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ABSTRACT. Consider the surface measure p on a sphere in a nonvertical
hyperplane on the Heisenberg group H", n > 2, and the convolution
f * p. Form the associated maximal function Mf = sup,.q|f * pu]
generated by the automorphic dilations. We use decoupling inequalities
due to Wolff and Bourgain-Demeter to prove LP-boundedness of M in
an optimal range.

1. INTRODUCTION

Let H” be the Heisenberg group of Euclidean dimension 2n + 1, with the
group law
(@, u) - (y,v) = (@ +y,ut+v+aTJy)
with J is a nondegenerate skew symmetric 2n x 2n matrix. Consider H"”
as the vector space R?"*! and let V be a linear subspace of dimension 2n
which does not contain the center of H", i.e.

V=V,={(z,A(z))}

is the graph of a linear functional X\ : R?» — R. Let ¥ be a convex hyper-
surface in V, with nonvanishing curvature, which contains the origin in its
interior. Note that ¥ is a surface of codimension two in H". Let u be a
smooth density on ¥, that is u = xydo where do is surface measure on X
and x € Cg°.

The natural dilation group {Dil; };~o of automorphisms on H" is given by

(z,u) — Dily(z,u) = (tz, t>u)

where € R?", v € R. Define the dilated measure y; = Dil;u by its action
on Schwartz functions f,

(1.1) (1) = [ £ 0))dia,0)
and consider the maximal function
(1.2) M =sup[f * pu

>0
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where the convolution refers to the noncommutative convolution on the
Heisenberg group (see (2.1)).

The purpose of this paper is to prove a sharp result on LP boundedness
for n > 2; a corresponding estimate on H' will remain open. The problem
for n > 2 was first taken up in a paper by Nevo and Thangavelu [11] who
considered the spherical measure on R?" x {0} (i.e. the case A = 0) and
proved LP boundedness for the maximal operator in the non-optimal range
p > %Z:% An optimal result for A = 0 was proved by D. Miiller and one
of the authors in [9]. There it is shown that LP boundedness holds for

p> 522 whenn > 2 and A = 0. In the case A # 0 the paper [9] only has

a non-optimal result, proving LP boundedness of the maximal operator for
p > 32:}42 It was also conjectured that boundedness for A # 0 remains

2n

true in the larger range p > 57™5. The results in [9] actually cover the
larger class of Métivier groups which strictly contains the class of groups of
Heisenberg type (with possibly higher dimensional center). We note that for
the case H", n > 2, A = 0 an alternative proof of the result in [9] was given
by Narayanan and Thangavelu [10], who used spectral theoretic arguments
and the representation theory of the Heisenberg group.

The crucial difference between the two cases A = 0 and A # 0 is that the
automorphic dilations {Dil;} act on Vj but not on V) for A # 0. We refer to
[9] for an explanation of this phenomenon in terms of the geometry of the un-
derlying Fourier integral operators with folding canonical relations. For the
case A # 0 the L? methods of both [9] and [10] are no longer applicable to ob-
tain the optimal range of LP-boundedness. Here we use different LP methods
based on Wolff’s decoupling inequality [18], [8] and its recent improvements
by Bourgain and Demeter [1] to prove the conjecture in [9] for the Heisen-
berg groups H", n > 2, for all subspaces V). The approach is motivated by
previous results on L9-Sobolev estimates for averaging operators associated
to families of curves in [12], [13]. In an early version for generalized Radon
transforms associated with families of curves in three dimensions ([14]) the
relevant decoupling inequalities are proved by an induction procedure where
a scaled version of the constant coefficient decoupling inequality is combined
with a nonlinear change of variables, at every stage in the iteration. We use
this idea here as well. The resulting theorem can be interpreted as a stability
result for the maximal function estimate in [9].

Theorem 1.1. Let n > 2, ¥ C V) as above and p be a smooth density on
Y. Let M as in (1.2) and p > 22’11. Then M extends to a bounded operator
on LP(H™).

Remark: 1t is instructive to note that an analogous stability result may fail
for other more regular measures. For example, if we let v be the measure on
V) given by 1pdS where dS is the 2n-dimensional Lebesgue measure on V)
and 1p is the characteristic function of the unit ball centered at the origin.
Then results on maximal and singular Radon transforms [15] show that for
A = 0 the maximal operator f — sup, |f * Dilsrp| is bounded on LP(H™) for
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1 < p < co. However for A\ # 0 the maximal operator f +— sup, |f * Dilyvy|
is bounded on LP(H") only for 2321 < p < oo. The local analogue of the
latter maximal operator (with dilations parameters in [1,2]) shares some
properties with the spherical maximal operator (c¢f. [16]), due to the rotation
effect of the nonisotropic dilation structure. One has an example that shows
unboundedness that is similar to the example that shows unboundedness of

the spherical maximal operator LP(R?), when p < d%'ll (cf. [17], [16]).

This paper. In §2 consider regularizations of the measure defined by
dyadic frequency decompositions and prove a crucial LP-Sobolev inequal-
ity for the convolution f % p when acting on LP functions with compact
support. As a consequence we obtain an estimate for a restricted version of
the maximal operator where the dilation parameter is taken in a compact
subinterval of RT. In §4 we describe the basic decoupling step. In §5 an
iteration and combination with known L? estimates leads to the proof of
the main Proposition 2.1. In §6 we use Calderén-Zygmund type arguments
to extend this result to obtain Theorem 1.1. The appendix contains a basic
integration by parts lemma which is useful in checking the details of the
decoupling step in §4.

2. MAIN ESTIMATES

The convolution fi * fa(z,u) = [ fi(y,v)f2((y,v)  (z,u))dydv on the
Heisenberg group can be written as

fi % folw,u) = / F10) ol — gou — v + a7 Ty)dyd
(2.1)

= /f2(3/7“)f1($ —y,u—v —xTJy)dydv

Here J is a nondegenerate skew symmetric matrix on R?".

