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Using Interim Recommitment to Reduce the
Operational-cost Impacts of Wind Uncertainty
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Abstract——Using wind-availability forecasts in day-ahead unit
commitment can require expensive real-time operational adjust‐
ments. We examine the benefit of conducting interim recommit‐
ment between day-ahead unit commitment and real-time dis‐
patch. Using a simple stylized example and a case study that is

based on ISO New England, we compare system-operation costs

with and without interim recommitment. We find an important

tradeoff—later recommitment provides better wind-availability
forecasts, but the system has less flexibility due to operating

constraints. Of the time windows that we examine, hour-20 re‐
commitment provides the greatest operational-cost reduction.

Index Terms——Power-system operation, power-system econom‐
ics, unit commitment, economic dispatch, wind generation.

I. INTRODUCTION

WIND generation increases supply variability and un‐
certainty, which requires changing power-system op‐

erations to ensure real-time balance between energy supply

and demand [1]. These adjustments give rise to what we

term ‘operational wind-integration costs’ . The literature as‐
sesses and surveys the impacts of integrating wind genera‐
tion into power systems [2]-[5]. Western Wind and Solar In‐
tegration Study (WWSIS) [6]-[8] examines integrating up to

35% (on an energy basis) wind and solar generation into

Western Interconnection. WWSIS examines high renewable-

energy penetrations, their impacts on the fossil-fueled gener‐
ating fleet, and dynamic power-system performance.

The literature studies means of mitigating operational

wind-integration costs. One approach uses synergistic tech‐
nologies, e.g., demand response [9]-[12], energy storage [13]-

[17], or flexible electric-vehicle charging [18] - [22]. These

technologies increase demand-side flexibility, reducing the

need for supply-side adjustments to maintain energy balance.

Financial instruments [23], [24] are another option to reduce

operational wind-integration costs.

Alternatively, operational wind-integration costs can be re‐
duced by modifying power-system operations. Such adjust‐
ment can be done using a stochastic, robust, or distributional‐
ly robust approach to modeling unit commitment [25] - [30].

Such approaches account explicitly for uncertain real-time

wind availability in deciding unit commitment and dispatch.

Another approach is to conduct rolling-horizon optimization,

which allows updated wind-availability information to be in‐
corporated into operational planning [31]. Tuohy et al. [32]

combine these two concepts, by incorporating rolling-hori‐
zon decision-making into a stochastic-optimization frame‐
work.

Operational planning with explicit uncertainty characteriza‐
tion presents challenges. For one, market operators have a

short time window following gate closure to provide day-

ahead operating schedules and prices to market participants.

The capabilities of optimization software and computational

hardware are considerably greater than those available at the

advent of stochastic unit commitment [26], [28], [29], [33].

Nevertheless, the complexities of market models may make

market operators wary for the foreseeable future of adopting

such models. Another important challenge relates to price

formation. Stochastic unit-commitment models produce sce‐
nario-dependent dispatch schedules and prices, which compli‐
cate market settlement [34]. Of importance to a market oper‐
ator, stochastic prices are revenue-adequate in expectation

only. Thus, depending upon realized real-time wind availabil‐
ity, the market operator may suffer a revenue deficit. Sto‐
chastic prices also may raise incentive-compatibility issues.

As such, operational models with explicit uncertainty char‐
acterization see limited use today by any market operator. In‐
stead, most market operators rely on deterministic models

[35], [36]. Given these realities, the aim of our work is to

explore the benefits of introducing recommitment between

day-ahead and real-time market operations. As such, our

work expands upon the concept that Tuohy et al. [31] study.

However, we extend the work of Tuohy et al. in a number

of key ways. First, we model and explore the tradeoff be‐
tween generator flexibility and forecast quality. Conducting

recommitment closer to the trading day (e.g., during hour 23

as opposed to hour 18) provides better wind-availability fore‐
casts. However, operating constraints may limit the ability of

some generators to adjust their operation if the recommit‐
ment is conducted closer to real time. We capture such inter‐
temporal dynamics by developing a detailed operational mod‐

Manuscript received: August 17, 2021; revised: December 15, 2021; accept‐
ed: March 22, 2022. Date of CrossCheck: March 22, 2022. Date of online publi‐
cation: June 8, 2022.
This work was supported by National Science Foundation (No. 1808169).
This article is distributed under the terms of the Creative Commons Attribu‐

tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
M. A. Mansouri is with Department of Integrated Systems Engineering, The

Ohio State University, Columbus, OH 43210, USA (e-mail: mansouri.2@buckey‐
email.osu.edu).
R. Sioshansi (corresponding author) is with Department of Integrated Systems

Engineering, Department of Electrical and Computer Engineering, and Center
for Automotive Research, The Ohio State University, Columbus, OH 43210,
USA (e-mail: sioshansi.1@osu.edu).
DOI: 10.35833/MPCE.2021.000573

839



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 10, NO. 4, July 2022

el that is solved in a manner that mimics the time sequence

of real-world market operations. A second distinction of our

work is that we apply it to a comprehensive case study that

is based on ISO New England, over a one-year study hori‐
zon. Tuohy et al. [31] examine system operations over a

three-week period. Thus, our work examines the benefits of

recommitment, considering diurnal and seasonal load and

wind-availability patterns.

Our case study shows reduced operational wind-integra‐
tion costs with recommitment compared to having only day-

ahead and real-time market operations. Among the time win‐
dows that we examine, hour-20 recommitment minimizes op‐
erational wind-integration costs, suggesting that hour 20 bal‐
ances wind-forecast quality with operational flexibility of the

system. However, this result is specific to our case study.

Our work makes two contributions to the extant literature.

First, we propose a comprehensive approach to modeling

market operations that can be applied to studying the bene‐
fits of introducing recommitment to reduce operational wind-

integration costs. The models that we use are not novel. The

novelty of our work is in implementing these models in a re‐
alistic manner that mimics real-world power-system opera‐
tions. As such, our approach can be applied to other systems

with different resource mixes and load and weather patterns.

Second, our case study demonstrates the tradeoff between

forecast quality and generator flexibility. If market operators

intend to introduce recommitment, our modeling approach

and metrics could be employed to optimize the timing of the

processes.

