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1. Introduction

We consider linear Hamiltonian systems

Jy = (Bo(x) + AB1(x))y;
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where J denotes the standard symplectic matrix

0, —I,
().
We specify (1.1) on intervals (a, b), with —oco < a < b < 400, and we assume throughout
that By, B € L{ ((a,b), C?"*2") and additionally that By(z) and By(x) are both self-

loc
adjoint for a.e. z € (a,b), with also By (z) non-negative for a.e. z € (a,b). For convenient
reference, we refer to these assumptions as Assumptions (A). In addition, we make the

following Atkinson-type positivity assumption.

(B) If y(-;A) € AC)c((a, b),C?") is any non-trivial solution of (1.1), then

d
/ (B (2)y(w; \), y(w: A))da > 0,

C

for all [¢,d] C (a,b). (Here, ACjo. denotes local absolute continuity, and (-, -) denotes the
usual inner product on C?".)

Our goal is to associate (1.1) with one or more self-adjoint operators £ (see Lemma 1.1
below), and to use renormalized oscillation theory to count the number of eigenvalues
N([A1,A2)) that each such operator has on a given interval [\, A2) C R for which the
closure [A1, \2] has empty intersection with the essential spectrum of the operator. We
will formulate our results for two cases: (1) when z = a is a regular boundary point for
(1.1); and (2) when = = a is a singular boundary point for (1.1). (We take (1.1) to be
singular at © = b in both cases; the case in which (1.1) is regular at both endpoints has
been analyzed in [16].) The case in which (1.1) is regular at © = a corresponds with the
following additional assumption.

(A)’ The value a is finite, and for any ¢ € (a,b), we have By, By € L((a,c), C2"*2n).

Our starting point will be to specify an appropriate Hilbert space to work in, and
for this we follow [24]. We denote by L%, ((a,b), C?") the set of all Lebesgue measurable
functions f defined on (a,b) so that

b

I fllB, = (/(31(x)f(x),f(:c))dgc)l/2 < 0.

a

Correspondingly, we denote by Zp, the subset of I~/2Bl((a, b), C2") comprising elements
fe fLZBI ((a,b),C2") so that || f||, = 0. Our Hilbert space will be the quotient space,

L2B1 ((a7 b)a (C2n) = f’QBl ((a’ b)v CQn)/ZBr
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Le., two functions f,g € L% ((a,b),C?") are equivalent if and only if ||f — g|l5, = 0.
With this specification, || - |5, is a norm on L% ((a,b),C?"). We equip L% ((a,b), C*")
with the inner product

b

U g = / (B () f(x), g(x))d.

a

In all of these specifications, we emphasize that By (z) need not be an invertible matrix.
We now introduce a maximal operator associated with (1.1).

Definition 1.1. (i) We denote by Dy the collection of all
y € ACjoc((a,b), (CQn) N L%ﬁ ((a,b), (C2n)
for which there exists some f € L% ((a,b),C*") so that

Jy — Bo(x)y = Bi(z)f,

for a.e. © € (a,b). We will refer to Djs as the maximal domain, and we note that f is
uniquely determined in L% ((a,b), C*"). (If f and g are two functions associated with the
same y € Dy, then By (z)(f—g) = 0fora.e. 2 € (a,b), so that f = g in Lj ((a,b),C*").)

(ii) We define the maximal operator Ly : L% ((a,b), C*") — L% ((a,b),C?") as the
operator with domain Dy, taking a given y € Dy to the unique f € LgBl((a, b),C2")
guaranteed by the definition of Dj;. We note particularly that y(-; A) € Dys solves (1.1)
iff and only if Lyy = Ay a.e. in (a,b).

The following terminology will be convenient for the discussion.

Definition 1.2. We say that a solution y(:; \) € ACjec((a,b), C?") of (1.1) lies left in (a, b)
if for any ¢ € (a,b), the restriction of y(; A) to (a,c) is in LE ((a,c),C*"). Likewise, we
say that a solution y(;\) € ACic((a,b),C?") of (1.1) lies right in (a,b) if for any
¢ € (a,b), the restriction of y(-; A) to (¢, b) is in L% ((c,b),C?"). For each fixed A € C
we will denote by m, () the dimension of the space of solutions to (1.1) that lie left in
(a,b), and we will denote by my(A) the dimension of the space of solutions to (1.1) that
lie right in (a, b).

We will show in Section 2 that if Assumptions (A) and (B) hold, then for any A € C\R,
(1.1) admits at least n solutions that lie left in (a,b) and at least n solutions that lie
right in (a, b). According to Theorem V.2.2 in [24], m4(A) and mp(\) are both constant
for all A with Im A > 0, and the same statement is true for Im A < 0. In the event that
By(x) and Bj(x) have real-valued entries for a.e. € (a,b), it is furthermore the case
that m,(A) and mp(\) are both constant for all A € C\R. (See our Remark 2.1.) We will
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allow By(z) and Bj(z) to have complex-valued entries, but we will make the following
consistency assumption:

(C) The values m,(A) and mp(\) are both constant for all A € C\R. We denote these
common values m, and my.

In the event that Assumption (A)’ also holds, it’s clear that m,(A) = 2n for all A € C.
In the terminology of our next definition, this means that under Assumption (A)’, (1.1)
is in the limit circle case at = a. In this case, Assumption (C) holds immediately for
T = a, with m, = 2n.

Definition 1.3. If m, = n, we say that (1.1) is in the limit point case at x = a, and if
me = 2n, we say that (1.1) is in the limit circle case at @ = a. If m, € (n,2n), we say
that (1.1) is in the limit-m,, case at £ = a. Analogous specifications are made at = = b.

Under Assumptions (A), (B), and (C), and for some fixed A\g € C\R we will show that
by taking an appropriate selection of solutions that lie left in (a,b), {uf(z; Ao)}7—;, and
an appropriate selection of solutions that lie right in (a, b), {u?(x; Ao)}7—1, we can specify
the domain of a self-adjoint restriction of £, which we will denote L. For the purposes

of this introduction, we will sum this development up in the following lemma, for which

we denote by U®(x; \g) the matrix comprising the vector functions {u$(z; Ao)}j_; as its
columns, and by U®(x; Ag) the matrix comprising the vector functions {uf(z; o)}, as
its columns. The selection process is described in detail in Section 2; see especially the

summary in Remark 2.4.

Lemma 1.1. (i) Let Assumptions (A), (B), and (C) hold, and let \g € C\R be fized.
Then there exists a selection of solutions {u§(x;Xo)}j—y to (1.1) (with X\ = Xo) that lie
left in (a,b), along with a selection of solutions {ug(z;)\o) Ty to (1.1) (with A = Xo)
that lie right in (a,b) so that the restriction of Las to the domain

D:={yecDy: 1irn+ U(2;00)" Jy(x) =0,  lim U°(x; \o)* Jy(z) = 0}

r—b—

is a self-adjoint operator. We will denote this operator L.

(ii) Let Assumptions (A), (A)’, (B), and (C) hold, and let \y € C\R be fized. In
addition, let o € C"*2" denote any fized matriz satisfying ranka = n and aJa* = 0.
Then there exists a selection of solutions {ug(x;)\o) Ty to (1.1) (with X = Xo) that lie
right in (a,b) so that the restriction of Ly to the domain

DY :={y €Dy :ay(a) =0, lim Ul(x;\o)*Jy(x) = 0}

r—b—

is a self-adjoint operator. We will denote this operator L.

In order to set some notation and terminology for this discussion, we make the fol-
lowing standard definitions.
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Definition 1.4. We denote by p(L£) the usual resolvent set

p(L) =={reC: (L~ A)"": LE, ((a,),C") = L, ((a,b),C")

is a bounded linear operator},

and we denote by o(L) the spectrum of £, (L) := C\p(L). In addition, we define the
point spectrum of £ to be the collection of eigenvalues,

op(L) :=={X € C: Ly = Ay for some y € D\{0}},

and we define the essential spectrum of £, denoted ces(L) to be the collection of all
A € C so that A ¢ p(£) and A is not an isolated eigenvalue of £ with finite multiplicity.
Finally, we define the discrete spectrum of £ to be ogiscrete(L) = 0(L)\Tess(L). We will
use precisely the same definitions for £%, with D replaced by D¢.

Our primary tool for this analysis will be the Maslov index, and as a starting point
for a discussion of this object, we define what we will mean by a Lagrangian subspace of
Cc?n,

Definition 1.5. We say ¢ C C2" is a Lagrangian subspace of C2" if ¢ has dimension n
and

(Ju,v) =0, (1.2)

for all u,v € £. In addition, we denote by A(n) the collection of all Lagrangian subspaces
of C?", and we will refer to this as the Lagrangian Grassmannian.

