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Quantum phase transition in a clean superconductor with
repulsive dynamical interaction
Dimitri Pimenov 1✉ and Andrey V. Chubukov 1

We consider a model of electrons at zero temperature, with a repulsive interaction which is a function of the energy transfer. Such
an interaction can arise from the combination of electron–electron repulsion at high energies and the weaker electron–phonon
attraction at low energies. As shown in previous works, superconductivity can develop despite the overall repulsion due to the
energy dependence of the interaction, but the gap Δ(ω) must change sign at some (imaginary) frequency ω0 to counteract the
repulsion. However, when the constant repulsive part of the interaction is increased, a quantum phase transition towards the
normal state occurs. We show that, as the phase transition is approached, Δ and ω0 must vanish in a correlated way such that
1=j log½Δð0Þ�j � ω2

0. We discuss the behavior of phase fluctuations near this transition and show that the correlation between Δ(0)
and ω0 locks the phase stiffness to a non-zero value.
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INTRODUCTION
Understanding the nature of the “pairing glue”, which enables
Cooper pair formation of fermions, is one of the key steps toward
a comprehensive scenario of superconductivity for a given
material. In strongly correlated materials, like cuprates, iron-
based, heavy-fermion, and organic materials, the attractive
pairing interaction is likely of electronic origin. Near a quantum
phase transition, such an attraction often takes a more concrete
form of an effective four-fermion interaction, mediated by soft
collective fluctuations of the corresponding order parameter.
Most often, the attraction emerges in a channel different from an
ordinary s-wave, in which case the superconductivity is labeled
as an unconventional one.
For more conventional metals the symmetry of the pairing gap

is s-wave, and the attraction is believed to come from
electron–phonon interaction. This is the backbone of the
“conventional” BCS theory of superconductivity. Still, to fully
understand the phononic mechanism of s-wave superconductiv-
ity, one must explain why it is not overshadowed by the Coulomb
repulsion, which is seemingly much larger. The frequently cited
explanation1–6 is that the repulsive Coulomb repulsion is
logarithmically renormalized down between the Fermi energy EF
and the Debye energy ΩD (the Tyablikov-McMillan logarithm), and
at energies below ΩD becomes smaller than the electron–phonon
attraction, if the ratio EF/ΩD is large enough.
Upon closer examination, this explanation appears somewhat

incomplete as Tyablikov-McMillan renormalization holds for the
full interaction, i.e., for the sum of electron–electron and
electron–phonon interactions, and under the renormalization this
full interaction decreases, but does not change sign. It has been
realized by several authors4,7–12 that the underlying reason why
electron–phonon superconductivity holds despite larger Coulomb
interaction, is that the full interaction on the Matsubara axis
(where it is real) is a dynamical one, V(Ωm), and although a
phonon-mediated attraction does not invert the sign of V(Ωm), it
nevertheless reduces it at frequencies below the Debye energy. It
was argued that an “average” repulsive V(Ωm) can be effectively
eliminated from the equation for the pairing gap Δ(ωm), by

choosing a solution which changes sign as a function of ωm. This
bears some similarity to how, for an electronic pairing, a static
Coulomb repulsion is effectively eliminated by choosing a sign-
changing, non-s-wave spatial structure of the gap function.
A convenient way to model the dynamical V(Ωm), suggested in

refs. 8–12, is to treat it as a sum of two parts: a constant repulsive
part of strength f, representing the renormalized instantaneous
Coulomb repulsion, and a frequency-dependent attractive part,
due to electron–phonon interaction:

VðΩmÞ / f � 1

1þ ðΩm=Ω1Þ2
; (1)

where Ω1 is of order of the Debye energy. A similar reasoning has
been applied10 to dynamically screened electron–electron inter-
action, where Ω1 is of the order of plasma frequency.
For f > 1, V(Ωm) > 0 for all frequencies, yet for 1 < f < fc, super-

conductivity emerges below a finite Tc, which contains f in the
combination f=½1þ const: ´ f logðEF=Ω1Þ�. For a given f and large
enough logðEF=Ω1Þ, the Coulomb repulsion becomes logarithmi-
cally small, and one recovers the McMillan formula for Tc. One the
other hand, at a given EF/Ω1, at large enough f > fc, the repulsion
becomes too strong and superconductivity vanishes. Obviously, Tc
and the magnitude of the gap Δ(ωm) vanish at f= fc.
It is the goal of the present work to understand the nature of

the T= 0 quantum phase transition between a superconducting
state at f < fc and a normal state at f > fc. Specifically, we resolve
the following puzzle: on the one hand, the gap Δ(ωm) must
change sign at some finite ωm=ω0, otherwise there would be no
solution of the gap equation for f > 1. On the other hand, for any
finite ω0, Δ(0) is non-zero, in which case the linearized gap
equation does not have a solution as the pairing kernel contains
an infrared-divergent Cooper logarithm, which is not regularized
at T= 0 and therefore does not admit a solution. We argue
analytically and check numerically that as f approaches fc from
below, ω0→ 0 and Δ→ 0 in tune with each other, such that
1=j logΔj � ω2

0.
We also analyze the spectrum of gapless phase fluctuations

near f= fc. We show that because of the relation between Δ and
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ω0, the superfluid stiffness remains finite as f approaches fc from
below. This is in marked contrast with the behavior of the stiffness
near the end point of superconductivity at T= 0 in a system with
magnetic impurities (Abrikosov-Gorkov theory, refs. 13–16). In this
situation, the destruction of superconductivity occurs via pair-
breaking due to the impurity-induced self-energy, and the
superfluid stiffness gradually vanishes as the system approaches
the T= 0 phase transition.
That superconductivity vanishes when ω0= 0 can also be

interpreted from a topological viewpoint, because ωm= ω0 is a
center of a dynamical vortex: the anti-clockwise circulation of the
phase of Δ(z), z ¼ ω0 þ iω

00
, around this point is 2π, refs. 17–19.

