + A(ω0 − ω)α, α > 0,

where A is some real positive constant.
The integral over ωm in Eq. (46) is completely regular at

ω → ω0, the dangerous terms are the ones coming from the
upper limit of integration over � in the last term. We then
write ω = ω0 − εω, and � = ω0 − εω − ε�, assume that both
εω and ε� are small, and consider the contribution from the
upper limit. Then

g(�) ≈ 1√
2A

1

(εω + ε�)α/2
,

g′(�) ≈ α

2

1√
2A

1

(εω + ε�)α/2+1
. (48)

Expressing ε� = xεω, we then obtain the dangerous contribu-
tion to the gap equation in the form

ε1+α/2−γ
ω

√
A√
2

(
α2

2

∫
0

dx

xγ−2

1

(1 + x)α/2+1

−(2 − γ )
∫

0
dx

(1 + x)α − 1 + xα

xγ (1 + x)α/2

)
.

In order for this term to be finite, we must have

α � 2(γ − 1) > 2.

By continuity, we expect α = 2 at γ = 2 (see previous
section). Invoking this argument, we find α = 2(γ − 1). This
is exactly the same form as we obtained by summing up
Taylor series, Eq. (37).

The function g(�) must be analytic in the upper half plane.
For the same reasoning as above, for γ > 2 this requires
changing ω to ω − i0. Substituting εω + ε� = ω0 − � + i0
into Eq. (48), we obtain

g(�) ≈ 1√
2A

1

(ω0 − � + i0)γ−1
.

The imaginary part of g is proportional to the density of states.
We have

N (�) ∝ 1√
2A

Im
1

(ω0 − � + i0)γ−1

=
{

0, if � < ω0
1√
2A

sin(π (1−γ ))
(�−ω0 )γ−1 , if � > ω0

.

This is the same expression as Eq. (38).
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VI. FINITE ωD

In this section, we examine whether the state with an “in-
finite” peak in the DOS is stable with respect to perturbation
imposed by a small but finite mass of the pairing boson. On
the Matsubara axis, a finite mass of the boson changes the
interaction to

V (�m) = ḡγ[
�2

m + ω2
D

]γ /2 . (49)

A finite ωD eliminates the solutions with large n, leaving
only a finite number of the gap functions. The number of
remaining solutions decreases as ωD increases, and beyond
some threshold only the n = 0 solution survives. At the same
time, the form of �0(ωm) is only weakly affected by ωD both
for γ < 2 and γ > 2.

On the real axis, the effect of ωD on the n = 0 solution
is stronger, but we show that the edge singularity survives as
long as ωD remains below some finite threshold. To demon-
strate this, we analyze how a finite ωD affects the gap on the
real axis.

One can easily verify that the terms B(ω) and A(ω) in
the gap equation D(ω)B(ω) = A(ω) +C(ω), are only weakly
affected by ωD, as long as ωD remains much smaller than ḡ and
can be safely kept the same as at ωD = 0. The key effect of a
finite ωD is on the term C(ω). We analyze this effect in two
steps, like in Sec. V. Namely, we first keep only the φ̇2

0 tan φ0

term in the expansion ofC(ω) in the derivatives of φ0(ω), and
then include the series of higher-order terms. The equation
on φ0(ω) to order φ̇2

0 tan φ0 in the presence of ωD has been
derived in paper V for γ = 2. Combining it with Eq. (21), we
obtain

φ̇0 + φ̇2
0 tan φ0 ×

(
γ − 2

2
ω − γ

4
ωD

)

= 2

π ḡγ

(
ωγ−1 − Qγ ,0

ḡγ

ω2
eiπγ /2 sin φ0

)
, (50)

As before, we will be interested in ω ≈ ω0, where φ0(ω)
reaches π/2, and neglect the Qγ ,0 term.

We see from Eq. (50) that the two terms in the prefactor for
φ̇2

0 tan φ0 have opposite signs and hence compete. To analyze
the competition, we the introduce

ωc = γ

2(γ − 2)
ωD. (51)

Solving Eq. (50) for φ̇0 at frequencies where tan φ0 > 0 and
choosing the solution which matches the initial condition at
ω � ḡ, we obtain

φ̇0 =
−1 +

√
1 + 8δeff

π
ωγ tan φ0

2δeffω tan φ0
. (52)

This is the same equation as (22), but with

δeff = γ − 2

2

(
1 − ωc

ω

)
= γωD

4ωc

(
1 − ωc

ω

)
. (53)

For small ωD and γ − 2, relevant ω is near ω0 ≈
ḡπ/

√
2, where φ0 = π/2 at γ = 2 and ωD = 0. Then δeff ≈

(ωD/(2ω0))(γ − 2 − ωD/ω0). We see that ωD effectively
shifts the critical value of the topological transition from

γ = 2 to γD = 2 + ωD/ω0. When 2 < γ < γD, or, equiva-
lently, ωD > (γ − 2)ω0, φ′′

0 (ω) emerges before φ′
0 reaches

π/2, and the DOS has only a continuum above the spec-
tral gap. When γ > γD, or, equivalently, ωD < (γ − 2)ω0,
φ0(ω) remains real up to ω0, and then moves to a different
sheet of the Riemann surface. In this situation, the DOS has
a continuum and a macroscopically degenerate bound state
below the continuum. We show this behavior in Fig. 25. We
emphasize that there is a single line of a topological transition
in the (ωD, γ ) plane, i.e., once the gap function moves to a
different sheet of the Riemann surface, the DOS develops a
macroscopically degenerate bound state. We present the phase
diagram in Fig. 3.

We note that O(ωD) term in C(ω) also contains the combi-
nation ωDφ̈0. As long as ωD is below the threshold and φ0(ω)
approaches π/2 quadratically, this term only shifts ω0 by a
small amount.