Remark 1.1. Following the convention of Arnol’d’s foundational paper [2], the notation
A(n) is often used to denote the Lagrangian Grassmannian associated with R?". Our
expectation is that it can be used in the current setting of C2?" without confusion. We
note that the Lagrangian Grassmannian associated with C2" has been considered by
a number of authors, including (ordered by publication date) Bott [4], Kostrykin and
Schrader [21], Arnol’d [3], and Schulz-Baldes [33,34]. It is shown in all of these references
that A(n) is homeomorphic to the set of n x n unitary matrices U(n), and in [33,34] the
relationship is shown to be diffeomorphic. It is also shown in [33] that the fundamental
group of A(n) is isomorphic to the integers Z.

Any Lagrangian subspace of C2" can be spanned by a choice of n linearly independent
vectors in C?". We will generally find it convenient to collect these n vectors as the
columns of a 2n x n matrix X, which we will refer to as a frame for £. Moreover, we will
often coordinatize our frames as X = (i/(), where X and Y are n x n matrices. Following
[10] (p. 274), we specify a metric on A(n) in terms of appropriate orthogonal projections.
Precisely, let P; denote the orthogonal projection matrix onto ¢; € A(n) for i = 1,2. Le.,



6 P. Howard, A. Sukhtayev / Journal of Functional Analysis 283 (2022) 109525

if X; denotes a frame for ¢;, then P; = Xi(X;in)_lxz‘. We take our metric d on A(n)
to be defined by

d(ly,€2) == ||P1 — Paof|,

where || - || can denote any matrix norm. We will say that a path of Lagrangian subspaces
¢:T — A(n) is continuous provided it is continuous under the metric d.

Suppose ¢1(+), ¢2(+) denote continuous paths of Lagrangian subspaces ¢; : T — A(n),
1 = 1,2, for some parameter interval Z (not necessarily closed and bounded). The Maslov
index associated with these paths, which we will denote Mas(¢1, ¢2;Z), is a count of the
number of times the paths ¢1(-) and ¢5(-) intersect, counted with both multiplicity and
direction. (In this setting, if we let ¢, denote the point of intersection (often referred to
as a crossing point), then multiplicity corresponds with the dimension of the intersection
01(t«) N £2(ts); a precise definition of what we mean in this context by direction will be
given in Section 3.)

In order to formulate our results for the case in which (1.1) is regular at = a, we
introduce the 2n x n matrix solution X, (x; A) to the initial value problem

JX; = (Bo(fl') + )\Bl(fE))Xa

(1.3)
Xal(a; A) = Ja.
Under our assumptions (A), (A)’, we can conclude that for each A € C, X,(;\) €
ACioe([a, b), C2*™). In addition, X,, € C([a,b) x C,C?*") and X, (z;-) is analytic in
A. (See, for example, [43].) As shown in [14], for each pair (x, A) € [a,b) x R, X, (x; \) is
the frame for a Lagrangian subspace of C2", which we will denote £, (z; \). (In [14], the
authors make slightly stronger assumptions on By(x) and Bj(x), but their proof carries
over immediately into our setting.)
For the frame associated with the right endpoint, we let [A1, A2], A1 < A2, be such
that [A1, A2] N 0ess(L£L¥) = 0. In Section 2, we will show that for each A € [A\1, Ag], there
exists a 2n X n matrix solution Xy(z; A) to the ODE

lim U®(x; X)* Xy (25 A) = 0,

r—b~

(1.4)

where the matrix U(x; \o) is described in Lemma 1.1 (and the paragraph leading into
that lemma). In addition, we will check that for each pair (z, \) € [a, b) X [A1, A2], Xp(z; A)
is the frame for a Lagrangian subspace of C2", which we will denote £, (x; \), and we will
also check that ¢, € C([a,b) x [A1, A2], A(n)).

In Section 4, we will establish the following theorem.

Theorem 1.1. Let Assumptions (A), (A), (B), and (C) hold, and assume that for some
pair A, de € R, A1 < Aa, we have 0ess(LY) N [A1, Aa] = 0. If Lo (5 M1) and £(+; A2)
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denote the paths of Lagrangian subspaces of C*" constructed just above, and N*([\1, \2))
denotes a count of the number of eigenvalues L* has on the interval [A1, \2), then

N([A1;A2)) > Mas(la (-5 A1), £y (5 A2)s [a, b)), (1.5)
where

Mas(€o, (-3 A1), b(+; A2); [a, b)) == l_igg Mas(q,(-; A1), o (-5 A2); [a, c]),
C
and part of the assertion is that this limit exists. If additionally A1, Ao & 0,(L"), then
we have equality in (1.5).

In the case that (A)’ doesn’t hold, so that (1.1) is singular at x = a, we let [A\1, Ao],
A1 < Ag, be such that [A;, Aa] N oess(£) = @. We will show in Section 2 that for each
A € [A1, Ag] there exists a 2n x n matrix solution X, (z; A) to the ODE

JX:I :(Bo(.’lf) + )\Bl(.%'))xa
1.6
lim U%(x; Ag)* I X (25 A) = 0, (1.6)
rz—at
where the matrix U%(x; Ag) is described in Lemma 1.1 (and the paragraph leading into
that lemma). In addition, we will check that for each pair (x,\) € (a,b) X [A1, A2,
X, (x;\) is the frame for a Lagrangian subspace of C2", which we will denote £,(x; \),
and that £, € C((a,b) x [A1, A2], A(n)).
In Section 4, we will establish the following theorem.

Theorem 1.2. Let Assumptions (A), (B), and (C) hold, and assume that for some pair
A, A2 € R, Ay < Ao, we have dess(L) N [A1, Aa] = 0. If £4(-; A1) and €,(-; A2) denote the
paths of Lagrangian subspaces of C?™ constructed just above, and N'([A1,\2)) denotes a
count of the number of eigenvalues L has on the interval [\, A2), then

N([)\l, )\2)) 2 Mas(fa(-; )\1)761,('; )\2); (a, b)), (17)

where the Maslov index on the right-hand side of (1.7) is computed by taking a limit in
Mas(€y (3 A1), €o(+; A2); [c1, ca]) as c1 — at and co — b™, and part of the assertion is that
this double limit exists. If additionally A1, Ao & 0,,(L), then we have equality in (1.7).

In order to relate our results to previous work on renormalized oscillation theory, we
observe that in some cases the Maslov index can be expressed as a sum of nullities for
certain evolving matrix Wronskians. To understand this, we first specify the following
terminology: for two paths of Lagrangian subspaces ¢1,¢s : Z — A(n), we say that the
evolution of the pair #1,¢s is monotonic provided all intersections occur in the same
direction. If the intersections all correspond with the positive direction, then we can
compute
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Mas(¢, 02,7 Zdlm 01(t) N La(t)).
teT

Suppose X;(t) = ();11((:))) and Xs(t) = ();;((tt))) respectively denote frames for Lagrangian

subspaces of C2", ¢1(t) and f5(t). Then we can express this last relation as

Mas(fy, l2;T) = Y _ dimker(Xy(t)*JX(t)).
tel

(See Lemma 2.2 of [16].)
In the current setting, the necessary monotonicity follows similarly as in the proof of
Theorem 1.1 in [16]. With this observation, we obtain the following theorem.

Theorem 1.3. Under the assumptions of Theorem 1.1 (without the requirement A1, A2 ¢
op(LY)), we can write

Mas(Co (5 A1), £o(5 A2)i [a,0)) = > dimker Xo (25 01)* JXp (23 Aa),
z€la,b)

and under the assumptions of Theorem 1.2 (without the requirement A1, Ao ¢ op(L)), we
can write

Mas(€q(+; A1), €p(+; A2); (a, b)) = Z dim ker X, (z; A1)* T Xp (25 A2).
z€(a,b)

In the remainder of this section, we briefly review the origins of renormalized oscilla-
tion theory, placing our result in the broader context, and we also set out a plan for the
paper and summarize our notational conventions. For the first, renormalized oscillation
theory was introduced in [12] in the context of single Sturm-Liouville equations, and was
subsequently developed in [40,41] for Jacobi operators and Dirac operators. (See [35]
for an expository discussion of these early developments.) More recently, Gesztesy and
Zinchenko have extended these early results to the setting of (1.1) in the limit point case
[13], though with a set-up and approach substantially different from the ones employed
in the current analysis. In [16], the authors of the current analysis showed in the con-
text of regular linear Hamiltonian systems that renormalized oscillation results can be
established in a natural way via the Maslov index. (See also [8] for a related analysis
that employs the notion of oscillation numbers and [9] for a study of the connection
between oscillation numbers and the Maslov index.) The current analysis seems to be
the first effort to extend the renormalized oscillation approach to the limit circle and
limit intermediate cases.

