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Dynamical vortices in electron-phonon superconductors
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We analyze the structure of an s-wave superconducting gap in systems with electron-phonon attraction and
electron-electron repulsion. Earlier works have found that superconductivity develops despite strong repulsion,
but the gap, A(w,,), necessarily changes sign along the Matsubara axis. We analyze the sign-changing gap
function from a topological perspective using the knowledge that a nodal point of A(w,,) is the center of
dynamical vortex. We consider two models with different cutoffs for the repulsive interaction and trace the
vortex positions along the Matsubara axis and in the upper frequency half plane on changing the relative strength
of the attractive and repulsive parts of the interaction. We discuss how the presence of dynamical vortices affects
the gap structure along the real frequency axis, detectable in ARPES experiments.
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Introduction. In recent years there has been a tremendous
amount of interest in fundamental properties of superconduc-
tors that go beyond breaking of the U (1) phase symmetry.
Possible candidates are superconductors that additionally
break either time-reversal symmetry [1-3] or lattice-rotational
symmetry (nematic superconductors) [4,5]. Another option is
topological superconductivity, either induced by proximity to
a topological insulator or developing on its own [3,6,7]. Si-
multaneously, there have been multiple studies in recent years
of how superconductivity emerges from a nominally repulsive
interaction [8—12]. The dominant theme of this research is the
analysis of how superconductivity with a spatial gap structure
different from an ordinary s-wave emerges due to screening of
a bare repulsion by the Kohn-Luttinger mechanism, extended
to lattice systems and to cases where screening arises from
soft collective excitations in the spin or charge channel [13].
At the same time, renewed interest in superconductivity in
SrTiO; and other low-density materials [14] has triggered
a re-examination of how ordinary s-wave superconductiv-
ity emerges in systems with strong Coulomb repulsion and
weaker electron-phonon attraction [15-18]. Here and below,
by attraction and repulsion we mean the sign of a dynamical
interaction V (w,, — w,,) on the Matsubara axis, where V is
real and its sign is a well-defined quantity. On the real fre-
quency axis, a dynamical V(w — ') is a complex function of
frequency and there is no direct way to determine its sign.

The “conventional” argument for the existence of su-
perconductivity despite the presence of stronger electronic
repulsion goes as follows: The Coulomb potential is renor-
malized down by scattering in the particle-particle channel in
the interval between the Fermi energy, Er, and the Debye
frequency, wp. If the interval is wide enough, the down-
ward renormalization is strong, and at frequencies below wp

“mchriste @nbi.ku.dk

2469-9950/2021/104(14)/L140501(6)

L140501-1

the Coulomb repulsion becomes smaller than the electron-
phonon attraction [19,20]. This reduced form of the Coulomb
interaction is often referred to as the Morel-Anderson pseu-
dopotential [21] and, in dimensionless units, is denoted w*.
However, this reasoning requires care as the total dynami-
cal four-fermion interaction—the sum of Coulomb repulsion
and electron-phonon attraction—actually remains repulsive at
all frequencies, even after it is renormalized in the particle-
particle channel between Er and wp. A more accurate analysis
(see, e.g., Ref. [22]) shows that the system finds a way to
neutralize the overall repulsion by developing a frequency-
dependent s-wave gap, A(w,,), which changes sign between
small and large frequencies. A conventional description of
electron-phonon superconductivity, in which the effect of the
Coulomb interaction reduces to ©* and the gap function is
nearly frequency independent, emerges only after one inte-
grates out fermions with larger w,, for which A(w,,) has a
different sign. The same care needs to be applied to a semiphe-
nomenological model [18,20], in which electron-phonon and
electron-electron interactions are treated separately, and the
Coulomb repulsion is replaced by an on-site Hubbard U term.
In this model, the total interaction can be made attractive at
small frequencies by adjusting the strength of the Hubbard U .
However, if the upper cutoff for the U term is much larger than
the Debye frequency, the total interaction necessarily becomes
repulsive at larger frequencies. Then, again, the gap function
must change sign between low and high frequencies.