The remainder of this paper is organized as follows. Sec‐
tion II provides our model formulation. Section III details

the simulation approach. Section IV provides the data that

underlie and results of an illustrative example. Section V

summarizes data for our comprehensive case study. Sections

VI and VII provide case-study results and conclude, respec‐
tively.

II. UNIT-COMMITMENT MODEL

A. Model Nomenclature

1) Sets and indices: we model system operations at hourly

time steps over the ordered set, T ={tsttst + 1ten}, of
hours in the optimization horizon and define t as the time in‐
dex. b is the index for buses, which are in the set, B. We de‐
fine sets, I and Ω, of non-wind and wind generators, respec‐
tively, and let i be the generator index. We define I(b) as the

set of generators that are located at bus b. We define a set,

L, of transmission lines and let l be the transmission-line in‐
dex. Non-wind generators are modeled as having an ordered

set, K, of start-up types, which correspond to how long the

unit has been offline when it is started, and we let k denote

the start-up type index.

2) Parameters and functions: non-wind generators are as‐
sumed to have a three-part cost structure. cNi is the fixed no-

load cost ($/h) of having non-wind generator i online. cVi (×)
gives the output-dependent cost function ($) of non-wind

generator i. c̄Sik is the cost ($/start-up) of non-wind generator

i incurring a type-k start-up. For all kÎKk = |K|, non-wind

generator i incurs a type-k start-up if it has been offline be‐
tween c̄Tik and c̄

T
ik + 1 - 1 hours when it is started up. If non-

wind generator i has been offline c̄Ti|K| or more hours when it

is started up, then it incurs a type-| K | start-up. Wind genera‐
tors are costless to operate.

Non-wind generator i must produce between K -
i MW and

K +
i MW while it is online and must produce 0 MW while it

is offline. In addition, generator i’ s output can decrease by
at most R-

i MW and increase by at most R+
i MW between

one hour and the next. Non-wind generator can provide up

to ρ̄Ni MW and ρ̄Si MW of non-spinning and spinning re‐
serves, respectively. In addition, non-wind generator must be

offline a minimum of τ -i hours after it is shutdown and must
be online a minimum of τ +i hours after it is started-up. Wind
generator i has a Zi MW nameplate capacity and ζti is its p.u.
hour-t availability factor.

There is Dtb MW of load at bus b during hour t. η is the
p.u. load-based reserve requirement and ηS is the p.u. spin‐
ning-reserve requirement. Transmission line l has an F l-MW

flow limit and Γlb is the p.u. bus-b/transmission-line-l shift
factor. M is an arbitrarily large constant.

3) Variables: we represent the status of non-wind genera‐
tors using four sets of binary variables. u ti equals 1 if non-

wind generator i is online during hour t and equals 0 other‐
wise. s ti equals 1 if non-wind generator i is started-up dur‐
ing hour t and equals 0 otherwise. In addition, r tik equals 1

if non-wind generator i incurs a type-k start-up during hour t

and equals 0 otherwise. h ti equals 1 if non-wind generator i

is shutdown at time t and equals 0 otherwise. Two additional

sets of binary variables capture the operation of non-wind

generators vis- à -vis the provision of operating reserves. γti
equals 1 if non-wind generator i is the largest hour-t contin‐
gency (which prevents it contributing towards the hour-t re‐
serve requirement) and equals 0 otherwise. μti equals 0 if
non-wind generator i cannot provide hour-t non-spinning re‐
serves due to a minimum-down-time constraint and equals 1

otherwise.

q ti gives generator i’ s hour-t power output (MW) and ρNti
and ρSti represent hour-t non-spinning and spinning reserves
(MW), respectively, that are provided by non-wind generator

i. Wind generators are disallowed from providing operating

reserves. ϕti gives the number of hours that non-wind gener‐
ator i is offline as of the beginning of hour t and mti mea‐
sures the number of hours beyond c̄Ti|K| that non-wind genera‐
tor i is offline as of the beginning of hour t. cSti represents

the actual start-up cost ($) that is incurred by non-wind gen‐
erator i during hour t.

Each hour’s total reserve requirement is the sum of a p.u.
proportion of the hourly system-wide load and the system’s
largest contingency during the hour. These reserve require‐
ments are based on current practice of California Indepen‐
dent System Operator, which manages a system with relative

high renewable-energy penetrations. ηvt represents the hour-t
contingency-based reserve requirement (MW). ρ͂Nt and ρ͂St rep‐
resent hour-t non-spinning and spinning reserves (MW) that

are curtailed. d͂ tb measures curtailed hour-t load at bus b

(MW). wtb measures hour-t net power (MW) that is with‐
drawn from the transmission network into bus b.
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B. Model Formulation

We model system operations using the mixed-integer lin‐
ear optimization problem:

min∑
tÎ T

é

ë

ê
êê
ê ù

û

ú
úú
ú∑

iÎ I
(cSti + c

N
i uti + c

V
i (qti ))+M ( )∑

bÎB
d͂ tb + ρ͂St + ρ͂Nt (1)

s.t.

∑
iÎ I(b)

qti +wtb =Dtb - d͂ tb "tÎ TbÎB (2)

∑
bÎB
wtb = 0 "tÎ T (3)

-Fl £ ∑
bÎB
Γ lbwtb £Fl "tÎ TlÎ L (4)

ηvt ³ q ti "tÎ TiÎ I (5)

ηvt £ q ti + (1 - γti )K +
i "tÎ TiÎ I (6)

∑
iÎ I
γti = 1 "tÎ T (7)

ρ͂St + ρ͂Nt +∑
iÎ I

( )ρSti + ρNti ³ η∑
bÎB
Dtb + ηvt "tÎ T (8)

ρ͂St +∑
iÎ I
ρSti ³ ηS(η∑bÎBDtb + ηvt ) "tÎ T (9)

0 £ q ti £ ζtiZ i "tÎ TiÎΩ (10)

K -
i uti £ q ti "tÎ TiÎ I (11)

q ti + ρSti £K +
i uti "tÎ TiÎ I (12)

q ti + ρSti + ρNti £K +
i "tÎ TiÎ I (13)

R-
i £ q ti - q t - 1i "tÎ TiÎ I (14)

q ti - q t - 1i + ρSti + ρNti £R+
i "tÎ TiÎ I (15)

