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Quantum phase transition in a clean superconductor with

repulsive dynamical interaction

Dimitri Pimenov ®'®™ and Andrey V. Chubukov @'

We consider a model of electrons at zero temperature, with a repulsive interaction which is a function of the energy transfer. Such
an interaction can arise from the combination of electron—electron repulsion at high energies and the weaker electron-phonon
attraction at low energies. As shown in previous works, superconductivity can develop despite the overall repulsion due to the
energy dependence of the interaction, but the gap A(w) must change sign at some (imaginary) frequency wq to counteract the
repulsion. However, when the constant repulsive part of the interaction is increased, a quantum phase transition towards the
normal state occurs. We show that, as the phase transition is approached, A and w, must vanish in a correlated way such that
1/]log[A(0)]| ~ w?. We discuss the behavior of phase fluctuations near this transition and show that the correlation between A(0)

and wq locks the phase stiffness to a non-zero value.
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INTRODUCTION

Understanding the nature of the “pairing glue”, which enables
Cooper pair formation of fermions, is one of the key steps toward
a comprehensive scenario of superconductivity for a given
material. In strongly correlated materials, like cuprates, iron-
based, heavy-fermion, and organic materials, the attractive
pairing interaction is likely of electronic origin. Near a quantum
phase transition, such an attraction often takes a more concrete
form of an effective four-fermion interaction, mediated by soft
collective fluctuations of the corresponding order parameter.
Most often, the attraction emerges in a channel different from an
ordinary s-wave, in which case the superconductivity is labeled
as an unconventional one.

For more conventional metals the symmetry of the pairing gap
is s-wave, and the attraction is believed to come from
electron—phonon interaction. This is the backbone of the
“conventional” BCS theory of superconductivity. Still, to fully
understand the phononic mechanism of s-wave superconductiv-
ity, one must explain why it is not overshadowed by the Coulomb
repulsion, which is seemingly much larger. The frequently cited
explanation’® is that the repulsive Coulomb repulsion is
logarithmically renormalized down between the Fermi energy E¢
and the Debye energy Qp (the Tyablikov-McMillan logarithm), and
at energies below Qp becomes smaller than the electron-phonon
attraction, if the ratio Ex/Q)p is large enough.

Upon closer examination, this explanation appears somewhat
incomplete as Tyablikov-McMillan renormalization holds for the
full interaction, i.e., for the sum of electron-electron and
electron—-phonon interactions, and under the renormalization this
full interaction decreases, but does not change sign. It has been
realized by several authors*’~'2 that the underlying reason why
electron—-phonon superconductivity holds despite larger Coulomb
interaction, is that the full interaction on the Matsubara axis
(where it is real) is a dynamical one, V(Q,), and although a
phonon-mediated attraction does not invert the sign of V(Q,,), it
nevertheless reduces it at frequencies below the Debye energy. It
was argued that an “average” repulsive V(Q,,) can be effectively
eliminated from the equation for the pairing gap A(w.), by

choosing a solution which changes sign as a function of w,,. This
bears some similarity to how, for an electronic pairing, a static
Coulomb repulsion is effectively eliminated by choosing a sign-
changing, non-s-wave spatial structure of the gap function.

A convenient way to model the dynamical V(Q),,,), suggested in
refs. 812, is to treat it as a sum of two parts: a constant repulsive
part of strength f, representing the renormalized instantaneous
Coulomb repulsion, and a frequency-dependent attractive part,
due to electron-phonon interaction:

1

V(Qm) x f ————,
1 +(Qm/Q1)

M

where Q, is of order of the Debye energy. A similar reasoning has
been applied'® to dynamically screened electron-electron inter-
action, where Q, is of the order of plasma frequency.

For f>1, V(Qp,) >0 for all frequencies, yet for 1 <f<f, super-
conductivity emerges below a finite T, which contains f in the
combination f/[1 + const.x f log(E¢/Q)]. For a given f and large
enough log(Er/Q;), the Coulomb repulsion becomes logarithmi-
cally small, and one recovers the McMillan formula for T.. One the
other hand, at a given E;/Q;, at large enough f> f,, the repulsion
becomes too strong and superconductivity vanishes. Obviously, T,
and the magnitude of the gap A(w,,) vanish at f=f..

