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Abstract. Consider the surface measure µ on a sphere in a nonvertical
hyperplane on the Heisenberg group Hn, n ≥ 2, and the convolution
f ∗ µ. Form the associated maximal function Mf = supt>0 |f ∗ µt|
generated by the automorphic dilations. We use decoupling inequalities
due to Wolff and Bourgain-Demeter to prove Lp-boundedness of M in
an optimal range.

1. Introduction

Let Hn be the Heisenberg group of Euclidean dimension 2n+ 1, with the
group law

(x, u) · (y, v) = (x+ y, u+ v + xᵀJy)

with J is a nondegenerate skew symmetric 2n × 2n matrix. Consider Hn

as the vector space R2n+1 and let V be a linear subspace of dimension 2n
which does not contain the center of Hn, i.e.

V ≡ Vλ = {(x, λ(x))}

is the graph of a linear functional λ : R2n → R. Let Σ be a convex hyper-
surface in V, with nonvanishing curvature, which contains the origin in its
interior. Note that Σ is a surface of codimension two in Hn. Let µ be a
smooth density on Σ, that is µ = χdσ where dσ is surface measure on Σ
and χ ∈ C∞c .

The natural dilation group {Dilt}t>0 of automorphisms on Hn is given by

(x, u) 7→ Dilt(x, u) = (tx, t2u)

where x ∈ R2n, u ∈ R. Define the dilated measure µt ≡ Diltµ by its action
on Schwartz functions f ,

(1.1) 〈µt, f〉 =

∫
f(Dilt(x, u))dµ(x, u)

and consider the maximal function

(1.2) Mf = sup
t>0
|f ∗ µt|
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where the convolution refers to the noncommutative convolution on the
Heisenberg group (see (2.1)).

The purpose of this paper is to prove a sharp result on Lp boundedness
for n ≥ 2; a corresponding estimate on H1 will remain open. The problem
for n ≥ 2 was first taken up in a paper by Nevo and Thangavelu [11] who
considered the spherical measure on R2n × {0} (i.e. the case λ = 0) and
proved Lp boundedness for the maximal operator in the non-optimal range
p > 2n−1

2n−2 . An optimal result for λ = 0 was proved by D. Müller and one

of the authors in [9]. There it is shown that Lp boundedness holds for
p > 2n

2n−1 when n ≥ 2 and λ = 0. In the case λ 6= 0 the paper [9] only has
a non-optimal result, proving Lp boundedness of the maximal operator for

p > 2n−1/3
2n−4/3 . It was also conjectured that boundedness for λ 6= 0 remains

true in the larger range p > 2n
2n−1 . The results in [9] actually cover the

larger class of Métivier groups which strictly contains the class of groups of
Heisenberg type (with possibly higher dimensional center). We note that for
the case Hn, n ≥ 2, λ = 0 an alternative proof of the result in [9] was given
by Narayanan and Thangavelu [10], who used spectral theoretic arguments
and the representation theory of the Heisenberg group.

The crucial difference between the two cases λ = 0 and λ 6= 0 is that the
automorphic dilations {Dilt} act on V0 but not on Vλ for λ 6= 0. We refer to
[9] for an explanation of this phenomenon in terms of the geometry of the un-
derlying Fourier integral operators with folding canonical relations. For the
case λ 6= 0 the L2 methods of both [9] and [10] are no longer applicable to ob-
tain the optimal range of Lp-boundedness. Here we use different Lp methods
based on Wolff’s decoupling inequality [18], [8] and its recent improvements
by Bourgain and Demeter [1] to prove the conjecture in [9] for the Heisen-
berg groups Hn, n ≥ 2, for all subspaces Vλ. The approach is motivated by
previous results on Lq-Sobolev estimates for averaging operators associated
to families of curves in [12], [13]. In an early version for generalized Radon
transforms associated with families of curves in three dimensions ([14]) the
relevant decoupling inequalities are proved by an induction procedure where
a scaled version of the constant coefficient decoupling inequality is combined
with a nonlinear change of variables, at every stage in the iteration. We use
this idea here as well. The resulting theorem can be interpreted as a stability
result for the maximal function estimate in [9].

Theorem 1.1. Let n ≥ 2, Σ ⊂ Vλ as above and µ be a smooth density on
Σ. Let M as in (1.2) and p > 2n

2n−1 . Then M extends to a bounded operator

on Lp(Hn).

Remark: It is instructive to note that an analogous stability result may fail
for other more regular measures. For example, if we let νλ be the measure on
Vλ given by 1BdS where dS is the 2n-dimensional Lebesgue measure on Vλ
and 1B is the characteristic function of the unit ball centered at the origin.
Then results on maximal and singular Radon transforms [15] show that for
λ = 0 the maximal operator f 7→ supt |f ∗Diltν0| is bounded on Lp(Hn) for
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1 < p < ∞. However for λ 6= 0 the maximal operator f 7→ supt |f ∗ Diltνλ|
is bounded on Lp(Hn) only for 2n+1

2n < p < ∞. The local analogue of the
latter maximal operator (with dilations parameters in [1, 2]) shares some
properties with the spherical maximal operator (cf. [16]), due to the rotation
effect of the nonisotropic dilation structure. One has an example that shows
unboundedness that is similar to the example that shows unboundedness of
the spherical maximal operator Lp(Rd), when p ≤ d

d−1 (cf. [17], [16]).

This paper. In §2 consider regularizations of the measure defined by
dyadic frequency decompositions and prove a crucial Lp-Sobolev inequal-
ity for the convolution f ∗ µ when acting on Lp functions with compact
support. As a consequence we obtain an estimate for a restricted version of
the maximal operator where the dilation parameter is taken in a compact
subinterval of R+. In §4 we describe the basic decoupling step. In §5 an
iteration and combination with known L2 estimates leads to the proof of
the main Proposition 2.1. In §6 we use Calderón-Zygmund type arguments
to extend this result to obtain Theorem 1.1. The appendix contains a basic
integration by parts lemma which is useful in checking the details of the
decoupling step in §4.

2. Main estimates

The convolution f1 ∗ f2(x, u) =
∫
f1(y, v)f2((y, v)−1(x, u))dydv on the

Heisenberg group can be written as

(2.1)

f1 ∗ f2(x, u) =

∫
f1(y, v)f2(x− y, u− v + xᵀJy)dydv

=

∫
f2(y, v)f1(x− y, u− v − xᵀJy)dydv

Here J is a nondegenerate skew symmetric matrix on R2n.
Split x = (x, x2n) where x ∈ R2n−1. We consider a localization of the

measure to a graph x2n = g(x) on Vλ, where the Hessian of g is nondegen-
erate. We will use permutation of variables to reduce to this situation (cf.
the remark in §5).

The localized measure µ can be represented as an oscillatory integral
distribution by

(2.2) η(x, u)

∫∫
ei(σ(x2n−g(x))+τ(u−λ(x)))dσdτ

where η is a smooth compactly supported function.
Let ς0 ∈ C∞0 (R) be an even smooth function such that ς0(s) = 1 if |s| ≤ 1

and such that the support of ς0 is contained in (−2, 2). Let ς1(s) = ς0(s/2)−
ς0(s) and let, for k ≥ 1, ζk(s) = ς1(21−ks). Also let ζ0 = ς0. Then for k ≥ 1,
ζk is supported in {s : 2k−1 ≤ |s| ≤ 2k+1}, k ≥ 1, and we have

∑
k=0 ζk = 1.