There is no way to eliminate this dynamical vortex as there are no
anti-vortices in the upper half-plane of frequency (their presence
would be incompatible with the analyticity of Δ(z)). Hence, as long
as superconducting order is present, ω0 must remain finite. The
only possibility for a vortex to disappear without destroying
superconductivity is when it moves to an infinite frequency. For
the model of Eq. (1) this holds at f= 0, and for f < 0 the gap
function Δ(ωm) on the Matsubara axis is nodeless.
We note in passing that a vortex on the Matsubara axis gives

rise to 2π winding of the phase of Δ(ω) on the real frequency axis,
between ω=−∞ and ω=∞. Such phase winding necessary
leads to nodes in the real and imaginary parts of Δ(ω), which can
be detected by spectroscopic experiments, e.g., ARPES20.

RESULTS
Model
We consider a spatially isotropic model of interacting spin-1/2
fermions at zero temperature in d dimensions, described by the
effective low-energy action

S ¼P
σ

R
kψσðkÞðiω� ξkÞψσðkÞ

þ R k;k0;qVðω� ω0Þ ´ψ"ðk0 þ q=2Þψ#ð�k0 þ q=2Þ
ψ#ð�k þ q=2Þψ"ðk þ q=2Þ ; R k ¼ R Λ�Λ

dω
2π

R
dk

ð2πÞd ;

(2)

where Λ is a UV cutoff of order EF and ω are Matsubara
frequencies (here and below we label Matsubara frequency as ω
without subscript m). The interaction V(Ω) is taken to be a function
of the energy transfer, but independent of momenta. We follow
earlier works9–12,21 and set V(Ω) to

VðΩÞ ¼ 2
ρ
´ ~VðΩÞ; ~VðΩÞ ¼ λ f � 1

1þ Ω=Ω1ð Þ2
 !

; (3)

where ρ is the single-spin density of states at the Fermi surface,
and Ω1 is of the order of Debye energy for the electron–phonon
case (the factor of 2 is introduced for notational convenience).
In the following, we measure all energies in units of Ω1, and

hence set Ω1= 1 in Eq. (3). Then, Λ≫ 1. A discussion of the
opposite low-density limit where EF, Λ≪ 1 can be found in ref. 22.
For the known physical realizations of Eq. (3), f > 1, hence V(Ω)
remains positive (repulsive) at all frequencies. For completeness,
here we consider arbitrary f, but our key focus will still be on
f > 1. For a generic f, V(Ω) is purely attractive for f ≤ 0, is attractive
at small frequencies and repulsive at large frequencies for 0 < f <
1, and is purely repulsive for f ≥ 1, see Fig. 1a. The dimensionless
λ parametrizes the overall strength of the interaction. We assume
λ ≤ 1, this will allow us to neglect, at least qualitatively, the
normal fermionic self-energy: One can show that the leading
self-energy effect is a mere renormalization of the coupling
constant λ→ λ/(1+ 2λ).

Gap equation
To describe superconductivity, we perform a Hubbard-
Stratonovich transformation in the spin-singlet, s-wave pairing
channel and use a saddle point approximation. This procedure
leads to the conventional Eliashberg equation for the gap
function23, though without the additional contribution from the
self-energy. On the Matsubara axis, we have

ΔðωÞ ¼ �
Z Λ

�Λ

dω0 Δðω0Þ~Vðω� ω0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0Þ2 þ jΔðω0Þj2

q : (4)

The interaction ~Vðω� ω0Þ is real on the Matsubara axis, which
allows us to set Δ(ω) to be real by properly choosing its phase. At
the same time, because the interaction is a function of the
frequency transfer, one can search for even-frequency and odd-
frequency Δ(ω). In this communication, we focus on the even-
frequency solutions. For even-frequency Δ(ω)= Δ(−ω), the gap
equation can be rewritten as

ΔðωÞ ¼ �
Z Λ

0
dω0 Δðω0Þ ~Vðω� ω0Þ þ ~Vðωþ ω0Þ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0Þ2 þ Δðω0Þ2

q : (5)