0 £ ρSti £ ρ̄Si uti "tÎ TiÎ I (16)

0 £ ρNti £ ρ̄Ni μ ti "tÎ TiÎ I (17)

μti £ 1 + u ti +
ϕti - τ -i
τ -i

"tÎ TiÎ I:τ -i ¹ 0 (18)

ρSti £(1 - γti )ρ̄Sti "tÎ TiÎ I (19)

ρNti £(1 - γti )ρ̄Nti "tÎ TiÎ I (20)

ϕti £ 1 + ϕt - 1i "tÎ TiÎ I (21)

ϕti ³ 1 + ϕt - 1i -Mu ti "tÎ TiÎ I (22)

ϕti £M (1 - uti ) "tÎ TiÎ I (23)

ϕt - 1i £mti + ∑
kÎK:k < |K|

c̄Tikr tik "tÎ TiÎ I (24)

mti £M (r ti|K| - s ti + 1) "tÎ TiÎ I (25)

∑
kÎK
r tik = s ti "tÎ TiÎ I (26)

cSti = ∑
kÎK
c̄Sikr tik "tÎ TiÎ I (27)

∑
y = t - τ +i

t

syi £ u ti "tÎ TiÎ I (28)

∑
y = t - τ -i

t

hyi £ 1 - u ti "tÎ TiÎ I (29)

s ti - h ti = u ti - u t - 1i "tÎ TiÎ I (30)

h tis tiutiγtiÎ{01} "tÎ TiÎ I (31)

r tikÎ{01} "tÎ TiÎ I (32)

ρ͂St ρ͂Nt ³ 0 "tÎ T (33)

ϕti ³ 0 "tÎ TiÎ I. (34)

Objective function (1) minimizes system-operation costs.

We model non-wind generators as having three-part operat‐
ing costs—start-up, no-load, and output-dependent variable
costs. The variable costs, cVi (×), are convex piecewise-linear
functions of the q ti’s, meaning that (1) is linear in the q ti’s.
The final term in (1) penalizes load and reserve curtailments.

Constraints (2) and (3) ensure bus-level and system-wide

load balance, respectively. Constraint (4) enforces flow lim‐
its on transmission lines.

Constraints (5)-(9) impose spinning- and non-spinning-re‐
serve requirements. Constraint (5) defines the values of the

ηvt ’s. Constraints (6) and (7) determine the generator that is
the largest contingency during each hour, which is ensured

by (19) and (20) not to supply reserves. Constraints (8) en‐
sure that the total hourly reserve requirements are met. Con‐
straints (9) ensure that a p.u. portion of the total reserve re‐
quirement is met by spinning reserves.

Constraints (10) ensure that each wind generator produces

between zero and its maximum operating point, which de‐
pends on its hourly capacity factor (i.e., wind conditions).

Constraints (11) - (13) impose minimum and maximum pro‐
duction limits on non-wind generators. Constraints (12) and

(13) account for additional power that is provided if reserves

are called. Constraints (14) and (15) enforce ramping limits

on each non-wind generator, accounting for reserves in deter‐
mining upward ramping.

Constraints (16) - (20) restrict the provision of reserves.

Constraints (16) and (17) ensure that no generator provides

more reserves than it is capable of providing. u ti and μti are
included on the right-hand sides of (16) and (17), respective‐
ly, to ensure that generators provide spinning reserves only

while they are online and that a generator does not provide

non-spinning reserves if it is unable to start-up due to a mini‐
mum-down-time constraint. Constraints (18) determine the

values of the μti’s based on the number of hours that genera‐
tors are scheduled to be offline and their minimum down time.

Constraints (21)-(23) define the number of hours that each

non-wind generator is offline. If u ti = 1, (23) forces ϕti to
equal zero. Otherwise, if u ti = 0, (22) forces ϕti to equal
ϕt - 1i + 1. Constraints (24)- (27) compute start-up costs. Con‐
straints (24) and (25) determine the type of start-up that oc‐
curs during a given hour, based on the duration of time that

a given unit has been offline. Constraints (26) ensure that ex‐
actly one start-up type is incurred each time that a unit is

started and (27) computes the corresponding cost.
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Constraints (28) and (29) enforce minimum-up-time

and -down-time restrictions, respectively. Constraints (30)

define the values of s ti and h ti based on intertemporal chang‐
es in u ti. Constraints (31) and (32) impose integrality restric‐
tions and (33) and (34) impose non-negativity.

III. MODEL IMPLEMENTATION

A. Overview

We use a rolling-horizon approach to model system opera‐
tions one hour at a time. In doing so, we distinguish two pro‐
cesses. The first, to which we refer as unit commitment, de‐
termines the commitment schedule of non-wind generators

for the following day as well as system operations for the

current hour. The second, to which we refer as economic dis‐
patch, determines current-hour system operations.

Figure 1 illustrates the sequence of these processes, for a

case with unit commitment taking place during hours 12 and

18 during each day. The top of the figure labels the se‐
quence of hours between hour 12 of day d and hour 19 of

day d + 2. The sets of lines below the horizontal time axis il‐
lustrate the optimization that takes place during each hour.

Each thin line represents the model horizon of the optimiza‐
tion that is conducted during a given hour, whereas the thick

lines represent the binding decisions that are made.

The first set of horizontal lines shows that unit commitment

takes place during hour 12 of day d. This process determines

the real-time operation of the system during hour 12 of day d,

as well as day- (d + 1) unit commitments. These decisions are
illustrated by hours that are covered by the thick lines. The

thin line indicates that these decisions are made using a 48-

hour optimization horizon through hour 12 of day d + 2. These
additional hours beyond day d + 1 are included to ensure that
sufficient generating capacity is kept online at the end of day

d + 1 to serve the day- (d + 2) load [37]. Including additional
hours is especially important in operational planning of genera‐
tors with high start-up costs and long minimum-up, minimum-

down, and advanced-notification times.

Following the unit commitment that is conducted during

hour 12 of day d, the decision-making process rolls forward

sequentially through hours 13-17 of day d, conducting eco‐
nomic dispatch. These economic-dispatch processes deter‐
mine system operation during each of these hours, using a

rolling 48-hour optimization horizon. These economic-dis‐
patch processes are followed by unit commitment during

hour 18 of day d, which determines system operation during

hour 18 of day d and can adjust day-(d + 1) unit-commitment
decisions. These hourly optimization processes continue se‐
quentially to simulate system operations over the full year.