It is the goal of the present work to understand the nature of
the T=0 quantum phase transition between a superconducting
state at f<f. and a normal state at f> f.. Specifically, we resolve
the following puzzle: on the one hand, the gap A(w,) must
change sign at some finite w,, = wy, otherwise there would be no
solution of the gap equation for f> 1. On the other hand, for any
finite wo, A(0) is non-zero, in which case the linearized gap
equation does not have a solution as the pairing kernel contains
an infrared-divergent Cooper logarithm, which is not regularized
at T=0 and therefore does not admit a solution. We argue
analytically and check numerically that as f approaches f. from
below, wy—0 and A— 0 in tune with each other, such that
1/|log A| ~ w3.

We also analyze the spectrum of gapless phase fluctuations
near f=f.. We show that because of the relation between A and
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Wy, the superfluid stiffness remains finite as f approaches f. from
below. This is in marked contrast with the behavior of the stiffness
near the end point of superconductivity at T=0 in a system with
magnetic impurities (Abrikosov-Gorkov theory, refs. '371°), In this
situation, the destruction of superconductivity occurs via pair-
breaking due to the impurity-induced self-energy, and the
superfluid stiffness gradually vanishes as the system approaches
the T=0 phase transition.

That superconductivity vanishes when wy=0 can also be
interpreted from a topological viewpoint, because w,, = wy is a
center of a dynamical vortex: the anti-clockwise circulation of the
phase of A(z), z=w + iw’, around this point is 2m, refs. 7-1°,
There is no way to eliminate this dynamical vortex as there are no
anti-vortices in the upper half-plane of frequency (their presence
would be incompatible with the analyticity of A(z)). Hence, as long
as superconducting order is present, wy must remain finite. The
only possibility for a vortex to disappear without destroying
superconductivity is when it moves to an infinite frequency. For
the model of Eq. (1) this holds at f=0, and for f<0 the gap
function A(w,,) on the Matsubara axis is nodeless.

We note in passing that a vortex on the Matsubara axis gives
rise to 2m winding of the phase of A(w) on the real frequency axis,
between w=—o0 and w= 0. Such phase winding necessary
leads to nodes in the real and imaginary parts of A(w), which can
be detected by spectroscopic experiments, e.g., ARPESZ.

RESULTS
Model

We consider a spatially isotropic model of interacting spin-1/2
fermions at zero temperature in d dimensions, described by the
effective low-energy action

S— ; [0 (k) (iw — Ex )i, (K)
+ Jiw gV (@ — ) x gy (K'+a/2)9, (=K +q/2) )
Y (—k+a/2)p(k+q/2), [, = i\/\g# e

TT

where A is a UV cutoff of order E and w are Matsubara
frequencies (here and below we label Matsubara frequency as w
without subscript m). The interaction V(Q) is taken to be a function
of the energy transfer, but independent of momenta. We follow
earlier works®'>?" and set V(Q) to

2 - ~ 1
v(Q) = - xV(Q), V(Q) =A (f — W) , (3)

where p is the single-spin density of states at the Fermi surface,
and Q; is of the order of Debye energy for the electron-phonon
case (the factor of 2 is introduced for notational convenience).

In the following, we measure all energies in units of Q,, and
hence set Q; =1 in Eq. (3). Then, A> 1. A discussion of the
opposite low-density limit where E¢, A < 1 can be found in ref. 22,
For the known physical realizations of Eq. (3), f> 1, hence V(Q)
remains positive (repulsive) at all frequencies. For completeness,
here we consider arbitrary f, but our key focus will still be on
f>1.For a generic f, V(Q) is purely attractive for f< 0, is attractive
at small frequencies and repulsive at large frequencies for 0 < f <
1, and is purely repulsive for f> 1, see Fig. 1a. The dimensionless
A parametrizes the overall strength of the interaction. We assume
A< 1, this will allow us to neglect, at least qualitatively, the
normal fermionic self-energy: One can show that the leading
self-energy effect is a mere renormalization of the coupling
constant A — A/(1 + 2A).
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Fig. 1 Dynamical interaction and typical gap function. a V(w) for
A =5, 1=0.3 and four different values of f. b Numerical solution of
the gap equation for f=1.2. Gray dashed line corresponds to a fit to
A(w) using the ansatz (11).