We now include into C(ω) series of terms with higher
powers of φ̇0 tan φ0. We present computational details in Ap-
pendix C and here quote the result: for γ very near 2, the
equation on φ0(ω) near ω0 becomes

φ̇0

(
1 − Y

2(1 + Y )
+ γ − 2

2
lnX

)
= 2

π ḡγ
ωγ−1, (54)

where X = ω0φ̇0 tan φ0 is the same as before, and Y =
ωDφ̇0 tan φ0. The analysis of Eq. (54) shows that there is again
a single line of a topological transition at critical

ωc
D = ω0e

− 2
γ−2 . (55)

We see that ωc
D is finite, although exponentially small for γ

slightly above 2.
A finite ωD also introduces series of terms with higher-

order derivatives in C(ω). The series hold in ωm−1
D φ

(m)
0 (m �

2). We compute these series in Appendix C and argue that they
only weakly affect ωc

D.

VII. PHASE DIAGRAM OF THE γ MODEL

The key result of our analysis is the realization that super-
conducting state at γ > 2 is topologically different from the
one at γ < 2. We label these two superconducting states as
SC II and SC I, respectively. In both cases, the gap function
is analytic in the upper half-plane of frequency, but the gap
functions �0(z) at γ < 2 and γ > 2 live on different sheets
of the Riemann surface, and at T = 0 the DOS in SC II has
an edge singularity (a “nonintegrable” singularity at the lower
edge of the continuum). The singularity holds up to a finite
bosonic mass ωD = ω∗

c .
At T = 0, we expect a single transition line in the (ωD, γ )

plane between SC I, which holds for all ωD � 0 at γ < 2 and
for ωD > ω∗

c at γ > 2, and SC II, while exists at γ > 2 in
the interval 0 � ωD � ω∗

c . We show the corresponding phase
diagram in Fig. 3.

We next consider the phase diagram in the (T, γ ) plane
at ωD = 0. Here, we argue, the phases SC I and SC II are
separated by a nonsuperconducting, pseudogap phase.

Indeed, in paper V, we demonstrated that for γ =
2, massless “longitudinal” fluctuations, associated with
the continuum spectrum of condensation energies, destroy
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FIG. 25. Numerical results for φ0(ω) and the DOS N (ω) for a toy model at a finite ωD. We set γ = 2.7. As long as ωD is smaller than the
threshold value, the “infinite” peak in N (ω) survives. Once ωD exceeds the threshold, the peak moves into the continuum. To get the DOS in
(c), we solved Eq. (50) near ω0, where it is valid, obtained Imφ0(ω), and smoothly extended it to larger ω.

superconducting order at any finite T , although the onset
temperature Tp = Tp,0 for the pairing is of order ḡ. Below
Tp, bound pairs develop but lack global phase coherence. At
γ < 2 and γ > 2, longitudinal fluctuations are gapped, and
it is natural to expect that Tc becomes nonzero. We argued
in paper V that this is the case for SC I, and that Tc increases
gradually with 2 − γ . It is natural to assume that SC II also has
long-range superconducting order at T < Tc, which increases
gradually with γ − 2.

To verify this, we compute the superconducting stiffness
ρs [the prefactor in F = ρs

∫
dr∇2η0(r), where η0(r) is the

phase of the order parameter �0(r) = �0eiη0(r)]. We show the
results for different γ and ωD in Fig. 26. In the calculations,
we only included the n = 0 solution, i.e., we neglected fluctu-
ation corrections from the solutions with other n.

At small ωD, the stiffness, expressed in units of EF , rapidly
decreases with increasing γ . Taken at a face value, this would
imply that the strength of phase fluctuations rapidly increases
with γ . One has to be careful here, however, because our
analysis is valid as long as corrections to Eliashberg theory
are small. These corrections come from the renormalizations
of side vertices in the diagrams for fermionic self-energy
and the pairing vertex and hold in powers of the Eliashberg
parameter λE , which then needs to be at most O(1). For
γ = 2, λE = a2ḡ2/(EFωD), where a2 = O(1) (see, e.g., paper
V and Ref. [15]). To keep λE small at small ωD/ḡ, one need
to simultaneously increase EF . The stiffness ρs, expressed in
units of the onset temperature for the pairing, Tp, and λE ,
scales as ρs ∼ Tp/λE . Then, as long as λE � 1, the ratio ρs/Tp
does not become small at small ωD, which implies that phase
fluctuations from the n = 0 solution alone cannot substan-
tially reduce the actual Tc compared to Tp.

For γ 
= 2, the Eliashberg parameter is, up to a prefactor,
λE = aγ ḡγ /(EFω

γ−1
D ). In panels (b) and (c) of Fig. 26, we

plot ρs in units of Tp/λE , with Tp taken from [16]. We see

that this ratio remains finite at ωD → 0 for all γ > 1 and
actually increases with γ . This implies that within Eliashberg
theory, phase fluctuations from the n = 0 solution alone, do
not destroy superconducting order even at ωD → 0.

A more subtle question is whether for γ > 2, the order
below Tc is SC II, or the SC I/SC II boundary may lay below
Tc line. We assume without proof that the phase below Tc at
γ > 2 is SC II. This yields the “symmetric” phase diagram,
shown in Fig. 2, with two distinct ordered phases SC I and SC
II, and the pseudogap phase in between.

For completeness, in Fig. 27, we show the phase diagram
near γ = 2 with additional set of lines, indicating a cascade of
topological transitions at a set of discrete γ , when dynamical
vortices cross, one by one, into the upper half-plane of fre-
quency as γ increases towards 2 from either side. The phase
winding of �0(ω) along the real axis increases by 2π each
time a new dynamical vortex moves into the upper half-plane.