In order to understand the motivation behind this approach, we can contrast it
with standard oscillation theory, exemplified by Sturm’s oscillation theorem for Sturm-
Liouville operators [36]. As a specific point of comparison, we will use a (standard)
oscillation result that the authors have obtained for Sturm-Liouville equations on the
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half-line, (a,b) = (0,00), where = 0 is a regular boundary point (see [17]). If we focus
on the case of Dirichlet boundary conditions at x = 0 (i.e., « = (I 0)), then Theorem 1.1
of [17] asserts (under fairly strong assumptions on the coefficient matrices associated with
the Sturm-Liouville operator), that the number of eigenvalues that the Sturm-Liouville
operator has below some A, € R can be expressed as

Mor(L; A\y) = Z dim ker Xp(z; Ay), (1.8)
>0

where X} denotes the first n x n coordinate in the frame Xj. We see immediately, that
the number of eigenvalues between A\; and A9 can be computed in this case as

N([A1,A2)) =) dimker Xy (23 A2) — » _ dimker X (23 Ay). (1.9)
x>0 x>0

The difficulty with this approach is twofold. First, for conditions other than Dirichlet,
the right-hand side of (1.8) becomes a count of signed intersections between ¢p(x; \.)
and £,(0; \.), and so cannot be expressed as a sum of nullities; and second, if the strong
coefficient conditions of [17] are dropped, the right-hand side of (1.8) can become infinite,
even in the Dirichlet case. Consequently, (1.9) can take the form co— oo, even in cases for
which A ([A1, A2)) is finite. Indeed, this latter observation seems to have been the primary
motivation for the approach [12,35]. (See Section 5 for a specific implementation of our
theory in this setting.)

Plan of the paper. In Section 2, we prove Lemma 1.1, establishing the existence and
nature of the family of self-adjoint operators £ and L% that will be the objects of our
study. In Section 3, we provide some background on the Maslov index, along with some
results we’ll need for the subsequent analysis. In Section 4, we prove Theorems 1.1 and
1.2, and in Section 5 we conclude with two specific illustrative applications.

Notational conventions. Throughout the analysis, we will use the notation || - || 5, and
(+,-) B, respectively for our weighted norm and inner product. In the case that (1.1) is
regular at x = a, we will denote the associated map of Lagrangian subspaces by £/,
and we will denote by X, a specific corresponding map of frames. Likewise, if (1.1) is
singular at = a, we will use ¢, and X,, and for z = b (always assumed singular), we
will use ¢, and X,. In order to accommodate limits associated with our bilinear form,
we will adopt the notation

(Jy,2)a i= lim (Jy(z),z(2)); (Jy,2)p = lim (Jy(z), z(2)),

z—at r—b~

along with

(Jy,z)g = (Jy,2)p — (JYy, 2)a.

Here and throughout, we use (-, ) to denote the usual inner product in C?".
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2. The self-adjoint operators £ and £~

In this section, we adapt the approach of [26-28] (as developed in Chapter VI of [24])
to the setting of (1.1).

2.1. Niessen subspaces

We begin by fixing some ¢ € (a,b), and letting ®(x; \) denote the fundamental matrix
specified by

J® = (Bo(z) + AB1(2))®;  ®(c; \) = Loy (2.1)

For pairs (z,A) € (a,b) x C\R we define the 2n x 2n matrix

A N) o= 5 (s \)* (/) B(a ),
observing that for each fixed A € C\R, we have A(;\) € AC((a,b),C2x2"),
with A(z; A) self-adjoint for all (z,A) € (a,b) x C\R. It follows that the eigenval-
ues {pj(x; A)}3%; of A(xz;\) can be ordered so that pj(z;A) < pjpi(z;A) for all
je{l,2,....2n—1}.

Since A(c; A) = 52 (J/i), we see that A(c; A) has an eigenvalue with multiplicity n
at —m and an eigenvalue with multiplicity n at —l—m. According to Theorem I1.5.4
in [19], we can understand the motion of the eigenvalues {y;(z; )\)}521 as x increases (or
decreases) by evaluating the matrix A’(z; A), where prime denotes differentiation with
respect to x. To this end, we find by direct calculation that

A(z; \) = (2 \)* By (2)®(z; \) (2.2)

for all (z,\) € (a,b) x C\R. We can conclude from Assumption (B) that each eigenvalue
5 (x; A) must be continuous and non-decreasing as a function of . In addition, since the
fundamental matrix ®(z; A) is invertible for all (z, A) € (a,b) x C\R, we see that A(z; \)
is likewise invertible, and so none of its eigenvalues can cross 0 for any = € (a,b). We
conclude that for all (x,\) € (a,b) x C\R, we have the ordering

pr(@;A) < po(@sA) < -0 < pin (@5 A) <O < g1 (25 A) < pga (@3 A) < < pon (@3 A).
(2.3)
As x decreases toward x = a, these eigenvalues are all non-increasing, and so in
particular the limits

pi(A) = lim p(z;A)



P. Howard, A. Sukhtayev / Journal of Functional Analysis 283 (2022) 109525 11

exist for each j € {n + 1,n + 2,...,2n}. Moreover, for each j € {1,2,...,n}, these

same limits either exist or diverge to —oo. Likewise, as x increases toward x = b, the

2n

eigenvalues {f1;(x; A)}35”, are all non-decreasing, and so in particular the limits

P3N = lim (w5 A)
z—b

exist for each j € {1,2,...,n}. Moreover, for each j € {n+1,n+2,...,2n}, these same
limits either exist or diverge to +oc.

Lemma 2.1. Let Assumptions (A) and (B) hold, and let A € C\R be fized. Then the
dimension mg () of the subspace of solutions to (1.1) that lie left in (a,b) is precisely
the number of eigenvalues pi;(z; A) € o(A(z; X)) that approach a finite limit as © — a™.
Likewise, the dimension my(X\) of the subspace of solutions to (1.1) that lie right in (a,b)
is precisely the number of eigenvalues p;(x; X) € o(A(z; N)) that approach a finite limit
asx — b~.

Proof. We will carry out the proof for my(\); the proof for mg(\) is similar. Integrating
(2.2), we see that A(z; \) can alternatively be expressed as

Alwi ) = g () + [ B(E) B(€) 0l Ve (2.4

C
We temporarily let mp(A) denote the number of eigenvalues of A(x;A) that have a
finite limit as @ — b™; precisely, this will be the set {1, (x; )\)}?Z’l()‘). Let {v;(x; )\)}gh:bl()‘)
denote an orthonormal basis of eigenvectors associated with these eigenvalues, noting
that these elements may not be continuous in x. We can take any element v;(z; \) from

this collection and multiply (2.4) on the left by v;(z; A\)* and on the right by v;(z; ) to
obtain

x

1 . * *
vi(@s A A3 A) = 5 (J/) (23 A) = /Uj(x; A) @& A) " Bi(§)P(& Mvj (s A)dE.
(2.5)
The left-hand side of this last relation is
1 . _
iz X)) — T,Im)\vj(x, A Jvj(x; A),

and so is bounded above for all € (¢, b). Now, consider any sequence of values {z4}7
so that xj increases to b as k — oco. The corresponding sequence {v;(zx; A)}72, lies on
the unit sphere in C?" (a compact set), so there exists a subsequence {zy,}$2; so that

{vj(zk,; A)}32, converges to some v?(\) on the unit sphere in C*". We claim that it

follows that the functions {®(x; )\)U?()\)}?:bl(” lie right in (a,b). To see this, we assume

to the contrary that for some j € {1,2,...,mp(\)},
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b

/ W) B(E N) By (€)B(E: AN de = oo.

C

In this case, if we are given any constant K > 0, we can take b’ € (¢, b) sufficiently close
to b (sufficiently large if b = 0o) so that

y
[ ey BiopE N > k. (2.6)

c

By a straightforward calculation, we can check that by taking z, sufficiently close to b
(sufficiently large if b = 00), we can make

%

/ 03 (0 A (€ N)* By () (€ Aoy (s A

c

as close as we like to the integral in (2.6). In particular, we can find a positive integer N
sufficiently large so that for all ¢ > N, we have

y
/ 0y (s A B(E; N)* By (€)B(E: Moy (s N lE > K.

c

Possibly by taking N even larger, we can ensure that xy, > b, and it follows from our
Assumption (B) that

‘Tki

[ 5ok 0 B(E ) Bu€) (€ Ao e
y
> / 03 (0 N (€ N)* By (€)B(E: Mo (i A€ > K.

c

Since K can be taken as large as we like, this contradicts the boundedness ensured by
(2.5). We conclude that indeed the functions {®(z; /\)v;?(/\)}?lz”l(/\) lie right in (a,b), and

since the set {U?(A)}?Zl(’\)
{®(z; /\)vﬁ?(/\)}mb(/\) are linearly independent as solutions of (1.1).

j=1
On the other hand, if we allow {v;(z;\) fz ( to denote an orthonormal basis

mp )\)Jrl
of eigenvectors associated with the eigenvalues of A(z; \) that do not have finite limits
as ¢ — b, then we find that the functions {tI)(z;)\)vé?(/\) ?:b(/\)ﬂ form a basis for a

(2n — 1mp(N))-dimensional subspace of solutions of (1.1) that do not lie right in (a, b).

retains orthonormality in the limit, we see that the functions
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Combining these observations, we conclude that {®(x; )\)vé’()\)}mb( comprises a basis
for the subspace of all solutions to (1.1) that lie right in (a,b
mp(N) = mb()\) O

), and so in particular,

Lemma 2.1 suggests that we need to better understand the nature of the eigenvalues
of A(z; A). As a starting point, we observe the relation

(2 \)*(J/1) (25 X) = (/i) (2.7)

for all x € (a,b), which can be verified by showing that the quantity on the left is
independent of x (its derivative is zero) and evaluating at © = ¢, where ®(c; \) = Io,.
(Although we are currently working with the case Im A # 0, (2.7) holds for A € R as
well.) Since (J/i) is self-adjoint, we likewise have (by taking an adjoint on both sides of

(2.7))
(2 \)*(J/1) (5 \) = (/1) (2.8)

and this relation allows us to write

O (x5 0) = (J/0)(@(a; A)) (/).