It is obvious that for f > 1, when ~V > 0, Δ(ω) must change sign at
some frequency ω0 as otherwise the left-hand side and the right-
hand side of Eq. (5) would have opposite signs. The value of ω0 is
chosen to minimize the effect of a repulsive f in Eq. (3). This has
been discussed before2–6,8,11,12 and we just state the results.
First, ω0 is finite for all f > 0 if Λ <∞. If Λ is finite, Δ(ω) has a node
as long as ω0 < Λ. Second, optimizing ω0 in the limit logðΛÞ � 1,
one obtains that a repulsive f effectively gets reduced to
f=½1þ λf logðΛÞ� ! 1=λ logðΛÞ. This gives rise to the McMillan
formula for Tc / e�1=ðλ�μ�Þ, in which μ� � 1= logΛ is the
contribution from the repulsion. Third, for any finite Λ, the
repusive part of the interaction gets reduced, but cannot be
completely eliminated. As a result, superconductivity exists at f
smaller than some critical fc > 1.
In Fig. 1b we present the numerical solution of the non-linear

gap equation (5) for some representative Λ and 1 < f < fc. We
clearly see that Δ(ω) changes sign at some finite ω0. It reaches a
finite value at ω= 0 and then saturates at some other finite value,
of opposite sign at ω0≪ω < Λ. The numerical solution has been

Fig. 1 Dynamical interaction and typical gap function. a ~VðωÞ for
Λ= 5, λ= 0.3 and four different values of f. b Numerical solution of
the gap equation for f= 1.2. Gray dashed line corresponds to a fit to
Δ(ω) using the ansatz (11).
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obtained by a “damped iteration” method, in which only a certain
portion of Δ(ω) is updated at each step of iterations. This method
improves the convergence of the iteration procedure12.

Quantum phase transition towards a superconductor with
nodeless Δ(ω)
Before we proceed to the case f ≈ fc, we briefly discuss the
transition towards the state with a nodeless Δ(ω). As stated above,
this transition occurs at f= 0 when Λ=∞, i.e., Eq. (5) holds at all
frequencies. This transition can be classified as topological
because it separates two states with and without a dynamical
vortex. As f is reduced towards f= 0, ω0 increases, i.e., the core of
the dynamical vortex successively moves to larger ω. At f= 0 it
reaches ω=∞ and disappears.
We now argue that the dependence of ω0 of f has a simple form

ω0 ¼ f�1=2 as f ! 0 : (6)

This can be obtained as follows: Let Δa(ω) be the solution of the
gap equation at f= 0:

ΔaðωÞ ¼ λ
R Λ
0 dω0 1

1þðω�ω0Þ2 þ 1
1þðωþω0Þ2

� �
´ Δaðω0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðω0Þ2þΔaðω0 Þ2
p :

(7)

Since ~VðωÞ is purely attractive for f= 0, Δa has a fixed sign. At large
ω, Δa(ω)= A/ω2, where

A ¼ 2λ
Z Λ

0
dω0 Δaðω0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðω0Þ2 þ Δaðω0Þ2
q : (8)

Now let Δb(ω) be the solution of the gap equation at small but
finite f. To the leading order in f, we obtain, for large ω,

ΔbðωÞ ’ ΔaðωÞ � Af ¼ A
1
ω2

� f

� �
: (9)

At the node, Δb(ω0)= 0, hence ω0= f−1/2. For large but finite Λ,
the phase transition occurs when ω0= Λ. The corresponding
critical f for a topological transition is then

f c;top ¼ Λ�2 : (10)

In Fig. 2 we checked these results by solving the gap equation
numerically. The agreement between the numerical and analytical
results is perfect.

Quantum phase transition towards normal state
We now consider the system behavior near the T= 0 transition
towards the normal state at f= fc > 1, when the pairing interaction
Vðω� ω0Þ is positive (repulsive) at all frequencies. We assume and
then verify that the transition is continuous, i.e., at f= fc− 0+, Δ(ω)
is infinitesimally small. Like we said in the Introduction, to
understand this transition one has to resolve the following puzzle:
if infinitesimally small Δ(ω) tends to a finite value at ω= 0, like,
e.g., in Fig. 1b, the right-hand side of the linearized gap equation
gives rise to a divergent Cooper logarithm. Because T= 0, the
logarithmical divergence is not cut. The only way to avoid this
divergence is to place the node (i.e., the vortex core) right at ω=
0. But then the gap becomes sign-preserving at all finite ω, and for
such Δ(ω) there is no solution of the gap equation for a purely
repulsive interaction.
As we now show, the resolution of this problem is to let both Δ

and ω0 vanish in a correlated way as f→ fc from below. To simplify
the analysis, we first note that for all f < fc, the gap function Δ(ω) is
well approximated by a simple form

ΔðωÞ ¼ Δ0 þ Δ1
ω2

1þ ω2
: (11)

A comparison with the numerical solution of the gap equation
shows that this form is near-perfect for ω < 1 and matches the
numerical results reasonably well for ω > 1, see Fig. 1b. Such
agreement is sufficient to extract the leading behavior near the
phase transition (see below). The coefficients Δ0, Δ1 can be
determined by inserting the ansatz (11) into (5) and expanding up
to second order in ω. After a straightforward algebra we obtain

Δ0 ¼ �2λ
Z Λ

0
dω0 f � 1

1þ ðω0Þ2
 !

