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We review recent theoretical progress in understanding spatially
uniform s-wave superconductivity which arises from a fermion–
fermion interaction, which is repulsive on the Matsubara axis,
where it is real, but does depend on the transferred frequency.
Such a situation holds, e.g., for systems with a screened Coulomb
and retarded electron–phonon interaction. We show that despite
repulsion, superconductivity is possible in a certain range of
system parameters. However, at T = 0 the gap function on
the Matsubara axis, ∆(ωm), must pass through zero and change
sign at least once. These zeros of ∆(ωm) have a topological
interpretation in terms of dynamical vortices, and their presence
imposes a constraint on the variation of the phase of the gap
function along the real frequency axis, which can potentially
be extracted from ARPES and other measurements. We discuss
how superconductivity vanishes when the repulsion becomes too
strong, and obtain a critical line which terminates at T = 0 at a
quantum-critical point for superconductivity. We show that the
behavior of the gap function near this point is highly non-trivial.
In particular, an infinitesimally small ∆(ωm) contains a singular
δ-function piece ωmδ(ωm). We argue that near the critical point
superconductivity may be a mixed state with even-frequency
and odd-frequency gap components.

© 2022 Published by Elsevier Inc.

1. Preface

Igor Ekhielevich Dzyaloshinskii was one of the greatest physicists of his generation. He made
eminal contributions to various branches of modern condensed matter physics, including quantum
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agnetism, superconductivity, and Fermi-liquid theory. He is universally recognized as the ‘‘father"
f the application of the Matsubara-axis formalism to correlated electrons. In this work we apply
is formalism to study an unusual spatially uniform superconductivity in systems with repulsive
ut frequency dependent interaction. This article is our tribute to a great physicist.

. Introduction

70 years after its discovery, BCS theory [1] still forms the basis of our understanding of
uperconductivity in conventional metals and in at least some high-Tc materials. At its heart lies
ooper’s insight [2] on bound state formation in a Fermi gas: because the density of states near the
ermi level is nearly constant, electrons with momenta k, −k can form a bound state for arbitrary

small attractive interaction V .
However, while superconductivity is ubiquitous in materials that host itinerant electrons, an

attraction does not appear naturally because Coulomb repulsion is typically the largest interaction
between electrons. How to overcome it and get superconductivity? There are two textbook answers.
First, one can look at the momentum dependence of the pairing interaction. In a rotationally
invariant system, one can expand the fully dressed, irreducible interaction V (k − k′) between
articles on the Fermi surface in angular momentum components Vl and verify that the analysis
f the superconducting instability can be performed individually for each component. For a system
o become a superconductor, it is then sufficient for a single partial component Vl to be negative, i.e.,
ttractive. Kohn and Luttinger have demonstrated that in 3D, the components of the fully dressed Vl
ith large odd l are necessary attractive, even if all partial components of the bare interaction are
epulsive [3–6]. The difference comes about because in real space the dressed (screened) electron–
lectron interaction necessary develops Friedel oscillations at large distances, i.e., it occasionally
ets over-screened. Partial components Vl with large l come from large distances, and Vl with odd l

predominantly come from distances where the interaction is over-screened, i.e., is attractive. In 2D
the situation is a bit more tricky, but the end result is similar. In a lattice system, the number of
orthogonal representations is finite, and there is no generic statement that the dressed interaction
necessarily has an attractive component. Yet, in most cases studied in the context of cuprates and
other novel superconductors, there exists an attractive component in a pairing channel different
from an ordinary s-wave.

Second, s-wave superconductivity is also possible if the interaction is repulsive but is retarded
and depends on frequency transfer. This is the case when, e.g., the pairing interaction consists of two
components: an instantaneous Hubbard repulsion and a smaller retarded attraction mediated by an
Einstein phonon with frequency ΩD (HEF model). A popular explanation for this behavior is that
for large Fermi energy EF , the Hubbard repulsion is logarithmically renormalized down between
EF and ΩD, and if this interval is wide enough, the attractive phonon part prevails at energies
below ΩD [7–12]. This reasoning is a slight oversimplification: both the attractive and repulsive
parts are renormalized in the interval between EF and ΩD, and the full dressed interaction remains
positive, i.e., repulsive. The more precise argument [10–18] is that a non-zero gap function ∆(Ωm)
can develop despite repulsion, but it must have nodes on the Matsubara axis, much like a repulsive
momentum-dependent V (k) allows a non-zero gap function ∆(k) with nodes on the Fermi surface.
he similarity goes even further, as s-wave superconducting states ∆(Ωm) with and without nodes
n the Matsubara axis are topologically different and in this respect orthogonal, much like in the
ohn–Luttinger scenario ∆(k) develops in a spatial channel orthogonal to the ordinary s-wave one.
Despite the formal similarities between the momentum- and frequency-dependent repulsive

nteractions, the frequency-dependent case has some unique characteristics, which are the subject
f this article. These special properties are related to the presence of nodes in ∆(ωm), which, as
e will explicitly show below, are the cores of dynamical vortices. We show that vortices on the
ositive Matsubara half-axis either first emerge individually at an infinite Matsubara frequency
nd then move to a smaller ωm, or two vortices simultaneously land on the Matsubara axis at the
ame ωm, coming from positive and negative ω′ in the complex plane of frequency, and then split
long the Matsubara axis. We consider the nodal structure of the gap structure for three models:
he continuous HEF model, a toy model with step-like interactions V (Ω ), and a model with a
m
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-functional interaction. The gap in the HEF model contains only a single node, the one in the
oy model can contain one or two sign changes, depending on parameters, while the gap in the
elta-function model is oscillating.
We then analyze the HEF model in more detail and show that as one increases the strength of the