Gap equation

To describe superconductivity, we perform a Hubbard-
Stratonovich transformation in the spin-singlet, s-wave pairing
channel and use a saddle point approximation. This procedure
leads to the conventional Eliashberg equation for the gap
function?®, though without the additional contribution from the
self-energy. On the Matsubara axis, we have

V(w-w)

/ doy SCVOZE) @)
V(@) + A

The interaction V(w — ') is real on the Matsubara axis, which
allows us to set A(w) to be real by properly choosing its phase. At
the same time, because the interaction is a function of the
frequency transfer, one can search for even-frequency and odd-
frequency A(w). In this communication, we focus on the even-

frequency solutions. For even-frequency A(w) = A(—w), the gap
equation can be rewritten as
D) [V(w = o) + V(w+ )]
d . (5)

(@)” + Aw)’

It is obvious that for £> 1, when V >0, A(w) must change sign at
some frequency wy as otherwise the left-hand side and the right-
hand side of Eq. (5) would have opposite signs. The value of wy is
chosen to minimize the effect of a repulsive fin Eq. (3). This has
been discussed before?=®81112 and we just state the results.
First, wy is finite for all f> 0 if A < co. If A is finite, A(w) has a node
as long as wy < A. Second, optimizing wy in the limit log(A) > 1,
one obtains that a repulsive f effectively gets reduced to
f/[1 + Aflog(A)] — 1/Alog(A). This gives rise to the McMillan
formula for T.oce™/®#) in which p*~1/logA is the
contribution from the repulsion. Third, for any finite A, the
repusive part of the interaction gets reduced, but cannot be
completely eliminated. As a result, superconductivity exists at f
smaller than some critical f.> 1.

In Fig. 1b we present the numerical solution of the non-linear
gap equation (5) for some representative A and 1<f<f. We
clearly see that A(w) changes sign at some finite w,. It reaches a
finite value at w = 0 and then saturates at some other finite value,
of opposite sign at wo < w < A. The numerical solution has been
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obtained by a “damped iteration” method, in which only a certain
portion of A(w) is updated at each step of iterations. This method
improves the convergence of the iteration procedure'?

Quantum phase transition towards a superconductor with
nodeless A(w)
Before we proceed to the case f=f, we briefly discuss the
transition towards the state with a nodeless A(w). As stated above,
this transition occurs at f=0 when A =0, i.e,, Eq. (5) holds at all
frequencies. This transition can be classified as topological
because it separates two states with and without a dynamical
vortex. As fis reduced towards f =0, wg increases, i.e., the core of
the dynamical vortex successively moves to larger w. At f=0 it
reaches w = oo and disappears.

We now argue that the dependence of wy of f has a simple form

~1/2

wo="f as f—0. (6)

This can be obtained as follows: Let A,(w) be the solution of the
gap equation at f=0:

=A fo . (H— (w-w')? 2+ 1+(w1+w/)2>

W)
(@) 48’

@)

X

Since V(w) is purely attractive for f=0, A, has a fixed sign. At large
w, Ag(w) = Alw?, where

/ a( )
A=2) | dw .
/ N (®)

Now let Ay(w) be the solution of the gap equation at small but
finite f. To the leading order in f, we obtain, for large w,

Do (@) ~ Bg(w) —Af:A(%—f). ©)

At the node, Ay(wg) =0, hence wy = f""2. For large but finite A,
the phase transition occurs when wyo=A. The corresponding
critical f for a topological transition is then

fc.top = A72 . (1 0)

In Fig. 2 we checked these results by solving the gap equation
numerically. The agreement between the numerical and analytical
results is perfect.

Quantum phase transition towards normal state

We now consider the system behavior near the T=0 transition
towards the normal state at f =f. > 1, when the pairing interaction
V(w — w') is positive (repulsive) at all frequencies. We assume and
then verify that the transition is continuous, i.e,, at f=f. — 0", A(w)
is infinitesimally small. Like we said in the Introduction, to
understand this transition one has to resolve the following puzzle:
if infinitesimally small A(w) tends to a finite value at w =0, like,
e.g., in Fig. 1b, the right-hand side of the linearized gap equation
gives rise to a divergent Cooper logarithm. Because T=0, the
logarithmical divergence is not cut. The only way to avoid this
divergence is to place the node (i.e., the vortex core) right at w =
0. But then the gap becomes sign-preserving at all finite w, and for
such A(w) there is no solution of the gap equation for a purely
repulsive interaction.