Let

(2.3) µk(x, u) = η(x, u)

∫∫
ei(σ(x2n−g(x))+τ(u−λ(x)))ζk((σ

2 + τ2)1/2) dσ dτ
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and we decompose (2.2) as
∑∞

k=0 µk in the sense of distributions.
The maximal function supt>0 |f ∗ Diltµk| is dominated by C(k) times

the analogue of the Hardy-Littlewood maximal function on the Heisenberg
group. Therefore it suffices to consider the case k � 1.

Our main proposition will be

Proposition 2.1. (i) For q > 4n
2n−1 ,

‖f ∗ µk‖Lq(Hn) . 2
−k 2n−1

q ‖f‖Lq(Hn) .

(ii) For p < 4n
2n+1

‖f ∗ µk‖Lp(Hn) . 2
−k(2n−1)(1− 1

p
)‖f‖Lp(Hn) .

Moreover, for 1 ≤ s ≤ 2∥∥∥ d
ds
f ∗Dilsµk

∥∥∥
Lp(Hn)

. 2k2
−k(2n−1)(1− 1

p
)‖f‖Lp(Hn) .

The implicit constants are uniform if λ is taken from a compact subset of
(R2n)∗.

A well known Sobolev imbedding argument gives a sharp bound for the
restricted maximal function:

Corollary 2.2. For p < 4n
2n+1 ,

∥∥ sup
1/2<s<2

|f ∗Dilsµk|
∥∥
Lp(Hn)

. 2
k( 2n

p
−2n+1)‖f‖Lp(Hn).

We use a further decomposition in the σ-variables, as in [9]. Let

ζk,0(σ, τ) = ς1(2−k
√
σ2 + |τ |2)(1− ς0(2−kσ))

ζk,l(σ, τ) = ς1(2−k
√
σ2 + |τ |2)ς1(2l−kσ)

ζ̃k(σ, τ) = ς1(2−k
√
σ2 + |τ |2)ς0(2[k/3]−k−1σ).

so that

ζk((σ
2 + τ2)1/2) = ζ̃k +

∑
0≤l<k/3

ζk,l.

Let µk,l be defined as in (2.3) but with ζk((σ
2 + τ2)1/2) replaced by ζk,l

when l < k/3 and by ζ̃k when l = [k/3]. We shall prove the following refined
version of Proposition 2.1.

Proposition 2.3. Let ε > 0 and 2 ≤ q < 4n+2
2n−1 . Then there is Cε > 0 such

that for 0 ≤ l ≤ [k/3],

‖f ∗ µk,l‖q ≤ Cε2−k
2n−1
q 2

l(ε+ 2n
q
− 2n−1

2
)‖f‖q.
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If 4n
2n−1 < q < 4n+2

2n−1 and ε > 0 is sufficiently small then we can sum in

l and obtain part (i) of Proposition 2.1. The Lp inequality for p < 4n
2n+1

follows by duality and the estimate for d
dsf ∗Dilsµk is proved similarly.

Remark. We also have, by interpolation with an easy L∞ estimate,

‖f ∗ µk,l‖q ≤ Cε2−k
2n−1
q 2

−l 1−ε
q ‖f‖q,

4n+ 2

2n− 1
≤ q ≤ ∞.(2.4)

3. Background and idea of the proof

The idea in the proof of Proposition 2.1 is to consider the fibers of the
fold surface which curved varying cones; this goes back to the paper [5] by
Greenleaf and one of the authors which dealt with L2 → Lp inequalities
for classes of generalized Radon transforms. One then would like to apply
decoupling for localizations to plates adapted to neighborhoods of these
cones. The cones vary with the base points and some approximation and
preparations via changes of variables have to be used, cf. [14].

Concretely if χ1(x, u) and χ2(y, v) are compactly supported C∞c functions
we want to examine the functions (fχ2)∗µk,l(x, u)χ1(x, u) which are written
in the form ∫

Kk,l(x, u, y, v)f(y, v)dy dv

where the Schwartz kernel Kk,l is given by

χ1(x, u)χ2(y, v)

∫∫
ζ(2l−kσ)χ1(2−k

√
σ2 + τ2)eiϕ(σ,τ,x,u,y,v)dσdτ

and the phase function is defined by

(3.1) ϕ(σ, τ, x, u, y, v) = σ(x2n − y2n − g(x− y)) + τ(u− v + xᵀJy)

where J is a skew symmetric nondegenerate 2n× 2n matrix (for example a
skew symmetric perturbation of the standard symplectic matrix). Note we
do not assume that J is orthogonal.

With ϕ(σ, τ, x, u, y, v) as in (3.1) the cones in question are given, for each
(x, u), by

{(ϕx, ϕu) : σ = 0, x2n − y2n − g(x− y) = 0, v = u+ xᵀJy}
={(τJy, τ ) : y2n = x2n − g(x− y)}

which is actually independent of u. Denote this conic surface by Σx and let

(3.2) Γx(y) = (y, x2n − g(x− y)).

Then

(3.3) Σx = {(τJΓx(y), τ)}.

We wish to use the decoupling inequalities in [1] (or the previous paper [8]
if n is sufficiently large) for thin neighborhoods of the cones Σx, for suitable
frozen x. Note that by our assumptions on g the cones are maximally curved
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(i.e. d− 2 = 2n− 1 principal curvatures are nonzero). The basic decoupling
step will be described in the next section.

4. The decoupling step

Let δ0 > 2−l and let δ1 < δ0 be such that

(4.1) δ1 ≥ (2−lδ0)1/2

Fix a ∈ R2n, b ∈ R2n−1. Suppose we are given a family of disjoint cubes
{Qν} in R2n−1 of side length δ1 contained in the reference cube

(4.2) Q := {y ∈ R2n−1 : |yi − bi| ≤ δ0, i = 1, . . . 2n− 1}.

Suppose in what follows that for each ν the function (y, v) 7→ fν(y, v) is
supported in Qν × R× R.

We fix ε > 0 and let

(4.3) δ1 ≥ 2−l(1−ε).

Let ϕ be as in (3.1)
Let χl,a,u◦ be a smooth function supported in a ball of sidelength 2−l

centered at (a, u◦), satisfying |∂αχl,a,u◦ | ≤ Cα2l|α| for all multiindices α. Let
ζ be a smooth function supported in (−2, 2). Let K = Kk,l,a,u◦ be given by

(4.4a) K(x, u, y, v)

= χl,a,u◦(x, u)

∫∫
ζ(2l−kσ)χ1(2−k

√
σ2 + τ2)eiϕ(σ,τ,x,u,y,v)dσdτ

which after a change of variable (replacing 2−k(σ, τ) by (σ, τ)) we can write

(4.4b) K(x, u, y, v) = 22k

∫∫
γ(σ, τ, x, u, y, v)ei2

kϕ(σ,τ,x,u,y,v)dσdτ

with

γ(σ, τ, x, u, y, v) = 0 if |x− a|+ |u− u◦|+ |σ| & 2−l(4.5a)

|∂Mσ,τ,x,u,y,vγ| ≤ CM2lM .(4.5b)

Here ∂M... stands for any differentiation of order M in the variables indicated.
We let T denote any such operator with kernel K and γ as above.

Proposition 4.1. Let 2 ≤ q ≤ 4n+2
2n−1 . Let 0 < ε ≤ 1, k � 1, l ≤ k/3,

δ1 ≥ 2−l(1−ε). With the above specifications on Q and {Qν} we have, for
any ε1 ∈ (0, ε), and N ∈ N,

(4.6)
∥∥∥T [
∑
ν

fν ]
∥∥∥
q
≤ C(ε1)(δ0/δ1)

(2n−1)( 1
2
− 1
q

)+ε1
(∑

ν

‖Tfν‖qq
)1/q

+ C̃(ε,N)2−kN sup
ν
‖fν‖q.
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4.1. A model case. We first consider the model situation δ0, δ1 as in (4.1),
Q as in (4.2), ϕ as (3.1), such that

(4.7) a = 0, b = 0, ∇g(0) = 0.