B. Model Constraints

When modeling unit commitment, we impose the con‐
straints:

u ti ³ û ti "tÎ TiÎ I:t <max{t̄tst + θi} (35)

s ti = ŝ ti "tÎ TiÎ I:t < tst + θi; (36)

where t̄ is the final hour of the current day, θi is non-wind
generator i’s minimum notification time (h); and ŝ ti and û ti
are the values of hour-t start-up and commitment decisions,

respectively, of non-wind generator i that have been fixed

during previous decision-making processes. Constraints (35)

restrict the system operator’s ability to shutdown units that
are committed to be online by a previous unit commitment.

Specifically, a unit that is scheduled to shutdown during the

current day or before its minimum-notification time can be

instructed instead to remain online as opposed to shutting

down. Constraints (36) allow a unit to be started-up during

the current or next day, so long as its minimum-notification

time is respected.

We impose (36) and:

u ti ³ û ti "tÎ TiÎ I ; (37)

on economic-dispatch processes. Constraints (37) are stricter

variants of (35)—the only adjustment to unit-commitment in‐
structions that (37) allow is starting-up units without the op‐
tion of shutting-down units.

C. Algorithm

Algorithm 1 provides pseudocode that summarizes the

steps of our rolling-horizon methodology. Line 1 takes as in‐
put values of h0i , q

0
i , u

0
i , ϕ0i , χ i"iÎ I, which give the starting

state of each non-wind generator, and D, the number of days
that are being simulated. χ i is the number of hours that gen‐
erator i has been online or offline (depending on whether it

is positive or negative, respectively) as of the beginning of

hour tst. Line 2 initializes the algorithm by setting κ, which
we use to compute total system-operation costs that equal to

zero and fixing t̄. Lines 3-32 are the main iterative loop,

which cycle through the days of the year and hours of each

day, which are indexed by y and h, respectively. Line 5 up‐
dates the starting and ending hours of the optimization hori‐
zon of the next decision-making process. Line 6 updates the

starting state of each non-wind generator, based on the most

recent model solution. Lines 7-13 impose minimum-up-time

and -down-time restrictions, which are carried from the most

recent model solution, on non-wind generators. Line 14 up‐
dates actual and forecasted wind-availability.

The decision-making process that is conducted in Lines

15-21 depends on whether h is an hour during which unit

commitment or economic dispatch is conducted. TU (cf. Line

15) represents the set of hours during which unit commit‐
ment is conducted. In the former case, the optimization is

conducted including (35) and (36) in the model and the com‐
mitment decisions are fixed (cf. Lines 17 and 18). In the lat‐

…

…

…

…
… … … … … …

… … … ……Day

Hour
d d d d d+1 d+1 d+2 d+2 d+2 d+2
12 13 18 1819 1912 12 130 0

d+2

Fig. 1. Illustration of rolling-horizon modeling approach, assuming hour-

12 and -18 unit commitment. The thin and thick lines indicate, respectively,

the optimization horizon of and binding operational decisions that are made

by operational model that is solved during each hour.

842



MANSOURI et al.: USING INTERIM RECOMMITMENT TO REDUCE THE OPERATIONAL-COST IMPACTS OF WIND UNCERTAINTY

ter case, the optimization is conducted including (36) and

(37) in the model and no commitment decisions are fixed.

Line 22 adds the operational cost that is incurred during

hour h of day y to κ. Lines 23-30 update the ending state of
each non-wind generator after the current decision-making

process. This information is used in Lines 6-13 of the follow‐
ing iteration.

ξ * in Lines 16 and 20 represents an optimal decision-vari‐
able vector. Optimal decision-variable values are used in fix‐
ing unit-commitment decisions in Lines 17 and 18, comput‐
ing operational cost in Line 22, and updating the state of

non-wind generators in Lines 23-30.

IV. EXAMPLE

This section presents a stylized two-day example, which

demonstrates the tradeoffs in the timing of conducting re‐
commitment. Table I summarizes data for the eight dispatch‐
able generators that are modeled in the example. There is an

additional 1000-MW wind plant. Generators 1-4 are relative‐
ly flexible, in that they require no advanced notification to

start-up, can ramp over their full operating range within a

single hour, and have no minimum-up-time requirements.

These units are relatively costly to operate. Generators 5-8

are relatively inflexible, requiring seven hours of advanced

notification time to start-up, have minimum up-times of two

or four hours, and are able to ramp over one quarter of their

operating range within a single hour. These units are relative‐
ly inexpensive to operate. Constraint parameters that are not

listed in Table I are neglected in the example, as are reserve

and transmission-network constraints.

Figure 2 summarizes the assumed load and actual wind

availability during the second day of the example, as well as

wind-availability forecasts that are produced during hours 12,

18, 20, and 23 of the first day. The forecasts overestimate wind

availability, with the hour-23 forecast being the most accurate.

Table II summarizes optimized generator commitments, as

of hour 12 of the first day, for the first 14 hours of the second

day. Because they are relatively costly, units 1-4 are not com‐
mitted and the system relies upon units 5-8 to supplement fore‐
casted wind production. The hour-12 day-ahead wind-avail‐
ability forecast, which is used to determine the commitments

that are summarized in Table II, overestimates wind availabili‐
ty. As such, additional units must be committed, either day-

ahead (if recommitment is conducted) or in real time.