Split = (z,72,) where z € R?"~!. We consider a localization of the
measure to a graph xa, = g(z) on V), where the Hessian of g is nondegen-
erate. We will use permutation of variables to reduce to this situation (cf.
the remark in §5).

The localized measure p can be represented as an oscillatory integral
distribution by

(2.2) 0, u) / / (@9 @)D g

where 7 is a smooth compactly supported function.

Let ¢p € C3°(R) be an even smooth function such that ¢o(s) = 1if [s] <1
and such that the support of ¢y is contained in (—2,2). Let ¢1(s) = o(s/2) —
so(s) and let, for k > 1, Cx(s) = ¢1(2'7%s). Also let ¢y = p. Then for k > 1,
(k. is supported in {s: 2F71 < |s| <281}k > 1, and we have Y, _o (x = 1.

Let

(2:3) pulos) = (o) [ [ ot a@ DG (2 4 72)12) do dr
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and we decompose (2.2) as > -, pux in the sense of distributions.

The maximal function sup,.q|f * Dil;pux| is dominated by C(k) times
the analogue of the Hardy-Littlewood maximal function on the Heisenberg
group. Therefore it suffices to consider the case k > 1.

Our main proposition will be

Proposition 2.1. (i) For q > 2;177_117

1f * gl Laquny S 2 )

(ii) For p < 2n+1

k(On—1)(1—1
1f * gl o any S 2 Fenm ")”fHLP(Hn)-

Moreover, for 1 < s <2

< 2k27k(2n71)(17%)Hf”Lp(Hn) )
")

d .
| o it |,
The implicit constants are uniform if \ is taken from a compact subset of

(RZn)* .

A well known Sobolev imbedding argument gives a sharp bound for the
restricted maximal function:

Corollary 2.2. Forp < 2n+1,

k —2 1
| sup (£ % Dilysl | gz S 2°F 2N Flpoeny.
1/2<s5<2

We use a further decomposition in the o-variables, as in [9]. Let

oo, 7) = (27502 + [7[?) (1—<02 )
Cea(o,7) =1 (27502 + [T2)a (2 o
Ck(UuT 2 k 0_2 ’T|2 §0 k/3] k—1 )

so that
G+ =G+ Y G
0<I<k/3
Let y13.; be defined as in (2.3) but with ¢.((0% + 72)'/2) replaced by (i

when [ < k/3 and by (j, when [ = [k/3]. We shall prove the following refined
version of Proposition 2.1.

Proposition 2.3. Lete >0 and 2 < ¢ < LQLZJ_F% Then there is C. > 0 such
that for 0 <1 < [k/3],

_k2n=1 4 2n _ 2n—1
1 * gl < Co27F 7 2" 75 g
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If 23:‘1 <q< 321‘% and € > 0 is sufficiently small then we can sum in
[ and obtain part (i) of Proposition 2.1. The LP inequality for p < Q;ﬁI

follows by duality and the estimate for d% f * Dilgpug is proved similarly.

Remark. We also have, by interpolation with an easy L° estimate,
dn + 2
2n —1

_f2n=1 _jl—e
(2.4) [f o+ prally < C277 a0 277 || fllg, < g < oo

3. Background and idea of the proof

The idea in the proof of Proposition 2.1 is to consider the fibers of the
fold surface which curved varying cones; this goes back to the paper [5] by
Greenleaf and one of the authors which dealt with L? — LP inequalities
for classes of generalized Radon transforms. One then would like to apply
decoupling for localizations to plates adapted to neighborhoods of these
cones. The cones vary with the base points and some approximation and
preparations via changes of variables have to be used, cf. [14].

Concretely if x1(x,u) and x2(y, v) are compactly supported C2° functions
we want to examine the functions (fx2)* (2, u)x1 (2, u) which are written
in the form

/ K@, u, 9, 0) £y, 0)dy do

where the Schwartz kernel Ky ; is given by

e apaln o) [[ o2 opa@ Vo 4 e dodr

and the phase function is defined by
(31) 90(07 T,T,u,Y, U) = U(an — Yon — g(@ - y)) + T(U -V + .’IJTJy)

where J is a skew symmetric nondegenerate 2n x 2n matrix (for example a
skew symmetric perturbation of the standard symplectic matrix). Note we
do not assume that J is orthogonal.

With ¢(o, 7,2, u,y,v) as in (3.1) the cones in question are given, for each

(1‘,“), by
{(@x,@u) 0= Oa Ton — Y2n —g(i_y) = 07 v = 'LL+CL'TJy}
={(1Jy,7) : Y2n = T2n — g(z — )}

which is actually independent of u. Denote this conic surface by >, and let

(3:2) I(y) = (y, 220 — g(z — y)).
Then
(3.3) Yo ={(rJI"(y), )}

We wish to use the decoupling inequalities in [1] (or the previous paper [§]
if n is sufficiently large) for thin neighborhoods of the cones ¥, for suitable
frozen x. Note that by our assumptions on g the cones are maximally curved
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(i.e. d—2 = 2n—1 principal curvatures are nonzero). The basic decoupling
step will be described in the next section.
4. THE DECOUPLING STEP

Let 6o > 27" and let §; < dp be such that

(4.1) 5 > (27100) /2

Fix a € R?", b € R?™~!. Suppose we are given a family of disjoint cubes
{Q,} in R*"~! of side length §; contained in the reference cube

(4.2) Q= {QGR%_l: lyi — bi| < dp,i=1,...2n —1}.