ubbard term, ∆(ωm) at T = 0 decreases and finally vanishes at the quantum-critical point (QCP).
e show that this is the termination point of Tc as a function of the interaction. We argue that the

system behavior near this point is rather intricate as the system needs to keep a balance between
the gap amplitude and the location of the nodal (vortex) point, which approaches zero frequency at
the QCP. We show that in the immediate vicinity of the QCP the gap function develops a non-trivial
δ-function piece ωmδ(ωm) in addition to a regular part. We argue that this δ-function piece is present
in the solution of the linearized gap equation at the QCP.

Finally, we discuss the possible odd-frequency solution for the HEF model. For a generic case,
the conditions for the development of odd-frequency ∆o(ωm) are much more restrictive than the
nes for even-frequency ∆e(ωm) as for the odd-frequency case there is no Cooper logarithm. Here,
owever, odd-frequency pairing becomes a competitor to the even-frequency one because Hubbard
epulsion cancels out from the gap equation for ∆o(ωm). We argue that the most likely outcome
s a mixed superconducting state with both ∆e and ∆o present. We show that the relative phase
etween the two components is ±π/2, where the sign is chosen spontaneously. Such a state breaks
ime-reversal symmetry.

The structure of the remainder of this article is as follows: In Section 3 we review general analytic
roperties of a dynamical gap function on the Matsubara axis and consider the nodal structure of
(ωm) for a toy model with a step-like repulsive interaction, as well as a model with a delta-function

nteraction. In Section 4, we analyze the gap function in the HEF model and discuss the critical
roperties near the phase transition from the superconductor to the normal state. We show that
he solution of the linearized gap equation contains a δ-functional term. In Section 5, we consider
he odd-frequency solution ∆o(ωm) for the HEF model and its interplay with the even-frequency
olution. In Section 6 we present our conclusions and a list of open questions.
The analysis of the gap function in this article is performed within the Eliashberg theory [19,20].

n alternative is to start from the Hubbard–Holstein lattice model and solve for superconductivity
umerically. See Refs. [21–23] and in particular [24] for the discussion of this approach and for
eferences to earlier papers.

. General properties of dynamical gap functions at large repulsion

Our starting point for the analysis of the dynamical gap function are the Eliashberg equations for
he pairing vertex Φ(ω) and the self-energy Σ(ω). The Eliashberg treatment, which neglects vertex
orrections, is justified at T = 0 when EF ≫ ΩD, as first observed by Migdal [25].
In the following, we use frequencies ω, Ω without Matsubara index when analyzing zero-

emperature properties, and ωm, Ωm in the finite temperature case. Neglecting the self-energy at
irst, the pairing vertex is equivalent to the gap function ∆(ω), and the gap equation for purely
frequency-dependent interactions reads

∆(ω) = −
ρ

2

∫ Λ

−Λ

dω′
V (ω − ω′)√

(ω′)2 + |∆(ω′)|2
× ∆(ω′) . (1)

Here, Λ is a UV cutoff of order EF , and ρ the density of states. To understand the structure of ∆(ω),
it is convenient to analyze the linearized gap equation at T = Tc − 0:

∆(ω) = −
ρ

2

∫ Λ

−Λ

dω′θ (|ω′
| − T )

V (ω − ω′)
|ω′|

× ∆(ω′) . (2)

The potential infrared singularity at ω′
= 0 is cut off by a finite temperature T . The gap function

(ω) is defined to up to a U(1) phase and for convenience we choose it to be real. The gap
equation (2) allows two types of solutions — gap functions which are even in frequency (EF),
3



D. Pimenov and A.V. Chubukov Annals of Physics xxx (xxxx) xxx

∆

b

p

T

F

T

t
w
l
f
b
b
a

a
r

(ω) = ∆(−ω), and odd in frequency (OF), ∆(ω) = −∆(−ω). The linearized equation decouples
etween the two components:

∆e/o(ω) = −
ρ

2

∫ Λ

−Λ

dω′θ (|ω′
| − T )

Ve/o(ω, ω′)
|ω′|

× ∆e/o(ω′) = −ρ

∫ Λ

T

Ve/o(ω, ω′)
|ω′|

× ∆e/o(ω′)

Ve/o(ω, ω′) = V (ω − ω′)± V (ω + ω′) . (3)

For the remainder of this section and in the next two sections we consider EF pairing and define
∆(ω) = ∆e(ω). We analyze OF pairing in Section 5.

The goal of this article is to analyze s-wave superconductivity coming out of a repulsive
interaction V (Ω) > 0. In this case, a conventional sign-preserving solution ∆(ω) cannot develop
as for such a gap function the left and the right hand side of Eq. (1) have different signs. One can,
however, search for a solution which changes sign along the Matsubara axis. For such a solution
there is at least a possibility to change the overall minus sign on the r.h.s. of the gap equation by
choosing opposite signs of ∆(ω) and ∆(ω + Ω) for relevant bosonic frequencies Ω .