Table III summarizes the impact of recommitment. The

first row of Table III reports the total number of the first 14

hours of the second day during which each unit is commit‐
ted without recommitment (i. e., the sums of the values that

are reported in Table II). The remaining rows of Table III

show that if the system is recommitted, more generators, es‐
pecially relatively low-cost units 5-8, are scheduled to oper‐
ate during the second day. These changed commitments arise

from the improved forecasts that are available later during

Algorithm 1: Rolling-horizon algorithm

1: input: h0i , q
0
i , u

0
i , ϕ0i , χi"iÎ I; D

2: initialize: κ¬ 0, t̄¬ 23
3: for y¬ 1 to D do
4: for h¬ 0 to 23 do
5: tst¬ h, ten¬ h + 47
6: htst - 1i¬ h0i , qtst - 1i¬ q0i , utst - 1i¬ u0i , ϕtst - 1i¬ ϕ0i "iÎ I
7: for iÎ I do
8: if χi < 0 then
9: fix uti = 0, "tÎ T: t < τ -i + χi
10: else if χi > 0 then
11: fix uti = 1, "tÎ T: t < τ +i - χi
12: end if

13: end for

14: update ζti"tÎ TiÎΩ
15: if hÎ TU then
16: ξ *¬ argmin (1) s.t. (2)-(36)

17: ûti¬ u*ti"tÎ TiÎ I:t > t̄
18: ŝti¬ s*ti"tÎ TiÎ I:t > t̄
19: else

20: ξ *¬ argmin (1) s.t. (2)-(34) (36) (37)
21: end if

22: κ¬ κ +∑
iÎ I

( )cS*tsti + c
N
i u

*
tsti
+ cVi (q

*
tsti
)

23: h0i ¬ h*tsti, q
0
i ¬ q*tsti, u

0
i ¬ u*tsti, ϕ

0
i ¬ ϕ*tsti, "iÎ I

24: for iÎ I do
25: if u*tsti = 1 then
26: χi¬max{χ i + 11}
27: else

28: χi¬min{χ i - 1 - 1}
29: end if

30: end for

31: end for

32: end for

TABLE I

DISPATCHABLE-GENERATOR DATA FOR EXAMPLE FROM SECTION IV

i

1

2

3

4

5

6

7

8

θi
0

0

0

0

7

7

7

7

K +
i

100

100

100

100

100

100

100

100

τ +i
1

1

1

1

4

4

4

2

R+
i

100

100

100

100

25

25

25

25

cVi

1000

1000

1000

1000

100

100

100

100

cNi

1000

1000

1000
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100
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c̄Si1
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Fig. 2. Modeled load and actual wind availability during the second day

of the example from Section IV and day-ahead wind-availability forecasts

produced during hours 12, 18, 20, and 23 of the first day.
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the day (cf. Fig. 2). Although the hour-23 wind-availability

forecast is the most accurate, hour-23 recommitment results

in units 1-4 being committed day-ahead. These units must be

committed because units 5-8 cannot be committed during the

early hours of the second day without violating their notifica‐
tion-time constraints.

Table IV summarizes the total number of the first 14

hours of the second day that each unit actually is committed,

with different recommitment times. Differences between the

values that are reported in Tables III and IV reflect some

units having to be committed in real time to correct for er‐
rors in wind-availability forecasts. Not conducting a day-

ahead recommitment results in the greatest use of the rela‐
tively high-cost units 1-4 for a total of 19 hours. Conversely,

an hour-20 recommitment requires the use of these costly units

for only a total of eight hours. Conducting an hour-23 recom‐
mitment requires the use of the relatively costly units for a to‐
tal of 12 hours, because some less-costly units cannot be com‐
mitted without violating their notification-time constraints.

TABLE IV

ACTUAL NUMBER OF THE FIRST 14 HOURS OF SECOND DAY OF EXAMPLE

FROM SECTION IV THAT EACH GENERATOR IF COMMITTED WITH UNIT

COMMITMENT CONDUCTED AT DIFFERENT TIMES

Unit-commitment hour

12

12 and 18

12 and 20

12 and 23

i

1

4

0

4

3

2

3

4

0

1

3

7

10

1

4

4

5

1

3

4

5

14

14

12

12

6

8

10

10

8

7

0

0

10

8

8

14

14

14

14

Table V summarizes the impacts of these different commit‐
ments on the dispatch of the generating fleet. The first two

rows show that when the hour-12 day-ahead unit commit‐
ment is conducted, 9411 MWh of wind is forecasted to be

available during the first 14 hours of the second day. The re‐
maining 899 MWh of load is scheduled to be served using

units 5-8. However, only 6095 MWh of the wind actually is

available, meaning that the 3316-MWh deficit must be cov‐
ered by the balance of the generating fleet. Units 5-8 are

able to increase their production 2116 MWh relative to their

day-ahead schedules. However, 1200 MWh of load must be

covered by units 1-4.

The remaining rows of Table V show that conducting recom‐
mitment later during the day allows more generating capacity

from units 5-8 to be scheduled, because of the improved wind-

availability forecasts. However, in all cases, some energy is

produced in real time by units 1-4, because there are errors in

the wind-availability forecasts that must be balanced. More‐
over, more production from units 1-4 must be scheduled when

conducting an hour-23 recommitment, because notification-

time constraints do not allow changing the commitments of

units 5-8 during the early hours of the second day.

Table VI summarizes the actual cost of operating the system

during the second day of the example, with different unit-com‐
mitment time. The cost trends follow the results that are sum‐
marized in Tables II-V. Recommitting the system later in the

day is beneficial. Without recommitment, a substantial portion

of wind-supply deficits must be served using units 1-4. Recom‐
mitment allows lower-cost inflexible units to be committed,

once an updated forecast indicates less wind being available.

Although the hour-23 wind-availability forecast is the most ac‐
curate, notification-time constraints limit adjustments to the
commitments of units 5-8. This result shows a tradeoff be‐
tween forecast accuracy and generator flexibility in determin‐
ing when to conduct recommitment.