VIII. CONCLUSIONS

In this paper, the sixth in the series, we analyzed the
interplay between non-Fermi liquid and pairing in the effec-
tive low-energy model of fermions with singular dynamical
interaction V (�m) = ḡγ /|�m|γ (the γ model). The model
describes the low-energy physics of various quantum-critical
metallic systems at the verge of an instability towards density
or spin order as well as pairing of fermions at the half-filled
Landau level, color superconductivity, and pairing in SYK-
type models (see paper I for the list of microscopic models).
In previous publications, paper I–V, we analyzed the physics
of the model with γ � 2. The key outcome of those studies
was that a peculiar quantum-critical behavior develops within
the set of these critical models as the exponent γ approaches
γ = 2. Specifically, for any γ < 2, there is an infinite number
of discrete minima of the condensation energy Ec,n. As γ
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FIG. 26. Numerical results for the superfluid stiffness ρs for different γ and ωD. (a) ρs in units of Fermi energy EF , as a function of ωD for
different γ . For γ > 1, the stiffness vanishes as ω

γ−1
D . We verified this dependence analytically. (b) The stiffness in units of Tp/λE , where Tp is

the onset temperature of the pairing and λE = ḡγ /(EFω
γ−1
D ) is Eliashberg parameter, which measures the strength of corrections to side vertices

in the diagrams for the self-energy and the pairing vertex (in commonly accepted language, λF measures the strength of vertex corrections to
Eliashberg theory). The parameter λE has to be smaller than (roughly) one. We see that ρsλE/Tp tends to a finite value at ωD = 0. This result
implies that vertex corrections from only n = 0 state do not destroy superconducting order up to T � Tp. (c) Comparable analysis of ρs/EF

and ρsλE/Tp at ωD → 0.

approaches 2 from below, the set gets more dense, and be-
comes a continuous one at γ = 2. Simultaneously, the number
of dynamical vortices in the upper half-plane of frequency

FIG. 27. A cascade of topological transitions, indicated by the
set of blue dashed lines around γ = 2. Upon crossing each line, a
dynamical vortex moves into the upper half-plane of frequency, and
the total phase variation of �0(ω) = |�0(ω)|eiη(ω) between ω = −∞
and +∞ jumps by 2π .

tends to infinity, and poles approach the boundary of the upper
half-plane.

In this paper, we considered the γ model with exponents
2 < γ < 3 and address the issue what happens on the other
side of the quantum transition. We argued that the system
moves away from criticality, e.g., the spectrum of the con-
densation energy again becomes discrete, with one particular
minimum, corresponding to the gap function �0(ω), the num-
ber of dynamical vortices in the upper half-plane becomes
finite and decreases with increasing γ , and the poles move
back into the lower half-plane. However, for this to hold, the
gap function has to move to a different sheet of the Riemann
surface from the one where it is located at γ < 2. This makes
superconducting states at γ < 2 and γ > 2 (phases SC I and
SC II, respectively) topologically different and also makes
γ = 2 a topological quantum-critical point.

We found that there is at least one qualitative difference
in the behavior of observables in SC I and SC II. Namely, at
γ > 2, the DOS has a nonintegrable singularity at the lower
edge of the gapped continuum. In physical terms, this implies
that the spectrum of excited states contains a level (a bound
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state) with macroscopic degeneracy. We argued that the SC
II state exists in a finite range of a mass of a pairing boson,
ωD. We presented the phase diagrams in variables (ωD, γ ) at
T = 0 (Fig. 3) and in variables (T, γ ) at ωD = 0 (Fig. 2). The
last phase diagram contains superconducting phases SC I and
SC II and an intermediate state with preformed pairs but no
long-range superconducting order.

From physics perspective, the peak in the DOS can be
understood using the same reasoning as in Ref. [6], as a
bound state between an excitation and an off-diagonal pairing
field that this excitation can be modified via the self-energy.
Indeed, we find that the self-energy �(ω) becomes singu-
lar at the lower end of the continuum, where �(ω) = ω,
i.e., at this frequency the effective potential, acting on a
fermion in a superconductor, is infinite. A fermion in an
infinite potential undergoes a self-trapping that generally
leads to bound states. This argument however, does not im-
mediately explains why the bound state is macroscopically
degenerate.

The emergence of the nonintegrable singularity may be
related to the fact that for γ > 2, the gap equation on the real
axis contains a formally divergent contribution, which needs
to be regularized. The divergence comes from the interaction
V (�) in the limit of zero frequency transfer � → 0. The inter-
action V (� → 0) scatters with vanishingly small frequency
transfer and in this respect acts on electrons in the same
way as impurities. The contribution from V (0) that cancels
out without regularization, is analogous to the contribution
from nonmagnetic impurities, while the one, which cancels
out only after regularization, is analogous to the contribution
from magnetic impurities. In this respect, there may be a sim-
ilarity between our bound state and Yu-Shiba-Rusinov in-gap
bound state in the DOS of a superconductor in the presence of
magnetic impurities [17–19].

Finally, the very fact that the leading order in the expansion
in X = ωφ̇0 tan φ0 captures the divergence in the DOS, but
does not capture the power-law singularity at the edge of the
continuum, is similar to the situation in the x-ray Fermi edge
and Kondo problems (see, e.g., Refs. [20–24] and references
therein). From this perspective, one might think that effects
similar to the orthogonality catastrophe [25] are also at play
in the γ model despite that this model is for a clean system.
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APPENDIX A: KK TRANSFORMATION FOR THE
INTERACTION

In this Appendix, we discuss the subtlety with expressing
the gap equation on the real axis, Eq. (3), in terms of C(ω),
given by Eq. (19). Taken at a face value, the integral in the
r.h.s. of (19) contains the piece

−iḡγ sin
πγ

2

dD(ω)
dω√

1 − D2(ω)

∫ ω

0+
d�

1

�γ−1
. (A1)

For γ > 2, the integral formally diverges and has to be prop-
erly regularized.