In this communication we analyze the sign change of
A(w,,) from a topological perspective, bringing together the
two directions of research on unconventional superconductiv-
ity. It has been argued recently [23] that a zero of the gap
function on the Matsubara axis is a center of a dynamical
vortex, around which the phase of A winds by 27 under
an anticlockwise rotation. Superconducting states with and
without a zero in A(w,,) are therefore topologically distinct,
and the state with a zero is a dynamical analog of a nodal
topological superconductor [7]. Vortices on the Matsubara
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axis are subtly different from their real-space analogues: A
vortex in real space can appear (disappear) through generation
(annihilation) of a vortex-antivortex pair. For a dynamical
vortex this is not possible, because a dynamical antivortex
corresponds to a pole in A(w,) and cannot emerge in the
upper frequency half plane, where A is analytic. Hence, a
single vortex cannot just appear on the positive Matsubara axis
and has to either come from infinity or come from the lower
frequency half plane. On the other hand, a pair of vortices can
appear (disappear) at a given point on the positive Matsubara
axis as a result of merging (splitting) of two vortices in the
upper frequency half plane (by the Cauchy relation, if there is
a vortex at a complex z = @’ + iw”, there must be another one
atz = —o' +iw").

We emphasize that a vortex gives rise to a 2w phase
variation of the phase n(w) of a complex gap function on
the real axis, A(w)=|A(w)|e"?), between —co and oco. To
see this, one should compute ffooo dwin(w)/dw by closing
the integration contour in the upper half plane. The function
dn(w)/dw has a simple pole at the nodal point, and modi-
fying the contour to a circle around this point, one obtains
a 2 variation of the phase. As a complex A(w) on the real
axis can be detected from ARPES measurements, combined
with Kramers-Kronig analysis (see, e.g., Ref. [24]), the phase
variation is an experimentally measurable quantity.

Nodal points on the Matsubara axis as dynamical vor-
tices. To elucidate these distinct situations, consider first the
case when A(w,,) changes sign once at w,, = wy. Near this
frequency, Ag(wy) = —c(w, — wy) (we set ¢ > 0 for defi-
niteness). Let us analytically continue A(w,,) to the vicinity
of the Matsubara axis, i.e., to z = o’ + iw” (on the Matsub-
ara axis, z = iw,,). Because A(w,,) is nonsingular, A(z) =
A(iw,, - o' + iw”). For any nonzero ', A(z) is a complex
function: A(z) = A’(z) +iA”(z), and we can introduce the
phase of A(z) as n(z) = Im[log A(z)]. Evaluating n(z), we
find that it varies by 2 on an anticlockwise circulation around
wp. This implies that the nodal point at wy is the center of a
dynamical vortex.

Now suppose that there are two nodal points on the Mat-
subara axis. One can straightforwardly verify that each is
the center of a vortex with a 2w anticlockwise circulation.
When these two points are close to each other, at w,; =
wp £ 8, one can approximate the gap function near these
points as A(wy,) =~ ¢(wy — wog — 8)(w, — wo + §). Suppose
that § = 6(x) varies under some parameter, vanishes as x
approaches some xy from below, and then becomes imagi-
nary 8(x > xo) = i8(x). The two vortices approach each other
as x approaches xy from below and merge at wy at x = x;.
However, they do not annihilate because they have the same
“charge.” Indeed, one can easily check that the anticlock-
wise circulation around wy becomes 4. At large x, A(w,,) =
(@Wm — @ — 0)2+8%(x) is now nodeless on the Matsubara axis.
Extending the gap function to the upper half plane of complex
frequency, iw,, = z=a + ib, we find that the vortices split and
move to a = +8(x) and b = w,. We illustrate this below.

Model. For the actual calculations of vortex positions and
trajectories, we consider two models with Hubbard repul-
sion and electron-phonon attraction. In both cases we will
assume that the electron-phonon interaction is Ue—ph(v,) =
gv3/ (v} + v3) [25], with the electron-phonon coupling g, the
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FIG. 1. Total pairing interaction as the sum of electron-phonon
attraction, Ugj_pp (v, ), and Hubbard repulsion, Uy, (v, ), for which we
impose either a soft (a) or a hard (b) cutoff. The insets show a zoom
of the y axis alongside an extended view of the x axis to highlight
the number of sign-changes. In (a) the total interaction is repulsive at
high frequencies while at low frequencies, it can be either repulsive
or attractive, depending on the parameters. Here we choose it to be
attractive. In (b) the total interaction is attractive at both low and high
frequencies, but can be repulsive at intermediate frequencies