As we now show, the resolution of this problem is to let both A
and wy vanish in a correlated way as f — f. from below. To simplify
the analysis, we first note that for all f < f, the gap function A(w) is
well approximated by a simple form

2

w
A =A Ay——. (11
(@) =Bo + Ay =5
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Fig. 2 Scaling behavior at the transition towards the nodeless
superconductor. a Numerical check of Eq. (6) for small f. b Numerical

check of Eq. (10) for moderate A. The apparent oscillations are due
to discretization of f in the numerics. Used parameter: A = 0.1.

A comparison with the numerical solution of the gap equation
shows that this form is near-perfect for w <1 and matches the
numerical results reasonably well for w>1, see Fig. 1b. Such
agreement is sufficient to extract the leading behavior near the
phase transition (see below). The coefficients Ay, A, can be
determined by inserting the ansatz (11) into (5) and expanding up
to second order in w. After a straightforward algebra we obtain

A 1
Bo=-22 [ do[f—— )xk(w 12
° /0 w( 1+(w’)2>X ) 2
1)
A1_2A/ dw (13)

Do + A 1<+‘“7>
K(w) = = : (14)

i (2 o)
In the limit Ay, A; — 0, the equations simplify to
Ay =22 —2)en,
Do = Do[—2ML — 2X6(f — 1)) + D (—2ML + A)
where
L=log(N), ¢ =1log(1/0y) > L (16)

The value of the critical f. can be determined by evaluating the
determinant of the set (15) in the limit £ = co. We obtain

1—7/6xA
1—2/6—20A"

fo= (17)

The divergence of f. at a critical value of AL, which is evident
from Eq. (17) is not an artifact of the approximation to A(w), as we
have checked numerically. Rather, it implies that by properly
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Fig. 3 Scaling behavior at the transition towards the normal
state. Evolution of 1/(A¢) (filled circles) and w2 (empty circles) close
to the phase transition; both quantities vanish with approximately
constant slope (i.e.,, are «f.—f), as expected from Eqgs. (19) and (21).
Values f&* shown in the plot legend are derived from linear
extrapolation of the last three data points (dashed lines), showing
semi-quantitative agreement with f. from Eq. (17).

placing wy, one can completely eliminate a constant repulsion f
even when f is large. A detailed analysis of this effect will be
presented elsewhere (in preparation).

The general trend that f. increases with increasing A is also in
agreement with McMillan reasoning that the Coulomb repulsion is
suppressed at large A. In the following, we focus on AL< 1, in
which case

fo=14A2L—1)+O((AL)?) (18)

Evaluating the determinant again, but this time for a finite £, we
obtain to leading order in AL and f. — f.

oo 1 (Y (19)
(A R YY)

Using (16) we find that Aq = exp(—¢) vanishes exponentially fast
as f /' fe.

From the first equation in (15) we obtain
Ao 1 2
— o~ ———~ —(fc—F)(1 = 2AL)". 20
The ratio is negative (hence wg is finite) and progressively
decreases when f approaches f.. Substituting Ag/A; into (11),
we obtain

fo—fx(1—2)L). (21)

We see that wg vanishes as v/f. — f, i.e,, much more gradually than
Ao.

In Fig. 3, we verify the scaling forms of Ay and w, by extracting
these two quantities from the numerical solution of the gap
equation. The agreement between analytical and numerical
results is quite good.

W ~

Phase fluctuations near critical f,

For a more detailed characterization of the phase transition at f=
f., we now look at soft collective excitations in the system. These
are phase fluctuations, which in the absence of long-range
Coulomb interaction are Goldstone modes of the superconducting
state. Our goal is to derive the superfluid density and the
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Fig. 4 Energy-momentum dependence of the pairing field A. The
brace represents the Hubbard-Stratonovich decoupling. Four-
momenta k= (w, k), g=(Q,q) are used. We always neglect the
dependence of A on the relative momentum of a Cooper pair, k.

dynamical compressibility, which enter the propagator of phase
fluctuations, as functions of g=(Q,q), where q the total
momentum of a Cooper pair and Q is the total frequency. There
are two ways to do this: either expand the action to second order
in 6 or analyze the pole structure of the full particle—particle
susceptibility at small g. These two methods yield consistent
results; we will focus on the first one in the remainder of this
section as we discuss the other one in the “Methods” section.