We went back to the computational steps, involved in the
derivation of the gap equation on the real axis, and traced
the divergence in the integral forC(ω) to the divergence in the
KK relation for the interaction on the real axis. Specifically,
on the real axis,

V (�) =
(

ḡ

|�|
)γ (

cos
πγ

2
+ i sin

πγ

2
sgn�

)
. (A2)

The derivation ofC(�) uses the KK relation expressingV ′(�)
in terms of V ′′(�):

V ′(ω) = 1

π
P

∫ ∞

−∞

V ′′(x)

x − �
= 2

π
P

∫ ∞

0

V ′′(x)x

x2 − �2
, (A3)

where P stands for principle value. Rescaling x by � we find
that for V (�) from (A2), this relation is satisfied if

2

π

∫ ∞

0

dy

yγ−1

1

y2 − 1
= cot

πγ

2
. (A4)

For γ < 2, this relation holds, as one can easily verify, but for
γ > 2, the integral in the l.h.s. of (A4) diverges.

We argue that to avoid the divergence and satisfy the KK
relation for all γ , one has to modify the integration contour
to the one shown in Fig. 4, which bypasses y = 0 by moving
slightly into the upper half-plane of frequency. Indeed, extend-
ingV (ω) into the upper half-plane and integrating in (A3) over
the contour in Fig. 4, we find that the integral in the l.h.s. of
Eq. (A4) gets modified to

2

π

[∫ ∞

ε/ω

dy

yγ−1

1

y2 − 1
+

(ω

ε

)γ−2 1

γ − 2

]
(A5)

for 2 < γ < 4. The remaining integral is∫ ∞

ε/ω

dy

yγ−1

1

y2 − 1
= −

∫ ∞

ε/ω

dy

yγ−1
+

∫ ∞

0

dyy(3 − γ )

y2 − 1

= −
(ω

ε

)γ−2 1

γ − 2
− tan

(γ − 1)π

2
.

(A6)

Substituting into (A5), we find that the divergent term cancels
out, and the KK relation is satisfied. For γ > 4, the subleading
term in (A6) also diverges, and the integral over a half-circle
near z = 0 has to be computed by including (ε/ω)2 terms (and
higher powers for even larger γ > 6). We verified that the sub-
leading divergent terms also cancel out, i.e., integrating over
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the modified contour one does satisfy the KK relation (A3) for
all γ . One can also check that the other KK relation

V ′′(ω) = − 1

π
P

∫ ∞

−∞

V ′(x)

x − �
= −2�

π
P

∫ ∞

0

V ′(x)

x2 − �2
(A7)

is also satisfied for all γ , despite that the integral in
the r.h.s. of (A7) formally diverges for γ > 1. The
Cauchy relation between V (�m) and V ′′(�): V (�m) =
(1/π )

∫ ∞
0 dxV ′′(x)x/(x2 + �2

m) is also satisfied for the inte-
gration contour as in Fig. 4.

In practical terms, bending of the integration contour to
by-pass the z = 0 point is equivalent to just canceling out
the divergent terms in the KK transformation. For C(ω), this
implies that

∫ ω

0+ d�/�γ−1 has to be evaluated as

∫ ω

ε

d�

�γ−1
− 1

γ − 2

1

εγ−2
= − 1

γ − 2

1

ωγ−2
. (A8)

Using this procedure, one obtains that the prefactor for the φ̇0

term in the gap equation evolves smoothly through γ = 2.

APPENDIX B: THE GAP FUNCTION ALONG
THE REAL AXIS

When the critical boson becomes massive, the Eliash-
berg equantion along the Matsubara axis takes the following

form:

�(ωm) = ḡγ πT
∑
ω′
m

�(ω′
m) − �(ωm)ω′

m
ωm√

(ω′
m)2 + �2(ω′

m)

× 1[
(ω′

m − ωm)2 + ω2
D

]γ /2 , (B1)

where ωD > 0 is the mass of the intermediate boson. In this
section, we make the analytic continuation of the above equa-
tion to the real axis.

To that end, we use the spectral representation of the inter-
action χ (ωm) = (1/π )

∫
dωχ ′′(ω)/(ω − iωm), where χ ′′(ω)

is the imaginary part of the interaction along the real axis

χ (ω) = ḡγ

(ωD − ω − iδ)γ /2(ωD + ω + iδ)γ /2
, (B2)

where δ is an infinitesimal positive number. Noting
that Arg[(ωD − ω − iδ)(ωD + ω + iδ)] = −πsignω�(|ω| −
ωD), we have

χ ′(ω) = ḡγ(|ω|2 − ω2
D

)γ /2 �(ωD − |ω|)

+ ḡγ(|ω|2− ω2
D

)γ /2 cos
(πγ

2

)
�(|ω|− ωD), (B3)

χ ′′(ω) = ḡγ(|ω|2− ω2
D

)γ /2 sin
(πγ

2

)
signω�(|ω|− ωD). (B4)

With this representation, the gap equation can be rewritten as

�(ωm) =
∫ ∞

−∞
dωχ ′′(ω)

⎛
⎝T

∑
ω′
m

�(ω′
m) − �(ωm)ω′

m
ωm√

(ω′
m)2 + �2(ω′

m)

1

ω − i(ωm − ω′
m)

⎞
⎠. (B5)

Now we make the analytic continuation iωm → z, while keeping the terms within the bracket analytic on the upper complex
plane:

T
∑
ω′
m

�(ω′
m) − �(ωm)ω′

m
ωm√

(ω′
m)2 + �2(ω′

m)

1

ω − i(ωm − ω′
m)

→ T
∑
ω′
m

�(ω′
m)√

(ω′
m)2 + �2(ω′

m)

1

ω − z + iω′
m

− �(ωm)

ωm
T

∑
ω′
m

ω′
m√

(ω′
m)2 + �2(ω′

m)

1

ω − z + iω′
m

− 1

2

�(z − ω)√
−(z − ω)2 + �2(z − ω)

(
tanh

ω − z

2T
− coth

ω

2T

)
+ 1

2

�(z)

z

z − ω√
−(z − ω)2 + �2(z − ω)

(
tanh

ω − z

2T
− coth

ω

2T

)
.