As pointed out above the crucial tool is the decoupling estimate from [1].
The relevant cones Σ0 are given by

(4.8) (y, τ) 7→ τ(JΓ(y), 1),

with Γ ≡ Γ0 as in (3.2), i.e.

(4.9) Γ(y) = (y,−g(−y)).

Let

(4.10) N(y) = e2n −
2n−1∑
i=1

∂ig(−y)ei

which is normal to y 7→ Γ(y). Let yν ∈ Qν and let Nν = N(yν)/|N(yν)|.
Let J# be the contragredient matrix, i.e. J# = (J−1)ᵀ. Since J is skew
symmetric we have J# = −J−1. J#N(y) is normal to JΓ and

〈J ∂
2Γ(y)

∂yj∂yk
,
J#N(y)

|J#N(y)|
〉 =

|N(y)|
|J#N(y)|

〈∂
2Γ(y)

∂yj∂yk
,
N(y)

|N(y)|
〉.

This relates the curvature form for Γ to the curvature form for JΓ, and the
decoupling estimates from [1], in the version for general curved cones ([13]),
are applicable.

It turns out that, in order to perform the decoupling step via the Bourgain-
Demeter inequality we will have to make a change of variable in the (x, u)
variables, using a quadratic shear transformation. Thus we consider instead
the operator T defined by

T f(x, u) = Tf(x, u+ 1
2〈Sx, x〉)

where S is a suitable symmetric linear transformation. Obviously, by chang-
ing variables, (4.6) holds with T if and only if it holds with T .

It will be important in the proof to choose S such that the following
crucial assumption

(4.11) SJ#e2n = −e2n

is satisfied. To see that S can be chosen in smooth dependence on J we
notice that u1 := e2n and u2 = J#e2n/|J#e2n| form an orthonormal basis
on V = span(J#e2n, e2n) which can be extended to an orthonormal basis
{u1, . . . , u2n} of R2n. Let c = |J#e2n| and we let Su2 = −c−1u1, Su1 =
−c−1u2 and Sui = ui for i = 3, . . . , 2n. Then S is symmetric, invertible and

min{1, |J#e2n|−1} ≤ ‖S‖ ≤ max{1, |J#e2n|−1}

where ‖S‖ denotes the `2 → `2 operator norm on 2n× 2n matrices.
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The Schwartz kernel of T is given by

(4.12) 22k

∫∫
γ1(σ, τ, x, u, y, v)ei2

kΦ(σ,τ,x,u,y,v)dσdτ

with

γ1(σ, τ, x, u, y, v) = γ(σ, τ, x, u+ 1
2〈Sx, x〉, y, v)

Φ(σ, τ, x, u, y, v) = ϕ(σ, τ, x, u, y, v) +
τ

2
〈Sx, x〉

We now define nonisotropic cylinders (or “plates”) associated to the cone
(4.8). We use the notation

ξ = (ξ, ξ2n+1) = (ξ, ξ2n, ξ2n+1).

The tangent space to the cone at τ(JΓ(yν), 1) is spanned by

{JΓ(yν), 1} ∪ {(J∂iΓ(yν), 0) : i = 1, . . . , 2n− 1},
and a normal vector is given by

(4.13)

(
J#Nν

−〈JΓ(yν), J#Nν〉

)
=

(
J#Nν

−〈Γ(yν), Nν〉

)
.

The relevant plates are 2kΠν(δ1) where the normalized plates Πν(δ1) are
defined by the inequalities

C−1 ≤
√
|ξ|2 + ξ2

2n+1 ≤ C(4.14a)

|ξ − ξ2n+1JΓ(yν)| ≤ Cδ1(4.14b) ∣∣〈ξ − ξ2n+1JΓ(yν), J#Nν〉
∣∣ ≤ Cδ2

1 .(4.14c)

The Bourgain-Demeter decoupling theorem gives that∥∥∥∑
ν

Fν

∥∥∥
q
≤ C(ε)(δ1/δ0)−ε

(∑
ν

‖Fν‖2q
)1/2

, 2 ≤ q ≤ 4n+ 2

2n− 1
,

provided that the Fourier transforms F̂ν are supported in 2kΠν(δ1). We have
some freedom in the choice of the constant C ranging over a compact subset
of (0,∞). Let ην be a bump function which is equal to 1 on Πν(δ1) and is
supported on its double, and ην satisfies the natural differential inequalities.
Specifically consider the radial tangential, nonradial tangential, and normal
differentiation operators:

Vν,0 = 〈JΓ(yν),∇ξ〉+
∂

∂ξ2n+1
,

Vν,i =
∂

∂ξi
− 〈JΓ(yν), ei〉

∂

∂ξ2n+1
, i = 1, . . . , 2n− 1,

Vν = 〈J#Nν ,∇ξ〉 − 〈Γ(yν), Nν〉
∂

∂ξ2n+1
.

Then∣∣Vα0
ν,0V

α1
ν,1 . . .V

α2n−1

ν,2n−1V
α2n
ν ην(ξ)

∣∣ ≤ Cα0,α1,...,α2n(1/δ1)2α2n+
∑2n−1
i=1 αi .
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Define the Euclidean convolution operator Pk,ν in the multiplier formulation
by

P̂k,νf(ξ) = ην(2−kξ)f̂(ξ).

Then by the decoupling inequality

(4.15)
∥∥∥∑

ν

Pk,νT fν
∥∥∥
q
≤ C(ε)(δ1/δ0)−ε

(∑
ν

‖T fν‖2q
)1/2

,

2 ≤ q ≤ 4n+ 2

2n− 1
.

We need to analyze the Schwartz kernel of f 7→ (I −Pk,ν)T when acting on
fν . Thus we consider for y ∈ Qν ,

2(2n+3)k

∫ ∫∫
ei2

k〈x−x̃,ξ〉+i2k(u−ũ)ξ2n+1(1− ην(2−kξ))

×
∫∫

ei2
kΦ(σ,τ,x̃,ũ,y,v)γ1(σ, τ, x̃, ũ, y, v)dσdτ dx̃dũ dξ .

We can replace (I−Pk,ν)T fν with (I−Pk,ν)LkT fν with Lk a Littlewood-

Paley cutoff operator localizing to frequencies C−1
1 2k ≤ |ξ| ≤ C12k (as the

remaining error terms are handled by standard integration by part argu-
ments, see e.g.[7, §4.2]). Also if |x| + |u| > C we see that by an additional
integration by parts arguments in the (ξ, σ, τ ) variables we get a bound

. C2−(k−l)N (|x| + |u|)−N . Hence we need to show that the L∞ norm of
the integral is O(2−kN ). Since the (x̃, ũ) integral is over a compact set it
suffices to show that the Fourier transform of T fν in the complement of the
double plate has norm O(2−kN ). Moreover, if |τ − ξ2n+1| ≥ 2l−k then we
can integrate by parts with respect to ũ and show that the resulting integral
is O(2−kN ).