To obtain the propagator of low-energy phase fluctuations, we
introduce the total momentum q and the total frequency Q of a
Cooper pair. For convenience, we combine q and Q into a (d+1)-
dimensional variable g=(Q,q). In our mean-field solution the
pairing involves fermions with frequencies w and —w and
momenta k and —k, i.e, g is set to zero. In other words, the
mean-field gap is a function of w but not of g. This mean-field
solution corresponds to a minimum of the Luttinger-Ward
functional. States away from the minimum are described by a
fluctuating pairing field (order parameter) that depends on both Q
and g. We illustrate this in Fig. 4.

Low-energy fluctuations around the mean-field solution corre-
spond to slow variations of the phase of the order parameter 6(q):

B(w,q) = Bw)x [6%(q) +i8(q)]
A(w,q) = Aw)x [6“(q) - i8(~q)|.
The expressions in the square brackets arise from small-0

expansion and Fourier transformation of the real-space phase
factor

(22)

d+1
[ expliot]expiix - )] =
) o3

dd+1q d+1

[+ w0 exslitx- @) = 8%7(a) + e(a)
(2m)

where x is the center-of-mass coordinate.

Inserting the expansion (22) into the A-dependent action,
where the fermions have been integrated out, and expanding to
the second order in 6, we obtain the following action for the 6
field (see “Methods” for details):

5o [ G @00

[/ A0 ) (V) (@ AW~ Ta(a)
(2m)

(24)

Ma(q) = / dw_dk__0*(w) LI A A+ (iwy + &) (iw- + &),

o (2nm)? w? + E2 w? + E?
€x =&qpnews = Q/2%w, A, =AMws),Ex = (A:)z+(‘$1)2~

(25)
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Here, V™ '(w — ') is the inverse of V(w — w') defined by
d
/% V(w— )V (0 — o) = 216(w — ). 26)

The expression for Ma(g) in Eq. (24) can directly be obtained
from the expansion in 6. Alternatively, it can be obtained
diagrammatically as a particle-particle bubble with form-factors
A%(w) (see “Methods”).
Multiplying both sides of Eqg.
integrating over w, w we find that
e w2

dwdw’ -
/WA(G’)(—V )(w = w')A /d
(27)

This expression coincides with the particle-particle bubble in the
limit of vanishing g:

4 by V' (w—@)A(@) and

Aw)?
Ma(0) =
() p/ @ (w)2+<52+“’2 (28)
/d
+w2

As a result, the propagator of the field 6(g) is determined by M(q)
— Ma(0). Expanding Ma(g) to second order in Q, q, we obtain

dQ dq

59 ~ /
2m (2]1)
The coefficient ng in the second line of (29) is the superfluid
density, normalized by the density of electrons in the normal state.
It parametrizes the energy cost of spatial phase fluctuations of
the order parameter and controls the supercurrent and magnetic
response in the superconductlng state (The prefactor 1/d comes
from averaging over cos [(k, q)]° in d dimensions). The factor k is a

dynamical compressibility which parametrizes the energy cost of
temporal phase fluctuations. We find

/ dw

)2
=3[y dw <>+w2>“

x [A(w) (3 — Aw)AW)) + w2 (—A(W)A" (w) + 30 (w)?)].
(31)

where the derivatives are with respect to w. A similar expression
for n; was also obtained in ref. 2%,

For a weakly frequency-dependent A(w), the expressions for ng
and k are the same as in BCS theory, ng =k = 1. For a generic A(w),
the BCS results are correct by order of magnitude, but the actual
values of ng and « differ by BCS expressions by O(1), see Fig. 5.

At f<f, A(w) is exponentially small, and the integrals are
dominated by w SA(0). Because frequency variation of A(w)
occurs at a much larger scale wg> A(0), the gap in (30) and (31)
can be approximated by a constant A(0). As a result, both ns and k
tend to BCS values ng = k = 1. We verified this result in numerical
calculations, see Fig. 5. The velocity of phase fluctuations also
approaches the BCS value

f/fe. 32)

1
L 6(@)0(—a) [Hnsmqﬁ " Koﬂ . (29

(30)
2+ wz) (D) +w?)?

! vg for
—=VF
Vd
At f=f.+ 0", ny and k jump to zero.