(B6)

The additional terms except that from the replacement iωm →
z ensure that the extended function of z gets rid of the pole
at z = ω + iω′

m (|ω| > ωD). The gap equation on the upper
complex plane takes the form

zD(z) = πT
∑
ω′
m

�(ω′
m)√

(ω′
m)2 + �2(ω′

m)
χ (ω′

m + iz)

− iD(z)πT
∑
ω′
m

ω′
m√

(ω′
m)2 + �2(ω′

m)
χ (ω′

m + iz)

− 1

2

∫ ∞

−∞
dωχ ′′(ω)

�(z − ω) − (z − ω)D(z)√
−(z − ω)2 + �2(z − ω)

×
(

tanh
ω − z

2T
− coth

ω

2T

)
, (B7)

where D(z) = �(z)/z and V (−iz) = (ḡ2/(ω2
D − z2))γ /2. In a

compact form, we have

zD(z)B(z) = A(z) +C(z),
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where

A(z) = πT
∑
ω′
m>0

D(ω′
m)√

1 + D2(ω′
m)

(χ (ω′
m + iz) + χ (ω′

m − iz)),

(B8)

B(z) = 1 + i
πT

z

∑
ω′
m>0

1√
1 + D2(ω′

m)
(χ (ω′

m + iz)

− χ (ω′
m − iz)), (B9)

C(z) = −1

2

∫ ∞

−∞
dωχ ′′(ω)

�(z − ω) − (z − ω)D(z)√
−(z − ω)2 + �2(z − ω)

×
(

tanh
ω − z

2T
− coth

ω

2T

)
. (B10)

Below we consider the real axis where we replace z by ω + iδ.
At zero temperature, using the spectral representation of the
interaction χ (ω), the above functions reduce to

A(ω) = 1

2

∫ ∞

0
dωm

D(ωm)√
1 + D2(ωm)

(χ (ωm + iω)

+ χ (ωm − iω)) (B11)

B(ω) = 1 + i

2z

∫ ∞

0
dωm

1√
1 + D2(ωm)

(χ (ωm + iω)

− χ (ωm − iω)) (B12)

C(ω) = i

2

∫ |ω|

0
d�χ ′′(�)

D(ω − �) − D(ω)√
1 − D2(ω − �)

. (B13)

Once we obtained D(ωm) by solving the Eliashberg equation
along the Matsubara axis, A(ω) and B(ω) are known func-
tions.

APPENDIX C: EXPANSION OF C(ω)

We evaluate C(ω) in (19) by Taylor-expanding the inte-
grand in powers of internal �, integrating each term in the
expansion, and summing up the series. This procedure is
inspired by the fact that only one term in the series survives
at γ = 2. However, away from this γ , an infinite number of
terms appear with the same prefactor (γ − 2), and one has to
sum up infinite series.

1. At a QCP

We first consider the case at a QCP and perform the integral
over � at each order of the expansion:∫ ω

0

d�

�γ
�n = ωn+1−γ

n + 1 − γ
, n = 1, 2, . . . (C1)

The infrared divergence for n = 1 is avoided using the trick
discussed in Appendix A. The expansion ofC(ω) is then given
by a differential form

C(ω) = ḡγ

ωγ−2

sin πγ

2

2 − γ
D(ω)

{
φ̇ + γ − 2

2(3 − γ )
ω[tan φφ̇2 + φ̈] − γ − 2

6(4 − γ )
ω2[(2 + 3 tan2 φ)φ̇3 + 3 tan φφ̇φ̈ + ˙̇φ̇ ]

+ γ − 2

24(5 − γ )
ω3[(11 tan φ + 12 tan3 φ)φ̇4 + (12 + 18 tan2 φ)φ̇2φ̈ + 3 tan φφ̈2 + 4 tan φ(φ̇)(˙̇φ̇ ) + φ(4)]

− γ − 2

120(6 − γ )
ω4[(16 + 75 tan2 φ + 60 tan4 φ)φ̇5 + (110 tan φ + 120 tan3 φ)φ̇3φ̈

+(20 + 30 tan2 φ)φ̇2˙̇φ̇ + 5(6 + 9 tan2 φ)φ̇φ̈2 + 5 tan φφ̇φ(4) + 10 tan φ(φ̈)(˙̇φ̇ ) + φ(5)] + . . .

}
. (C2)

The order of this expansion is equal to the number of derivatives with respect to ω (denoted as M). The leading order M = 1
survives at γ − 2. All the higher order terms are proportional to the small parameter γ − 2. Clearly, the small-� expansion is
not equivalent to a small-(γ − 2) expansion.

As we are mainly interested in the gap function around ω0, where φ = π/2 and tan φ = ∞, we choose the highest power of
tan φ in the coefficients of each differential term in Eq. (C2). Keeping only the first derivative terms gives rise to

C(ω) = ḡγ

ωγ−2

sin πγ

2

2 − γ
D(ω)φ̇

[
1 + γ − 2

2(3 − γ )
X − γ − 2

2(4 − γ )
X 2 γ − 2

2(5 − γ )
X 3 + . . .

]
, (C3)

namely Eq. (28) in the main text, where X = ω tan φφ̇. This leads to the gap equation in Eq. (29), which has been analyzed in
Sec. V B.