´ Kðω0Þ (12)

Δ1 ¼ 2λ
Z Λ

0
dω0

3ðω0Þ2 � 1
� �
ð1þ ðω0Þ2Þ3

´ Kðω0Þ (13)

Kðω0Þ ¼
Δ0 þ Δ1

ðω0Þ2
1þðω0Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðω0Þ2 þ Δ0 þ Δ1
ðω0Þ2

1þðω0Þ2
� �2r : (14)

In the limit Δ0, Δ1→ 0, the equations simplify to

Δ1 ¼ Δ1λ
6 � 2λℓΔ0

Δ0 ¼ Δ0 �2λfL� 2λℓðf � 1Þ½ � þ Δ1ð�2λfLþ λÞ : (15)

where

L ¼ logðΛÞ; ℓ ¼ logð1=Δ0Þ � L (16)

The value of the critical fc can be determined by evaluating the
determinant of the set (15) in the limit ℓ→∞. We obtain

f c ¼ 1� 7=6 ´ λ
1� λ=6� 2Lλ

: (17)

The divergence of fc at a critical value of λL, which is evident
from Eq. (17) is not an artifact of the approximation to Δ(ω), as we
have checked numerically. Rather, it implies that by properly

Fig. 2 Scaling behavior at the transition towards the nodeless
superconductor. a Numerical check of Eq. (6) for small f. b Numerical
check of Eq. (10) for moderate Λ. The apparent oscillations are due
to discretization of f in the numerics. Used parameter: λ= 0.1.
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placing ω0, one can completely eliminate a constant repulsion f
even when f is large. A detailed analysis of this effect will be
presented elsewhere (in preparation).
The general trend that fc increases with increasing Λ is also in

agreement with McMillan reasoning that the Coulomb repulsion is
suppressed at large Λ. In the following, we focus on λL≪ 1, in
which case

f c ¼ 1þ λð2L� 1Þ þ OððλLÞ2Þ (18)

Evaluating the determinant again, but this time for a finite ℓ, we
obtain to leading order in λL and fc− f:

ℓ ’ 1
2λðf c � f Þ ´

1
1� 2λL

� �2

(19)

Using (16) we find that Δ0 ¼ expð�ℓÞ vanishes exponentially fast
as f↗ fc.
From the first equation in (15) we obtain

Δ0

Δ1
’ � 1

2λℓ
’ �ðf c � f Þ 1� 2λLð Þ2 : (20)

The ratio is negative (hence ω0 is finite) and progressively
decreases when f approaches fc. Substituting Δ0/Δ1 into (11),
we obtain

ω0 ’
ffiffiffiffiffiffiffiffiffiffiffiffi
f c � f

p
´ ð1� 2λLÞ: (21)

We see that ω0 vanishes as
ffiffiffiffiffiffiffiffiffiffiffiffi
f c � f

p
, i.e., much more gradually than

Δ0.
In Fig. 3, we verify the scaling forms of Δ0 and ω0 by extracting

these two quantities from the numerical solution of the gap
equation. The agreement between analytical and numerical
results is quite good.

Phase fluctuations near critical fc
For a more detailed characterization of the phase transition at f=
fc, we now look at soft collective excitations in the system. These
are phase fluctuations, which in the absence of long-range
Coulomb interaction are Goldstone modes of the superconducting
state. Our goal is to derive the superfluid density and the

dynamical compressibility, which enter the propagator of phase
fluctuations, as functions of q= (Ω, q), where q the total
momentum of a Cooper pair and Ω is the total frequency. There
are two ways to do this: either expand the action to second order
in θ or analyze the pole structure of the full particle–particle
susceptibility at small q. These two methods yield consistent
results; we will focus on the first one in the remainder of this
section as we discuss the other one in the “Methods” section.
To obtain the propagator of low-energy phase fluctuations, we

introduce the total momentum q and the total frequency Ω of a
Cooper pair. For convenience, we combine q and Ω into a (d+1)-
dimensional variable q= (Ω, q). In our mean-field solution the
pairing involves fermions with frequencies ω and −ω and
momenta k and −k, i.e., q is set to zero. In other words, the
mean-field gap is a function of ω but not of q. This mean-field
solution corresponds to a minimum of the Luttinger-Ward
functional. States away from the minimum are described by a
fluctuating pairing field (order parameter) that depends on both Ω
and q. We illustrate this in Fig. 4.
Low-energy fluctuations around the mean-field solution corre-

spond to slow variations of the phase of the order parameter θ(q):

Δðω; qÞ ’ ΔðωÞ ´ δðdþ1ÞðqÞ þ iθðqÞ
h i

Δðω; qÞ ’ ΔðωÞ ´ δðdþ1ÞðqÞ � iθð�qÞ
h i

:
(22)

The expressions in the square brackets arise from small-θ
expansion and Fourier transformation of the real-space phase
factorZ

ddþ1q

ð2πÞdþ1 exp½iθðxÞ� exp½iðx � qÞ� ’Z
ddþ1q

ð2πÞdþ1 1þ iθðxÞð Þ exp½iðx � qÞ� ¼ δðdþ1ÞðqÞ þ iθðqÞ
(23)

where x is the center-of-mass coordinate.
Inserting the expansion (22) into the Δ-dependent action,

where the fermions have been integrated out, and expanding to
the second order in θ, we obtain the following action for the θ
field (see “Methods” for details):

Sθ ¼
Z

dΩ
2π

dq

ð2πÞd θðqÞθð�qÞ
Z

dωdω0

ð2πÞ2 ΔðωÞð�V�1Þðω� ω0ÞΔðω0Þ � ΠΔðqÞ
" #

:

(24)

ΠΔðqÞ ¼
Z

dω
2π

dk

ð2πÞd
Δ2ðωÞ

ω2þ þ E2þ

1

ω2� þ E2�
´ ΔþΔ� þ iωþ þ ξþð Þðiω� þ ξ�Þ½ �;

ξ ± ¼ ξq=2 ± k;ω± ¼ Ω=2±ω; Δ± ¼ Δðω± Þ; E ± ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔ± Þ2 þ ðξ ± Þ2

q
:

(25)

Fig. 3 Scaling behavior at the transition towards the normal
state. Evolution of 1/(λℓ) (filled circles) and ω2

0 (empty circles) close
to the phase transition; both quantities vanish with approximately
constant slope (i.e., are ∝fc−f), as expected from Eqs. (19) and (21).
Values f estc shown in the plot legend are derived from linear
extrapolation of the last three data points (dashed lines), showing
semi-quantitative agreement with fc from Eq. (17).