It remains to analyze, for |τ | ≈ |ξ2n+1| and y ∈ Qν , the behavior of

(4.16)

∫∫∫
ei2

k(Φ(σ,τ,x,u,y,v)−〈x,ξ〉−uξ2n+1)γ1(σ, τ, x, u, y, v)dσ dx du

assuming that ξ /∈ Πν(δ) with C in (4.14) large. For better readability we
have changed the notation from (x̃, ũ) to (x, u) in (4.16). In what follows
we will set

(4.17) Ψ(σ, τ, x, u, y, v, ξ) = Φ(σ, τ, x, u, y, v)− 〈x, ξ〉 − uξ2n+1 .

In order to estimate Fourier transforms in the complement of plates we
need bounds for certain directional derivatives of the phase function Φ
(which will then turned into lower bounds for the directional derivatives
of Ψ when ξ is away from the plate).

Lemma 4.2. There is a constant A ≥ 1 so that the following statements
hold for all y ∈ Qν , |σ| ≈ 2−l, |τ | ≈ 1.

(i) Let ~Vν,i = ei − 〈JΓ(yν), ei〉e2n+1. Then

(4.18)
∣∣〈~Vν,i,∇x,uΦ〉

∣∣ ≤ A(δ1 + |x2n − y2n − g(x− y)|
)
.
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(ii) Let ~Vν be the normal vector in (4.13). Then

(4.19)
∣∣〈~Vν ,∇x,uΦ〉

∣∣ ≤ A(δ2
1 + |x2n − y2n − g(x− y)|

)
.

4.1.1. Proof of Lemma 4.2. To see (i) we have for i = 1, . . . , 2n,

〈~Vν,i,∇x,uΦ〉 =
∂Φ

∂xi
− 〈JΓ(yν), ei〉

∂Φ

∂u

= σ〈N(y), ei〉+ τ(〈Jy, ei〉 − 〈JΓ(yν), ei〉+ 〈Sx, ei〉).

We have σ = O(2−l), Sx = O(2−l) and

Jy − JΓ(yν) = (y2n + g(−y))Je2n + (g(−yν)− g(−y))Je2n

= (y2n + g(−y))Je2n +O(δ1)

Split

|y2n + g(−yν)| ≤ |y2n − x2n + g(x− y)|+ |x2n|
+ |g(−y)− g(x− y)|+ |g(−yν)− g(−y)|.

The second and the third terms are O(2−l), by our localization in x. The
fourth term is O(δ0δ1) since y ∈ Qν and ∇g = O(δ0) in Qν . Consequently

(4.20) |y2n + g(−yν)| . (2−l + δ0δ1) + |x2n − y2n − g(x− y)|

and thus (4.18) follows easily.
Next we verify (ii). We have

〈~Vν ,∇x,uΦ〉 = 〈J#Nν ,∇xΦ〉 − 〈J#Nν , JΓ(yν)〉∂Φ

∂u
(4.21)

= I(x, y, σ) + II(y, σ) + III(x, y, τ ) + IV (x, τ)

where

I(x, y, σ) = −σ
2n−1∑
i=1

〈J#Nν , ∂ig(x− y)− ∂ig(−y)〉,

II(y, σ) = −σ
2n−1∑
i=1

〈J#Nν , ∂ig(−y)〉+ σ〈J#Nν , e2n〉,

III(x, y, τ ) = τ〈J#Nν , Jy〉 − τ〈Nν ,Γ(yν)〉,

IV (x, τ) = τ〈J#Nν , Sx〉.

Since σ = O(2−l) and |x| = O(2−l) we have |I(x, y, σ)| . 2−2l which is of
course O(δ2

1). By (4.10) we have

II(y, σ) = σ〈J#Nν , N(y)〉

= σ〈J#Nν , N(y)−N(yν)〉+ σ|N(yν)|〈J#Nν , Nν〉
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and by the skew symmetry of J# the last summand drops out and we get
σ〈J#Nν , N(y)〉 = O(2−lδ1) which is O(δ2

1). For the third term, we write

τ−1III(x, y, τ ) = 〈Nν , y − Γ(yν)〉
= 〈Nν ,Γ(y)− Γ(yν)〉+ 〈Nν , y − Γ(y)〉.

By definition of Nν and Taylor expansion,

〈Nν ,Γ(y)− Γ(yν)〉 = O(|y − yν |2) = O(δ2
1).

Next observe Nν = e2n +O(δ0) and

x2n − g(x− y) + g(−y) = x2n − 〈x,∇g(−y)〉+O(2−2l)

= 〈x,N(y)〉 +O(2−2l)

and thus

〈Nν , y − Γ(y)〉 = 〈Nν , e2n〉(y2n + g(−y))

=− 〈Nν , e2n〉(x2n − y2n − g(x− y)) + 〈Nν , e2n〉(x2n − g(x− y) + g(−y))

=〈Nν , e2n〉〈x,N(y)〉+O
(
2−2l + |x2n − y2n − g(x− y)|

)
,

and furthermore

〈Nν , e2n〉〈x,N(y)〉 = 〈N(y), x〉(1 +O(δ0))

= 〈Nν , x〉+O(2−lδ0)).

Adding τ−1IV (x, τ) we get

〈Nν , x〉+ τ−1IV (x, τ) = 〈(I + SJ#)Nν , x〉

= 〈(I + SJ#)e2n, x〉+O(2−lδ0) = O(2−lδ0)

where in the last equation we have used the crucial assumption (4.11) on
the choice of S, i.e. that e2n is in the nullspace of I+SJ#. Collecting these
estimates we obtain

|τ |−1|III(x, y, τ ) + IV (x, τ)| . (δ2
1 + 2−lδ0 + |x2n − y2n − g(x− y)|).

By our assumption (4.1) we have 2−lδ0 . δ2
1 and the asserted estimate in

(ii) follows. The proof is complete. �

4.1.2. Estimation of Fourier transforms in the complement of the plates.
We apply Lemma A.2 in a two-dimensional setting where the w1-derivative

will be replaced with the directional derivative for a vector ~V in R2m+1 and
where w2 = σ.

We first assume that (4.14b) does not hold, i.e.

(4.22) |ξi − 〈JΓ(yν), ei〉ξ2n+1| ≥ C1δ1

for some i ∈ {1, . . . , 2n} and C1 > 2A, with A ≥ 1 as in Lemma 4.2.
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Note that ∂Φ
∂σ = x2n − y2n − g(x − y). Hence if (4.22) holds with C1 ≥

2A ≥ 2 then, we get from part (i) of Lemma 4.2

(4.23)
∣∣〈~Vν,i,∇x,uΨ〉

∣∣+
∣∣∂Ψ

∂σ

∣∣ ≥ δ1/2.

Indeed the left hand side is equal to∣∣∣ ∂Φ

∂xi
− 〈JΓ(yν), ei〉

∂Φ

∂u
− ξi + 〈JΓ(yν), ei〉ξ2n+1

∣∣∣+
∣∣∣∂Φ

∂σ

∣∣∣
≥ max{0, (C1 −A)δ1 −A|x2n − y2n − g(x− y)|}+ |x2n − y2n − g(x− y)|

≥ C1 −A
2A

δ1 ≥
δ1

2
.

We now use integration by parts. We assume (4.22) and define a differential
operator L by

(4.24) Lh = 〈~Vν,i,∇〉
( 〈~Vν,i,∇Ψ〉〈~Vν,i,∇h〉
|〈~Vν,i,∇Ψ〉|2 + |∂Ψ

∂σ |2
)

+
∂

∂σ

( ∂Ψ
∂σ

∂h
∂σ

|〈~Vν,i,∇Ψ〉|2 + |∂Ψ
∂σ |2

)
.