phonon frequency vy, and v, = w, — w,,. We set the pa-
rameters such that, at small frequencies, the electron-phonon
attraction is stronger than the Hubbard repulsion and focus on
how vortices appear when the total interaction becomes re-
pulsive at higher frequencies. In the first case, denoted Model
I, we assume a soft cutoff for the Hubbard term, i.e., take it
to be Unub (V) = U(0P™)?/[v2 + (0°)?]. In this case, both
Unup (V) and the electron-phonon interaction scale as 1/ v,%
at the highest frequencies. The total interaction, Uej_pn(v,) +
Unub (v), 18 then either positive at all frequencies or undergoes
a single sign-change, as illustrated in Fig. 1(a). Correspond-
ingly, A(w,,) is either sign-preserving or has a single zero.
We show that, in this situation, a vortex emerges at w,, = 00
at some critical vy and moves down along the Matsubara axis
as vy is reduced. In the second case, denoted Model II, we use
a hard cutoff for the Hubbard repulsion, i.e., assume that it
decays exponentially above a certain scale @™, Upyy(v,) =
U exp(—|v,|/@"™?). The total interaction is then attractive at
both small and large frequencies, but for sufficiently small v,
(at a given U and ») it becomes repulsive at intermediate
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FIG. 2. Gap function along the Matsubara axis, A(w,), for
(a) Model I with a soft cutoff and (b) Model II with a hard cutoff.
The insets are zoom-ins near A(w,,) = 0 and the color denotes vy. In
(a) the gap is sign-preserving for larger vy and changes sign once for
smaller vy. In (b), the sign of the gap at high and low frequencies is
the same. The full A(w,,) is either sign-preserving or changes sign
twice.
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FIG. 3. The phase of the gap function, 7(z), in the upper half plane of frequency for Model I with a soft cutoff for the Hubbard repulsion
[see Fig. 2(a)], where A(z) = |A(z)]e"@, z = o’ + iw”. Along the Matsubara axis, z = iw,,. The periodic color scale denotes the value of the
phase and the points where all the colors meet correspond to vortex locations, around which the phase varies by a factor of 27. As vy increases,

the vortices migrate to the lower half plane.

frequencies, as illustrated in Fig. 1(b). In this case, A(w,,) has
the same sign at small and large w,,, but when vy is smaller
than some critical value, it has two zeros on the Matsubara
axis at finite w,,. As we show below, as vy is reduced, a
pair of vortices first appears on the real axis, on crossing
from the lower to the upper frequency half plane, and then
moves toward the Matsubara axis. The two vortices merge on
the Matsubara axis at a critical value of vy, at which point
A(w,,) develops a double zero at some w,, = wy and then
splits along the Matsubara axis, leading to two sign changes
of A(w,,). These two models describe the same physics as the
ones considered in earlier works [15-18,22] and are meant
to illustrate the variety of cases possible once repulsive and
attractive components of the pairing interaction are treated on
equal footing.

Gap function on the Matsubara axis. We obtain the gap
function within Eliashberg theory by solving the integral gap
equation

Alwp) — Alwy,) 22
Ay =27 Y 20 = A,

m V (C‘)m’)2 + A2(Q)m’)

with the dynamical interaction Uio(Vy) = Uel—pn(vy) +
Unuwp(v,). We are interested in the solution of the nonlinear
gap equation inside the superconducting phase and below we
show results for T /T, = 0.5. We measure all energy variables
in units of g and set U = 0.2, and o°" = ! = 20. The
computational procedure has been discussed extensively, see,
e.g., Ref. [26], and we will focus on the results.

At small frequencies, w,, ~ T, relevant w,, are of the order
of wy,, and Ui (v,) = g — U > 0 by assumption. The solution
of the gap equation in this frequency range yields a regular,
sign-preserving A(w,,), which tends to a finite value at the

Uior(wm — wpy), (1)

smallest |w,,| = T and decreases at larger w,,. In the oppo-
site limit of high frequencies, a simple examination of Eq. (1)
shows that the gap function decays as 1 /wfn. For such w,,, one
can neglect A(w,,) in the r.h.s. of Eq. (1) and pull out Uyt (w,,)
from the summand. This yields the relation

Aww)
(O P+ AXw)
)

A(wp) = AUgi(@p), A=nT )

The sum in the r.h.s. converges at large m’, hence A is finite.
This justifies pulling Uy (w,) from the summand in Eq. (1).