Suppose in what follows that for each v the function (y,v) — f,(y,v) is
supported in @), x R x R.
We fix € > 0 and let

(4.3) 6 >27l1=e),

Let ¢ be as in (3.1)

Let Xique be a smooth function supported in a ball of sidelength 2!
centered at (a,u°), satisfying |0%X1.q.uo| < Ca2!1! for all multiindices a. Let
¢ be a smooth function supported in (—2,2). Let K = K}, 440 be given by

(4.4a) K(z,u,y,v)

= Xt,aue (%, 0) //C(Ql_kU)X1(2_k\/m)ew(a’T’m’“’y’y)dadT

which after a change of variable (replacing 27%(o,7) by (o, 7)) we can write

(4.4b) K(z,u,y,v) = 2% //’y(a, T,:):,u,y,v)eﬁk“”(a’“x’%y’”)dadT

with
(4.5a) y(o, 1, x,u,y,v) =0 if |z —a| + |u —u’| + |o| 2 2~
(4.5b) 100 s syy] < Car2™.

Here OM stands for any differentiation of order M in the variables indicated.
We let T' denote any such operator with kernel K and v as above.

Proposition 4.1. Let 2 < g < gZJ_rl. Let 0 < e <1, k> 1,1<k/3,
6y > 2710=9) With the above specifications on Q and {Q,} we have, for

any €1 € (0,¢), and N € N,

1/q

@6) |13 £, < Clen@orsn™VE D (I slg)

+C(e, N2 sup || fy[lg-
v
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4.1. A model case. We first consider the model situation dy, d; as in (4.1),
Q as in (4.2), ¢ as (3.1), such that

(4.7) a=0, b=0, Vg(0) =0.

As pointed out above the crucial tool is the decoupling estimate from [1].
The relevant cones X are given by

(4.8) (y,7) = 7(JT(y), 1),
with I' = T'? as in (3.2), i.e.
(4.9) I'(y) = (y, —9(=y))-
Let
2n—1
(4.10) N = e~ 3 Big(—pes
i=1

which is normal to y — I'(y). Let ¥ € Q, and let N, = N(y")/|N(y")|.
Let J# be the contragredient matrix, i.e. J# = (J!)T. Since J is skew
symmetric we have J# = —J~!. J#N(y) is normal to JT and

PTy) TN, IN@I| 0°T(y) N@>
dyjOyr’ [J#N(y)|"  |J#N(y)| Oy;0ux” IN(y)"

This relates the curvature form for I' to the curvature form for JI', and the
decoupling estimates from [1], in the version for general curved cones ([13]),
are applicable.

It turns out that, in order to perform the decoupling step via the Bourgain-
Demeter inequality we will have to make a change of variable in the (x,u)
variables, using a quadratic shear transformation. Thus we consider instead
the operator T defined by

Tf(x,u)=Tf(zx,u+ %(S:L‘,:U))

where S is a suitable symmetric linear transformation. Obviously, by chang-
ing variables, (4.6) holds with 7" if and only if it holds with 7.

It will be important in the proof to choose S such that the following
crucial assumption

(4.11) SJT*eon = —ean

is satisfied. To see that S can be chosen in smooth dependence on J we
notice that u; := es, and us = J#ea,/|J%ea,| form an orthonormal basis
on V = span(J# ey, €2,) which can be extended to an orthonormal basis
{uy,...,uz,} of R?™. Let ¢ = |J#eg,| and we let Suy = —c uy, Su; =

—c lug and Su; = u; for i = 3,...,2n. Then S is symmetric, invertible and

min{1, |J#62n|_1} < |IS]| < max{1, |J#€2n|_1}

where || S| denotes the ¢2 — ¢2 operator norm on 2n X 2n matrices.
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The Schwartz kernel of 7 is given by

(4.12) 92k // (o, T,a?,u,y,v)eiqu)(U’T’x’“’y’”)dadT
with
Yilo, 7, 2,u,y,v) = y(0, 7,2, u+ §(Sz,x),y,0)
O(o, 1, 2,u,y,v) = (o, T, z,u,y,v) + §<Sm,x>

We now define nonisotropic cylinders (or “plates”) associated to the cone
(4.8). We use the notation

§= (Ev €2n+1) (é Son 2n+1)
The tangent space to the cone at T(JF(Q )

and a normal vector is given by

) - <-<ri§fi”m>> |

The relevant plates are 2*II,(d;) where the normalized plates II,(6;) are
defined by the inequalities

(4.14a) CH<\IEP+ &, <C

(4.14b) € = &2n1 JT(y")| < OOy
(4.14c) (€ = &n1JT (YY), J¥N,)| < C61.

The Bourgain-Demeter decoupling theorem gives that

H <61 /50)” <ZHFH> g int?

“2n—1’
provided that the Fourier transforms F,, are supported in QkHV((Sl). We have
some freedom in the choice of the constant C' ranging over a compact subset
of (0,00). Let 1, be a bump function which is equal to 1 on II,(d1) and is
supported on its double, and 7, satisfies the natural differential inequalities.
Specifically consider the radial tangential, nonradial tangential, and normal
differentiation operators:

1) is spanned by

0
Vo= {(JT W), Vg) + ——,
0 < (y ) §> a£2n+1
0 0
Vi T Qe r i) A -:1,...,2 —1,
€ 9 ~ UTE).e >8§2n+1 ' "
. 9
V,/ = <J NV,VE> - <F(y ),NV> 852 +1.

Then
2n—1
[VERVEL - VISV m(©)] < Caparan, (1/00) 20200

v,2n
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Define the Euclidean convolution operator Py, in the multiplier formulation
by

P J(6) = m(27%€) F(©).
Then by the decoupling inequality

(4.15) HZPk,,TfV < C(e)(01/60)” (ZIITfVII)

We need to analyze the Schwartz kernel of f — (I — Py,,)7 when acting on
fv. Thus we consider for y € Q,,

23k / / / ¢ B D (1, (27h¢))

X // eﬂ%(”’ﬂj’ﬁ’y’”)% (o,7,2,0,y,v)dodr dzdu d§ .