What kind of repulsive interactions allow a sign-changing solution of the gap equation? To get
some insight, we first consider a simplified model with a step-like interaction (Rietschel–Scham
model) [14,17]:

V (Ω) =

{
1
ρ
χ1 |Ω| < Ω1

1
ρ
χ2 Ω1 < |Ω| < Λ,

χ1, χ2 > 0 (4)

We search for a solution to the linear gap equation (3) in the form

∆(ω) =
{

∆1 0 < ω < Ω1

∆2 Ω1 < ω < Λ
(5)

We assume that T ≪ Ω1, Ω1 ≪ Λ. Under these assumptions we can solve the gap equation to the
leading logarithmic order in L1 ≡ log(Ω1/T ) and L2 ≡ log(Λ/Ω1). Substituting (5) into (3) for EF
airing, we obtain a system of equations

∆1 = −χ1∆1L1 − χ2∆2L2 (6)

∆2 = −χ2∆1L1 − χ2∆2L2 . (7)

his set has a nonzero solution at T = Tc when

L1 = log(Ω1/Tc) =
1

(χ2 − χ1)−
χ2

1+χ2L2

≡
1

χeff
. (8)

or this L1 the ratio ∆2/∆1 is

∆2

∆1
= −

L1χ2

1+ L2χ2
. (9)

herefore, the gap function changes sign between small and large frequencies, as expected.
We see that a non-zero solution is possible if χ1 < χ2

2 L2/(χ2L2 + 1) < χ2. This implies that
he interaction has to be less repulsive at lower frequencies. This condition is satisfied for a model
ith a frequency independent Hubbard repulsion and electron–phonon attraction as the latter is

arger at small frequencies (Fig. 1(a)). By contrast, an interaction which is less repulsive at large
requencies, as sketched in Fig. 1(b), does not lead to pairing. Next, the r.h.s. of (8) is the difference
etween the effective attractive coupling χ2 − χ1 and the renormalized repulsive one, χ2

1+χ2L2
. The

are repulsive coupling χ2 is larger than χ1, but it is reduced by 1/(1+ log(Λ/Ω1)χ2). This is known
s Tolmachev–McMillan logarithm [7,9] or Anderson–Morel pseudopotential µ⋆ [11].
It is tempting to interpret the result as if the repulsive part of the interaction renormalizes down,

nd at small Ω the pairing interaction is attractive. This is a bit of an oversimplification as V (Ω) is
epulsive at all frequencies. The effective attraction emerges for an effective low-energy model, in
4
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Fig. 1. Upper panel: (a) Model interaction with pairing. The dashed line corresponds to a more physical electron–phonon
ype interaction (HEF model) as discussed in Sec. 4. (b) Model interaction without pairing. The dashed line is a would-be
‘repulsive electron–phonon’’ interaction. (c) ‘‘Step up-step down" potential with pairing. Lower panel: (d) Resulting gap
unction in the model (a). (e) Gap function in the model (c) for χ3 > 0. (d) gap function in the model (c) for χ3 < 0.

hich fermions with frequencies ω > Ω1 are integrated out. To see this more clearly, we note that
he equation for ∆1, Eq. (6), can be rewritten as

∆1 = χeffL1∆1, (10)

ith χeff as in Eq. (8). Therefore, the low-energy behavior (ω < Ω1) is described by a BCS-like
quation with coupling χeff; when this coupling becomes attractive, superconductivity becomes
ossible. This effective description is correct, but it sweeps under the rug the information that the
ull ∆(ω) is sign-changing. We will see below that the sign change is crucial for the understanding
f the disappearance of superconductivity once the repulsion becomes too strong.
Since a ‘‘step up’’ potential with χ1 < χ2 leads to pairing, while a ‘‘step down’’ potential with

2 < χ1 does not, it is interesting to consider a combination of these two, i.e., a ‘‘step up-step
own’’ potential, see Fig. 1(c). If we assume that the cutoff for the third region is Λ̃ ≫ Λ, we can
olve for the gap function using the ansatz

∆(ω) =

⎧⎨⎩
∆1 0 < ω < Ω1

∆2 Ω1 < ω < Λ

∆3 Λ < ω < Λ̃

(11)

ubstituting into (3) for EF pairing, we obtain a set of three coupled equations

∆1 = −L1∆1χ1 − L2∆2χ2 − L3∆3χ3 (12)

∆2 = −L1∆1χ2 − L2∆2χ2 − L3∆3χ3 (13)

∆3 = −L1∆1χ3 − L2∆2χ3 − L3∆3χ3 (14)

Assuming χ3 < χ2, we find that superconductivity always appears at small enough χ1, and a generic
olution only has a single sign change: −sign(∆1) = sign(∆2) = sign(∆3). If χ1 ≪ χ2, ∆3 becomes
mall, and for negative χ3 (an attraction at large frequencies), the gap function changes sign twice.
e sketch this in Fig. 1.
5
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Fig. 2. Numerical solution of the non-linear gap equation, for a repulsive interaction which is a regularized δ-function
ith ω⋆

= 1.