We emphasize that the behavior of ng near the T=0
superconductor-normal state phase transition in a clean system
at f=f. is different from the one at the T=0 superconductor-
normal state phase transition due to magnetic impurities. There,
ns gradually vanishes at a critical impurity concentration due to

Vs —
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Fig. 5 Normalized compressibility and superfluid density. k and ng
are shown as function of f. Used parameters: A=0.3, A =5.

pair-breaking coming from the impurity-induced self-energy. As a
result, the penetration depth ~1/,/n, diverges (refs. '>'*1%). At a
technical level, this is because in the case of magnetic impurities
the denominator of Eq. (30) contains an additional term
proportional to the fermionic damping rate due to impurity
scattering. In our case, such a constant term is absent. We expect,
however, that it will appear if we extend the analysis of the
superconductor-normal state phase transition to a finite magnetic
field H. We therefore expect that at a finite field, n; will vanish at
critical f(H).

Still, the discontinuity of ng at f=f, in our case holds only for
superfluid density evaluated at zero momentum ¢, or, more
accurately, at |veq| < Ao. To analyze the behavior at larger |q|, we
define a generalized momentum-dependent superfluid density as

Ma(0) — N 0
ns(q) E( A( 2) qu7 )) . (33)
2 |ved|
This ny(q) is a scaling function of g = vg|q|/A(0). The form of the
scaling function depends on the dimensionality. In 2D we have

"0 1 1 1
D
q) ~ / dx— x - , (34)
3@ VTR \/1+x2+1(q2

where we have approximated A(w) ~ A(0) and A/A(0) = oo, which
holds to a good numerical accuracy. Evaluating the frequency
integral we find:

o 1.
n(q) = ?log (1 +Zq2)- (35)

7

In 3D we have
q/2 _ q/2
fd [ arctan( x2+1)}

(36)
:q {\/4+q xarctanh(m) fq}.

We plot n22(g) and n3P(g) in Fig. 6a. We see that both functions
decrease with increasing g, i.e, with decreasing A, for a given q.
At f=f.— 0T, n2P3D(g) vanishes for any finite q. A suitably defined
momentum- dependent compressibility k(q) ~ 9°Ma(Q, q)/00Q%|_,
follows the same trend (Fig. 6b). This behavior is indeed fully
expected as for |veq| > A(0), the system is effectively in the normal
state, where the U(1) symmetry is preserved and gauge (phase)
fluctuations do not cost any energy.

DISCUSSION

In this communication, we analyzed a T=0 superconductor-
normal state transition for a model of fermions coupled by a
frequency-dependent interaction V(Q), which has a repulsive
constant part f and an Q-dependent attractive part. For f< 0, V(Q)
is fully attractive, and the system displays a conventional s-wave
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Fig. 6 Generalized superfluid density. a n,(q) determined from Egs.
(35) and (36), b k(q), obtained in the same way as ny(q).

superconductivity with a sign-preserving A(w) along the Matsu-
bara axis. At 0<f< 1, the interaction V(Q) is attractive at small
frequencies, but repulsive at large Q. In this case, superconductiv-
ity is still present at T=0, but the gap function has a node along
the Matsubara axis, at some finite w = w,. Because a nodal point of
A(w) is a center of a dynamical vortex, the superconducting states
at f<0 and at f>0 are topologically different. We analyzed the
topological transition at f = 0 and argued that the vortex emerges
at an infinite frequency at f= 0 and moves to a finite wy at a finite
f. This is an expected behavior, consistent with earlier analysis of a
similar model'”. We also analyzed how the critical f for such
topological transition changes if we set a finite UV cutoff for the
interaction.

The superconducting state with a sign-changing A(w) persists
also for f> 1, when V(Q) becomes positive at all frequencies, and
vanishes at a finite f.. The key part of our work is the analysis how
the gap function A and the frequency w,, where A changes sign,
behave at f<f,.

We found that the gap function at zero frequency, A(0),
vanishes exponentially fast with (f. — f). The frequency wq vanishes
as well, but parametrically slower as \/f. — f. We argued that this
parametrical difference between A(0) and wy allows one to obtain
a non-zero solution of the gap equation for all f < f.. We note that
the transition at f. can be also interpreted from topological
perspective, as the center of the dynamical vortex reaches w =10
at f=f. and would have nowhere to go if superconductivity
persisted above f.