We can replace (I — Py,,)T fy, with (I — Py, )L T f, with Lj, a Littlewood-
Paley cutoff operator localizing to frequencies C Lok < |¢] < C12F (as the
remaining error terms are handled by standard integration by part argu-
ments, see e.g.[7, §4.2]). Also if |z| + |u| > C we see that by an additional
integration by parts arguments in the (£, 0,7) variables we get a bound
< 027 F=DN (|| 4 |u])~N. Hence we need to show that the L>® norm of
the integral is O(27*N). Since the (#,1) integral is over a compact set it
suffices to show that the Fourier transform of T f,, in the complement of the
double plate has norm O(27*V). Moreover, if |7 — &pn41| > 2/7F then we
can integrate by parts with respect to 4 and show that the resulting integral
is O(27kN).

It remains to analyze, for |7| & |£2,41] and y € @, the behavior of

(4.16) /// ei2k(q)(”’T’x’“’y’”)_<z’g>_“§2”“)’yl(U, T,2,u,y,v)do dx du

assuming that & ¢ I1,(0) with C in (4.14) large. For better readability we
have changed the notation from (%, a) to (z,u) in (4.16). In what follows
we will set

(417) \11(0-7 T,T,U,Y, 0, 6) = <I>(07 T, T, U, Y, U) - <$7 E> - u£2n+1 .

In order to estimate Fourier transforms in the complement of plates we
need bounds for certain directional derivatives of the phase function ¢
(which will then turned into lower bounds for the directional derivatives
of ¥ when ¢ is away from the plate).

Lemma 4.2. There is a constant A > 1 so that the following statements
hold for all y € Q,, |o| =27, |7] ~ 1.
(i) Let V,; = e; — (JT'(y"), ei)eant1. Then

(4.18) |(Vis Vau®)| < A1 + |20 — y2n — g(z — y)).
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(ii) Let V,, be the normal vector in (4.13). Then
(4.19) (Vo Vou®)| < A(63 + |20 — 20 — 9(z — y)).
4.1.1. Proof of Lemma 4.2. To see (i) we have for i = 1,...,2n,

; 0P 0D
<Vv,ia V:c,uq)> = &Tz - <Jr(y ),Q)%

= o(N(y), ei) + 7({Jy, &) = (JT(y"), €i) + (S, e3)).
We have ¢ = O(27), Sz = O(27!) and

Jy = JU(Y") = (y2n + g(—y))Jean + (9(—y") — 9(—=y))Jen
= (y2n + 9(—y))Je2n + O(d1)

Split
lyzn + 9(—=y")| < ly2n — 220 + g(z — y)| + 220
+19(=y) — gz —y)| + |9(=y") — g(=y)|.

The second and the third terms are O(27), by our localization in x. The
fourth term is O(dpd1) since y € @, and Vg = O(dp) in Q,. Consequently
(4.20) Y20+ 9(=y")| < (27" + d001) + [w2n — y2n — g(z — y)|
and thus (4.18) follows easily.

Next we verify (ii). We have

o [}
(4.21) V), Veu®) = (J¥N,, V,®) — (J#N,, Jr(g»‘l

ou
= I(z,y,0) + I1(y,0) + [1I(x,y,7) + IV (x,T)
where
2n—1
I(z,y,0 :—az #N,, 0ig(z — y) — dig(—y)),
2n—1

= —0 Z Nl/vazg )> + U<J#NV7 6271))
I (z,y,7) = T<J Nl,, Jy) — (N, T'(y")),
IV(x,7) = 7(J*N,, Sz).

Since ¢ = O(27!) and |z| = O(27!) we have |I(z,y,0)| < 272" which is of
course O(0%). By (4.10) we have

II(y,0) = o(J¥N,,N(y))
= o(J#N,,N(y) — N(y")) + 0[N (y")[(J#N,, N,)
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and by the skew symmetry of J# the last summand drops out and we get
o{J#N,,N(y)) = O(27'61) which is O(6?). For the third term, we write

T Iz, y,7) = (Nyyy = T(y"))
= (N, T(y) =T (")) + (No,y = T'(y))-
By definition of N, and Taylor expansion,
(N, T(y) = T(y") = O(ly — y**) = O(&).
Next observe N, = e, + O(dp) and
on — 9( = y) + 9(—y) = w20 — (2, Vg(—y)) + 0277
= (z,N(y)) +0(27%)
and thus
<N,,, Yy — F(y)) = <NI/7 62n>(y2n + 9(—3))
= - <N1/a 62n>($2n — Yon — g(l - g)) + <Nl/7 e2n>($2n - g(x - g) + 9(—y))
:<N1/7 62n><x7 N(y)> + 0(2_2l + |1:2n —Yon — g(g - y)\)>
and furthermore
(Ny, ean)(z, N(y)) = (N(y),z)(1+ O(o))
= (Ny,z) + O0(27'%)).
Adding 771V (2, 7) we get
(N,,z) 4+ 77V (x,7) = ((I + ST?*)N,, z)
= (I + SJ%)ean, z) +O0(27'0) = O(27'5p)

where in the last equation we have used the crucial assumption (4.11) on
the choice of S, i.e. that ey, is in the nullspace of I+ SJ#. Collecting these
estimates we obtain

1T I (2, y, 7) + IV (2, 7)| S (8T + 2700 + |220 — Y20 — 9(z — y)I)-

By our assumption (4.1) we have 27!y < 62 and the asserted estimate in
(ii) follows. The proof is complete. O

4.1.2. Estimation of Fourier transforms in the complement of the plates.
We apply Lemma A.2 in a two-dimensional setting where the wi-derivative
will be replaced with the directional derivative for a vector V in R2™+1 and
where wy = 0.

We first assume that (4.14b) does not hold, i.e.

(4.22) & — (JT(y"), ei)éons1| > C161
for some i € {1,...,2n} and Cy > 24, with A > 1 as in Lemma 4.2.
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Note that g—f = Ton — Y2n — 9(z — y). Hence if (4.22) holds with C; >
2A > 2 then, we get from part (i) of Lemma 4.2

, ov
(4.23) [(Vois Ve ®)| + |a—a\ > 51/2.