The integral (4.16) becomes

(4.25) iN2−kN
∫∫∫

ei2
k(Ψ(σ,τ,x,u,y,v,ξ))LNγ1(σ, τ, x, u, y, v)dσdxdu

and |LNγ| .N (2lδ−1
1 )N by a straightforward analysis using Lemma A.2.

Since 2k−lδ1 & 2k/3 we gain a factor 2−kN1/3 with N1 integrations by parts.

Next consider the more subtle case where (4.14c) does not hold, i.e. we
have

(4.26)
∣∣〈ξ − ξ2n+1JΓ(yν), J#Nν〉

∣∣ ≥ C1δ
2
1

provided that C1 ≥ 2A. We now have by part (ii) of Lemma 4.2

(4.27)
∣∣〈~Vν ,∇Ψ〉

∣∣+
∣∣∂Ψ

∂σ

∣∣ ≥ δ2
1/2.

To see this observe that the left hand side is equal to∣∣∣〈J#Nν ,∇xΦ〉 − 〈Γ(yν), Nν〉
∂Φ

∂u
− 〈J#Nν , ξ〉+ 〈Γ(yν), Nν〉ξ2n+1

∣∣∣+
∣∣∣∂Φ

∂σ

∣∣∣
≥ max{0, (C1 −A)δ2

1 −A|x2n − y2n − g(x− y)|}+ |x2n − y2n − g(x− y)|

≥ C1 −A
2A

δ2
1 ≥

δ2
1

2
.

We use for our integration by parts the operator L̃ defined by

(4.28) L̃h = 〈~Vν ,∇〉
( 〈~Vν ,∇Ψ〉〈~Vν ,∇h〉
|〈~Vν ,∇Ψ〉|2 + |∂Ψ

∂σ |2
)

+
∂

∂σ

( ∂Ψ
∂σ

∂h
∂σ

|〈~Vν ,∇Ψ〉|2 + |∂Ψ
∂σ |2

)
.

Again we get the formula (4.25) with L replaced by L̃ and we need to

examine the symbol (L̃)Nγ using the crucial lower bound (4.27). We use the
terminology in the appendix (cf. Definition A.1). Analyzing the terms of
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type (A, j) we thus get a bound O((2lδ−2
1 )j). For the terms (B, 1) (second

derivative of Ψ divided by the square of a gradient) we notice that pure
(σ, u) derivatives of second order are zero and pure x derivatives of second
order carry the factor σ = O(2−l). We need to get an upper bound for
mixed derivatives of second order and notice that

(4.29)
∂

∂σ
〈~Vν ,∇〉Ψ = −〈J#Nν , N(y)〉 = O(δ1)

for y ∈ Qν . This shows that the type (B, 1) terms are . δ−3
1 + 2−lδ−4

1 and

hence . 2lδ−2
1 . The type (B, j) terms for j ≥ 2 are O(δ−2(j+1)). Hence if β is

a product of a bounded term, a term of type (A, jA), M1 terms of type (B, 1)

and M2 terms of type (B, κi) with κi ≥ 2, and if jA +M1 +
∑M2

i=1 κi = N1,
we get a bound

|β| . (2lδ−2
1 )jA+M1

M2∏
i=1

δ
−2(κi+1)
1

and hence

2−kN1 |(L̃)N1γ| .N1 (2k−lδ2
1)−jA−M1

M2∏
i=1

(
2−kδ

−2
κi+1

κi
1

)κi
.N1 (2k−lδ2

1)−N1 . 2−kN12l(3−2ε)N1 . 2−2kN1ε/3

since we are assuming δ1 > 2−l(1−ε) and l ≤ k/3. We choose N1 large, say
N1 > (2N + 10n)/ε, and from (4.15) and the above error analysis we get
the bound

(4.30)
∥∥∥∑

ν

Pk,νTfν

∥∥∥
q

≤ C(ε)(δ1/δ0)−ε
(∑

ν

‖Tfν‖2q
)1/2

+ C3(ε,N)2−kN sup
ν
‖fν‖q.

Now apply Hölder’s inequality in the ν sum (which has . (δ1/δ0)−(2n−1)

terms) to also get (4.6). This finishes the proof of Proposition 4.1 under the
additional assumption (4.7).

4.2. Changes of variables. We now complete the proof of Proposition 4.1 by
reducing the general case to the model case (4.7).

Let again δ1, δ0 be as in (4.1). We are now given a family of disjoint cubes
{Qν} in R2n−1 of sidelength δ1 contained in a reference cube

Q := {y ∈ R2n−1 : |yi − bi| ≤ δ0, i = 1, . . . 2n− 1}
and suppose that the function fν is supported in Qν × R× R. We consider
the operator T with Schwartz kernel as in (4.4b) but do not assume that ∇g
vanishes at the reference point (a, b). Decomposing the cutoff function in
(x, u) into a finite number of pieces (with the number depending on upper
bounds for g′ we may assume that

(4.31) supp (χl,a,u◦) ⊂ {|x− a| ≤ c02−l, |u− u◦| ≤ c02−l}
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for some small c0 > 0. We also set a = (a, a2n), and b = (b, 0).
Define G ≡ Ga,b by

G(w) = g(a− b+ w)− a2n − wᵀ∇xg(a− b)
so that

G(0) = −a2n + g(a− b), G′(0) = 0 .

We now introduce the change of variables (X,U) = (X,X2n, U), (Y, V ) =
(Y , Y2n, V ), defined by

X = x− a,
X2n = x2n − a2n − (x− a)ᵀ∇g(a− b)
U = u+ λ(x) + (x− a)ᵀJb

and

Y = y − b,
Y2n = y2n − (y − b)ᵀ∇g(a− b)
V = v + λ(y)− aᵀJy

Then we have

(4.32a) x2n − y2n − g(x− y) = X2n − Y2n −G(X − Y ).

Setting B =

(
I2n−1 0

g′(a− b) 1

)
we also have

u− v + xᵀJy + λ(x− y) = U − V + (x− a)ᵀJ(y − b)
= U − V +XᵀBᵀJBY.(4.32b)

Here BᵀJB belongs to a compact family of invertible skew symmetric 2n×2n
matrices. Now, after a decomposition into a finite number of pieces with
(x, u)-support of diameter < 2−l we can reduce to the situation where we
can apply the estimates in §4.1.

5. Proof of Proposition 2.1

We now iterate the estimates in Proposition 4.1. We give the argument
for f 7→ f ∗ µk,l, l ≤ [k/3] (see the definitions ahead of the statement of
Proposition 2.3). We can use the Heisenberg translations to reduce to the
case that f is supported in {(y, v) : |y| ≤ 1, |v| ≤ 1}. Then f ∗ µk,l is
supported in {(x, u) : |x|+ |u| ≤ C} for some fixed constant.

We shall work with a partition of unity in (x, u) space∑
(x◦,u◦)∈Zl

χ
x◦,u◦

= 1

where Zl is a grid of c2−l separated points and the bump functions χ
x◦,u◦

are associated in a natural way with cubes of diameter O(2−l) centered at
the points in the grid.
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Then for f with support in a fixed ball near the origin we get

‖f ∗ µk,l‖q .
( ∑

(x◦,u◦)∈Zl

∥∥χ
x◦,u◦

(f ∗ µk,l)
∥∥q
q

)1/q

We define numbers δj of the form 2−mj with mj ∈ N as follows. Let
m0 = [lε/100n] and δ0 = 2−m0 . Define for j ≥ 1

mj =
⌊ l +mj−1

2

⌋
,

note that mj → l. We will stop the process when mj > l(1 − ε
10n). Let j∗

be the smallest integer greater than l(1− ε
10n).