In this way, we see that we can write

Al \) = —ﬁ%:; N)* (/i) ® (3 N)
= o (@ ) T T (L)) ()
1

_ _W(J/i)A(w; A) NI /D).

Upon subtracting a term pI from both sides of this last relation (for any p € R), we
obtain the relation

Aws X) — pI = —p(JJi) Al )~ {A(: A) + mnum. (2.9)

These considerations allow us to conclude the following lemma, adapted from Theorem
VI.2.1 of [24].

Lemma 2.2. Let Assumption (A) hold (not necessarily Assumption (B)). For any X\ €
C\R, a value p € R is an eigenvalue of A(z;\) if and only if the value —m is an
eigenvalue of A(x; N). It follows immediately that if we order the eigenvalues of A(x; \)
according to (2.3), and order the eigenvalues of A(x; \) similarly, then we have
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< 1
() = — D= 12,m
u](x7 ) (2Im/\)2/1n+](x,)\)7 J ) < , 1
- 1

Hi ) = = N @)

j=n+1,n+2, ..., 2n.

Moreover, for j = 1,2,...,n, if vj(x;\) is an eigenvector of A(x; \) associated with
eigenvalue juj(z; \), then

Unj(@; A) = (J/i)v; (5 5\)

is an eigenvector of A(x;\) associated with eigenvalue pu,1;(x; ). Likewise, for j =
n+1l,n+2,...,2n, if v;(z; \) is an eigenvector of A(x; \) associated with eigenvalue
i (x5 \), then

vi-n(230) = (J/i)vj(w; A)
is an eigenvector of A(x; \) associated with eigenvalue i (z; \).

Similarly as in the proof of Lemma 2.1, we can use compactness of the unit sphere
in C2" to associate limiting vectors {v}(X)}32, and {v?(A)}32, respectively with the

2n

eigenvectors {v;(z;A)}52; and {v;(x; \) ?’;1. These limiting vectors naturally inherit

both orthonormality and the relations of Lemma 2.2,

(2.10)

with precisely the same statements holding for the limit x — a™ with the superscript b
replaced by the superscript a.

We note for later use that for any indices j € {1,2,...,n}, k € {1,2,...,2n}, we can
use (2.10) to see that

V(N TR (A) = ((J/i)vh (N TR (X) = vh () (/i) v (A)

J
= iv2+j(>\)*v2(A) = iéfwrj?

(2.11)

where 0% +; 1s a Kroenecker delta function, and the final equivalence is due to orthonor-
mality. Likewise, for any indices j € {n + 1,n+2,...,2n}, k € {1,2,...,2n}, we see
from (2.10) that

VI TR (N) = ((I/1)vp () JoR(A) = 07 (A (/3) T (V)
=ivh_, (N (\) = iéf

j—n —n"

(2.12)



P. Howard, A. Sukhtayev / Journal of Functional Analysis 283 (2022) 109525 15
For j =1,2,...,n, we set

J (2.13)

S
B
>
Il
s
—~
B
=
<
3o
+
<
—~
>
Nai?

It’s clear from our construction that yf(, A) lies right in (a,b) for each j € {1,2,...,n},
while z}’(, A) lies right in (a,b) if and only if quJrj()\) is finite. We have seen that the
total number of the values {,u?()\) 2n, that are finite is my()), and we will also find
it convenient to introduce the value 75(\) := my(A) — n. Following [26-28], for each
j€{1,2,...,n}, we define the two-dimensional space

N() = Spany (5 A), 22(5 )}, (2.14)

and following [24] we refer to the collection {Nf()\)}?zl as the Niessen subspaces at
b. According to our labeling convention, the Niessen subspaces {N jl?(/\)};b:({\ ) all satisfy
dim NJZ?()\) NL% ((¢,b),C?") = 2, while the remaining Niessen subspaces {N]l?()\)}:}b(/\)_|r1
satisfy dim N?(X) N L% ((¢,b),C?") = 1. (Here, ¢ continues to be any value ¢ € (a,b).)
We see from Lemma 2.2 that as = increases to b, we will have p;(z; \) — +oo if and

only if p;_n(z;A) — 0. In this way, the values my(A) and my(A) are both determined
by the eigenvalues of A(x;\) as * — b~. A similar statement holds at z = a. We

emphasize, however, that the values my(A\) and mp(A) do not necessarily agree. This is
precisely why we need our consistency Assumption (C). As noted in the Introduction,

under Assumption (C) we will denote the mutual value of my(A) and my(A) by my, and

we will also denote the mutual value of 7,(\) and 74(\) by 7.

Remark 2.1. We note that if the matrices By(z) and Bj(z) have real-valued entries
so that By(x) + ABi(z) = Bo(z) + AB1(x), then we will have ®(z;\) = ®(z; ), and

correspondingly A(z; A\) = A(z; A). In this case, for each j € {1,2,...,2n},

(2 A) = (5 A) = g (5 M), (2.15)

In particular, mq(A) = me(\) and my(A) = my()), and so our Assumption (C) will
hold. More generally, if By(x) and Bj(z) are allowed to have complex-valued entries
(though still kept self-adjoint), then examples can be constructed in which m,(\) (resp.

myp(A)) takes on any specified integer value in [n,2n) and independently m,(\) (resp.
my(X)) also takes on any specified integer value in this interval. See, for example, [18]
for a specific family of examples, and Section 5 in [20] for a broader discussion. To the
authors’ knowledge, the question of necessary and sufficient conditions on By(x) and
Bj(z) in order for our Assumption (C) to hold remains an interesting open question.

n

j—1 will have an

In the next part of our development, the ratios {s;(x; A)/pn+j(z; A)
important role, and we emphasize that Assumption (C) becomes crucial at this point.

To see this, we first observe from Lemma 2.2 the relation
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N 1
pi(@N) N N (@5

. (2.16)
Hn+j (37§ )‘) m Hntj (CC; )\)

For j =rp(\) +1,...,n, we have

111? Pntj(T;A) =00; = lim g(x; A) = 0,
HhL

T z—b~

and so both sides of (2.16) approach 0 as  — b~. On the other hand, for j = 1,...,ry(N),
we have

B g (0 0) = pnag (V) =l (s ) = 500,

T z—b—

where the values %, ;(\) and p? (\) are both non-zero real numbers, and so do not fully
determine the limits of (2.16) as  — b~ . In particular, in order to determine these limits,
we require either the limit of 1,1 (z; \) or the limit of y;(z;b) as x — b~. Precisely the
same statements hold with X replaced by \, so for j =1, ... ,rb(j\), we have

gy (03 0) = pngy (V) = limp(a;0) = G0,

T z—b—

where the values b 4 (\) and p?()\) are both non-zero real numbers. We can conclude

that if 7, (A) = 7 (X), then the ratios {p; (z; N)/pn+j (2 )\)};b:({\) will all have real non-zero
limits as © — b~

Working now under Assumption (C), we choose n solutions of (1.1) that lie right in
(a,b), taking precisely one from each Niessen subspace N. ;’()\) in the following way. First,
for each j € {1,2,...,7}, we let 5;(\) be any complex number on the circle

1B = /=15 /5 (M),
where as described just above, these ratios cannot be 0, and we set
uf (@3 A) = g (x5 M) + B7(N) 22 (25 M),
Next, for each j € {r, +1,r, +2,...,n}, we set
uf (3 A) = yf (25 A).