We complimented the analysis of A(w) near f. by the analysis of
the propagator of phase fluctuations. We have shown that the
superfluid density and the compressibility, which control momen-
tum and frequency parts of the propagator of a phase field,
deviate from the BCS values at a generic f < f, but tend to the BCS
values at f—f. and undergo a finite jump at f=f.+0". We
showed that this, however, holds only for the superfluid density
(and the compressibility) defined at strictly zero momentum. We
introduced a generic momentum-dependent ng(q) and showed
that it gradually vanishes at f— f. for all |veq| > Ao. At f slightly
below f, this behavior holds or all |q| except the ones which are
exponentially small in f. —f.
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There are multiple possibilities to extend our analysis. One
extension, which we leave for further research, is a potential co-
existence of even-frequency and odd-frequency superconduct-
ing orders at f<f. Such a state spontaneously breaks time-
reversal symmetry.

Finally, our analysis is not constrained to electron-phonon
interaction and is applicable to all cases when there is a
near-constant repulsion and frequency-dependent, retarded
attraction due to a boson exchange. Other interesting
candidates for a boson are exiton-polaritons in a microcav-
ity?>2% or cavity photons?’. Experimental cavity setups often
come with a tuning knob which allows one to change the
relative strength of repulsive and attractive components of the
interaction (i.e., continuously change f in our model). This
should allow one to observe phase transition at f. that we
analyzed in this work.

METHODS

Derivation of ng by expanding the action in 6
After the Hubbard-Stratonovich transformation is performed, the mixed
boson-fermion action takes the form (for the following derivation,
compare, e.g., ref. 28):

S=38n— fp,p’wDGq (p,p") ¥y

Sn = [, [dwdwD(w,q)V " (w - ')A, q)

_ T
LPP = (CT(p)ﬁcl(fp)) , P= (V, P)
G (D)6 @ (p —
(p.p) = < o' (P8 (p—p)

MG+ V)0 p) >
A (v+Vv).p —p) '

~Gy ' (=p)8“*V(p —p')
(37)
Here, the first argument of A contains the relative energy, and the second

the total energy-momentum of the Cooper pair, compare Fig. 4.
Integrating out the fermions, we obtain a purely bosonic action

S=8r—Trin(-G™), (38)

where the trace runs over energy-momenta and Nambu indices. From
Eqg. (38), the gap equation is simply derived by setting 6S/6A(w) = 0. We
look for mean-field solutions which have zero total energy-momentum, i.e.,
contain a delta-function 5" (q).

To find the action of the Goldstone-mode, we insert the expansion from
Eq. (22),

A(w,q) ~ B(w)x [0 (q) +i8(q)]

_ (39)
B(w.q) ~B(w)x [6“(q) ~iB(~q)].

into (38). The O(8°) contribution from the S, term has the form

/ dwA(w)V " (w — w')A(w) x 547D (0). (40)

The term 6@*1(0) should be interpreted as volume factor. The O(8)-con-
tribution cancels, and the O(6%)-contribution reads

5= [ e@oc-a) {/ ‘Z‘;’:)“’ Aw)(~V ) (w w’)A(w’)} ' @

To expand the (TrIn)-term, it is convenient to split

G (p,p') =Gy (p,P) +X(p,p')

iv—=~&, A(v)
G—1 p7pr :6d+1 pfp’ ( P - >
o (p.P) ( ) AV)  v—E, )
0 A(“E)ie(p —p)
X(p.p') = e ) (%)
—A(4Y)ie(p—p') 0
Now, the trace of the logarithm can be expanded as
Trin(—=G™") =Trin(=G, ' (1 + Go - X))
= Trin(=Gy") +Tr(Go - X) = 3Tr(Go - X - Go - X)) .
(43)
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Fig. 7 Diagrammatic representation of x. Straight lines with a
single arrow represent normal fermion propagators G, lines with a

double arrow anomalous propagators F. Thin wavy lines represent
interactions V, thick wavy lines the pairing field A.

The first term is independent of 6, and the second term O(0) cancels. To
evaluate the third term O(6?), it is convenient to introduce center-of-mass
coordinates as (Q,q) =qg=p —p’ and (w,k) =k = %. In these coordi-
nates, —3Tr(Go - X - Go - X) is

~5 [, wlotka/2) Xk + a/2k ~ a/2)- Golk ~ a/2) Xk~ a/2.k + /2],
J ka

(44)

where tr acts in the spinor space. After straightforward algebra, the
combination of this term and (41) yields Sp from the main text, Eq. (24).