Decompose R2n−1 into disjoint dyadic cubes of side length 2−m0 , call
these cubes Q0

ν . Let f0,ν(y, v) = f(y, v)1Q0
ν
(y, v). Then by Minkowski’s and

Hölder’s inequality

‖f ∗ µk,l‖q .
∑
ν0

( ∑
(x◦,u◦)∈Zl

∥∥χ
x◦,u◦

(f0,ν0 ∗ µk,l)
∥∥q
q

)1/q
(5.1)

. 2m0(2n+1)/q′
(∑

ν0

∑
(x◦,u◦)∈Zl

∥∥χ
x◦,u◦

(f0,ν0 ∗ µk,l)
∥∥q
q

)1/q
.

Fix j ≤ j∗ and let {Qjν} be the collection of dyadic cubes of sidelength
2−mj . Set fj,ν = f1

Qjν
. We claim, for some C(ε1) and any N2 ∈ N the

bound

‖f ∗ µk,l‖q ≤ C0C1(ε1)j2
m0

2n+1
q′ 2

(mj−m0)((2n−1)( 1
2
− 1
q

)+ε1)
(5.2)

×
(∑

νj

∑
(x◦,u◦)∈Zl

∥∥χ
x◦,u◦

(fj,νj ∗ µk,l)
∥∥q
q

)1/q

+ jC2(ε,N1)C1(ε1)j−12(2n+1)l2−kN1‖f‖q.
For j = 0 this holds by (5.1). Suppose (5.2) holds for j = J < j∗. We apply
Proposition 4.1 to bound

‖f ∗ µk,l‖q ≤ C(ε1)J+12m0(2n+1)/q′2
(mJ+1−mJ+mJ−m0)((2n−1)( 1

2
− 1
q

)+ε1)

×
(∑

νJ

∑
νJ+1:QJ+1

νJ+1
⊂QJνJ

∑
(x◦,u◦)∈Zl

∥∥χ
x◦,u◦

(fJ+1,νJ+1
∗ µk,l)

∥∥q
q

)1/q

+ (J + 1)C(ε,N1)C(ε1)J2(2n+1)l2−kN1‖f‖q.
Choosing N1 > N2 + 2n+ 1 gives

‖f ∗ µk,l‖q ≤ C(ε1)J+12
m0

2n+1
q′ 2

(mJ+1−m0)((2n−1)( 1
2
− 1
q

)+ε1)

×
(∑

ν

∑
(x◦,u◦)∈Zl

∥∥χ
x◦,u◦

(fJ+1,ν ∗ µk,l)
∥∥q
q

)1/q

+ (J + 1)C(ε1)J C̃(ε,N2)2−kN2‖f‖q.
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We apply this for J = j∗ − 1 and observe that j∗ . ε−1 + log l.

‖f ∗ µk,l‖q . C(ε1)C2(log l+ε−1)2
m0

2n+1
q′ 2

(mj∗−m0)((2n−1)( 1
2
− 1
q

)+ε1)

×
(∑

ν

∑
(x◦,u◦)∈Zl

∥∥χ
x◦,u◦

(fj∗,ν ∗ µk,l)
∥∥q
q

)1/q

+ C(ε1)C2(log l+ε−1)C(ε,N2)(ε−1 + log l)2−kN2‖f‖q

We use the definition of m0 and mj∗ , and that Alog j ≤ C(δ, A)2δj for any
δ > 0. Thus, for 2 ≤ q ≤ 4n+2

2n−1 ,

(5.3) ‖f ∗ µk,l‖q .ε,ε1 2lε/102
l(1−ε)(2n−1)( 1

2
− 1
q

+ε1)
(∑

ν

‖fj∗,ν ∗ µk,l‖qq
)1/q

+ CN,ε2
−kN‖f‖q

We use the L2 estimates for Fourier integral operators associated with folding
canonical relations, as in [9] (relying on the version in [5]). We get for a
bounded set U

(5.4)
(∑

ν

‖fj∗,ν ∗ µk,l‖2L2(U)

)1/2
. 2−k(2n−1)/22l/2‖f‖2

for l ≤ [k/3]. We also have a trivial L∞ bound, using that the projection
of the support of fj∗,ν to R2n−1 is contained in a ball of radius c2−mj∗ ≈
2−l(1−

ε
10n

). We get

(5.5) sup
ν
‖fj∗,ν ∗ µk,l‖∞ . 2−l(1−

ε
10n

)(2n−1)‖f‖∞.

By interpolation

(5.6)
(∑

ν

‖fν ∗ µk,l‖qLq(U)

)1/q
.ε 2−k(2n−1)/q2−l(2n−1)+l(4n−1)/q2lε/2‖f‖q

We combine (5.3) and (5.6) and obtain

(5.7) ‖f ∗ µk,l‖Lq(U) .ε 2lε2
l( 2n
q
− 2n−1

2
)
2
−k 2n−1

q ‖f‖q

for l ≤ [k/3] and (choosing ε small) we can sum in l if q > 4n
2n−1 .

Equivalently we obtain

(5.8) ‖f ∗ µk‖q ≤ C(q)2−k(2n−1)/q‖f‖q for
4n

2n− 1
< q ≤ 4n+ 2

2n− 1
,

provided that f is supported in a fixed ball centered at the origin, say in
Q = [0, 1)2n+1.

We now remove this assumption on the support of f in (5.9). For m ∈
Z2n+1 let

Qm = m ·Q = {(m+ y,m2n+1 + v +mᵀJy : y ∈ Q}.
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Let µk be supported in RA = {(x, u) : |x| ≤ A, |u| ≤ A} for some A ≥ 1.
Then (f1Q) ∗ µk is supported on the set

{(x, u) : |x| ≤ A+
√

2n, |u| ≤ A+ 1 + (A+
√

2n‖J‖
√

2n};
to see this write xᵀJy = (x − y)ᵀJy. Thus (f1Q) ∗ µk is supported in RB
with B = B(A) (and B(A) is the maximum of the bounds for |x| and |u|
in the displayed formula). By left translation (f1Qm) ∗ µk is supported in
m ·RB and we have

(5.9) ‖(f1Qm) ∗ µk‖q ≤ C(q)2−k(2n−1)/q‖f1Qm‖q
for 4n

2n−1 < q ≤ 4n+2
2n−1 , uniformly in m. Now for each m ∈ Z2n+1 the

cardinality of

{m̃ ∈ Z2n+1 : m ·RB ∩ m̃ ·RB 6= ∅}
is bounded above by C(B)2n+1. Indeed, let m · RB ∩ m̃ · RB 6= ∅ which is
equivalent with RB ∩m−1m̃RB 6= ∅. Let (w, t) = m · m̃−1 and (x, u) ∈ RB.
Then (w, t)·(x, u) = (w+x, t+u+wᵀJx). if |w| ≥ 2B then (w, t)·(x, u) /∈ RB.
If |w| ≤ 2B and t > 2B + 2B2‖J‖ then |t + u + wᵀJx| > B and again
(w, t) · (x, u) /∈ RB. Apply this with

(w, t) = m−1 · m̃ = (m̃−m, m̃2n+1 −m2n+1 −mᵀJ(m̃−m)),

and clearly for fixed m there are only C(B)2n+1 integer vectors m̃ with
|m−1 · m̃| ≤ 2B + 2B2‖J‖.