The appearance of multiple sign changes is generally expected for a repulsive interaction peaked
at some finite frequency. The limiting case of such V (Ω) is a δ-function:

V (Ω) = λδ(Ω − ω⋆) . (15)

Because ∆(ω) and ∆(ω+ω∗) must have different signs for all ω, the gap function necessary oscillates
with period ω⋆. E.g., ∆(ω) = cos(πω/ω⋆)f (ω/ω⋆), where f (x) is a sign-preserving function. A
numerical solution of the non-linear gap equation for a repulsive interaction of δ-function type
with ω⋆

= 1 is shown in Fig. 2. Note that the gap equation relates ∆(0) ≃ −λ∆(ω⋆). Therefore
∆(0) ≪ ∆(ω⋆) at weak coupling, as seen in the Figure.

The zeros of the Matsubara gap function ∆(ω) carry a special meaning, as they are the centers
of dynamical vortices. This can be seen by analytically continuing ∆(ω) to a neighborhood of the
nodal point in the frequency upper half plane, and by studying the phase variation of the complex
∆(z) along a small circle centered at the nodal point. The nodes on the Matsubara axis also affect
the behavior of the retarded ∆(z) infinitesimally close to real axis, at z = ω′

+ iδ. The existence of a
node at z = iω0 implies that the phase η(ω′) of ∆R(ω′) winds by 2π between large positive and large
negative frequencies [26,27]. This phase variation is additional to a bare variation in the absence
of poles. Its existence follows from the general ‘‘argument principle’’ for an analytic function in the
upper half-plane of frequency [28].

Because the phase of the gap changes by 2π , the real and the imaginary part of ∆R(ω′) must
have nodes as well, see Fig. 4. These nodes can potentially be extracted from ARPES [29] or other
spectroscopic techniques, which are sensitive to the complex gap function on the real axis, like
tunneling I–V measurements [30]. We note in this regard that there cannot be any anti-vortices as
these would correspond to poles of the gap function by the argument principle, which would be
inconsistent with analyticity.

Because a vortex cannot be annihilated by an antivortex, the total number of vortices is a
topological invariant: it cannot be changed upon smooth local deformation of the gap function.
A single vortex can appear or disappear only at the upper boundary, which in our case is |ω| = Λ,
see Section 4. Pairs of vortices, however, can move to the upper half-plane from the lower one. One
vortex appears at real ω′, another at −ω′. Once in the upper half-plane, vortices can move and can
merge on the Matsubara axis. After they merge, vortices split along the Matsubara axis, creating
two new nodal points. We illustrate this in Fig. 3 adapted from Ref. [27]. Still, every vortex inside
the upper half-plane, no matter at which z it is, gives rise to 2π variation of the phase of the gap,
η(ω′) between large negative and large positive (real) ω′.
6
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Fig. 3. Complex gap function ∆(z = ω′
+ iω) for an electron–phonon type interaction V with both attractive and repulsive

regions. Upper panel: phase of the gap function as an interaction parameter ν0 is tuned. Lower panel: Sketch of the
corresponding gap function on the Matsubara axis.
Source: Adapted from [27].

Fig. 4. Phasewinding η(ω′) on the real half-axis of the gap function corresponding to the first column of Fig. 3. There are
wo vortices, which lead to a phase winding of 4π on the full real axis, respectively 2π on the half-axis. The part ∆ηtriv
ndicates the bare phase winding in the absence of vortices.
ource: Fig. adapted from [27].

. HEF model

Let us now focus on a specific interaction V (Ω), which is approximate but analytically tractable
nd provides a realistic description of electron interactions in a metal [11,14–18,31–34]:

V (Ω) =
2
ρ
× χ (Ω), χ (Ω) = λ

(
f −

Ω2
D

Ω2
D + Ω2

)
. (16)

Here, χ is a dimensionless interaction, λ is the coupling strength, and f is a Hubbard-like repulsion,
mimicking a screened Coulomb interaction between electrons. The term with ΩD represents an
attractive interaction mediated by an Einstein optical phonon. In the following, we measure all
energies in units of ΩD and set ΩD ≡ 1. We assume a UV cutoff Λ ≫ 1.

The solution of the gap equation at T = 0 yields an even-frequency gap function ∆(ω) = ∆(−ω).
The structure of ∆(ω) and the value of Tc strongly depend on the repulsion strength f . We can
track the evolution of Tc and of the form of ∆(ω) by fixing Λ, λ and gradually increasing f , see
Fig. 5 [33,34].

For negative f , the interaction is purely attractive, Tc ∝ e−a/λ, where a = O(1), and the gap
function is nodeless. For 0 < f < 1, the interaction remains attractive at small Ω , but becomes

+
repulsive at larger Ω . The analysis of the gap equation shows that at f = 0 , a single node appears

7
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Fig. 5. Upper panel: T = 0 phase diagram of the model (16). Numerical solutions for the gap functions at the points A,
, C are shown in the lower panel, while the point D is analyzed in Fig. 8. Blue circles mark the node position. Note the

different units on the vertical axes.

in ∆(ω) at ω0 = ∞. As the positive f increases, the nodal point moves down to a finite frequency,
and its position scales as 1

√
f at small f . The critical temperature still scales as e−a/λ and remains

inite for any value of λ, but the prefactor a increases with increasing f and diverges at f = 1. At
his f , Tc is still finite at arbitrary small λ, but scales as e−ā/λ2 , where ā = O(1). Consequently, the
ocation of the node of ∆(ω) remains at a finite ω0 for any non-zero λ.