V. CASE-STUDY DATA AND BENCHMARKING

A. Case-study Data

Our case study is based on ISO New England, from
which conventional-generator and transmission-network data
are obtained directly. Previous research works [38]-[41] de‐

TABLE II

GENERATOR COMMITMENTS, AS OF HOUR 12 OF THE FIRST DAY, DURING

FIRST 14 HOURS OF SECOND DAY OF EXAMPLE FROM SECTION IV

i

1

2

3

4

5

6

7

8

9

Hour

0

0

0

0

0

1

0

0

0

1

1

0

0

0

0

1

0

0

1

1

2

0

0

0

0

1

0

0

1

1

3

0

0

0

0

0

0

0

0

1

4

0

0

0

0

0

0

0

0

1

5

0

0

0

0

0

0

0

1

1

6

0

0

0

0

0

1

0

1

1

7

0

0

0

0

0

1

0

1

1

8

0

0

0

0

0

1

0

1

1

9

0

0

0

0

0

1

0

1

1

10

0

0

0

0

0

1

0

1

1

11

0

0

0

0

0

1

0

1

1

12

0

0

0

0

0

1

0

1

1

13

0

0

0

0

0

1

0

1

1

TABLE III

NUMBER OF THE FIRST 14 HOURS OF THE SECOND DAY OF EXAMPLE FROM

SECTION IV THAT EACH GENERATOR IS COMMITTED DAY-AHEAD WITH

UNIT COMMITMENT CONDUCTED AT DIFFERENT TIMES

Unit-commitment hour

12

12 and 18

12 and 20

12 and 23

i

1

0

0

0

1

2

0

0

0

0

3

0

0

0

2

4

0

0

0

4

5

3

5

8

8

6

8

10

10

8

7

0

0

10

8

8

11

14

14

14

TABLE V

SCHEDULED AND ACTUAL DISPATCH OF GENERATORS (MWH) DURING THE

FIRST 14 HOURS OF SECOND DAY OF EXAMPLE FROM SECTION IV WITH

UNIT COMMITMENT CONDUCTED AT DIFFERENT TIMES

Unit-commit‐
ment hour

12

12 and 18

12 and 20

12 and 23

Dispatch

Scheduled

Actual

Scheduled

Actual

Scheduled

Actual

Scheduled

Actual

Dispatch
with units 1-4

0

1200

0

968

0

372

486

722

Dispatch
with units 5-8

899

3015

1356

3247

2746

3843

3090

3493

Wind genera‐
tor (MWh)

9411

6095

8954

6095

7564

6095

6734

6095

844
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tail these datasets. We model a total of 276 non-wind genera‐
tors, which represent 31.44 GW of nameplate capacity. Gen‐
erators are modeled as having three start-up types—hot, in‐
termediate, and cold. We assume that η = 0.07 and ηS = 0.5.

Hourly historical year-2009 load data for the eight load

zones in ISO New England are obtained from a public repos‐
itory (cf. https://www.iso-ne.com/isoexpress/web/reports/load-

and-demand/). The system-wide load ranges between 8.90

GW and 24.73 GW and averages 14.26 GW across the year.

We model cases with two wind penetrations—4.32 GW
and 6.48 GW of nameplate capacity, which are 17.0% and

25.5%, respectively, of peak load. These cases correspond to

wind serving 13.0% and 19.5%, respectively, of annual load

(absent wind curtailment). Wind capacities (i.e., the value of

Zi"iÎΩ) for the two wind-penetration levels are appor‐
tioned to the eight load zones in proportion to their co-inci‐
dent peak loads.

Actual hourly wind availability and forecasts (i.e., the val‐
ues of ζti"tÎ TiÎΩ) are modeled using the data from
Wind Integration National Dataset (WIND) Toolkit [42] -

[44]. WIND Toolkit includes modeled actual wind availabili‐
ty and forecasts of such for wind turbines with 100-m hub

heights at 126000 sites across the continental U. S. for the

years 2007-2013. We use these data for the year 2009 to cap‐
ture correlations between load and weather conditions.

We employ a two-step process to model ζti"tÎ TiÎΩ.
First, each set of modeled actual and forecasted wind-availabil‐
ity data are averaged across each of the eight load zones to de‐
termine a zonal-average capacity factor. We do this by comput‐
ing the simple average of the capacity factors reported in

WIND Toolkit for sites that are in each of the eight zones.

Next, the modeled actual and forecasted wind-availability data

are used to determine the values of ζti "tÎ TiÎΩ. For a giv‐
en instance of (1)-(34), the values of ζtsti"iÎΩ are set equal
to the corresponding zonal-average modeled actual capacity

factor for the hour. For the remaining hours, t > tst, we use zon‐
al-average forecasted capacity factors. WIND Toolkit provides

1-, 4-, 6-, and 24-hour-ahead forecasts of wind availability. We

use weighted-averages of these forecasted capacity factors to

set values of ζti"t > tstiÎΩ. For instance, the value of
ζtst + 4i"iÎΩ is set equal to the 4-hour-ahead forecasted wind
availability for the corresponding hour, whereas the value of

ζtst + 7i"iÎΩ is set equal to the weighted average of the 6- and
24-hour-ahead forecasted wind availabilities for the corre‐
sponding hour, with weights of 17 18 and 1 18, respectively.

Values of ζti"t ³ tst + 24iÎΩ are set equal to the 24-hour-

ahead forecast.

One peculiarity of WIND Toolkit, which is summarized in

Table VII, is that the forecasts do not become more accurate

as they are produced closer to real time. The first two col‐
umns of Table VII show that 1-hour-ahead forecasts have

higher forecast errors than 4-hour-ahead forecasts do. Follow‐
ing consultation with members of the WIND Toolkit team at

National Renewable Energy Laboratory, we follow their sug‐
gestion and correct the error by time-shifting each set of

wind-availability forecasts to minimize its sum of squared er‐
rors with the modeled actual wind availabilities. The final

two columns of Table VII summarize the optimal time shifts

of the forecasts and the resulting sum of the squared errors.

B. Benchmarking and Cases Examined

We focus on the impacts of recommitment on operational

wind-integration costs. Thus, we model wind availability as

the sole source of uncertainty. This uncertainty is reflected

by the values of ζti"tÎ TiÎΩ being updated iteratively as
operational decisions are made (cf. Line 14 of Algorithm 1).

We contrast system-operation costs with uncertain ζti
"tÎ TiÎΩ to a perfect-foresight benchmark, in which Algo‐
rithm 1 is used but ζti is equal to its modeled actual value
"tÎ TiÎΩ in each unit-commitment and economic-dis‐
patch model. Comparing the costs with and without wind un‐
certainty is a standard approach to measuring operational

wind-integration costs [9].

In addition to considering cases with two wind-penetration

levels (4.32 GW and 6.48 GW), we consider cases with base

and low levels of generator flexibility. Base flexibility uses

the values of θi"iÎ I that are reported in the ISO New Eng‐
land dataset. Low flexibility uses doubled values of θi"iÎ I.
We contrast a case in which unit commitment is conducted

during noon of each day to cases in which unit commitment is

conducted during noon and during some combinations of

hours 18, 20, and 23, giving seven combinations total.