Hence for general f ∈ Lq(Hn), 4n
2n−1 < q ≤ 4n+2

2n−1 ,

‖f ∗ µk‖q =
∥∥∥ ∑
m∈Z2n+1

(f1Qm) ∗ µk
∥∥∥
q
.B

( ∑
m∈Z2n+1

‖(f1Qm) ∗ µk‖qq
)1/q

.B,q 2−k(2n−1)/q
( ∑
m∈Z2n+1

‖f1Qm‖qq
)1/q

.B,q 2−k(2n−1)/q‖f‖q.

Now convolution with µk is uniformly bounded on L∞ and thus interpo-
lation gives

(5.10) ‖f ∗ µk‖q ≤ C(q)2−k(2n−1)/q‖f‖q for
4n

2n− 1
< q ≤ ∞.

Alternatively one can argue with as in [13] with the Wolff version of decou-
pling for q > 4n+2

2n−1 . By duality (5.10) also implies

(5.11) ‖f ∗ µk‖p ≤ C(p)2
−k(2n−1)(1− 1

p
)‖f‖p for 1 ≤ p < 4n

2n+ 1
.

By modifying the definition of γ in (4.4b) we also get the same estimate
for µk replaced with 2−k ddsDilsµk when s ≈ 1. This proves Proposition 2.1.
A standard Sobolev imbedding argument yields Corollary 2.2.

Remark. Up to this point we worked with a measure µ in R2n supported on
a graph x2n = g(x1, . . . , x2n−1), with D2g nondegenerate. We must also also
consider the case where the surface is given by xj = g(x1, . . . , xj−1, xj+1, . . . ).
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However this situation can be reduced to the former by permuting the vari-
ables; one just needs to note that the change of variables argument in §4.2
applies, and that the skew symmetric matrix J in the former case is replaced
by P ᵀJP after a change of variables, with P a suitable permutation matrix.

Lp Sobolev result. Proposition 2.1 can be reformulated as a regularity result
in Besov spaces for functions in R2n+1 which are supported on a compact
set. However one can combine Proposition 2.1, part (i) with the result in
Theorem 1.1 of [12] to show a better result using Sobolev spaces Lqα(Rd) for
α = (d− 2)/q, with d = 2n+ 1.

Corollary 5.1. Let U be a compact neighborhood of the origin and let
Lqα(R2n+1) be the usual Sobolev space. Let Rf = f ∗ µ with µ as above,
and with the convolution on the Heisenberg group Hn. Then we have for

4n
2n−1 < q <∞,

‖Rf‖Lq
(2n−1)/q

≤ C(U , q)‖f‖q

whenever f is supported in U .

See the discussion in §2 of [12] for related examples. Theorem 1.1 of [12]
actually gives a better statement using Besov and Triebel-Lizorkin spaces,

namely that R : (B0
q,q)comp → F

(2n−1)/q
q,r for all r > 0, in the q-range of the

corollary.

6. Estimates for the global maximal operator

By the Marcinkiewicz interpolation theorem it suffices to prove a weak
type (p, p) estimate for p > 2n

2n−1 , i.e.

(6.1) meas
({

(x, u) : sup
t
|f ∗Diltµ(x, u)| > α

})
. α−p‖f‖pLp(Hn)

for p > 2n
2n−1 .

We use Calderón-Zygmund theory on the Heisenberg group, with respect
to the nonisotropic balls

B((a, b), δ) = {(y, v) : |(y, v)−1 · (a, b)| ≤ δ}
= {(y, v) : |(a− y, b− v − yᵀJa)| ≤ δ}

see for example [3], [4], or [17]. We apply the Calderón-Zygmund decompo-
sition to the function |f |p.

Let

Ωα ≡ Ωα(f) = {(x, u) : MHL(|f |p)(x, u) > αp}
so that

(6.2) meas(Ωα) . α−p‖f‖pp.

Let g1 = f1Ω{
α
. Then |g1(x)| ≤ α almost everywhere
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We have Ωα = ∪Q∈QαQ where the sets Q in the family Qα are disjoint
and measurable and there are constants c1, c2 such that 2 ≤ c1 < c2/8 such
that for every Q there is a point PQ and an rQ > 0 with

B(PQ, rQ) ⊂ Q ⊂ B(PQ, c1rQ) ⊂ B(PQ, 2c1rQ) ⊂ Ωα;

moreover ∑
Q

1B(PQ,2c1rQ)(x) . C almost everywhere

and
B(PQ, c2rQ) ∩ Ω{α 6= ∅ .

We decompose

f1Ωα =
∑
Q∈Qα

f1Q.

Let φ be a C∞ function supported in the Euclidean ball of radius 1 centered
at the origin and such that

∫
φ = 1. We introduce some cancellation using

suitable convolutions as in [2]. Let

φm(x, u) = 2−m(2n+2)φ(2−mx, 2−2mu)

let mQ be such that c1rQ/2 ≤ 2mQ < c1rQ and set

gQ = (f1Q) ∗ φmQ ,
bQ = f1Q − (f1Q) ∗ φmQ .

Then gQ, bQ are supported in B(PQ, 2c1rQ). We set g2 =
∑

Q∈Qα gQ and

we have |g2(x)| ≤ Cα almost everywhere. Let g = g1 + g2 and b = f − g.
Now

meas
({

(x, u) : sup
t
|f ∗Diltµ(x, u)| > α

})
≤ meas(Ωα) + meas

({
(x, u) : sup

t
|g ∗Diltµ(x, u)| > α/2

})
+ meas

({
(x, u) ∈ Ω{α : sup

t
|b ∗Diltµ(x, u)| > α/2

})
.

Since n ≥ 2 we know the L2 boundedness of our maximal operator and
the standard argument using ‖g‖∞ . α gives

(6.3)

meas
({

(x, u) : sup
t
|g ∗Diltµ(x, u)| > α/2

})
≤ (α/2)−2‖ sup

t
|g ∗Diltµ|‖22

≤ C2α−2‖g‖22 ≤ C̃pα−p‖f‖pp
It suffices to estimate

meas
({

((x, u) : sup
t
|b ∗Diltµ(x, u)| > α/2

})
.

For m ∈ Z let
b[m] =

∑
Q∈Qα:
mQ=m

bQ .
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Observe that

supp (b[m] ∗ µt) ⊂ Ωα if t ≤ 2m−C1

where C1 ∈ N and C1 depends only on the support of µ.
If (x, u) /∈ Ωα we have

sup
t>0
|b ∗Diltµ(x, u)| ≤

(∑
j∈Z

sup
1/2<s<1

|b ∗Dil2jsµ(x, u)|p
)1/p

=
(∑
j∈Z

sup
1/2<s<1

∣∣ ∑
m≤j+C1

b[m] ∗Dil2jsµ(x, u)
∣∣p)1/p

≤
∑
k≥0

(∑
j∈Z

sup
1/2<s<1

∣∣ ∑
m≤j+C1

b[m] ∗Dil2jsµk(x, u)
∣∣p)1/p

.(6.4)

We have straightforward estimates

‖µk‖L1 + 2−k‖∇µk‖L1 ≤ C,

2−k
∥∥∥ d
ds

Dilsµk

∥∥∥
L1

+ 2−2k
∥∥∥∇ d

ds
Dilsµk

∥∥∥
L1
≤ C, 1

2
≤ s ≤ 1.