Now we examine the effect of terms with higher derivatives (e.g., φ̈, ˙̇φ̇ , etc.). To simplify the discussion, we consider the
case γ = 2 + 0, for which without higher derivatives we have at ω slightly below ω0: φ = π/2 + Q(ω0 − ω)/ ln(1 − ω/ω0)
with Q = 4ω

γ−1
0 /[π (γ − 2)ḡ)γ ] [see Eq. (41)] and check how this behavior is affected by terms with higher derivatives. The

contributions of these terms to C(ω) is

− ḡγ sin πγ

2

ωγ−2
D0(ω)

[
1

2!
ωφ̈

(
1 − 1

2
X + 1

2
X 2 − 1

2
X 3 + . . .

)
− 1

3!2
ω2˙̇φ̇

(
1 − 2

3
X + 3

4
X 2 − 4

5
X 3 + . . .

)

+ 1

4!3
ω3˙̇ ˙̇φ

(
1 − 3

4
X (1 − 6

5
X + 8

6
X 2 + . . . )

)
− . . .

]
. (C4)
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The prefactor for each term is a particular series in X . Sum-
ming up these series and using the fact at ω ≈ ω0, X is large,
we find that each series sums up to 1/2. The expression in the
square brackets in (C4) then becomes

1

2

(
1

2!
ωφ̈ − 1

3!2
ω2˙̇φ̇ + 1

4!3
ω3˙̇ ˙̇φ − . . .

)
(C5)

To understand whether the terms with higher derivatives are
important, we substitute into this expressions the values of
φ̇, ˙̇φ̇ , etc, obtained using previous result for φ(ω), Eq. (41).
From that formula, φ̇ = Q/ lnX and ωn−1

0 φ(n�2) = −(n −
2)!QXn−1/ ln2 X . Substituting these expressions, we rewrite
Eq. (C5) as

− 2
Q

ln2 X

∞∑
m=0

(−1)mXm+1

(m + 1)2(m + 2)
. (C6)

With these contributions, the gap equation gets modified to

φ̇

[
1 + γ − 2

2
[ln(1 + X ) + K]

]
= 2ωγ−1

π ḡγ
, (C7)

where K is given by Eq. (44) in the main text. At large X ,
K ≈ −(1/2) lnX . We see therefore that the terms with higher
derivatives do not change the functional form of the gap equa-
tion and only add 1/2 to the prefactor for the ln(1 + X ) term.

2. A finite ωD

Next, we consider the effect of a finite but small mass
(ωD > 0) of the critical boson. We redo the integral over �

in the presence of a finite ωD:∫ ω

ωD

d�(
�2− ω2

D

)γ /2 �n =ω
n+1−γ

D

2
B1−( ωD

ω
)2

(
1− γ

2
,
γ − n− 1

2

)
,

(C8)

where Bz(a, b) refers to the incomplete Beta function. The di-
vergence at � = ωD at γ > 2 is again avoided using the trick
discussed in Appendix A. Near γ = 2, this integral depends
on the ratio between ωn−1

D and γ − 2, i.e.,∫ ω

ωD

d�(
�2 − ω2

D

)γ /2 �n = 1

2 − γ
ωn−1
D + O((2 − γ )0). (C9)

The function C(ω), however, is regular because 1/(2 − γ ) is
canceled out by the small factor sin(πγ /2) from the inter-
action function. Subtracting the contribution at ωD = 0 and
keeping only the leading order in γ − 2, we obtain the modi-
fication to C(ω) due to a finite mass in the form

ḡγ

ωγ−2

sin πγ

2

2 − γ
D(ω)

[
−1

2
φ̇(Y − Y 2 + Y 3 − Y 4 + . . . )

−
(

1

2!
ωDφ̈ − 1

3!
ω2
D

˙̇φ̇ + 1

4!
ω3
D

˙̇ ˙̇φ + . . .

)

×
(

1 − Y + 3

2
Y 2 − 2Y 3 + 5

2
Y 4 + . . .

)]
, (C10)

where Y = ωD tan φφ̇.
Ignoring the terms with second and higher order deriva-

tives, we obtain the result presented in Eq. (54). From that
expression, we obtained in the main text the critical ωc

D,

Eq. (55). This critical ωc
D is determined by Y = O(1) and

X 	 1 (relevant X ≈ Yω0/ωD 	 Y ).
To estimate the role of the terms with higher derivatives

in (C10), we evaluate them at the same Y = O(1) and X 	
1. The series 1 − Y + 3Y 2/3 − 2Y 3 + 5Y 4/2 sum up to O(1)
at Y = O(1). For the series ωDφ̈/2! − ω2

D
˙̇φ̇/3! + ω3

D
˙̇ ˙̇φ /4! +

. . . we borrow the result from the previous Section and obtain

1

2!
ωDφ̈ − 1

3!
ω2
D

˙̇φ̇ + 1

4!
ω3
D

˙̇ ˙̇φ + . . .

= − Q

ln2 X
Y

∞∑
m=0

(−1)m

(m + 1)(m + 2)
Ym

= − Q

ln2 X

(
1 + Y

Y
ln(1 + Y ) − 1

Y

)

= − φ̇

lnX

(
1 + Y

Y
ln(1 + Y ) − 1

Y

)
(C11)

For Y = O(1), this is of order − φ̇

lnX . For the same Y = O(1),
the first term in (C10) is of order φ̇, i.e., is larger by lnX . This
implies that the terms with higher derivatives can be safely
neglected.