For Model I, at large frequencies, w,, > vy, w1, we have
Uit (@) = (g3 — Uw?})/|w?|. The prefactor changes sign
between vy > v, = w14/U/g and vy < v.. For vy > v, the
sign of A(w,) in Eq. (2) is the same as that of A in the
summand in Eq. (2), and it is natural to assume that A(w,,) is
sign-preserving. For vy < v, the prefactor is negative, hence
A(w,,) must change sign. We show the numerical results for
Model I in Fig. 2(a). Indeed, A(w,,) changes sign at some
frequency when vy < v,.

For Model II, Uyyy,(wy,) vanishes exponentially at frequen-
cies w,, > wi, and hence Uy (w,,) is necessarily positive.
In this situation, the sign of A(w,,) is the same as the sign
of A in Eq. (2). The latter is determined by A(w,,) at the
smallest w,, ~ T, where the gap function is the largest. As
a consequence, the sign of A(w,,) at small and large w,, is
the same. The full A(w,,) then either remains sign-preserving
or changes sign an even number of times, most realistically
twice. We show the numerical results for Model Il in Fig. 2(b).
We see that, as expected, the gap function is either sign-

vy =5.2 vy =5.6 vy =5.7 v = 10.0 vy = 20.0 n(z)
100 T
:3 50m n m “ HO
0 1 ‘ ‘ N |
—50 0 50 —50 0 50 —50 0 50 —50 0 50 —50 0 50
W’ w’ w' w’ w’

FIG. 4. The same as in Fig. 3, but for Model II with a hard cutoff for the Hubbard repulsion [see Fig. 2(b)]. The vortices meet on the
Matsubara axis for vy & 5.7 and split off into the complex frequency plane. Note that encircling the point where the vortices meet near

” =~ 30 yields a phase of 47, as explained in the text.
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FIG. 5. The behavior of the gap function and its phase along the
real axis for (a)—(d) Model I and (e)—(h) Model II. The gap A(w) =
A'(w) + iA"(w) is complex and both A’(w) (blue) and A" (w) (red)
change sign multiple times for smaller vy. The total change of the
phase between w = —oo and w = oo is §n = 2w (n + 1), where n is
the number of vortices in the upper half plane of frequency. This is
reflected in the phase variation, shown in (b), (d), (f), and (h).

preserving or changes sign twice, depending on the value of
V0.

Dynamical vortices in the complex plane. Extending the
analysis to complex frequencies z = o’ 4 iw” we obtain the
gap function A(z) in the entire upper complex frequency
plane. This will allow us to see how a pair of vortices moves
away from the Matsubara axis in Model II and also to check
whether there are additional vortices away from the Matsubara
axis. Our rationale for searching for these extra vortices is the
study in Refs. [23,27], which showed that a set of vortices near
the real axis necessarily develops in the special limit when
U =0, vy — 0 but gv7 tends to a constant.

The gap function A(z) in the upper half plane is obtained
through a two-step procedure: First, the gap function is ana-
lytically continued to the real axis, iw,, — o + i0T, through
an iterative procedure described in Ref. [28]. Second, the
gap function on the real axis, A(w + i07) = A'(w +i0") +
iA"(w + i0T), is extended to the upper complex plane using

Cauchy’s formula:

AR) == o, (3)

2/"0 @A”(d)+i0+)d_
T Jo

5)2_Z2

where z = o’ + iw”. We note that, due to numerical inac-
curacy, the gap function, obtained from Eq. (3) along the
imaginary axis, and the original A(w,,) turn out to be slightly
different. This does not affect our results and only leads to
small variations in v, between the one extracted from A(w,,)
and the one from A(z) (compare, e.g., Figs. 2 and 3). We show
the results for the phase of the gap function, 7(z), in the upper
frequency half plane in Fig. 3 for Model I and in Fig. 4 for
Model II for a range of representative values of vy.

For Model I, we see from Fig. 3 that for the largest vy =
80.0, where we expect the gap to be sign-preserving along the
Matsubara axis, there are no vortices in the upper half plane
of complex frequency. As vy is reduced, a vortex appears on
the Matsubara axis, located where A(w,,) in Fig. 2(a) changes
sign. As we anticipated, the vortex appears first at w,, = 00
and moves toward smaller w,, as vy decreases. Interestingly,
we found additional vortices in the upper half plane at smaller
" and larger «’. These additional vortices move into the
upper frequency half plane from the lower one, as vy is de-
creased. This is again consistent with our expectation.