Fig. 4 Energy-momentum dependence of the pairing field Δ. The
brace represents the Hubbard-Stratonovich decoupling. Four-
momenta k= (ω, k), q= (Ω, q) are used. We always neglect the
dependence of Δ on the relative momentum of a Cooper pair, k.
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Here, V�1ðω� ω0Þ is the inverse of Vðω� ω0Þ defined byZ
dω1

2π
Vðω� ω1ÞV�1ðω1 � ω0Þ ¼ 2πδðω� ω0Þ: (26)

The expression for ΠΔ(q) in Eq. (24) can directly be obtained
from the expansion in θ. Alternatively, it can be obtained
diagrammatically as a particle–particle bubble with form-factors
Δ2(ω) (see “Methods”).
Multiplying both sides of Eq. (4) by V�1ðω� ~ωÞΔð~ωÞ and

integrating over ω; ~ω we find thatZ
dωdω0

ð2πÞ2 ΔðωÞð�V�1Þðω� ω0ÞΔðω0Þ ¼ ρ

2

Z
dω

ΔðωÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðωÞ2 þ ω2

q
(27)

This expression coincides with the particle–particle bubble in the
limit of vanishing q:

ΠΔð0Þ ¼ ρ

Z
dω
2π

dξ
ΔðωÞ2

ΔðωÞ2 þ ξ2 þ ω2

¼ ρ

2

Z
dω

ΔðωÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðωÞ2 þ ω2

q :
(28)

As a result, the propagator of the field θ(q) is determined by ΠΔ(q)
− ΠΔ(0). Expanding ΠΔ(q) to second order in Ω, q, we obtain

Sθ ’ ρ

4

Z
dΩ
2π

dq

ð2πÞ2 θðqÞθð�qÞ 1
d
nsjvFqj2 þ κΩ2

	 

: (29)

The coefficient ns in the second line of (29) is the superfluid
density, normalized by the density of electrons in the normal state.
It parametrizes the energy cost of spatial phase fluctuations of

the order parameter and controls the supercurrent and magnetic
response in the superconducting state (The prefactor 1/d comes
from averaging over cos ½ðk;qÞ�2 in d dimensions). The factor κ is a
dynamical compressibility which parametrizes the energy cost of
temporal phase fluctuations. We find

ns ¼ 1
2

Z Λ

�Λ

dω
ΔðωÞ2

ðΔðωÞ2 þ ω2Þ3=2
(30)

κ ¼ 1
4

R Λ
�Λ dω

ΔðωÞ2
ðΔðωÞ2þω2Þ5=2

´ ΔðωÞ2ð3� ΔðωÞΔðωÞ00 Þ þ ω2ð�ΔðωÞΔ00 ðωÞ þ 3Δ0ðωÞ2Þ
h i

:

(31)

where the derivatives are with respect to ω. A similar expression
for ns was also obtained in ref. 24.
For a weakly frequency-dependent Δ(ω), the expressions for ns

and κ are the same as in BCS theory, ns= κ= 1. For a generic Δ(ω),
the BCS results are correct by order of magnitude, but the actual
values of ns and κ differ by BCS expressions by O(1), see Fig. 5.
At f ≤ fc, Δ(ω) is exponentially small, and the integrals are

dominated by ω≲ Δ(0). Because frequency variation of Δ(ω)
occurs at a much larger scale ω0≫ Δ(0), the gap in (30) and (31)
can be approximated by a constant Δ(0). As a result, both ns and κ
tend to BCS values ns= κ= 1. We verified this result in numerical
calculations, see Fig. 5. The velocity of phase fluctuations also
approaches the BCS value

vs ! 1ffiffiffi
d

p vF for f % f c : (32)

At f= fc+ 0+, ns and κ jump to zero.
We emphasize that the behavior of ns near the T= 0

superconductor-normal state phase transition in a clean system
at f= fc is different from the one at the T= 0 superconductor-
normal state phase transition due to magnetic impurities. There,
ns gradually vanishes at a critical impurity concentration due to

pair-breaking coming from the impurity-induced self-energy. As a
result, the penetration depth �1=

ffiffiffiffiffi
ns

p
diverges (refs. 13,14,16). At a

technical level, this is because in the case of magnetic impurities
the denominator of Eq. (30) contains an additional term
proportional to the fermionic damping rate due to impurity
scattering. In our case, such a constant term is absent. We expect,
however, that it will appear if we extend the analysis of the
superconductor-normal state phase transition to a finite magnetic
field H. We therefore expect that at a finite field, ns will vanish at
critical fc(H).
Still, the discontinuity of ns at f= fc in our case holds only for

superfluid density evaluated at zero momentum q, or, more
accurately, at ∣vFq∣ ≪ Δ0. To analyze the behavior at larger ∣q∣, we
define a generalized momentum-dependent superfluid density as

nsðqÞ 	 ΠΔð0Þ � ΠΔðq; 0Þð Þ
ρ
4d jvFqj2

: (33)