At f ≥ 1, the interaction becomes purely repulsive. By continuity, superconductivity persists,
but it now requires λ to exceed a critical λc . For large log(Λ),

λc =
f − 1

2f log(Λ)
. (17)

By inverting (17), we can obtain an expression for the critical repulsion at a fixed λ:

fc =
1

1− 2λ log(Λ)
. (18)

uperconductivity develops for f < fc . Note that fc diverges at λ = 1/(2 log(Λ)). At larger λ, fc
s infinite, i.e., for any f the system manages to adjust the position of the node in ∆(ω) to keep
a superconducting ground state. This last result may be a peculiarity of Eliashberg theory. The
analysis of the Hubbard–Holstein model [24] suggests that there exists a maximal upper value for
the repulsion, above which superconductivity does not develop.

Below we focus on weak coupling where fc is finite. As f approaches fc , the overall magnitude
of ∆(ω) decreases and simultaneously the nodal point of ∆(ω) must move towards ω = 0. It
cannot remain at a finite frequency, because if it was there, one would not be able to solve the
gap equation at T = 0 and f = fc − 0 due to an un-regularized Cooper logarithm. The detailed
analysis of the behavior of ∆(ω) at T = 0 near the phase transition at fc shows [33] a non-trivial
correlation between the overall magnitude of the gap and the position of the node at ω = ω0:
the node position ω0 vanishes as a power law, while the magnitude of the gap function at zero
frequency, ∆(0), vanishes exponentially:

ω ∼

√
f − f , ∆(0) ∼ exp(−1/(f − f )) . (19)
0 c c

8
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Fig. 6. Superfluid density. (a) Global superfluid density, at vanishing total momentum of a Cooper pair. (b)
omentum-dependent superfluid density, which parameterizes the phase stiffness at length scales ∼ 1/|q|.
ource: Fig. adapted from [33].

he gap function at ω > ω0 also vanishes exponentially, but is parametrically larger than ∆(0):

∆(ω ≥ ω0) ∼ ∆(0)/(fc − f ) . (20)

This inter-locked behavior of ω0, ∆(0), and ∆(ω ≥ ω0) is the only way to solve the gap equation (1):
like we just said, if ω0 remained finite at f → fc , the right hand side of the gap equation would
contain an incurable infrared logarithmic singularity, hence there would be no solution of the gap
equation. On the other hand, if we just set ω0 = 0, there would be no frequency range where the
gap changes sign, and again there would be no solution of the gap equation as one cannot get a
sign-preserving ∆(ω) for a repulsive interaction.

The parametric relation ∆(0) ≪ ω0 implies that the gap function looks almost constant for small
frequencies. As a result, some quantities show BCS-like behavior close to the phase transition. For
instance, the density of states as a function of real frequencies ω′, N(ω′) ∼ 1/[(ω′)2 − ∆(ω′)2] will
scale as N(ω′) ∼ 1/

√
ω′ − ∆(0) as f → fc , like in the BCS case.

We note that the behavior ∆(0) ∼ exp(1/(fc − f )) can be interpreted as an infinite-order
quantum phase transition. This is a result of the constant DoS at the Fermi level: in the low-
density limit, ∆(0) ∼ (fc − f )2 decays as a power law [31]. The infinite order transition is not
in the BKT universality class, which would correspond to exp(1/

√
f − fc) [35]. BKT-like transitions

are associated with conformal invariance [36], while our interaction contains an explicit energy
scale ΩD. On the other hand, the transition does share some common characteristics with the BKT
transition. For instance, one can show that the superfluid density ns, which measures the energy cost
of spatial fluctuations, has a universal jump at the transition [33], much like in the BKT case [37]: as
the critical repulsion is approached from below, f ↗ fc , ns is locked to its BCS value (see Fig. 6(a)).1
his means that the global phase of the BCS gap function is well-defined all the way up to the
ransition. On the other hand, one can define a momentum-dependent superfluid density ns(q),
hich parametrizes the phase stiffness for length scales r ∼ 1/|q|. In both 2D and 3D, this quantity

s a scaling function of vF |q|/∆(0), and it vanishes for vF |q| ≫ ∆(0), see Fig. 6(b). This implies that,
s the transition is approached, strong phase fluctuations occur on larger and larger length scales
1/∆(0) [39].
Similar to the Rietschel-Scham model, the expressions for λc, fc can also be obtained within an

ffective low-energy model, which is valid for ω < ω0 (cf. Eq. 10). Again, the coupling in such an
ffective model, λeff ∼ f − fc changes sign at the transition, and the critical exponents are BCS-like.
owever, as f → fc , the window, where the low-energy description is valid, vanishes because ω0
ends to zero. Therefore, the effective low-energy description at ω < ω0 cannot capture any finite
nergy properties such as excitations above the ground state. In this respect, the HEF model differs
rom the Rietschel-Schammodel, where the corresponding scale ω1 remains finite when Tc vanishes.

1 Note that our system has both time-reversal and translational invariance, which are necessary conditions for ns = 1
(in proper units) according to Leggett’s theorem [38].
9
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Fig. 7. Evolution of the solution ∆ close to the transition line; note that the scale of the linear solution ∆linear is not
fixed. The arrow denotes the delta-piece.