Correspondingly, we will denote by {r?()\) _, the vectors specified so that ug(x; A) =
O (x; )\)r?()\) for each j € {1,2,...,n}. Precisely, this means that

rbN) = b\ + BE(Nh (N, G Ee{L2,.., ),
r?()\):vb()\), jef{r+1,r+2,...,n}



P. Howard, A. Sukhtayev / Journal of Functional Analysis 283 (2022) 109525 17

We can now collect the vectors {r}(A)}7_, into a frame
RY(A) = (r0(N) 750 ... rb(N). (2.17)

In addition to the above specifications, for the Niessen subspaces {N} ()}, it Wlll

be useful to introduce notation for elements linearly independent to the {u (T3 M) 2
For each j € {1,2,...,7}, we take any complex number ~;(X) so that |v;(\)| = |5;(A)]
but v;(A) # 5;(N), and we define the Niessen complement to u?(z; X) to be

fu?(zc; A) = y]b-(m; A) + ’yé’()\)z?(x; A). (2.18)

With this notation in place, we can adapt Theorem VI.3.1 from [24] to the current
setting.

Lemma 2.3. Let Assumptions (A), (B) and (C) hold, and let the Niessen elements
{ub(x; \)}1_, and the Niessen complements {U?(x;)\)};b:l be specified as above. Then
the following hold:

(i) For each j, k € {1,2,...,n},
(Juj (5 2), u (3 A))p = 0.

(ii) For each j € {1,2,...,n}, k€ {1,2,...,m},

0 j#k
Jub (- N), 02 (5 N) =
(TG o3 A {H?—Qﬂm/\(ﬂj( A+ NBE b, (N) #0 =k,

Proof. See Theorem VI.3.1 in [24]. We note here only two key points: (1) We require
Assumption (C) in order to ensure that x? # 0; and (2) in anticipation of Lemma 2.4,
we are introducing the notation

(Ju,v)p := lim (Ju(x),v(z)). O

z—b~

Claim 2.1. Let Assumptions (A), (B), and (C) hold, and suppose the Niessen elements
for (1.1) are chosen to be

()\)—i—ﬁ (Nl A, de{l2,. e}
U?(Z‘; A) = <I>(x; A) v?()\) + ’y;-’()\)vzﬂ()\)), je{1,2,...,m}
uf (s N) = (a5 Avh(N), je{rp+1,m,+2,...,n},

with ﬁ;-’(/\) and 7;’()\) specified just above (in particular, as well-defined non-zero values).
Then the Niessen elements for (1.1) with X replaced by A can be chosen to be
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uf(zs N) = @(z; A)(0(A) + BY(A)h (N), G E{1,2,...,m}
v?(x, \) = ®(; 5\)(’0?(5\) + vf(X)vZJrj(;\)), Jje{1,2,...,rp}
u?(x;/_\) :@(x;j\)vg(/_\), je{rm+1,m+2,...,n},

with ﬁ;’(S\) = —6?(/\) and ’y;-’(/\) = —”yj( ) forall j €{1,2,...7}.

Proof. This statement follows almost entirely from our labeling conventions, and the only
part that we will explicitly check is the final assertion that we can take ﬂ;-’(j\) = —p5\)

and 'yé’(;\) = f'y;?()\). For this, we observe from (2.16) that

WY Ememnm O

DY R——T TPV

Mot (2Imn) 2t (V) n+j
and consequently

B3N] = /=15 (N /s (V) = 1B (V).

Since we can take le?(;\) to be any complex number with this modulus, we can set

ij(;\) = —f%()), and subsequently we are justified in choosing 'y;?(;\) =—%(\). O

Claim 2.2. Let the Assumptions and notation of Claim 2.1 hold, and let R*(\) denote the
matriz defined in (2.17). If R*(X) denotes the matriz defined in (2.17) with X\ replaced
by A and the Niessen elements described in Claim 2.1, then

RY(\)*JRY(\) =0

Proof. First, for j, k € {1,2,... 7}, we have

PN L) = (08" + BNl s ()T (b (A) + BEOE (V)

= ()" el (N) + BEAL(N) Th ()

+ B (V) T0E(N) + BEV B (V) vl (M)
0 j £k

_{mz(mM) =k,

where in obtaining the final inequality we’ve used the relations (2.11) and (2.12). Recall-
ing our convention from Claim 2.1, we see that we in fact have

rdN*Iri(A) =0, Vi ke {l,2,...,n}.

Next, for j € {1,2,...,rmp}, k € {rp + 1,7+ 2,...,n}, we have
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() IrR(A) = (0 (N + BN vpy;(A)) Jup(A) = 0

where again we’ve used the relations (2.11) and (2.12). The cases j € {r,+1,r,+2,...,n},
ke{1,2,...,rp} and j,k € {rp + 1,75 + 2,...,n} can be handled similarly. O

With appropriate labeling, statements analogous to Lemma 2.3 and Claims 2.1 and
2.2 can be established with b replaced by a.

2.2. Properties of L and L%

Turning now to consideration of the operators £ and L%, we will take as our starting
point the following formulation of Green’s identity for our maximal operator L.

Lemma 2.4 (Green’s Identity). Let Assumptions (A) hold, and let Lys be the mazimal
operator specified in Definition 1.1. Then for any y,z € Dy, we have

<£Mya Z>B1 - <y7£MZ>Bl = (Jy,Z)Z, (219)

where

(Jy. 2)e = (Jy, 2)p = (Jy: 2)a,
with

(Jy, 2)a := lim (Jy(@), z(2)),

(Jy,2)p := lim (Jy(z), 2(x))

rz—b—

(for which the limits are well-defined). In particular, if y and z satisfy Lyy = Ay and
Lyz = Az then

2iTm\(y, 2) B, = (Jy, 2)". (2.20)

Proof. To begin, we take any vy, z € Dy, and we let f,g € LgBl((a, b), C2") respectively
denote the uniquely defined functions so that Lyy = f and Lj;2z = g. By definition of
Dy, this means that we have the relations

Jy' = Bo(x)y = Bi(z)f
Jz' — Bo(z)z = Bi(x)g,

for a.e. x € (a,b). We compute the C2" inner product

(BlﬁMy,Z) = (Blfa Z) = (Jy/ - Boyvz) = (Jy/az) - (yaBOZ)7 a.e. xr € (a‘ab)a
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where in obtaining the final equality we have used our assumption that By(z) is self-
adjoint for a.e. z € (a,b). Likewise,

(BlyvﬁMZ) = (B1il/a9) = (valg) = (yu JZI_BOZ) = (ya JZI)_(yaBOZ>7 a.e. re (a,b).
Subtracting the latter of these relations from the former, we see that

d
%(‘]yvz) = (Bl‘CMyaZ) - (Bly’EMZ)

For any ¢,d € (a,b), ¢ < d, we can integrate this last relation to see that

d

d
(Ty(d), 2(d) — (Jy(e), () = / (B1 (2)Lary(@), =(x))d: — / (B (2)y(x), Ls=(x))dz.

C

If we allow d to remain fixed, then since y, z € L% ((a,b), C*") we see that the limit

(Jy,2)q := lim (Jy(c), 2(c))

c—at
is well-defined. In particular, we can write

d d

(Iy(d),2(d) = (Jys2)a = [ (Ba(o)Lary(a) 2@~ [ (Ba(o)yla), Lars(o)d

a a

If we now take d — b~, we obtain precisely (2.19). Relation (2.20) is an immediate
consequence of (2.19). O

We turn next to the identification of appropriate domains D and D® on which the
respective restrictions of Ly, are self-adjoint. This development is adapted from Chapter
6 in [30], and we begin by making some preliminary definitions. We set

D. := {y € Dy : y has compact support in (a,b)},

and we denote by L, the restriction of Ly to D.. We can show, as in Theorem 3.9 of [43]
that £% = Ly, and from Theorem 3.7 of that same reference (adapted to the current
setting) we know that D, is dense in L% ((a,b),C*").

Remark 2.2. The minimal operator Ly associated with L;; is the closure of L.. We
know from Theorem 8.6 in [42] that L. has a self-adjoint extension if and only if its

defect indices v+ (L.) agree, where

v+ (L) := dimran(L. F i)t = dim ker(Lpr +4I).
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In addition, we know from Theorem 7.1 of [43] that
dimker(Lys £iI) = mqo(Fi) + mp(Fi) — 2n.

Our Assumption (C) assures us that mg(i) = mq(—i) and my(i) = mp(—i) so that

v-(L:) = v+ (Le). Le., under Assumption (C) the defect indices agree, so L. has a
self-adjoint extension.

For any A € C\R, we let {u}(x;)}}_, denote a selection of Niessen elements as
described in Claim 2.1, and we denote by U’(z; ) the 2n x n matrix comprising the
vectors {uf(z; A)}7_, as its columns. Likewise we let {u(x; A)}_; denote a collection of
Niessen elements that can similarly be specified in association with z = a, and we denote
by U®(z; A) the 2n x n matrix comprising the vectors {uf(z; A)}7_, as its columns. Next,
we verify that we can construct functions {@$(z; A)}7—, and {ab(x; A)}}_; so that for

each j € {1,2,...,n} we have @$(-; ), @5(; \) € Dy, and moreover

(a2 = uf(z;\) near x =a ; (A = near  =a (2.21)
0 near r =b ué’-(:ﬂ; A) near z =b.