APPENDIX D: THE n = ∞ SOLUTION ON THE UPPER
COMPLEX PLANE

The n = ∞ solution along the Matsubara axis is given
analytically by the same expression as for γ � 2, and we refer
to Refs. [1,4,5] for details. Its analytic continuation towards
the upper complex plane of frequency is obtained by a rotation
of frequency axis, iωm → z = ω′ + iω′′ = |z|eiψ , which gives
rise to

�∞(z) =
∫ ∞

−∞
dk

e−θke−iIk−ik ln yz
√

cosh(π (k − β )) cosh(π (k + β ))
, (D1)

where yz = (|z|/ḡ)γ , θ = (π/2 − ψ )γ , and

bk = e−i(Ik+k ln (γ−1))

[cosh(π (k − β )) cosh(π (k + β ))]1/2
. (D2)

Here

Ik = 1

2

∫ ∞

−∞
dk′ ln |εk′ − 1| tanh π (k′ − k), (D3)

εk′ = 1 − γ

2

�
(

γ

2

(
1 + 2ik′))�(

γ

2 (1 − 2ik′)
)

�(γ )

×
(

1 + cosh πγ k′

cos πγ /2

)
, (D4)

and β > 0 is the solution of εβ = 1. This extension is limited
to the region −π/γ < ψ − π/2 < π/γ where the integral
giving rise to �∞(z) is convergent. The critical axis ψ =
π/2 ± π/γ is on the lower complex plane when γ < 2, and
rotates to the upper plane when γ > 2. Along the critical axis,
the behavior of �∞(z) is very similar to that along the real axis
at γ = 2, where the phase η∞(z) = Arg(D∞(z)) winds up to
infinity as |z| → ∞, while the amplitude follows a power-law
increase ∼|z|γ /2/(γ−1). The phase winding is attributed to the
existence of an array of infinite vortices that line up along the
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FIG. 28. Vortices of the gap function �∞(z) in the upper half-plane of frequency for representative γ between 1 and 3 (z = ω′ + iω′′).
These vortices form an array, pointing along the axis arg(z) = π/2 − π/γ . This axis rotates from the lower half-plane at γ < 2 towards the
upper half-plane at γ > 2. It coincides with the real axis at the critical point γ = 2.

critical axis as |z| → ∞. Consequently, there is only a finite
number of vortices in the upper half-plane when γ < 2, but
the number becomes infinite for γ � 2. We illustrate this in
Fig. 28.

APPENDIX E: A DISCRETE SET OF SOLUTIONS OF THE
NONLINEAR GAP EQUATION

Here we present the details of the analysis of a discrete
set of solutions �n(ωm). We depart from the solution of the
linearized gap equation and expand the solution of the full
nonlinear gap equation in powers of � as

�(ωm) =
∞∑
j=0

ε2 j+1�(2 j+1)(ωm), (E1)

where �(1)(ωm) = �∞(ωm). We then solve iteratively for
�(2 j+1) in terms of �(2 j′+1) and j′ < j.

The gap equation must be satisfied at each order of ε, which
imposes the following equation:

ωmD
(2 j+1)(ωm)

− ḡγ

2

∫ ∞

−∞
dω′

m(D(2 j+1)(ω′
m)− D(2 j+1)(ωm))

sign(ω′
m)

|ω′
m− ωm|γ

= K (2 j+1)(ωm), (E2)

with j = 0, 1, 2, . . . The source term K (2 j+1)(ωm) is built
from the gap function of a lower order 1 � j′ < j. For ex-
ample, the first two orders are given by

K (0)(ωm) = 0, (E3)

K (3)(ωm) = − ḡγ

4

∫ ∞

−∞
dω′

m

sgn(ω′
m)

|ω′
m − ωm|γ

× (D(1)(ω′
m) − D(1)(ωm))D(1)2(ω′

m). (E4)

Since K (0)(ωm) = 0, the leading order is given by the solution
of the linearized gap equation

D(1)(ωm) = D∞(ωm). (E5)

At ω 
 ḡ, there is

D(1)(ωm) → 2sgn(ωm)

( |ωm|
ḡ

)δ

cos f (ωm), (E6)

where δ = (γ − 2)/2 and

f (ωm) = β ln
|ωm|γ
ḡγ

+ φ. (E7)

We note that the term ωmD(0)(ωm) in the gap equation is
irrelevant for the small frequency behavior. This holds true
for each subleading order to be discussed.

Provided the leading order j = 0 solved, one can compute
the source term at the next order, K (3)(ω), and then search
for the induced solution D(3)(ωm). For the smallest frequency,
K (3)(ω) is free from the ultra-violet details, and thus fully
determined by the asymptotic form of D(1)(ω) in Eq. (E6).
One can continue this process to higher orders, which is sum-
marized as a two-step iterative procedure. (1) Once we found
the solution at orders j′ < j, we first compute the source term
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at order j:

K ( j)(ωm) = ḡ

( |ωm|
ḡ

)( j− 1
2 )(γ−2)−1

×
j∑

r=0

ei(2r+1) f (ωm )I (2 j+1)
2r+1 + c.c., (E8)

where I (2 j+1)
2r+1 is determined from the lower-order solutions.

For j = 1, we use the j = 0 solution and obtain

I (3)
1 = − 1

4 I (3δ + iβγ , 2δ + 2iβγ ) − 1
2 I (3δ + iβγ , 2δ),

(E9)

I (3)
3 = − 1

4 I (3δ + 3iβγ , 2δ + 2iβγ ). (E10)

Here we have defined the integrals

I (a, b) =
∫ ∞

−∞

dx

|x − 1|γ (|x|a − sign(x)|x|b)

= B(γ − 1 − a, 1 + a) + B(γ − 1 − b, 1 + b)

+ π csc(πγ )

�(γ )

(
�(1 + a)

�(2 − γ + a)
− �(1 + b)

�(2 − γ + b)

+ �(γ − 1 − a)

�(−a)
− �(γ − 1 − b)

�(−b)

)
, (E11)

where B(x, y) is the Beta function. The convergence of this
integral requires γ < 3 and −1 < Re[a], Re[b] < γ − 1. On
order j = 1, it requires γ < 3; on an arbitrary order j > 1, it
requires γ < 2 + 2/(2 j − 1).