which we use for m ≤ j − C2k with sufficiently large C2, say C2 = 10. For
this range we estimate the corresponding part in (6.4)∥∥∥∑

k≥0

(∑
j∈Z

sup
1/2<s<1

∣∣ ∑
m≤j−C2k

b[m] ∗Dil2jsµk
∣∣p)1/p∥∥∥

p

≤
∑
k≥0

∑
l≥0

∥∥∥(∑
j∈Z

sup
1/2<s<1

∣∣b[j−C2k−l] ∗Dil2jsµk
∣∣p)1/p∥∥∥

p

=
∑
k≥0

∑
l≥0

(∑
j∈Z

∥∥ sup
1/2<s<1

∣∣b[j−C2k−l] ∗Dil2jsµk
∣∣∥∥p
p

)1/p

Now let f [m] =
∑

Q:mQ=m f1Q so that b[m] = f [m] ∗ (δ − φm) (with δ the

Dirac measure at the origin). Then∥∥ sup
1/2<s<1

∣∣b[j−C2k−l] ∗Dil2jsµk|
∥∥
p

≤
∥∥b[j−C2k−l] ∗Dil2j−1µk

∥∥
p

+

∫ 1

1/2

∥∥b[j−C2k−l] ∗ d

ds
Dil2jsµk

∥∥
p
ds

≤ ‖f [j−C2k−l]‖p
[
‖(δ − φj−C2k−l) ∗Dil2j−1µk‖L1

+

∫ 1

1/2
‖(δ − φj−C2k−l) ∗

d

ds
Dil2jsµk‖L1ds

]
. 22k2−C2k−l‖f [j−C2k−l]‖p
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and thus ∥∥∥∑
k≥0

(∑
j∈Z

sup
1/2<s<1

∣∣ ∑
m≤j−C2k

b[m] ∗Dil2jsµk
∣∣p)1/p∥∥∥

p

.
∑
k≥0

∑
l≥0

22k2−C2k−l
(∑
j∈Z
‖f [j−C2k−l]‖pp

)1/p

. ‖f‖p
∑
k≥0

2(2−C2)k
∑
l≥0

2−l . ‖f‖p

Note that this estimate holds for all p ≥ 1.
The main contributions come from the range j−C2k ≤ m ≤ j+C1. Here

we use Corollary 2.2 and bound, for fixed k,∥∥∥(∑
j∈Z

sup
1/2<s<1

∣∣ ∑
j−C2k<m≤j+C1

b[m] ∗Dil2jsµk
∣∣p)1/p∥∥∥

p

≤
(∑
j∈Z

∑
j−C2k<m≤j+C1

(C1 + C2k)p/p
′‖b[m] ∗Dil2jsµk‖pp

)1/p

. 2
k( 2n

p
−2n+1)

(∑
j∈Z

∑
j−C2k<m≤j+C1

(C1 + C2k)p/p
′‖b[m]‖pp

)1/p

.C1,C2 (1 + k)2
k( 2n

p
−2n+1)

(∑
m∈Z
‖b[m]‖pp

)1/p

. (1 + k)2
k( 2n

p
−2n+1)‖f‖p.

Thus for p > 2n
2n−1 ,∥∥∥∑

k≥0

(∑
j∈Z

sup
1/2<s<1

∣∣ ∑
j−C2k<
m≤j+C1

b[m] ∗Dil2jsµk
∣∣p)1/p∥∥∥

p
≤ Cp‖f‖p .

We combine the Lp estimates and get p > 2n
2n−1∥∥ sup

t>0
|b ∗Diltµ|

∥∥
Lp(Ω{

α)
.p ‖f‖p.

Hence by Tshebyshev’s inequality,

(6.5) meas
({

(x, u) ∈ Ω{α : sup
t
|b ∗Diltµ(x, u)| > α/2

})
. α−p‖f‖pp.

The desired weak type bound (6.1) follows from (6.2), (6.3) and (6.5). �

Appendix A. An integration by parts lemma

To perform the decoupling step we used a familar integration by parts
lemma (which has been used many times but is often not found in the
precise form needed in an application). We formulate what we need here
and include some details of the proof, for convenience.
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Let h ∈ C∞c function on Rn and let w 7→ ψ(w) be a real valued C∞

function such that ∇ψ 6= 0 on the support of h.
We define

Lh = div
( h∇ψ
|∇ψ|2

)
.

Then the formal adjoint L∗ = −〈 ∇ψ|∇ψ|2 ,∇〉 satisfies iλ−1L∗eiλψ = eiλψ.

We let L0h = h and define inductively LNh = LLN−1h. We then have
by integration by parts∫

eiλψ(w)h(w)dw =
( i
λ

)N ∫
eiλψ(w)LNh(w)dw

for N = 1, 2, . . . .
We need to analyze the behavior of LNh and the following terminology

will be helpful.

Definition A.1. (i) The term h is of type (A, 0). A term is of type (A, j)
if it is hj/|∇ψ|j where hj is a derivative of order j of h.

(ii) A term is of type (B, 0) if it is equal to 1. A term is of type (B, j)
for some j ≥ 1 if it is of the form ψj+1/|∇ψ|j+1 where ψj+1 is a derivative
of order j + 1 of ψ.

Lemma A.2. Let N = 0, 1, 2, . . . . Then

LNh =

K(N,n)∑
ν=1

cN,νhN,ν

where each hN,ν is of the form

P ( ∇ψ|∇ψ|)βA

M∏
l=1

γl

where P is a polynomial of n variables (independent of h and ψ), βA is of
type (A, jA) for some jA ∈ {0, . . . , N} and the terms γl are of type (B, κl),

so that jA +
∑M

l=1 κl = N . The terms P, βA, γl depend on ν.

Sketch of proof. The statement holds when N = 0. We compute

La =
1

|∇ψ|2
n∑
j=1

∂ψ

∂wj

∂a

∂wj
+

a

|∇ψ|2
n∑
j=1

∂2ψ

(∂wj)2

− 2a

|∇ψ|4
n∑
j=1

∂ψ

∂wj

n∑
k=1

∂ψ

∂wk

∂2ψ

∂wj∂wk
.

In particular one can check immediately that the assertion holds for N = 1.
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Now let a be of type (A,m), and γ be of type (B,m). One observes that

1

|∇ψ|2
∂ψ

∂wj

∂a

∂wj
= P ( ∇ψ|∇ψ|)am+1 + a

n∑
i=1

PA,i(
∇ψ
|∇ψ|)b1,i

1

|∇ψ|2
∂ψ

∂wj

∂γ

∂wj
= P ( ∇ψ|∇ψ|)bm+1 + γ

n∑
i=1

PB,i(
∇ψ
|∇ψ|)b1,i

where am+1 is of type (A,m+1), bm+1 is of type (B,m+1), and the b1,i are of
type (B, 1). The polynomials are given by P (x) = xj and PA,i(x) = −mxixj ,
PB,i(x) = −(m+ 1)xixj .

Next, if P is a polynomial of n variables then

1

|∇ψ|2
∂ψ

∂wj

∂

∂wj
(P ( ∇ψ|∇ψ|)) =

n∑
i=1

P̃i(
∇ψ
|∇ψ|)bi

where the bi are of type (B, 1) and P̃i(x) = xj(
∂P
∂xi
− xi

∑n
k=1 xk

∂P
∂xk

).

Concerning the other terms in the definition of Lb (with b equal to a or

γ) we note that b ∂2ψ
(∂wj)2

|∇ψ|−2 is a product of b and a type (B, 1) term and

b

|∇ψ|4
∂ψ

∂wj

∂ψ

∂wk

∂2ψ

∂wj∂wk

is a product of P2( ∇ψ|∇ψ|)b and a type (B, 1) term, with P2(x) = xjxk.

One combines these observations and uses them together with the Leibniz
rule to carry out the induction step. �
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