To this end, we use the following lemma from [38], which is proven (with minor changes)
as Lemma 3.1 in [39].

Lemma 2.5 (Lemma 3.1 in [38]). For any [a1,b1] C (a,b), a1 < b1, let Dy, b, denote the
mazimal domain as specified in Definition 1.1, except with (a,b) replaced by (ay,b1) and
ACioc((a,b),C?™) replaced by AC([ay,b1],C?™). Then for every given pair vi,ve € C?",
there exists y € Dq, v, ,m S0 that y(a1) = v1 and y(b1) = ve.

In order to construct @§(x; A), we fix any [a1,b1] C (a,b), a1 < b1, and use Lemma 2.5

to find y € Da, p,,m so that y(ar) = uf(a1;A) and y(b1) = 0. By definition of Dq, b, 0,

there exists a corresponding f € L% ((a1,b1),C?") so that Jy' — Bo(x)y = Bi(z)f for
a.e. ¢ € (a1, b1). Then we can set

(z;A) € (a,aq)
aj(z;A) =S y(x; A)  x € (a1, b)
0 x € [bl,b)

Since uf(x; A) lies left in (a,b), u¢(; ) € ACwc((a,b),C*"), and y(-;A) € AC([a1,bi],
C?2"), we see that

@4 (- ) € Ly, ((a,b),C*") N ACioc((a, b), C*™).

J

In addition, if we set
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Auf(z;A)  z € (a,a1)
fla;\) = f(z;\) x € (a1,b1)
0 x € (by,b),

then f(;\) € L% ((a,b),C?") and Ju}" — Bo(x)u§ = Bi(z)f for a.e. x € (a,b), so
4(-;A) € Dpy. We can proceed similarly for the elements {@}(z; A)}7_; .

¢
J
For some fixed Ao € C\R, we now specify the domain

Dy, 1= De + Span { {i (5 o) Yy, {25 20) s |, (2.22)
and we denote by L), the restriction of Ly to Dy,.

Theorem 2.1. Let Assumptions (A), (B) and (C) hold. Then the operator Ly, is essen-
tially self-adjoint, and so in particular, L = Ly, = L3, is self-adjoint. The domain D
of L is

D={y€Dy: lim U(z;\)*Jy(z) =0, lim U’(x;\o)*Jy(z) = 0}. (2.23)
z—at T—b—

Remark 2.3. The identification of self-adjoint extensions of L. is taken up more fully
in the papers and book by Krall [22-24], and in the series of papers by Sun and Shi
[37-39]. Nonetheless, our formulation of Theorem 2.1 takes a different form, tailored to
our analysis, than the associated theorems in these references. In addition, our proof of
Theorem 2.1 will serve to set up some notation and relations that we will find useful in
the subsequent discussion.

Proof of Theorem 2.1. First, we check that £y, is symmetric. Using (2.19), we immedi-
ately see that for any y, z € D, we have

(Lxoys 2)By — (Y, Lx02) By = (Jy, Z)Z =0,
and we can similarly use (2.19) along with the identities (for y € D)

(Jya@?)z =0, (J%ﬂ?)z =0, (Jﬂ?ﬂz)g =0,
forall j,k € {1,2,...,n} (following from support of the elements in all cases). It remains
to show that

(Jag,ag)s =0 and (Jal,ap)h =0, (2.24)

but these identities are immediate from Lemma 2.3 (along with the analogous statement
associated with z = a), so symmetry is established.

Next, we’ll show that £y, is essentially self-adjoint. According to Theorem 5.21 in
[42], it suffices to show that for some (and hence for all) A € C\R,
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ran(Ly, — M) = L%, ((a,b),C*"), and ran(Ly, — AI) = L% ((a,b),C?").  (2.25)

Since we can proceed with any A € C\R, we can take \g from (2.22) as our choice. This
is what we’ll do, though for notational convenience we will denote this value by A for
the rest of this proof.

We will show that

ran(Ly, — A)* = {0}, and ran(Ly, — M)t = {0}, (2.26)
from which (2.25) is clear, since
L% ((a,b),C?") = ran(Ly, — M) @ran(Ly, — AI), (2.27)

and likewise with X replaced by .

Starting with the second relation in (2.26), we suppose that for some u €
L% ((a,b),C?"), ((Lx, — M)p,u)p, = 0 for all ¢ € Dy,, and our goal is to show
that this implies that u = 0. First, if we restrict to ¥ € D, then we have

(Le =MD, u)p, =0, Vo€ D,. (2.28)
This relation implies that u € dom((L. — AI)*) (= Dys), so we're justified in writing
<1/), (EM - )\I)’U,>Bl =0, VyeD.. (2.29)

Since D, is dense in L% ((a, b), C*"), we can conclude that u must satisfy (Lay—A)u = 0.
Next, we also have the relation

(Lrg — M), u)p, =0, Y1 € Span {{ﬂ?}?:p {a§}g:1}. (2.30)

For each j € {1,2,...,n}, 112’- € Dy, and we've already established that u € Dy, so we
can apply Green’s identity (2.19) to see that

((Lxrg — ;\I)ﬂ?, uyp, = (ﬁ?, (Lyr — ANu)p, + (Jﬂ?,u)z. (2.31)

Since (Lyr — A )u = 0, we see that (Ja$, )}, = 0. In addition, since @Y is zero near = = a,
we have (J&;’-, u)q = 0, and consequently we can conclude (Jﬂ;’-, u)p = 0. That is,

lim u(:c)*Jﬂ?(x;)\) = 0.

z—b~

If we take the adjoint of this relation, and recall that 112’- is identical to ug for x near b,

then we can express this limit in our preferred form

lim u%(x; \)* Ju(z) = 0.

r—b— J
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This last relation is true for all j € {1,2,...,n}, and a similar relation holds near z = a.
We can summarize these observations with the following limits

lim U%(z;N)*Ju(z) = 0,

r—at

lim U°(z; \)* Ju(z) = 0.

rz—b—

(2.32)

We would like to show the following: the first of these relations ensures that u can be
expressed as a linear combination of the columns of U%(-; A), while the second ensures
that u can be expressed as a linear combination of the columns of U%(+; ).

Here, u € Dj; and Lyyu = Au, so v must be a linear combination of the Niessen
elements that lie left in (a,b), and at the same time, v must be a linear combination
of the Niessen elements that lie right in (a,b). If we focus on the case z = b, our
labeling scheme sets {le?()\)}gbzl to be the Niessen subspaces satisfying dim le?()\) N
L% ((¢,b),C?") = 2 and sets {N?(A\)}/_,, ; to be the Niessen subspaces satisfying
dim N?(X) N L%, ((¢,b),C*") = 1. Here, we recall that 7, = mj — n, where my, denotes
the dimension of the space of solutions to (1.1) that lie right in (a, b).

The elements {u}(z;A\)}j2, and {v%(x;\)}72, are as described in Claim 2.1, and
by construction, the collection {{uf(x;\)}7 {v;’(a:,)\)};b:l} is a basis for the space
of solutions to (1.1) that lie right in (a,b), so we can write

j:la

u(w) = e (Vs ) + > dy (el ),

for some appropriate scalar functions (of A) {c;(A\)}7_;, {d;(A)}}2;. The boundary op-
erator

By(MNu:= lim U®(z; \)* Ju(x)

z—b—

annihilates the elements {ué’ (z; A)}7—1, so we immediately see that

By(MNu = i: d;(A)By(A)vh (-5 N).

According to Lemma 2.3, we have

T [ i #
(Bo A2 )i {H%O L

In this way, we see that

By(Nu = (dy( Mgy ... dpy(M)kr, 00 ... 0)7,
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and this can only be identically 0 if d;(A) = 0 for all j € {1,2,...,r,}. We conclude that
there exists a (*(\) € C™ so that u(x) = Ul(x; \)¢®()) for all x € (a,b), and similarly we
can check that there exists a (*(\) € C™ so that u(z) = U*(x; \)¢*(A) for all = € (a,b).
This allows us to compute, using (2.20),

2iIm )\Hu||2B1 = (Ju,u)? = (Ju,u)y, — (Ju,u),
_ (JUbe, chb)b o (JUaCa, Uaga)a =0.

We conclude from Atkinson positivity (i.e., Assumption (B)) that u = 0 in L% ((a,b),
C?"), and this establishes the second relation in (2.26).