Indeed the left hand side is equal to

0d vy 0y 02 , o

oz~ T e g — &+ Ty ),el>52n+1‘ n ’670

> max{07 (Cl - A)(Sl - A’=T2n — Yon — g(g — Q)‘} =+ \90271 — Yon — 9(& o g)’
S Ci—-A 01

>
Y

We now use integration by parts. We assume (4.22) and define a differential
operator L by

Jo

" - 0¥ Oh
(4.24) Lh = <‘7V,i,v>< Oé’“vm(vymzpm ) < ( R T )
[(Veis VOO + [ 55 12 [(Vois V)2 + [ 55 12

The integral (4.16) becomes
(4.25) iNo—kN /// eiQk(q’(”’T’x’“’y’“’f))LN%(J, T, T, u,y,v)dodrdu

and [LN~| <y (2'671)N by a straightforward analysis using Lemma A.2.
Since 251§, > 25/3 we gain a factor 27*M/3 with N; integrations by parts.

Next consider the more subtle case where (4.14c) does not hold, i.e. we
have

(4.26) (€ — &on1JT(y"), J#N,)| > C167
provided that C; > 2A4. We now have by part (ii) of Lemma 4.2

- ov
(4.27) [V, VO + |5~ = 57 /2.
To see this observe that the left hand side is equal to
y 0P — y 0P
(T Ny, Va®) = (D), Ny) 5 = (TENG 8 + (D), No) o | + |
> max{0, (C1 — A)0} — Alzan — yon — g(z — y)|} + 220 — y2n — g(z — y)|
Ci—A 5 _ 62
> > —.
= oq 125
We use for our integration by parts the operator L defined by
= V,, VONV,, Vh ) v oh
(428) Lh=(V,, 9)( W, V) (e, V) )t (),
[(Vo, V) + 15727 00 \[(V,,, V)2 + | 572

Again we get the formula (4.25) with L replaced by L and we need to
examine the symbol (L)~ using the crucial lower bound (4.27). We use the
terminology in the appendix (c¢f. Definition A.1). Analyzing the terms of
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type (A, ;) we thus get a bound O((2'672)7). For the terms (B, 1) (second
derivative of ¥ divided by the square of a gradient) we notice that pure
(0,u) derivatives of second order are zero and pure z derivatives of second
order carry the factor ¢ = O(27!). We need to get an upper bound for
mixed derivatives of second order and notice that

(4.29) DV V)0 = —(JEN, N () = O(0)

for y € @,. This shows that the type (B, 1) terms are < (51_3 + 2_151_4 and
hence < 2!672. The type (B, j) terms for j > 2 are O(6~20U+Y). Hence if A is
a product of a bounded term, a term of type (A, ja), M; terms of type (B, 1)
and My terms of type (B, k;) with x; > 2, and if j4 + M; + Zi]‘g k; = N1,
we get a bound

Mo
61 5 (2o 2yt T o0

i=1
and hence
My oRitl
27N (DN Sy, (2F1eT) M T (27, )
i=1

<y (2P182) N1 < 9 kNigl(3-2)N1 < 9=2kNie/3

since we are assuming 8; > 2740179 and [ < k/3. We choose N large, say
Ni > (2N + 10n)/e, and from (4.15) and the above error analysis we get
the bound

(4.30) H > PeuTh,

)(31/d0)” (Z 7,12)" + Cate )2 sup £,
Now apply Hélder’s inequality in the v sum (which has < (81/d9)~ (%71
terms) to also get (4.6). This finishes the proof of Propos1t10n 4.1 under the
additional assumption (4.7).

4.2. Changes of variables. We now complete the proof of Proposition 4.1 by
reducing the general case to the model case (4.7).

Let again d1,dg be as in (4.1). We are now given a family of disjoint cubes
{Q,} in R?"~! of sidelength §; contained in a reference cube

Q:z{QGRzn_lI|yi*bi\§5o,i=1,...2n—1}

and suppose that the function f, is supported in @), X R x R. We consider
the operator T" with Schwartz kernel as in (4.4b) but do not assume that Vg
vanishes at the reference point (a,b). Decomposing the cutoff function in
(z,u) into a finite number of pieces (with the number depending on upper
bounds for ¢’ we may assume that

(4.31) supp (Xta,u°) C {|z — af < 027, Ju—u’| < 27"}
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for some small ¢y > 0. We also set a = (a, azy,), and b = (b,0).
Define G' = G p by
G(w) = g(a—b+w) — az, — w'Vyg(a—b)
so that
G(0) = —agn +g(a—1b), G'(0)=0.
We now introduce the change of variables (X,U) = (X, Xo,,U), (Y, V) =
(Y,Y5,,V), defined by

I
I

X=z—a,
Xon = 2n — azn — (2 — a)"Vg(a - b)
U=u+Ax)+ (z—a)TJb
and
Y=y-0b,
Yon =yon — (y —0)"Vg(a — b)
V=v+Ay) —aJy

Then we have

(4323) T2n — Y2n — g(@ - Q) = Xop — Yo, — G(K - Z)
: _f fan-1 O
Setting B = (g’(a _b) 1) we also have
u—v+aTJy+ Nz —y)=U—-V+(zx—a)TJ(y—>)
(4.32b) =U-V + XTBTJBY.

Here BTJ B belongs to a compact family of invertible skew symmetric 2n x2n
matrices. Now, after a decomposition into a finite number of pieces with
(z,u)-support of diameter < 27! we can reduce to the situation where we
can apply the estimates in §4.1.