The peculiar interplay between ω0, ∆(0), and ∆(ω ≥ ω0) at f → fc leads to a highly non-
trivial solution of the linearized gap equation for infinitesimally small ∆(ω) (point D in Fig. 5). The
linearized gap equation at T = 0 reads:

∆(ω) = −λc

∫ Λ

−Λ

dω′
∆(ω′)
|ω′|

(
f −

1
1+ (ω − ω′)2

)
. (21)

The right hand side is free from singularities if ∆(0) = 0. This is expected as ω0 = 0 at f = fc .
aively one should then search for a solution of the form ∆(ω) ∼ ω2 for ω ≪ 1 and flat ∆(ω) at

larger ω. However, such ∆(ω) is sign-preserving, and, as just mentioned, there is no solution of (21)
for a sign-preserving gap function.

A hint for the form of ∆(ω) comes from the analysis of Eqs. (19) and (20) at small but finite
fc − f . The gap function ∆(0) is parametrically smaller than ∆(ω ≥ ω0) and ω0, which determines
the width of the range where the sign of ∆(ω) is the same as of ∆(0), is also parametrically small.
Yet, if we construct the integrals of ∆(ω)/

√
ω2 + ∆2(ω) over the frequency range between 0 and

0 and over ω > ω0,

Y1 =

∫ ω0

0

∆(ω)√
ω2 + ∆2(ω)

Y2 =

∫ Λ

ω0

∆(ω)√
ω2 + ∆2(ω)

, (22)

we find that the ratio Y1/Y2 is independent of fc− f . This implies that as f approaches fc from below
nd the magnitude of ∆(ω) vanishes, ∆(ω)/

√
ω2 + ∆2(ω) ≈ ∆(ω)/ω becomes γ δ(ω), where γ is of

order ∆(ω ≥ ω0). Then the ratio Y2/Y1 remains finite at f → fc . We illustrate this in Fig. 7, where
we present the numerical solution of the non-linear gap equation at f → fc .

Using this as an input, we search for the solution of the linearized gap equation in the form

∆(ω) = ∆̃(ω)+ γ × |ω|δ(ω), (23)

where ∆̃(ω) is a regular function, which scales as ω2 at small ω.
It is convenient to introduce D(ω) = ∆(ω)/ω, which is an odd function of ω. In terms of D(ω),

Eq. (21) reads

D(ω)ω = −λc

∫ Λ

−Λ

dω′sign(ω′)D(ω′)
(
f −

1
1+ (ω − ω′)2

)
. (24)

The ansatz for the gap function in terms of D(ω) is

D(ω) = D̃(ω)+ γ δ(ω)sign(ω) . (25)
10
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s a first step, we evaluate Eq. (24) at ω = 0+, inserting (25) into (24). We obtain

0 = −λc

∫ Λ

−Λ

dω′D̃(ω′)sign(ω′)
(
f −

1
1+ (ω′)2

)
− γ λc

(
f −

1
1+ ω2

)
. (26)

This equation again shows the necessity of the δ-function term: it is required to cancel out the
integral contribution from the sign-preserving regular part D̃(ω′).

To find an analytical approximation to D̃(ω), we make an ansatz

D̃(ω) =

{
−

ω

ω2
1

|ω| < ω1

−
1
ω

|ω| > ω1 ,
(27)

where ω1 is a free parameter. Since the overall scale of the gap function is not fixed, we are free to
set ∆(Λ) = 1.

We insert the ansatz (27) into (24), and derive three equations for D(0), D(ω < ω1) and
D(ω > ω1). For large Λ, they can be expressed as

1
λc

= γ −
log(1+ ω2

1)
ω2

1
− log

(
1+

1
ω2

1

)
(28)

1
λc

= ω2
1 [γ + I1(ω1)+ I2(ω1)] (29)

1
λc

= f
[
γ − 1− 2 log

(
Λ

ω1

)]
, (30)

I1(ω1) =
∫ ω1

0
dx

x
ω2

1

(
3x2 − 1
(1+ x2)3

)
, I2(ω1) =

∫ Λ

ω1

dx
1
x

(
3x2 − 1
(1+ x2)3

)
. (31)

t weak coupling (λc ≪ 1) these equations can easily be solved to leading order in λ and yield

γ =
1
λc

, ω1 = 1, f =
1

1− 2λc log (Λ) .
(32)

The value of f agrees with our previous estimate (18).
We can also determine γ , ∆̃ by solving Eq. (21) numerically. We present the numerical solution

in Fig. 8. In the upper panel of that figure we show the regular part ∆̃(ω) for generic parameters. In
the lower part we show γ as a function of the critical λc . One can see that γ ∼ 1/λc , as expected
from Eq. (32).

Yet another way to check the appearance of the delta-function is by solving the linearized gap
equation at a finite temperature. The result is shown in Fig. 9. As T → 0, the finite-temperature
ap correctly approaches the zero-temperature result.
To the best of our knowledge, the appearance of the singular δ-functional piece in the solution

f the linearized gap equation has never before been discussed in the literature. A further analysis
f the critical exponents of this non-trivial phase transition, possibly using RG techniques, is an
nteresting problem for future research. In a two-dimensional system, the transition could also be
robed experimentally by modifying the effective strength of the Coulomb repulsion via screening.
his can be achieved via gating or changing the dielectric constant of a substrate [39].
We now argue that the presence of the δ function in ∆(ω) at f = fc − 0 is the necessary

consequence of the fact that the gap function at f < fc has a vortex on the Matsubara axis. Indeed,
expressing δ(ω) as (1/π )x/(x2+ω2), where x is infinitesimally small, and extending Eq. (23) into the
complex plane by replacing ω by−iz, where z = ω′