We now turn to the first relation in (2.26). For this, we suppose that for some u €
Ly ((a,b),C?"), ((Lx, — M), u)p, = 0 for all 1) € Dy,, and our goal is to show that
this implies that u = 0. First, precisely as in the previous case, we can conclude that we
must have u € Dy, and Ly;u = Au, and continuing as with the previous case, we next
find that

lim U*(z; A\)*Ju(x) = 0,

z—at

(2.33)
lim U(x; \)* Ju(z) = 0.
z—b—
In this case, u solves the ODE system
Ju' = (Bo(z) + A\B1(2))u, (2.34)

so in particular there exists some vector ¢(\) € C?" so that

where ®(z;)) denotes a fundamental matrix solution for (2.34) with ®(c;\) = Iay,.
Recalling that U®(z; \) = ®(2; \)RP()), this allows us to compute

U (a3 0)" Ju(z) = RP(\)"@(a; A)* J@(z; A)C(A) = R*(N)*J¢(N),
where we’ve used (from (2.7)) the relation
O(z; \) TP (w5 \) = J.
In this way, we see that we can only have
lim U°(z; \)* Ju(z) =0
r—b—
if

RP(\)*J¢(N) = 0. (2.35)
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The n x 2n matrix R®(\)* has rank n, with corresponding nullity n, and we know from
Claim 2.2 that the kernel of R?(\)* is spanned by the columns of JR?()). We see that
(2.35) can only hold if ((X) € colspan R?()), and in this case there exists a vector (?(\) €
C™ so that ¢(A) = RP(A)¢®()), and consequently u(z) = ®(z; \)C(N) = U(z; M) (N).
Likewise, we must have u(z) = U®(z; A\)(*(\) for some ¢*(\) € C". Since u € Dy,
satisfies £yru = \u, (2.20) becomes

—2iIm A|ul|%, = (Ju,w)?,
= (JUP (5NN, U (N ))s = (JU(5 M)A, U5 A)CHA)
(2.36)

By construction, the columns of U%(z; \) are Niessen elements for (1.1) with A replaced
by A, and similarly for U?(z; \), so we can conclude from Lemma 2.3 (applied with A
replaced by A) that the two quantities on the right-hand side of (2.36) are both 0. In
this way, we see that |lul|p, = 0 and so u = 0 in L% ((a,b), C*"). This establishes the
second identity in (2.26).

Next, we characterize the operator £, along with its domain D = dom(L). First, we
have

L.C Ly, = L, CL,

and since Ejo = L and L} = Ly, we see that £ C Lys. This leaves only the question
of what additional restrictions we have on D (in addition to the requirements of D).
Here,

D = {u € Dy : there exists v € LQBI((a,b),(CQ”)
so that (Lx,¢,u)p, = (Y, v)p, for all ¢ € Dy, }.

Let uw € Dyy. For all ¢ € D., we can immediately write

<£)\0¢7U>Bl = <£C¢7U>B1 = <¢7£MU>BI = <w7v>317 (U = EMU),

so in particular there are no additional restrictions on D. On the other hand, for any
j€41,2,...,n}, we have Green’s Identity

(Lxgf,u)p, = (Uf, Laru) g, — (JTF,1)a, (2.37)

where we’ve recalled that 4 is 0 near x = b. We require (Ju§,u), = 0, and since this
must be true for all j € {1,2,...,n}, we obtain the additional condition

lim U®*(z; A\)*Ju(x) = 0.

r—at

(Here, we're using the fact that D C Dy to ensure that Lysu is the only candidate for
v.) Proceeding similarly for z = b, we obtain additionally
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lim U(x; \)* Ju(z) = 0.

T—b~
We've now exhausted the elements from D), so these are the only possible additional
constraints imposed on D. This completes the proof. O

By essentially identical considerations, we can establish a similar theorem for £%. In
this case, we introduce solutions {u$(z;A)}7_; to (1.1) initialized so that if U*(z;A)
denotes the 2n x n matrix comprising the elements {u§(x;A)}}_; as its columns, then

U(a; \) = Ja*. We now fix some Ag € C\R, and specify the domain

5, = Do+ Span { {5 (5 20) oy, {3 (5 00) Yo - (2.38)
We denote by L5 the restriction of Ly to DY, .

Theorem 2.2. Let Assumptions (A), (A)’, (B), and (C) hold. Then the operator L is
essentially self-adjoint, and so in particular, L% = L_fo = (L%,)" s self-adjoint. The
domain D of L% is

D ={y € Dy : ay(a) =0, hril U° (23 X0)" Jy(z) = 0}. (2.39)

T—b—
Remark 2.4. In conjunction with Lemma 1.1, we summarize the developments of Sec-
tions 2.1 and 2.2. In order to specify the operator £, we make a selection of Niessen
elements {u$(x;\)}j_; and {u?(a:; A}, as described in Claim 2.1, and we denote by
U?(x; A) the matrix comprising the vector functions {uf(z; A)}}_; as its columns, and by

n

U®(x; \) the matrix comprising the vector functions {ué’-(a:; M)}, as its columns. Then

L is obtained from the maximal operator £,; by imposing the boundary conditions

lim U%x;A\)*Jy(z) =0; and lim U°(x; \)*Jy(z) =0,

z—at z—b—

and £ is obtained from the maximal operator £$; by imposing the boundary conditions

ay(a) =0; and lim U°(z;\)*Jy(z) = 0.
z—b—

We conclude this subsection with some additional observations about the nature of
the self-adjoint operator £, beginning with a remark about the boundary conditions
specified in our definition of D in Theorem 2.1. On the surface, there appear to be n
conditions at each of z = a and z = b, which we could specify as

lim ul(z; No)* Jy(x) = 0;  lim wul(z;00)* Jy(x) =0, Vke{1,2,...,n}.

r—at r—b~

We check, however, in the following claim that for any y € Dy, the first condition
holds automatically for all k& € {r, +1,...,n}, while the second holds automatically for
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all k € {r, +1,...,n}. This means that in specifying D, we only genuinely impose r,
conditions at * = a and r, conditions at x = b. Moreover, the conditions imposed at
x = a correspond precisely with the Niessen elements {uf(x; \g)};~, corresponding with
respective Niessen subspaces {N{(Xo)}2, for which dim Nf(Xo) N L%, ((a,¢),C?*") =2,
and likewise the conditions imposed at z = b correspond precisely with the Niessen
elements {u? (x;\9)};2, corresponding with respective Niessen subspaces {N2(A\o)}32,
for which dim N/ (Xo) N L%, ((¢,b), C*™) = 2. It follows that we can equivalently specify
the domain D from Theorem 2.1 as

D= {y € Dy :xl—i>rzrzl+ ujp(x; Ao) Jy(x) =0, VEke{l,2,...,7r.},

lim ul(2; M) Jy(x) =0, VEke€{1,2,... ,rb}}.

r—b—

Claim 2.3. Suppose Assumptions (A), (B), and (C) hold, and fix any Ny € C\R. If
{ub (x; A0)}i—p, 1 18 @ choice of Niessen elements as specified in Claim 2.1, and y is any
element of the maximal domain Dy, then

lim u(z;No)*Jy(x) =0, VEke&{r,+1,...,n}.

r—b—

Likewise, if {uf(z;Xo)}j—,, 11 i a choice of Niessen elements specified similarly as in

Claim 2.1, and y is any element of the maximal domain Dy, then

lm wuj(z; Ao)* Jy(x) =0, VEke{r,+1,...,n}.

z—at

Proof. Since y € Dy, we have that there exists f € L ((a,b),C?") so that Lyy = f,
which we can express as

(ﬁM — )\0])y = f — )\oy.

We can view this as an inhomogeneous equation for y (i.e., with inhomogeneity f— Aoy),
and express the solution in the usual way as the sum of some particular solution to
the inhomogeneous problem and a linear combination of solutions to the associated
homogeneous problem.

For the particular solution y,, we note that A\g ¢ o(£), and so we can solve

(L—=XoD)yp = f — Aoy,
with
Yp = (L= XoI) 7' (f — Aoy) € D.

Since y, € D, we have the relations
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lim U(x; M) Jyp(x) =0,  lim U®(2;X)* Jyp(z) =0,

z—at z—b—

and so in particular

a:lig)l* uh (23 00) Jyp(2) =0, VEke{1,2,...,n}.