This ns(q) is a scaling function of ~q ¼ vFjqj=Δð0Þ. The form of the
scaling function depends on the dimensionality. In 2D we have

n2Ds ðqÞ ’
Z 1

�1
dx

1
1
4
~q2

´
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2 þ 1
4
~q2

q
2
64

3
75; (34)

where we have approximated Δ(ω)≃ Δ(0) and Λ/Δ(0)=∞, which
holds to a good numerical accuracy. Evaluating the frequency
integral we find:

n2Ds ð~qÞ ¼ 1
1
4
~q2

log 1þ 1
4
~q2

� �
: (35)

In 3D we have

n3Ds ð~qÞ ¼ 12
~q3
R
dx ~q=2ffiffiffiffiffiffiffiffi

x2þ1
p � arctan ~q=2ffiffiffiffiffiffiffiffi

x2þ1
p
� �h i

¼ 12
~q3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ~q2

q
´ arctanh ~qffiffiffiffiffiffiffiffi

4þ~q2
p
� �

� ~q

	 

:

(36)

We plot n2Ds ð~qÞ and n3Ds ð~qÞ in Fig. 6a. We see that both functions
decrease with increasing ~q, i.e., with decreasing Δ0 for a given q.
At f= fc− 0+, n2D;3Ds ð~qÞ vanishes for any finite q. A suitably defined
momentum-dependent compressibility κðqÞ � ∂2ΠΔðΩ;qÞ=∂Ω2jΩ¼0
follows the same trend (Fig. 6b). This behavior is indeed fully
expected as for ∣vFq∣≫Δ(0), the system is effectively in the normal
state, where the U(1) symmetry is preserved and gauge (phase)
fluctuations do not cost any energy.

DISCUSSION
In this communication, we analyzed a T= 0 superconductor-
normal state transition for a model of fermions coupled by a
frequency-dependent interaction V(Ω), which has a repulsive
constant part f and an Ω-dependent attractive part. For f < 0, V(Ω)
is fully attractive, and the system displays a conventional s-wave

Fig. 5 Normalized compressibility and superfluid density. κ and ns
are shown as function of f. Used parameters: λ= 0.3, Λ= 5.
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superconductivity with a sign-preserving Δ(ω) along the Matsu-
bara axis. At 0 < f < 1, the interaction V(Ω) is attractive at small
frequencies, but repulsive at large Ω. In this case, superconductiv-
ity is still present at T= 0, but the gap function has a node along
the Matsubara axis, at some finite ω=ω0. Because a nodal point of
Δ(ω) is a center of a dynamical vortex, the superconducting states
at f < 0 and at f > 0 are topologically different. We analyzed the
topological transition at f= 0 and argued that the vortex emerges
at an infinite frequency at f= 0 and moves to a finite ω0 at a finite
f. This is an expected behavior, consistent with earlier analysis of a
similar model17. We also analyzed how the critical f for such
topological transition changes if we set a finite UV cutoff for the
interaction.
The superconducting state with a sign-changing Δ(ω) persists

also for f > 1, when V(Ω) becomes positive at all frequencies, and
vanishes at a finite fc. The key part of our work is the analysis how
the gap function Δ and the frequency ω0, where Δ changes sign,
behave at f ≤ fc.
We found that the gap function at zero frequency, Δ(0),

vanishes exponentially fast with (fc− f). The frequency ω0 vanishes
as well, but parametrically slower as

ffiffiffiffiffiffiffiffiffiffiffiffi
f c � f

p
. We argued that this

parametrical difference between Δ(0) and ω0 allows one to obtain
a non-zero solution of the gap equation for all f < fc. We note that
the transition at fc can be also interpreted from topological
perspective, as the center of the dynamical vortex reaches ω= 0
at f= fc and would have nowhere to go if superconductivity
persisted above fc.
We complimented the analysis of Δ(ω) near fc by the analysis of

the propagator of phase fluctuations. We have shown that the
superfluid density and the compressibility, which control momen-
tum and frequency parts of the propagator of a phase field,
deviate from the BCS values at a generic f < fc, but tend to the BCS
values at f→ fc and undergo a finite jump at f= fc+ 0+. We
showed that this, however, holds only for the superfluid density
(and the compressibility) defined at strictly zero momentum. We
introduced a generic momentum-dependent ns(q) and showed
that it gradually vanishes at f→ fc for all ∣vFq∣ > Δ0. At f slightly
below fc, this behavior holds or all ∣q∣ except the ones which are
exponentially small in fc− f.

There are multiple possibilities to extend our analysis. One
extension, which we leave for further research, is a potential co-
existence of even-frequency and odd-frequency superconduct-
ing orders at f ≤ fc. Such a state spontaneously breaks time-
reversal symmetry.
Finally, our analysis is not constrained to electron–phonon

interaction and is applicable to all cases when there is a
near-constant repulsion and frequency-dependent, retarded
attraction due to a boson exchange. Other interesting
candidates for a boson are exiton-polaritons in a microcav-
ity25,26 or cavity photons27. Experimental cavity setups often
come with a tuning knob which allows one to change the
relative strength of repulsive and attractive components of the
interaction (i.e., continuously change f in our model). This
should allow one to observe phase transition at fc that we
analyzed in this work.