VI. CASE-STUDY RESULTS

Figure 3 summarizes modeled actual system-wide wind

availability during the first 12 hours of 10 January, 2009 and

three different day-ahead wind-availability forecasts. The fig‐
ure assumes the base case of 4.32 GW of wind capacity. Fig‐
ure 3 shows that the forecasts overestimate wind availability

for the most part. The forecast that is produced at noon has

the greatest overall errors—overestimating wind availability
during the first hour of 10 January, 2009 by over 400%. The

forecast that is produced during hour 23 is the most accurate.

TABLE VII

SUM OF SQUARED ERRORS BETWEEN MODELED ACTUAL AND UNSHIFTED

AND SHIFTED FORECASTED WIND AVAILABILITIES AND TIME SHIFT USED

FOR CASE STUDY FROM SECTION VI

Forecast horizon
(hour ahead)

1

4

6

24

Sum of squared errors

Unshifted

330

321

381

405

Shifted

25

282

379

405

Time shift (hour)

2

2

1

0

TABLE VI

ACTUAL OPERATION COST DURING SECOND DAY OF EXAMPLE FROM

SECTION IV WITH UNIT COMMITMENT CONDUCTED AT DIFFERENT TIMES

Unit-commitment hour

12

12 and 18

12 and 20

12 and 23

Operation cost ($)

249490

204140

146650

193860

845
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System operations differ, depending on whether only a

noon day-ahead unit commitment is conducted or recommit‐
ments is conducted also. With only noon day-ahead unit

commitment, assuming base generator flexibility, the energy-

supply shortfall that arises in real time from actual wind pro‐
duction being lower than the noon forecast is addressed by

committing 32 fast-start generators in real time (beginning

during hour 0 of 10 January, 2009), which operate for a total

of 80 hours between them. These fast-start units have high

operating costs, which increases operating cost for the day.

Table VIII summarizes the total and per-MWh cost of operat‐
ing the system during 10 January, 2009, using only noon

day-ahead unit commitment or noon day-ahead unit commit‐
ment that is followed by either hour-20 or -23 recommitment.

Conducting hour-20 or -23 recommitment reduces the to‐
tal number of hours that the 32 fast-start units are operated

to 70 and 68 hours, respectively. These fast-start units are re‐
placed by lower-cost units that require advanced notification

to start-up. Table VIII shows that reduced use of fast-start

units results in up to 4% cost decreases in these cases rela‐
tive to conducting only noon day-ahead unit commitment.

We illustrate the high cost of fast-start units by computing:

c͂Vi =
cVi (K

+
i )

K +
i

"iÎ I ; (38)

which is the average output-dependent cost of each unit, if it

operates at its nameplate capacity. Table IX summarizes the

capacity-weighted averages of the values of c͂Vi correspond‐
ing to generators that are grouped based on θi. Relatively

flexible generators, with advanced-notification times of four

hours or less are, on average, up to 13 times as costly to op‐
erate, relative to generators with higher advanced-notifica‐
tion times.

If conducting only a noon day-ahead unit commitment,

the system relies heavily on units with advanced-notification

times of four hours or less to meet the wind-availability defi‐
cit. This reliance stems from the inability to commit lower-

cost units with longer advanced-notification times. Converse‐
ly, with hour-20 recommitment, these most expensive units

can be substituted to some extent by lower-cost units that

have higher advanced-notification times.

Figure 3 shows that the wind-availability forecast that is

produced during hour 23 is more accurate than that which is

produced during hour 20. However, hour-20 recommitment

reduces operating cost relative to hour-23 recommitment.

This cost saving stems from the hour-23 recommitment be‐
ing ‘too late’ in the sense that although the hour-23 forecast
is more accurate, low-cost units cannot be committed to op‐
erate during the early hours of 10 January, 2009, due to the

advanced-notification times. This finding demonstrates a fun‐
damental tradeoff in determining when to conduct recommit‐
ment—later unit commitment has access to more accurate
wind-availability forecasts, but a more limited set of genera‐
tors that can be committed, given their flexibility constraints.

To illustrate this tradeoff, we focus on the operation dur‐
ing the first 12 hours of 10 January, 2009 of three units, the

cost and flexibility characteristics of which are summarized

in Table X. The three units display the tradeoff between flex‐
ibility and cost that is summarized in Table IX. With hour-

20 recommitment, generator 46, which is the lowest-cost of

the three, is operated during hours 6-12, and generator 256

is operated during hours 8-12. With hour-23 recommitment,

generator 46 cannot be started-up until hour 8 (due to its no‐
tification-time requirement). Thus, generator 256 must be op‐
erated during hours 6-12 and generator 191 must be operat‐
ed during hours 6-7.

TABLE X

COST AND FLEXIBILITY DATA FOR THREE UNITS FROM CASE STUDY FROM

SECTION VI THAT ARE OPERATED DIFFERENTLY BETWEEN HOUR-20 AND

23 RECOMMITMENT ASSUMING BASE GENERATOR FLEXIBILITY

i

46

191

256

θi
8

0

2

c͂Vi

52

263

186
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Fig. 3. Modeled actual system-wide wind availability during the first 12

hours of 10 January, 2009 and corresponding day-ahead forecasts produced

during hours 12, 20, and 23 of 9 January, 2009 assuming 4.32 GW of wind

for case study from Section VI.

TABLE VIII

TOTAL ($ MILLION) AND P.U. ($/MWH) SYSTEM-OPERATION COSTS DURING

10 JANUARY, 2009 WITH UNIT COMMITMENT CONDUCTED AT DIFFERENT

TIMES ASSUMING 4.32 GW OF WIND AND BASE GENERATOR FLEXIBILITY

FOR CASE STUDY FROM SECTION VI

Unit-commitment hour

12

12 and 20

12 and 23

Total cost

7.06

6.81

6.88

Per-MWh cost

190

183

185

TABLE IX

CAPACITY-WEIGHTED AVERAGE OF c͂Vi FOR θi-BASED GROUPINGS OF
GENERATORS ASSUMING BASE GENERATOR FLEXIBILITY FOR CASE STUDY

FROM SECTION VI

θi
£ 4

5-8

9-12

³ 13

Capacity-weighted average of c͂Vi

324

91

64

25

846
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Tables XI and XII summarize operational wind-uncertain‐
ty costs for the four different cases that we examine with dif‐
ferent wind-penetration and generator-flexibility levels and

day-ahead unit commitment conducted during different hours.