5. PROOF OF PROPOSITION 2.1

We now iterate the estimates in Proposition 4.1. We give the argument
for f = fx*ppg, I < [k/3] (see the definitions ahead of the statement of
Proposition 2.3). We can use the Heisenberg translations to reduce to the
case that f is supported in {(y,v) : |y| < 1,|v] < 1}. Then f * py, is
supported in {(z,u) : |z| 4+ |u| < C} for some fixed constant.

We shall work with a partition of unity in (z,u) space

Z Xxo,uo =1
(wovuo)ezl
where Z; is a grid of ¢27! separated points and the bump functions Xyo o

are associated in a natural way with cubes of diameter O(27') centered at
the points in the grid.
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Then for f with support in a fixed ball near the origin we get

/
el s T o)

(xovuo)ezl

We define numbers d; of the form 2™/ with m; € N as follows. Let
mo = [le/100n] and §p = 27"°. Define for j > 1
V + mj_lJ
m]' = |,
2
note that m; — . We will stop the process when m; > I(1 — 15-). Let j.

be the smallest integer greater than [(1 — 15-).

Decompose R?"~! into disjoint dyadic cubes of side length 270, call
these cubes Q9. Let fo,(y,v) = f(y, v)1go (y,v). Then by Minkowski’s and

Hoélder’s inequality

/
GO om0 Y o oo w2

Vo (z°,u°)eZ;
1/
<o (505 e Gowo <)1)
12 g:o u° GZZ

Fix 7 < j, and let {Q,j,} be the collection of dyadic cubes of sidelength
27 Set fj, = f]le. We claim, for some C(e1) and any No € N the
bound

. 2n+
(52)  |f % prilly < CoCu(er)’2™ @

(z S e Gy #a)]f)

vy CB ,u® EZZ
+ jCs(e, N1)Cy (1)P 12+ Dlg=hNy | )|

For j = 0 this holds by (5.1). Suppose (5.2) holds for j = J < j.. We apply
Proposition 4.1 to bound

! 2(mj—mo)((2”—1)(%—%)+61)

1% dlly < Cler)H12ma@r ) glmasi=msom—mo)(En=) G421

/
(X X S e Gt +med]2)

vy VJ+1:ngi1CQ£J (x(J,uO)EZl
+ (J +1)C(e, N1)C(e1) 23Dl =RNy | £
Choosing N1 > No + 2n + 1 gives
1S * eally < Cler)?+Lamo™d glmsmi=mo) (=1 =5)Fen)

/
(Z Z HXxo’uo(fLH»l,u*Mk,l)HZ)lq

v (z°uf)EZ;

+(J +1)C(e1) " Cle, No)27 52| £ .
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We apply this for J = j, — 1 and observe that j, < e~ ! +logl.

~

(e1 )Cz(logl+a*1)2m0 / 2(mg*—m0)((2n 1)(3—$)+e1)

XY e G ml?)”

v (z°uf)EZ;

+ C(en) 08 C (e, Np) (™! + log )27 £

If* el S C

We use the definition of mg and mj,, and that A°87 < C(5, A)2% for any
0 > 0. Thus, for 2 < ¢ < g‘Z‘_F%,

_ _1y(i_1 1/q
(5:3) 11 # piillg Seey 25102079 DETH D (K s g ll8)

+Cn 27N £l

We use the L? estimates for Fourier integral operators associated with folding
canonical relations, as in [9] (relying on the version in [5]). We get for a
bounded set U

1/2 k(on
(5.4) (X2 i % mallfaqyy) S 27022072

for I < [k/3]. We also have a trivial L bound, using that the projection
of the support of f;, , to R?"~1 is contained in a ball of radius 2 ™+ =

271 0-157) . We get

(5:5) sup || f.. # ponlloo S 271070 £l

By interpolation
1/a —k(2n— —1(2n— n— 5
(Z | fo * Mk,lHqu(u)) <, 9~ kn=1)/ag-lC@n-1)+(n=1)/agle/2| ||

We combine (5.3) and (5.6) and obtain

k2n

l 27
(5.7) I f * gl Loy Se 22 1f1lq

for I < [k/3] and (choosing € small) we can sum in [ if ¢ > 522
Equivalently we obtain

dn 4+ 2
<q< :
=91
provided that f is supported in a fixed ball centered at the origin, say in
Q — [07 1)2n+1‘
We now remove this assumption on the support of f in (5.9). For m €
727t et

_k(2n— In
68) 1=l < Cl@2 e g for

Qm=m-Q={(M+y,mopt1 +v+mJy:y € Q}.
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Let py be supported in Ry = {(z,u) : |z| < A,|u] < A} for some A > 1.
Then (f1g) * puy is supported on the set

{(z,u) 2] < A+ V2n, Jul < A+ 1+ (A+V2n|J||V2n};

to see this write 27Jy = (v — y)TJy. Thus (f1g) * uy is supported in Rp
with B = B(A) (and B(A) is the maximum of the bounds for |z| and |u]
in the displayed formula). By left translation (f1q,,) * ux is supported in
m - Rp and we have

(5.9) 1(f1q,.) * mally < Clq)27* "D/ f1g,, I
for 27%?1 < q < %Zi‘%, uniformly in m. Now for each m € Z?"t! the

cardinality of

{meZ*™ :m-Rgnm- Ry # 0}
is bounded above by C(B)?"*1. Indeed, let m - Rg Nm - Rp # () which is
equivalent with Rg Nm™1mRp # 0. Let (w,t) =m-m~! and (x,u) € Rp.
Then (w, t)-(z,u) = (w+z, t+u+wTJz). if |lw| > 2B then (w,t)-(z,u) ¢ Rp.
If lw| < 2B and t > 2B + 2B?||J|| then |t + u + wTJx| > B and again
(w,t) - (x,u) ¢ Rp. Apply this with

-1

(w,t) =m™" -1 = (M — M, Many1 — Many1 —m'J (M — m)),

and clearly for fixed m there are only C(B)?"+!