Derivation of ng from the particle-particle susceptibility

An alternative way of deriving the expressions for the superfluid density n
and dynamical compressibility k is by computing the full particle-particle
susceptibility x from Feynman diagrams. The basic building blocks for the
diagrams are the normal and anomalous Green’s functions,

iw ~+ &
Ga w, k) = 760 7"7
S G ey s)
Fop(@,K) = ic” Aw)

T2 + &+ 0w’

where A(w) is chosen as real, q, 3 are spin indices, and ¢ is a Pauli matrix.

The pairing susceptibility x(q) can be represented as the sum of two
contributions containing renormalized vertices I',, ['_, see Fig. 7. The
vertices satisfy the two coupled Bethe-Salpeter equations and have
poles corresponding to transverse (phase) fluctuations and longitudinal
(Higgs) fluctuations (see e.g., ref. 2°). One can verify that to describe only
phase fluctuations one has to take =T, = —["_. The single equation for
I then reads

Mw,q) =1+ [LT(w,gq)V(w-w)xAWw,q),
AW, q) = [-2;[G(w +Q/2,k +q/2)G(—w' +Q/2,—k +q/2) (46)

@n)?
+F +Q/2,k+q/2)F(—w +Q/2, -k +q/2)].
Inserting the forms of G and F, Eq. (45), we find that A(w,q) and the

modified particle-particle bubble Mj(w,g), introduced in Eq. (25), are
related as

d
Ma(a) = [ GrA. 08 (w). )
J 2m
To solve Eq. (46), we make an ansatz
O(w, q)
I w,q)=—"T—>5"" "35> (48)
(@.q) alal® + .0

where O(w, g) is regular and non-vanishing for g =0, and c¢;, ¢, are some
constants. Then, (w, 0) = oo, which formally solves (46). To find the values
of ¢; and ¢,, we expand A(w, q) from Eq. (46) in Q, |q]:

A(©,9) = A(@,0) + aq(w)|q]” + aa(w)Q” . (49)
Likewise, we expand

O(w,q) =~ O(w,0) + dq(w)|al* + do(w)O*. (50)
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The coefficients A(w, 0), aq, dq are known, while the coefficients O(w, 0), ¢q,
$a, €1, C2 are not known. We substitute Eqgs. (48), (49), and (50) into Eq. (46),
which yields

O(@,0) + g (w)[al* + do(w)Q* = crlal* + 2+

J 8V - o) [0w,0) + dg(w)al’ + do(w)Q] (51)
x [A(w’,o) + ag(w)|q® + aQ(w’)QZ} .

We now compare the prefactors for O(1), O(|q|*), and O(Q?) on both

sides of this equation. At order O(1), we have

Ow,0) = / ‘;—‘: V(w— )D&, 0)AW, 0). (52)

One can easily verify that the solution is O(w, 0) = A(w)y, where y is some
constant, and A(w) is a solution of the gap equation. Comparing the
prefactors for the O(|q|*)-term, we get
Pq(W) = 1 + [ dg(W)AW, 0)V(w — )
+ [LO(w,0)aq(w)V(w— ).

Multiplying (53) by 1/(2m) x ®(w, 0)A(w,0) and integrating over w, we
obtain

S22 ¢q(w)O(w,0)A(w,0) = ¢; [90O(w,0)A(w,0)
+ [ g (w)O(w', 0)A(w',0) + [ O (', 0)ag(w),

(53)

(54)

where the gap equation in the form (52) was applied twice on the right-
hand side of Eq. (54). Canceling the identical terms on both sides, we solve
for ¢;:

o = gauma | @ ©

In a similar fashion, we obtain

_ y dw
= T | w @), (56)

Combining (55), (56), and (48), we obtain, to the leading order in Q, |q],

A 49’ A(w)A(w', 0

(w,q) = 0@0) AW [ % w0 )
algl” + ns|veq|® + kQ

where
1 (dw,,

nsf—v—%( EA(‘U )aq(w) (58)
dw

K= / % W(w)an(®), (59)

are the same as in the main text and in the previous section, see Egs. (30)
and (31). Note that an arbitrary constant y has canceled out, as it indeed
should. The susceptibility x has the same pole structure as I'. To the leading
order in g we have

dw 2
X(q) =~ /Z—zr(q,w)A(w, o) = U AWAW.0)"

(60)
ns|veq|? + kQ?
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