Table XI reports wind-uncertainty costs that are normalized by

total wind production when using wind-availability forecasts.

Table XII reports the percentage decrease in operational wind-

uncertainty costs relative to conducting a noon day-ahead unit

commitment only. The tables show two results, which our de‐
tailed analysis of 10 January, 2009 suggests.

First, if conducting a single recommitment, an hour-20 re‐
commitment yields the greatest cost reductions. This result

keeps with our finding a tradeoff between forecast accuracy

and generator flexibility. Conducting three recommitments

yields further cost reduction and two recommitments yields

cost reductions in most cases. With low generator flexibility,

hour-20 recommitment yields slightly lower costs compared

to hours-18 or -23 recommitments. This result stems from

the combined impact of relatively (to hour-20) inaccurate

hour-18 wind-availability forecasts and the system having

limited operational flexibility during hour 23.

Tables XI and XII show that increasing wind penetration

or decreasing generator flexibility increases operational wind-

integration costs. Higher wind penetrations mean that fore‐
cast errors yield larger absolute supply/demand imbalances.

Increasing the wind penetration by 50% more than doubles

operational wind-integration costs. Increasing the penetration

of wind further should lead to further cost escalations. Less

flexible dispatchable generators require that the system oper‐
ator provides additional notification to commit inflexible

low-cost units. Recommitment gives reduced cost savings

with less-flexible generators, because there are fewer options

to commit low-cost generators. With doubled advanced-noti‐
fication times, hour-20 recommitment gives the greatest cost

savings. Should the generation fleet become sufficiently in‐
flexible, hour-18 recommitment may provide a better trad‐
eoff between forecast accuracy and generator flexibility than

hour-20 recommitment does. Algorithm 1 is computationally

costly, because system operations are re-optimized hourly

across the full year. Each model in Lines 16 and 20 of Algo‐
rithm 1 has over 720097 variables and 600691 constraints,

respectively, and a median solution time of 25.7 s of wall-

clock time. Thus, we do not examine cases with higher ad‐
vanced-notification times than the low-flexibility case in

which "iÎ Iθi is doubled relative to the ISO New England
data.

VII. CONCLUSION

This paper examines the benefits of recommitment in re‐
ducing operational wind-uncertainty costs. To do so, we de‐
velop a detailed operational model that mimics many of the

costs and constraints for which system operators account in

their operational models. Nonetheless, our model is not an

exact replica of that used by any market operator. We devel‐
op a rolling-horizon algorithm to simulate hourly system op‐
erations that consist of unit commitment and economic dis‐
patch. The key distinction between these processes is the ex‐
tent to which the system operator can adjust commitment de‐
cisions relative to previous decisions and which decisions

are binding.

We demonstrate our model and draw important conclu‐
sions regarding the use of recommitment with a comprehen‐
sive case study, which is based on ISO New England, and a

stylized example. Both the example and case study demon‐
strate the cost impacts of wind uncertainty, which are in‐
creasing in wind penetration and generator inflexibility. We

demonstrate also the benefits of introducing recommitment,

which raises a fundamental tradeoff between forecast accura‐
cy and operational flexibility. For our example and case

study, hour-20 recommitment offers the most cost reduc‐
tions. Other systems may benefit from recommitment being

conducted at different time and the methodology that we de‐
velop could be used to examine the tradeoffs therein.

TABLE XI

OPERATIONAL WIND-INTEGRATION COSTS FOR CASE STUDY FROM SECTION VI ($/MWH OF WIND PRODUCED)

Wind penetration

Low

High

Low

High

Flexibility

Base

Base

High

High

Operational wind-integration costs for each unit commitment hour

12

1.49

3.18

1.49

3.18

12 and 18

1.41

3.05

1.47

3.13

12 and 20

1.33

2.83

1.34

2.89

12 and 23

1.34

3.02

1.39

3.07

12, 18, and 20

1.24

2.69

1.31

2.79

12, 18, and 23

1.31

2.76

1.36

2.93

12, 20, and 23

1.27

2.72

1.33

2.86

12, 18, 20, and 23

1.22

2.62

1.3

2.75

TABLE XII

PERCENTAGE REDUCTION IN OPERATIONAL WIND-INTEGRATION COSTS RELATIVE TO NOON DAY-AHEAD UNIT COMMITMENT ONLY FOR CASE STUDY FROM

SECTION VI

Wind penetration

Low

High

Low

High

Flexibility

Base

Base

Low

Low

Percentage reduction for each unit commitment hour (%)

12 and 18

5

4

1

3

12 and 20

10

11

10

9

12 and 23

10

5

6

3

12, 18, and 20

16

16

12

12

12, 18, and 23

12

13

8

8

12, 20, and 23

15

14

11

11

12, 18, 20, and 23

18

18

13

14
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We adopt an hourly timescale for all of our modeling.

Hourly timescales are used in nearly all wholesale electricity

markets for day-ahead and reliability unit commitment. With

few exceptions, sub-hourly timescales are used for economic-

dispatch modeling. We use an hourly timescale for our eco‐
nomic-dispatch modeling, due to the computational cost that

sub-hourly timescales would entail. Modeling economic dis‐
patch at sub-hourly timescales could reveal more load and

wind-availability variability (compared to hourly timescales).

However, our fundamental results regarding the tradeoffs in

introducing and the timing of recommitment likely would

continue to hold.

Our model does not allow wind generators to provide re‐
serves, e.g., if their output is curtailed. An area of future

study could examine the benefits of using curtailed wind in

this manner. Another area of future work would be to com‐
pare the benefits of recommitment to a modeling paradigm

that represents uncertainty explicitly, e.g., stochastic, robust,

chance-constrained, or distributionally robust optimization.

We do not consider explicit uncertainty representation, be‐
cause no wholesale market employs such a model today

[35], [36]. Thus, this assumption is keeping with our goal of

understanding how current deterministic market models

could be improved to accommodate wind uncertainty.
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