(2) The source term in Eq. (E8) leads to the induced solu-
tion at order j:

D( j)(ωm) � 2sgn(ωm)

( |ωm|
ḡ

)(2 j+1)δ

×
j∑

r=0

Q(2 j+1)
2r+1 cos

(
(2r + 1) f (ωm) + φ

(2 j+1)
2r+1

)
.

(E12)

where

Q(2 j+1)
2r+1 exp

[
iφ(2 j+1)

2r+1

] = −2I (2 j+1)
2r+1

/
J (2 j+1)

2r+1 , r = 0, 1, . . . , j;
(E13)

and

J (2 j+1)
2r+1 = I ((2 j + 1)δ + iβγ (2r + 1), 0). (E14)

The integrals J (2 j+1)
2r+1 is convergent under the same condition

as I (2 j+1)
2r+1 .
To apply the above iterative procedure for any given γ >

2, however, we must stop at a finite order j ∼ 1/(γ − 2),
above which, the gap function cannot be satisfied because
the divergence in both integrals I (2 j+1)

2r+1 and J (2 j+1)
2r+1 cannot be

canceled out from the equation. The divergence indicates the
gap equation at the low-frequency limit depends on the gap
function at the higher frequency, which in turns depends on
the parameter ε. In other words, ε enters the gap equation at
each order by renormalizing the divergence. To satisfy the gap
equation, only a discretized set of ε is possible, indicating that
the solutions form an infinite and discrete set.

APPENDIX F: BEHAVIOR OF �0(ωm) IN THE EXTENDED
γ MODEL AT M → 0

The numerical solution in Fig. 12(b) for γ > 2 shows that
�0(ω̄m), where ω̄m is a properly normalized frequency, van-
ishes at M = 0 in a rather peculiar way: the gap function at
zero frequency, �0(0), gradually decreases as M gets smaller
and vanishes at M = 0, however the full function �0(ω̄m) re-
mains finite at M = 0+ and scales as ω̄m at small frequencies.

In this section, we analyze the behavior of �0(ω̄m) analyt-
ically and argue that at M = 0+, there exists a one-parameter
continuous set �0,ε(ω̄m), specified by a parameter ε, which
runs between εmin = 0+ and a finite εmax. All �0,ε(ω̄m) vanish
at ω̄m = 0 and scale linearly with ω̄m at small frequencies,
but the slope is proportional to ε. As M approaches zero
from the positive side, the gap function �0(ω̄m) approaches
�0,εmax (ω̄m), while as M approaches zero from the negative
side, the gap function is infinitesimally small and approaches
�0,εmin (ω̄m),

The gap function with εmin is the solution of the linearized
gap equation. At small frequencies, �0,εmin (ω̄m) is the sum of
two power-laws (ω̄m)a1,2 . At M → 0, a1 approaches 1 and a2

approaches γ − 1 > 1, hence (ω̄m)a1 is much larger, hence
�0,εmin (ω̄m) is linear in ω̄m at small frequencies. Like we
said, the numerical solution of the nonlinear gap equation at
M → 0 also shows linear dependence of the gap function on
frequency at small ω̄m. Based on this analogy, we assume that
at M → 0, there is a set of gap functions �0,ε(ω̄m), which at
small ω̄m are all linear in ω̄m at M = 0+ and at vanishingly
small but finite M behave as �0,ε(ω̄m) = ε|ω̄m|1+δsign(ω̄m),
where δ scales with M.

To determine the two parameters ε and δ, we substitute this
trial function into the modified gap equation in Eq. (11). In the
infrared limit, the bare ω̄m term in the l.h.s. is irrelevant, and
ignoring it we rewrite Eq. (11) as∫

dω̄′
m

|ω̄m − ω̄′
m|γ

( |D(ω̄m)|√
1 + D2(ω̄m)

− |D(ω̄′
m)|√

1 + D2(ω̄′
m)

)

= MD(ω̄m)
∫

dω̄′
m

|ω̄m − ω̄′
m|γ

×
(

sign(ω̄m)√
1 + D2(ω̄m)

− sign(ω̄′
m)√

1 + D2(ω̄′
m)

)
. (F1)

Substituting the trial function into this equation, expanding
to order ε3, and evaluating the integrals which turn out to be
convergent in the infrared and ultra-violet limits, we obtain at
vanishing δ

δ

2
I (γ )(1 − ε2 + O(ε4)) = M

γ − 1
+ O(Mε2), (F2)

where

I (γ ) = −
∫ ∞

0
dx ln x

(
1

|1 − x|γ + 1

(1 + x)γ

)

= 1

γ − 1

(
H (γ − 2) − H (1 − γ ) + π

sin πγ

)
(F3)

and H (x) is the Harmonic number, analytically continued
from H (n) = ∑n

k=1 1/k. In the two limits, I (γ ) � π2(γ −
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2)/2 near γ = 2 and I (γ ) � 1/(3 − γ ) near γ = 3. We see
that δ ∝ M, as we anticipated.

Equation (F2) sets one condition on two parameters, δ and
ε and therefore allows for a continuous set of solutions. Taking
the limit M → 0 and keeping δ/M = α > 0 as a constant, we
obtain ε as a function of α:

ε =
√

1 − 2

(γ − 1)I (γ )

1

α
. (F4)

As α varies between (γ − 1)I (γ )/2 and ∞, the amplitude pa-
rameter ε changes continuously from εmin = 0+ to εmax = 1.
The gap function with εmin is the solution of the linearized
gap equation, which is also the only solution one can obtain
by approaching M = 0 from negative M, while the solu-
tion with εmax is �0(ω̄m) that we obtained numerically by
solving the nonlinear gap equation at M → 0 coming from
positive M.
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