For Model II, we see from Fig. 4 that, for smaller vy, there
are two vortices on the Matsubata axis. As vy increases, the
distance between the vortices shrinks, and once vy exceeds
some critical value, the two vortices leave the Matsubara
axis and move in opposite directions in the upper half plane
of complex frequency, gradually approaching the real axis.
This is consistent with the analytical treatment earlier in the
paper.

Gap along the real axis. Further evidence for the presence
of the vortices both on the Matsubara axis and away from it
comes from the analysis of the complex gap function along the
real axis. We show A’(w) and A”(w) in Fig. 5 for both Models
I and II. Figure 5 also shows the variation of the phase n(w) of
A(w +i07) = |A(w)]e™®). In simple terms, n(w) increases
by 7 /2 in each frequency interval between points where first
A'(w) and then A”(w) changes sign [compare, e.g., Figs. 5(a)
and 5(b)].

The relation between the phase shift on the real axis and the
number of vortices in the complex plane can be found [23] by
evaluating én = f_QQ dwin(w)/dw by closing the integration
contour over the upper half plane. The function an(w)/dw is
analytic in the upper half plane except at the nodal points of
the gap function, where it has simple poles. Evaluating the
integral, one obtains §n = dng + 27 n, where n is the number
of vortices in the upper half plane and §7g, is the phase shift
without vortices. The latter is 27 at  — oo because, at the
largest w, A(w) o ™", but is generally smaller when £
is finite, and its value is model dependent. The frequency
interval shown in Figs. 3 and 4 corresponds to 2 = 100 (recall
that all frequencies are in units of g).

For Model I, let us first consider the case where vy = 40.0.
In this case, there are no vortices and 817 = 8ng. From the
phase variation shown in Fig. 3, we see that ng < 27. This
matches the variation of the phase shown in Fig. 5(d) in the
interval between 0 and €2, corresponding to positive «’ in
Fig. 3, which is slightly less than w. For smaller vy = 8.0,
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dnq < 27 (blue on the far left, green on the far right in Fig. 3),
and there are five vortices. Hence, the total phase variation,
dn ~ 12m, implying a 657 variation in the interval between 0
and 2. This matches the result shown in Fig. 5(b).

For Model II, we see from Fig. 4 that for all values of
Vo, 8nq 2 7, and there are two vortices either on the Mat-
subara axis or away from it (for larger vy). Then, én ~ 57,
corresponding to 57 /2 between w =0 and w = Q. Read-
ing off 6n from Figs. 5(f) and 5(h), we find the same
number.

Conclusions. In this work we analyzed the structure of
an s-wave superconducting gap A(w,) in systems with
frequency-dependent electron-phonon attraction and electron-
electron repulsion, which we approximated by Hubbard U.
Previous works have found that superconductivity develops
even when electron-electron repulsion is larger, but then the
gap necessarily changes sign along the Matsubara axis. We
analyzed the sign-changing gap function from a topological
perspective by taking advantage of the knowledge that a nodal
point of A(w,,) is the center of a dynamical vortex. To this
end, we considered two models with soft and hard high-
frequency cutoffs for the Hubbard U term. In both models,
we assumed that the total interaction is attractive at small
frequencies and used the phonon frequency vy as the knob

to calibrate the relative strength of the attractive and repulsive
components of the interaction at high frequencies. In Model
I with a soft cutoff, a vortex first emerges at w, = 0o on
the reduction of vy and moves down along the Matsubara
axis. Simultaneously, additional vortices cross from the lower
half plane of frequency into the upper one, but remain away
from the Matsubara axis. For Model II with a hard cutoff,
we found that, as v, is reduced, two vortices cross from the
lower frequency half plane into the upper one and start moving
toward the Matsubara axis. At a critical value of vy, the two
vortices merge on the Matsubara axis and at even smaller vy
split along it, creating two zeros of A(w,,). We analyzed the
gap function along the real axis and verified that each vortex
in the upper frequency half plane gives rise to a 277 variation
of the phase of the gap function.

Both A’(w) and A”(w) can be extracted from ARPES data
sets, and we call for modern data analysis on electron-phonon
superconductors to extract the phase variation over a wide
range of frequencies to obtain information about dynamical
vortices.
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