+iω
′′

, we find that ∆(z) has zeros (vortex points)
along the Matsubara axis, at z = ±ibx1/3, b = O(1), and poles (antivortex points) infinitesimally
below the real axis, at z = ±x − i0. This clearly implies that the appearance of a superconducting
state at f < fc with sign-changing gap along the Matsubara axis is the result of an unbinding of
two vortex-antivortex pairs. The pairs are located at z = 0 at f = fc . After unbinding, vortices move
along the Matsubara axis and anti-vortices move into the lower half-plane of complex frequency.
We consider this as a strong evidence that the transition at f = fc is at least partly described by
BKT-like physics.
11
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Fig. 8. Numerical solution of the linearized gap equation. Upper panel: regular part of the gap function ∆̃(ω) for generic
arameters. Lower panel: weight of the delta-function part as function of critical λc .

Fig. 9. Numerical solution of the linearized gap equation at a finite temperature, for parameters Λ = 20, f = 2.
a) Critical coupling for at finite temperature. The dotted line corresponds to the T = 0 estimate of Eq. (17),
hich holds with logarithmic accuracy. (b) Upper panel: position of the node. Lower panel: integral weight γ (T ) ≡

πT
∑

|ωm |<ω0
∆(ωm)/|ωm|. As T → 0, γ (T ) slowly approaches the zero-temperature weight (dashed line), which is taken

rom Fig. 8.

. Odd-frequency gap function

Another potential option for superconductivity from a repulsive interaction is an OF gap function
(ω) = −∆(−ω). Such pairing is not forbidden on general grounds, as was first recognized
y Berezinskii [40], but to satisfy the Pauli principle, an OF gap function must either be odd in
omentum space or be in the spin–triplet channel. In our case the interaction V (Ω) does not
epend on momentum, hence odd-frequency gap function must be a spin triplet.
OF superconductivity is a rich field which has been theoretically studied for decades. We refer

he reader to Refs. [41–44] for theoretical reasoning and to Refs. [45,46] for the discussion of a
otential experimental observation of OF superconductivity in heterostructures.
12
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Fig. 10. (a) OF gap function, denoted as ∆o , at T = 0 for generic parameters. To obtain it, we neglected the self-energy.
(b) Exemplary phase diagram, taken from [34]. ∆e denotes the EF solution, ∆e + i∆o the mixed state with breaking of
time-reversal symmetry.

In our case, at small f < 1, OF pairing is prevented by the development of EF pairing at
much a higher T because OF pairing is a threshold phenomenon (see below), while EF pairing is
not. However, at larger f the situation may change as the Hubbard repulsion, which acts against
EF pairing, cancels out in the odd-frequency channel [32,47,48]. We show below that the actual
situation is more involved.

Indeed, suppose momentarily that EF superconductivity does not develop. The gap equation for
the OF ∆o(ω) is

∆o(ω) = −
1
2

∫ Λ

−Λ

dω′
χo(ω, ω′)√

(ω′)2 + |∆o(ω′)|2
× ∆o(ω′) (33)

Vo(ω, ω′) = χ (ω − ω′)− χ (ω + ω′) = −
4λ × ωω′(

1+ (ω − ω′)2
) (

1+ (ω + ω′)2
) . (34)

e see that χo(ω, ω′) scales linearly with ω′. The r.h.s. of (33) then does not contain a Cooper
ogarithm [44], hence a non-zero ∆o(ω) appears only when λ exceeds a certain threshold λo. To
udge whether EF or OF pairing develops for a given set of parameters, one must compare λo with
he threshold coupling for EF pairing λe = λc ∼ (f − 1)/(2f log(Λ)) from Eq. (17). By standard
easoning, the order for which the threshold value of λ is smaller, develops. This analysis suggests
hat favorable parameters for OF pairing are (i) a large repulsion f and (ii) a fairly small UV cutoff (∼
ermi energy) Λ. An exemplary solution for an odd-frequency gap function is shown in Fig. 10(a).
However, there is another caveat. In the analysis above we neglected the fermionic self-energy.

his is justified at weak coupling, but not for λ > λo. The self-energy makes fermions less coherent
nd therefore acts against pairing [49,50]. Within Eliashberg theory, the same interaction that
ontributes to pairing also gives rise to the self-energy. The theory then yields a set of two coupled
quations for the pairing vertex Φ and the self-energy Σ . The gap function ∆(ω) is expressed via Φ

nd Σ as ∆(ω) = Φ(ω)/(1+Σ(ω)/ω) (for vanishing Σ , ∆ = Φ). The two Eliashberg equations for Φ

nd Σ can be re-expressed as equations for ∆ and the inverse fermionic residue Z(ω) = 1+Σ(ω)/ω,
nd the equation for ∆(ω) contains only ∆(ω′). For the OF gap function the full gap equation is

∆o(ω) = −
1
2

∫ Λ

−Λ

dω′
χo(ω, ω′)√

(ω′)2 + |∆o(ω′)|2
×

(
∆o(ω′)−

ω′

ω
∆o(ω)

)
. (35)

The self-energy contributes the part ∼ ω′

ω
∆(ω) on the r.h.s. of Eq. (35). Since ∆o(0) = 0, one can

linearize Eq. (35) without encountering singularities. Solving the latter one can verify how the self-
energy affects the critical λo. The result is somewhat unexpected: the critical λo becomes infinite,
i.e., for any finite λ OF superconductivity does not develop [34,50].