METHODS
Derivation of ns by expanding the action in θ
After the Hubbard-Stratonovich transformation is performed, the mixed
boson-fermion action takes the form (for the following derivation,
compare, e.g., ref. 28):

S ¼ SΔ � R p;p0ΨpG�1ðp; p0ÞΨp0

SΔ ¼ R q R dωdω0Δðω; qÞV�1ðω� ω0ÞΔðω0; qÞ
Ψp ¼ c"ðpÞ; c#ð�pÞ� �T

; p ¼ ðν;pÞ

G�1ðp; p0Þ ¼ G�1
0 ðpÞδðdþ1Þðp� p0Þ Δ 1

2 ðν þ ν0Þ; p� p0
� �

Δ 1
2 ðν þ ν0Þ; p0 � p
� � �G�1

0 ð�pÞδðdþ1Þðp� p0Þ

 !
:

(37)

Here, the first argument of Δ contains the relative energy, and the second
the total energy-momentum of the Cooper pair, compare Fig. 4.
Integrating out the fermions, we obtain a purely bosonic action

S ¼ SΔ � Tr lnð�G�1Þ ; (38)

where the trace runs over energy-momenta and Nambu indices. From
Eq. (38), the gap equation is simply derived by setting δS=δΔðωÞ ¼ 0. We
look for mean-field solutions which have zero total energy-momentum, i.e.,
contain a delta-function δ(d+1)(q).
To find the action of the Goldstone-mode, we insert the expansion from

Eq. (22),

Δðω; qÞ ’ ΔðωÞ ´ δðdþ1ÞðqÞ þ iθðqÞ
h i

Δðω; qÞ ’ ΔðωÞ ´ δðdþ1ÞðqÞ � iθð�qÞ
h i

;
(39)

into (38). The Oðθ0Þ contribution from the SΔ term has the formZ
dωΔðωÞV�1ðω� ω0ÞΔðωÞ ´ δðdþ1Þð0Þ : (40)

The term δ(d+1)(0) should be interpreted as volume factor. The OðθÞ-con-
tribution cancels, and the Oðθ2Þ-contribution reads

SðaÞθ ¼
Z
q
θðqÞθð�qÞ

Z
dωdω0

ð2πÞ2 ΔðωÞð�V�1Þðω� ω0ÞΔðω0Þ
" #

: (41)

To expand the ðTr lnÞ-term, it is convenient to split

G�1ðp; p0Þ ¼ G�1
0 ðp; p0Þ þ Xðp; p0Þ

G�1
0 ðp; p0Þ ¼ δdþ1ðp� p0Þ iν � ξp ΔðνÞ

ΔðνÞ iν � ξ�p

� �

Xðp; p0Þ ¼ 0 Δ νþν0
2

� �
iθðp� p0Þ

�Δ νþν0
2

� �
iθðp� p0Þ 0

 ! (42)

Now, the trace of the logarithm can be expanded as

Tr ln �G�1
� � ¼ Tr ln �G�1

0 1þ G0 � Xð Þ� �
¼ Tr ln �G�1

0

� �þ Tr G0 � Xð Þ � 1
2 Tr G0 � X � G0 � Xð Þ :

(43)

Fig. 6 Generalized superfluid density. a ns(q) determined from Eqs.
(35) and (36), b κ(q), obtained in the same way as ns(q).
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The first term is independent of θ, and the second term OðθÞ cancels. To
evaluate the third term Oðθ2Þ, it is convenient to introduce center-of-mass
coordinates as ðΩ;qÞ ¼ q ¼ p� p0 and ðω; kÞ ¼ k ¼ pþp0

2 . In these coordi-
nates, � 1

2 Tr G0 � X � G0 � Xð Þ is
� 1
2

Z
k;q

tr G0ðk þ q=2Þ � Xðk þ q=2; k � q=2Þ � G0ðk � q=2Þ � Xðk � q=2; k þ q=2Þ½ �;

(44)

where tr acts in the spinor space. After straightforward algebra, the
combination of this term and (41) yields Sθ from the main text, Eq. (24).

Derivation of ns from the particle–particle susceptibility
An alternative way of deriving the expressions for the superfluid density ns
and dynamical compressibility κ is by computing the full particle–particle
susceptibility χ from Feynman diagrams. The basic building blocks for the
diagrams are the normal and anomalous Green’s functions,

Gαβðω; kÞ ¼ �δαβ
iωþ ξp

ω2 þ ξ2k þ ΔðωÞ2 ;

Fαβðω; kÞ ¼ iσyαβ
ΔðωÞ

ω2 þ ξ2k þ ΔðωÞ2 ;

(45)

where Δ(ω) is chosen as real, α, β are spin indices, and σy is a Pauli matrix.
The pairing susceptibility χ(q) can be represented as the sum of two

contributions containing renormalized vertices Γ+, Γ−, see Fig. 7. The
vertices satisfy the two coupled Bethe-Salpeter equations and have
poles corresponding to transverse (phase) fluctuations and longitudinal
(Higgs) fluctuations (see e.g., ref. 29). One can verify that to describe only
phase fluctuations one has to take Γ ≡ Γ+ =−Γ−. The single equation for
Γ then reads