|m~1-m| < 2B +2B2||J|.
Hence for general f € LI(H"), 520 < ¢ < dn42

integer vectors m with

) 2n—1 — 2n—1?
1/q
1 emlle=| > o) sm| So (X 1010 el
mezZ2ntl 4 mez2n+1
h(2n— /g h(2n—
<p, 2k 1)/q( 3 |yf11Qm||g) <y 2D/
mezZ2n+1

Now convolution with py is uniformly bounded on L*° and thus interpo-
lation gives

(5.10) 1f * el < Cla)27* =1/ £ for

.
m—1 9=

Alternatively one can argue with as in [13] with the Wolff version of decou-

pling for ¢ > 242 By duality (5.10) also implies
—k(2n—1)(1—-1
(511) I mly < CE2TETE fp for 1< p < g

By modifying the definition of v in (4.4b) we also get the same estimate
for uy replaced with Q*k%Dilsluk when s =~ 1. This proves Proposition 2.1.
A standard Sobolev imbedding argument yields Corollary 2.2.

Remark. Up to this point we worked with a measure x in R?" supported on
a graph xo, = g(x1,..., 22, 1), with D?g nondegenerate. We must also also
consider the case where the surface is given by z; = g(z1,...,zj—1,Tj41,. .. ).
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However this situation can be reduced to the former by permuting the vari-
ables; one just needs to note that the change of variables argument in §4.2
applies, and that the skew symmetric matrix J in the former case is replaced
by PTJP after a change of variables, with P a suitable permutation matrix.

LP Sobolev result. Proposition 2.1 can be reformulated as a regularity result
in Besov spaces for functions in R?®*! which are supported on a compact
set. However one can combine Proposition 2.1, part (i) with the result in
Theorem 1.1 of [12] to show a better result using Sobolev spaces L (RY) for
a=(d—2)/q, with d =2n+ 1.

Corollary 5.1. Let U be a compact neighborhood of the origin and let
LL(R?"HY) be the usual Sobolev space. Let Rf = f * p with u as above,
and with the convolution on the Heisenberg group H"™. Then we have for

4
oy < q < 00,

IRfs, . < CW ISl

whenever f is supported in U.

-1)/q

See the discussion in §2 of [12] for related examples. Theorem 1.1 of [12]
actually gives a better statement using Besov and Triebel-Lizorkin spaces,

namely that R : (Bf]],q)comp — Fé?,«n_l)/q for all r > 0, in the ¢g-range of the
corollary.

6. ESTIMATES FOR THE GLOBAL MAXIMAL OPERATOR

By the Marcinkiewicz interpolation theorem it suffices to prove a weak
type (p,p) estimate for p > 23—’_11, ie.

(6.1) meas({(x,u) : sgp |f * Dilyp(z, u)| > a}) < O‘_prH]Zp(Hn)

for p > 23:.

We use Calderén-Zygmund theory on the Heisenberg group, with respect
to the nonisotropic balls

B((a,b),6) = {(y,v) : |(y,v) " - (a,b)| < 6}
={(y,v) : [(a —y,b—v —yTJa)| < d}

see for example [3], [4], or [17]. We apply the Calderén-Zygmund decompo-
sition to the function |f[P.

Let
Qo = Qa(f) = {(z,u) : Mur(|fIP)(z,u) > o’}
so that
(6.2) meas () < o P f[[}-

Let g1 = flge. Then |gi(x)| < o almost everywhere
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We have Q, = Ugeg,Q where the sets ) in the family Q, are disjoint
and measurable and there are constants ¢1, co such that 2 < ¢; < ¢2/8 such
that for every @) there is a point Pg and an rg > 0 with

B(Pg,rg) C Q C B(Pg,cirg) C B(Pg,2c11mqQ) C Qq;
moreover
Z 1B(Py,2¢1m) (%) < C almost everywhere

Q
and

B(Pg,carg) NQL £ 0.
We decompose

flo, = > flg.
QEQn
Let ¢ be a C*° function supported in the Euclidean ball of radius 1 centered
at the origin and such that [ ¢ = 1. We introduce some cancellation using
suitable convolutions as in [2]. Let

G (x,u) = 27 mMEHD) (97 972y
let mq be such that ci17g/2 < 2™ < ¢1rg and set
90 = (f1Q) * dmq.
b = flq = (f1Q) * ¢my-
Then g, bg are supported in B(Pg,2cirg). We set go = ZQeQa gg and

we have |go(x)| < Ca almost everywhere. Let ¢ = g1 + g2 and b= f — g.
Now

meas ({ (z,u) : sgp | f * Dilyp(z, u)| > a})
< meas(Qq) + meas({(z, u) : sup |g * Dilyp(z, u)| > a/2})
t
+ meas({(z,u) € Qg : sgp b Dilyu(, u)| > a/2}).

Since n > 2 we know the L? boundedness of our maximal operator and
the standard argument using ||g||cc < o gives

~

meas({(z,u) : sup |g * Dilyp(z, w)| > a/2})
t
(6.3) < (@/2) || sup |g * Dilplll
< C%a|gll3 < CPa7P|If |1

It suffices to estimate
meas ({ ((z, u) : sup |b* Dilyu(z, u)| > a/2}).
t

= 3" by

QREQq:

mgo=m

For m € Z let
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Observe that
supp (b[m] sk py) C Qg if t < om=C1

where C1 € N and C depends only on the support of u.
If (x,u) ¢ Q4 we have

1/
sup |b * Dilyp(z, u)| < (Z sup |b* Dilyj u(x, u)|p) :
>0 ez 1/2<s<1

:(Z sup ‘ Z b[m]*Dilngu(m,u)’p)l/p

jez1/2<s<1 e

(6.4) < Z (Z sup | Z bl « Dilgjs,uk(m,u)}p> l/p.

k>0 ez 1/2<s<l p<iio

We have straightforward estimates

il + 27| Vagllr < C,

1
27H] -
2
which we use for m < j — Cok with sufficiently large Cs, say Co = 10. For
this range we estimate the corresponding part in (6.4)

HZ(Z sup ‘ Z b[m]*Dilzjsuk|p>1/pHp

k>0 ez 1/2<s<l i onk

< E Z H ( Z sup ‘b[j—C'zk’—l] % Dﬂ2jsuk‘p> l/pHp

k>0 1>0 jez 1/2<s<1

_S S (S sup B CE s Dy 2)

k>0 1>0  jeZ 1/2<s<1

d d
Dl , + 27|V i, <
75 Ugpig o + VdSDll Uk S C,

<s<1.