For the EF gap function, the self-energy correction is still proportional to Vo, and explicit
calculation shows that it only slightly shifts the threshold value λe.

At this point, the prospects of achieving OF superconductivity seem to be dire. However, we recall
that an infinite threshold λ is obtained assuming that the interaction in the particle–hole channel
o

13
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s the same one as in the particle–particle channel. This holds in the Eliashberg approximation,
ut does not hold beyond it, when one includes vertex corrections [34,51]. It turns out that
ertex corrections suppress the interaction in the particle–hole channel relative to the one in the
article–particle channel. In one-loop order for vertex corrections the suppression factor is

α ∼
1+ 2λf
1+ 4λf

< 1 . (36)

ote that this vertex correction does not carry the Migdal parameter ΩD/EF . This has been discussed
n, e.g., Ref. [52].

We remark that the correct evaluation of vertex corrections is somewhat tricky at finite tem-
eratures, as even in the presence of vertex corrections the self-energy still exactly cancels out the
hermal contribution from ω′

= ω on the r.h.s. of the gap equation (see Ref. [34] for details).
For α < 1, λo becomes finite, and when α is small enough, λo and λe become comparable. Explicit

alculations show [34] that λe is smaller for all α ≥ 0, unless extreme parameters are chosen. Hence,
he system first develops EF pairing at a certain temperature T e

c . However, because λe and λo are
omparable, the OF component does develop at a lower temperature T o

c , and below this T the order
arameter contains both even and odd components.
Interestingly, the relative phase between the two is ±π/2 [34,51], i.e.,

∆(ω) = ∆e + i∆o(ω) or ∆(ω) = ∆e − i∆o(ω) . (37)

The system spontaneously chooses one of the two orders, and in this way spontaneously breaks
time-reversal invariance (which acts on gap functions on the Matsubara axis simply as complex
conjugation). This is a rare example of time-reversal symmetry breaking in a one-band s-wave
superconductor. Detection of time-reversal symmetry breaking can be achieved with methods such
as Kerr rotation or muon spin relaxation [53]. We show a phase diagram including the mixed-state
region in Fig. 10(b).

Since the gap function in (37) is complex, ∆(ω) = |∆(ω)|eiη(ω), it does not have nodes. Nodal
oints, however, may exist in the upper half-plane of a complex frequency, each of them a center
f a dynamical vortex. Note also that η(ω) is odd in ω, hence ∆(ω′

+ iω) and ∆(ω′
− iω) are not

quivalent, unlike the case shown in Fig. 3.

. Summary and open questions

In this paper we reviewed some recent progress in the study of an s-wave superconductivity
rom a dynamical repulsive interaction.

We argued that superconductivity is possible even if the pairing interaction is repulsive at all
requencies, but the gap ∆(ω) necessary changes sign at least once along a positive Matsubara axis.
e related nodal points of ∆(ω) to dynamical vortices and argued that their presence gives rise to

xtra variation of the phase of a complex gap function between large negative and large positive
eal frequencies, in multiples of 2π . We argued that s-wave superconductivity out of repulsion is
threshold phenomenon, and studied in detail the quantum phase transition at T = 0 in which
superconducting order parameter vanishes. This transition is highly non-trivial as both the gap
mplitude and the frequency, at which the gap changes sign, vanish at criticality in a particular
anner. As a consequence, the gap function at an infinitesimal distance from the transition has
singular δ-functional piece. Without this piece, one cannot obtain a solution of the linearized
ap equation at the critical point. Finally, we argued that for a repulsive interaction there is
competition between EF and OF pairing as the latter is not affected by Hubbard repulsion.
e showed that the likely outcome of this competition is a mixed state in which EF and OF

ap components are both nonzero. The relative phase between the two is ±π/2. The system
pontaneously chooses π/2 or−π/2 and in this way spontaneously breaks time-reversal symmetry.
There are several open questions and ongoing challenges in the field. First, it would be advan-

ageous to identify physical observables which could detect dynamical vortices without the need
o sample the full real frequency axis. One possible place to look is the transient response of a
uperconductor, for instance if the repulsion f is changed in time. Second, it would be interesting
14
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o extend the present approach to low-density and flat band systems [31,54–56]. Third, an issue to
onsider is whether one can construct a quantum simulator of the electron–phonon systems, which
ffers more experimental flexibility. Cavity systems, where retarded interaction can be mediated
y massive cavity photons, could be a viable candidate [57]. Fourth, it would be interesting to
btain critical exponents of the superconductor to normal-state transition. Fifth, several groups
ecently discussed sign-changing gap functions ∆(ω) for superconductivity at a quantum-critical
oint towards some particle–hole order [58] and for superconductivity in SYK-type models [59].
t would be interesting to compare these gap functions with the ones we studied here. Sixth, a
hallenging question is whether the pairing fluctuation propagator, which becomes gapless at the
EF model quantum phase transition, leads to non-Fermi-liquid scattering rate of fermions. Finally,
t would be interesting to address the issue whether one can construct analogous theories for other
nstabilities besides superconductivity.
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