Γðω; qÞ ¼ 1þ R dω0
2π Γðω0; qÞVðω� ω0Þ ´Aðω0; qÞ;

Aðω0; qÞ ¼ R dk
ð2πÞd Gðω0 þ Ω=2; k þ q=2ÞGð�ω0 þ Ω=2;�k þ q=2Þ½

þ Fðω0 þ Ω=2; k þ q=2ÞFð�ω0 þ Ω=2;�k þ q=2Þ�:
(46)

Inserting the forms of G and F, Eq. (45), we find that A(ω, q) and the
modified particle–particle bubble ΠΔ(ω, q), introduced in Eq. (25), are
related as

ΠΔðqÞ ¼
Z

dω
2π

Aðω; qÞΔ2ðωÞ : (47)

To solve Eq. (46), we make an ansatz

Γðω; qÞ ¼ Φðω; qÞ
c1jqj2 þ c2Ω2

; (48)

where Φ(ω, q) is regular and non-vanishing for q= 0, and c1, c2 are some
constants. Then, Γ(ω, 0)=∞, which formally solves (46). To find the values
of c1 and c2, we expand A(ω, q) from Eq. (46) in Ω, ∣q∣:

Aðω; qÞ ’ Aðω; 0Þ þ aqðωÞjqj2 þ aΩðωÞΩ2 : (49)

Likewise, we expand

Φðω; qÞ ’ Φðω; 0Þ þ ϕqðωÞjqj2 þ ϕΩðωÞΩ2 : (50)

The coefficients A(ω, 0), aq, aΩ are known, while the coefficients Φ(ω, 0), ϕq,
ϕΩ, c1, c2 are not known. We substitute Eqs. (48), (49), and (50) into Eq. (46),
which yields

Φðω; 0Þ þ ϕqðωÞjqj2 þ ϕΩðωÞΩ2 ¼ c1jqj2 þ c2Ω2þR
dω0
ð2πÞ Vðω� ω0Þ Φðω0; 0Þ þ ϕqðω0Þjqj2 þ ϕΩðω0ÞΩ

h i
´ Aðω0; 0Þ þ aqðω0Þjqj2 þ aΩðω0ÞΩ2
h i

:

(51)

We now compare the prefactors for Oð1Þ, Oðjqj2Þ, and OðΩ2Þ on both
sides of this equation. At order Oð1Þ, we have

Φðω; 0Þ ¼
Z

dω0

2π
Vðω� ω0ÞΦðω0; 0ÞAðω0; 0Þ : (52)

One can easily verify that the solution is Φ(ω, 0)= Δ(ω)γ, where γ is some
constant, and Δ(ω) is a solution of the gap equation. Comparing the
prefactors for the Oðjqj2Þ-term, we get

ϕqðωÞ ¼ c1 þ
R

dω0
2π ϕqðω0ÞAðω0; 0ÞVðω� ω0Þ

þ R
dω0
2π Φðω0; 0Þaqðω0ÞVðω� ω0Þ : (53)

Multiplying (53) by 1/(2π) ×Φ(ω, 0)A(ω, 0) and integrating over ω, we
obtainR

dω
2π ϕqðωÞΦðω; 0ÞAðω; 0Þ ¼ c1

R
dω
2π Φðω; 0ÞAðω; 0Þ

þ R
dω0
2π ϕqðω0ÞΦðω0; 0ÞAðω0; 0Þ þ R dω0

2π Φ
2ðω0; 0Þaqðω0Þ; (54)

where the gap equation in the form (52) was applied twice on the right-
hand side of Eq. (54). Canceling the identical terms on both sides, we solve
for c1:

c1 ¼ � γR
dω
2π ΔðωÞAðω; 0Þ

´
Z

dω
2π

Δ2ðωÞaqðωÞ : (55)

In a similar fashion, we obtain

c2 ¼ � γR
dω
2π ΔðωÞAðω; 0Þ

´
Z

dω
2π

Δ2ðωÞaΩðωÞ : (56)

Combining (55), (56), and (48), we obtain, to the leading order in Ω, ∣q∣,

Γðω; qÞ ’ Φðω; 0Þ
c1jqj2 þ c2Ω2

¼ ΔðωÞ ´ R dω0
2π Δðω0ÞAðω0; 0Þ

nsjvFqj2 þ κΩ2
(57)

where

ns ¼ � 1
v2F

Z
dω
2π

Δðω2ÞaqðωÞ (58)

κ ¼ �
Z

dω
2π

Δ2ðωÞaΩðωÞ ; (59)

are the same as in the main text and in the previous section, see Eqs. (30)
and (31). Note that an arbitrary constant γ has canceled out, as it indeed
should. The susceptibility χ has the same pole structure as Γ. To the leading
order in q we have

χðqÞ ’
Z

dω
2π

Γðq;ωÞAðω; 0Þ ¼
R

dω
2π ΔðωÞAðω; 0Þ

� �2
nsjvFqj2 þ κΩ2

: (60)
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Fig. 7 Diagrammatic representation of χ. Straight lines with a
single arrow represent normal fermion propagators G, lines with a
double arrow anomalous propagators F. Thin wavy lines represent
interactions V, thick wavy lines the pairing field Δ.
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