Now let flm = > Qumg=m f1q so that bl = M« (5 — ¢,,) (with & the
Dirac measure at the origin). Then

H 1/§Ep<1 ‘b[j—cgk—l} ” Dﬂst/J’k"Hp
S

1

. . d

< ||p=C2k=l 4 Dily, / pli—C2k=ll 4 — Dil, d
< H * Dilg; 1Mk:Hp+ 1/2” *ds 1235:“1@”1, S
< NI, (18 = 5-cap1) * Dl el

1
d_..
+/ (6 = ¢j—cor—1) * Dlles,ukHleS]
1/2 ds

S 22]&‘2702]671 Hf[j*CQk*l] ”p
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and thus

HZ(Z sup ’ Z b[m]*DilgjsMk}p)l/pHp

k>0  jez 1/2<s<l <ok

< Z Z 92kg—Cak—1 ( Z ”f[j—Cgk_l] ||§) 1/p

k>0 1>0 JEZ
SAfl > 2R a7t <1,
k>0 1>0

Note that this estimate holds for all p > 1.
The main contributions come from the range j — Cok < m < j+ . Here
we use Corollary 2.2 and bound, for fixed k,

H(Z sup ‘ Z b[m]*Dilysuk‘p)l/pH

jez 1/2<s<l i cukam<j+Ch

= (Z Yo (Gt Gk Dilgjsukllz’?) "

JEZ j—Cak<m<j+C1

n__ ' 1/
A O DD DI (o R il )
JEZ j—Cok<m<j+Ci

n 1
Nleies (1+ k)2k(2?72n+1)( Z Hb[m} Hg> !
meZ

p

2n_op
< 1+ B)2PG2 D £

2n
2n—17

IS( sw | 2 bw*Dﬂmuk\”)l/pHpgcpy\fup.

k>0 jeZl/2<8<1 j—Cak<
m<j+Ci

Thus for p >

2n
2n—1

We combine the LP estimates and get p >
H sup |b * Dﬂtﬂ| HLp(QB) fSp HfHP
>0 a

Hence by Tshebyshev’s inequality,
(6.5) meas ({(z,u) € Qg ssup |bx Dilyp(z, u)] > a/2}) S a7 5.
t

The desired weak type bound (6.1) follows from (6.2), (6.3) and (6.5). O

APPENDIX A. An integration by parts lemma

To perform the decoupling step we used a familar integration by parts
lemma (which has been used many times but is often not found in the
precise form needed in an application). We formulate what we need here
and include some details of the proof, for convenience.
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Let h € C function on R™ and let w +— 1 (w) be a real valued C*°
function such that Vi) # 0 on the support of h.
We define

Then the formal adjoint L* = —<%, V) satisfies i 71 L*eV = MY,

We let L°h = h and define inductively LYh = LLN~'h. We then have
by integration by parts

/ez)‘w(w)h(w)dw = <%> /e’)‘w(w)LNh(w)dw

for N =1,2,....
We need to analyze the behavior of LVh and the following terminology
will be helpful.

Definition A.1. (i) The term h is of type (A4,0). A term is of type (A, )
if it is hj/|Ve| where h; is a derivative of order j of h.

(ii) A term is of type (B,0) if it is equal to 1. A term is of type (B, )
for some j > 1 if it is of the form v;11/|Ve|[/T! where ;41 is a derivative
of order j + 1 of .

Lemma A.2. Let N =0,1,2,.... Then

K(N,n)
Lyh = Z cNyhNy
v=1
where each hy,, is of the form
viw Ba HW

where P is a polynomial of n variables (independent of h and 1), Ba is of
type (A,ja) for some ja € {0,..., N} and the terms vy, are of type (B, ki),
so that j4 + Zl]‘il ky = N. The terms P, 84,7 depend on v.

Sketch of proof. The statement holds when N = 0. We compute
o aa & a%z)
L
“= |w\2 Z < Ju; dw; |w|2 Z

o ?l)
|V1/1\4 Z « Jw; £ Z dwy, Ow;jOwy,

In particular one can check immediately that the assertion holds for N = 1.
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Now let a be of type (A, m), and 7 be of type (B, m). One observes that

L 0y da  _ vy n vo
NOP ow, Gw; L ) ¥ a;PA,i(W)bl,i

L oY Oy vy vo
O Buw; Bw; )b HZ;PBZ )L

where ap,41 is of type (A, m+1), by, 41 is of type (B, m+1), and the by ; are of
type (B, 1). The polynomials are given by P(x) = z; and Py ;(x) = —ma;x;,
PBJ‘(l') = —(m + 1)a:ia:j.

Next, if P is a polynomial of n variables then

1 oy 0 v¢ ¢
(V|2 Qw; Ow; (P |V¢’| ZP Vi

where the b; are of type (B, 1) and P;(x) = xj(g—gi_ — Ty py xkg—;;).
Concerning the other terms in the definition of Lb (with b equal to a or

) we note that b o d’Q |V4)|~2 is a product of b and a type (B,1) term and

b o Y 9%
|V1/)|4 8w]’ 8wk 8wj8wk

is a product of Pg(%)b and a type (B, 1) term, with P(z) = z;xy.
One combines these observations and uses them together with the Leibniz
rule to carry out the induction step. O
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