The homogeneous solutions yj, satisfy (Lar — Mol)yr = 0, and since y lies right in
(a,b), any such yh must be a linear combination of the Niessen elements {u (T3 M0) } =1
and {11 (23 X0)};%, (once again, as specified in Claim 2.1). Le., there exist constants
{ej(Mo) )= and {d (Ao)}7y so that

ci(Mo)ul (s o) + Y dj(Mo)vh (i No), ace. x € (a,b).

n Tb
—1 =1

J

Here, we emphasize that the elements {u (z;Ao)}7—; and {v (25 Xo)};2, are not generally
in Dy (they may not lie left in (a,b)), but they nonetheless comprise a basis for the
space of solutions of (1.1) (with A = \g) that lie right in (a, ). According to Lemma 2.3,
we have

lim Ub(ac;)\o)*Ju?(x) =0, Vje{l,2,...,n},

z—b—
SO

Tb

lim U®(2; M) Jyn(x) = lim UP(x;20)*T > dj(Xo)vl(; o)
r—b— r—b— =

_Zd (Mo) ( lim Ub(x; Ao)* Jvf(x;)\o)).

z—b~

In particular,

)

lim ud (25 No)* Jyn () = Zdj()\o)(zlig{ U,Z(JZ;AO)*JU?(JC; /\0))7 Vke{l,2,...,n}.

r—b— -
Jj=1

Writing y = yp, + yp, we see that

lim ul (2; X\o)*J Zd (Mo) ( hm ub (3 00)* J"u?(:c; /\0)>, Vke{l,2,...,n}.

r—b—

(2.40)
Last, we recall from Lemma 2.3 that for any k € {1,2,...,n} and j € {1,2,...,7}

lim uk(z Ao)* J"u?(a:;)\o) =0, Vj#k,

r—b—
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so in particular the set {v?(x;)\o)};b:l is annihilated under this limit by the set
{UZ(x§>‘0)}Z:rb+1- The claim now follows immediately from (2.40) for the case of
{uf (23 M)}y, 11, and the case of {ug(2;Xo)}_,. ; follows similarly. O

Remark 2.5. According to Theorem 3.11 in [43] (slightly adapted to our setting), if
u € Dy and

(Ju,u)o =0 VYov €Dy,

then w is in the domain of the minimal operator £y (see Remark 2.2). Accord-
ing to Claim 2.3, we have that for each of the Niessen elements {ui(m; AO)}Z:TbH,
(Ju,ub (-3 A0))p = 0 for all v € Dyy. If we modify the Niessen elements to {7 (x; A0) P hery 41
C Dy as described in (2.21), we see that for each k € {1,2,...,7}

(Ju, @8 (5 20)2 =0 Vo€ Dy.

We can conclude that these elements {a}(z; Ao)}j_,, 4, reside in the domain of the
minimal operator Dy. Notably for comparison with [43], this means that these elements
are zero elements of the quotient space Dy /Dy (cf. Theorem 4.6 in [43]).

Turning to our second observation about £, we note that it’s clear from the speci-
fication of D that L appears to depend on Ay through the boundary conditions. Let’s
temporarily recognize this possible dependence by writing £ as L£(Ag), and with this
notation in place, we ask the following question: is it the case, as one might expect, that
L(Xo)* = L(X\o)? In order to answer this, we first observe that when we write £()\g), we
mean the closure C_XO, where Ly ~denotes the restriction of the maximal operator £y
(which certainly has no dependence on Ag) to the domain

Dy, = D, + Span {{ag(.; M)}y, {325 M) ;;1}, (2.41)

where the elements {a}(+; o) 7, and {ﬁ;’(, ) _, are modifications as described fol-
lowing Lemma 2.5 of the Niessen elements {u}(:; o) "y and {ul(;; o) 7y described
in the second part of Claim 2.1 (details only given for {u’(-; o) ?_1)- By construction,
U (5 20) = ®(2; 20)R*(Xo), UP(; 00) = (5 M0)R’(No), U (w; Ao) = ®(; Ao)R*(No),

and Ub(x; A\g) = ®(x; Ao)RP(Ng), where R?()\g) and R®()\g) are described in Claim 2.2,
and R%(\g) and R%(\g) are similar. It follows that

U(2500)* JU (3 Xg) = R*(Xo)* @ (3 Xo)* T (25 Mo )R (Ng) = R*(No)* JR*(No),
where in obtaining the second inequality we have used (2.7). From the proof of Claim 2.2

we have R*(\)*JR%(A\g) = 0, so we can conclude that U®(z; \g)*JU®(z; Ag) = 0 for all
z € (a,b), yielding trivially
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lim U“(x; Ao)* Ji (x5 Ag) = 0

r—at
for all j € {1,2,...,n}. On the other hand, from the support of the modified elements
{a (z; 5\0)};‘:1 we trivially have

lim Ub(x;)\o)*Jﬂ?(m; Xo) = 0,

x—b~
so that {uf(x; o) "_, C D. Likewise, {a}(x; o) %_; C D, and in this way we see that
Dy, C D. As in the proof of Theorem 2.1, we can check that L5  is essentially self-adjoint,
so that L5 is a self-adjoint operator, and since D5 C D, we must have dom(Ly ) = D,
so that L5 = L(\o). But L5, = L(\o), so we have

L(Xo)* = L(Ao) = L(Ao)-

As a final observation about £, we note that during the proof of Claim 2.3 we see that
any y € Dy can be decomposed as y = y, + yn, where y, € D and y;, is an appropriate
linear combination of Niessen elements that lie right in (a, b) (or, alternatively, an appro-
priate linear combination of Niessen elements that lie left in (a, b)). Since y, necessarily
satisfies the limits

lim U®(2;00)* Jyp(z) = 0;  lim UP(x; \o)* Jyp(x) = 0,
z—at z—b—
and similar limits exist (though are not necessarily 0) for all Niessen elements appearing
in yp, we can conclude that for any y € Dy, the limits

lim U%(x; Xo)* Jy(z);  lim UP(x; \o)* Jy(z),

z—at z—b—
certainly exist. The boundary conditions specified in D then just eliminate elements
y € Dy for which one or both of these (well-defined) limits is non-zero.

2.8. Continuation to R

In the preceding considerations, we fixed some Ay € C\R and used this value to specify
the self-adjoint operators £ and £%. With these operators in hand, we would next like to
fix values A € R and construct solutions u®(x; A) to Ly = Ay that lie left in (a,b), along
with solutions u®(z;\) to Ly = Ay that lie right in (a,b) (and similarly for £). One
difficulty we face is that the matrix A(x; \) from Section 2.1 is not defined for A € R,
and so we cannot directly extend Niessen’s development to this setting. (Though see
Section 5 for a calculation along these lines.) Instead of extending Niessen’s development
directly, we’ll take advantage of our assumption that [\, A2] does not intersect the
essential spectrum of our operator of interest, along with a standard theorem from [43]
about self-adjoint operators.
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As a starting point, we fix some ¢ € (a,b) and consider (1.1) on (c,b) with boundary
conditions

7y(c) =0, (2.42)

and

lim U°(x; \o)* Jy(x) = 0, (2.43)

r—b—

where the boundary matrix v € C™*?" must satisfy
ranky =n, and yJy* =0, (2.44)

but otherwise will be chosen as needed during the analysis.
Similarly as in Section 2.2, we can associate (1.1)-(2.42)-(2.43) with a self-adjoint
operator L], with domain

D]y :={y € Depmr 1 yy(c) =0,  lim UP(z; M) Jy(z) = 0}.

z—b~

Here, D, v denotes the domain of the maximal operator associated with (1.1) on (c, b).
We start with a lemma.

Lemma 2.6. Let Assumptions (A), (B), and (C) hold. For any fixed A € C, suppose
ub(x; X)) and v°(x; \) denote any two solutions of (1.1) (if such solutions erist) that lie
right in (a,b) and satisfy (2.43). Then

(Jub (5 ), 0% (55 0)p = 0.

Proof. First, with ¢ as specified prior to the lemma, we can use Lemma 2.5 to construct
functions @°(-; A), #°(;; A) € Depar S0 that

near r = ¢ near r = ¢

0 0
(23 \) = (3 \) =
ub(z;\) near v =b, ub(z;\) near x = b.

Since @’(x;\) and ©°(z;)) lie right in (c,b) and satisfy (2.43), it’s clear that
ab(x; \), 9°(2; ) are contained in D], Using self-adjointness of L], we can write
0= (£, (), 0" (5 \)my — (@ (5 ), £2,7°( ) By
= (Ja'(5 1), 0°(5A)e = (Ja" (5 A), 8° (5 ).

Since @°(z;\),?%(x;\) are identical to ub(z;\),v°(x;\) for = mear b, this gives the
claim. O
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Lemma 2.7. Let Assumptions (A), (B), and (C) hold. Then for any fized X € R, the
space of solutions of (1.1) (if such solutions exist) that lie right in (a,b) and satisfy
(2.43) has dimension at most n. In the event that the dimension of this space is n, we let
{u (z;A)}7—; denote a choice of basis. Then for each x € (a,b) the vectors {u (z; \)}7
comprise the basis for a Lagrangian subspace of C?".

j=1

Proof. Let d denote the dimension of the space of solutions of (1.1) that lie right in
(a,b) and satisfy (2.43), and suppose d > n. Let {u}(x; \)}9_; denote a basis for this
space, and notice that for any j,k € {1,2,...,d} (and with ' denoting differentiation
with respect to ),

(ul(a; ) Jup (2 X)) = b’ (a3 \)* Jug (3 A) + ul (@3 ) Jup/ (23 N)
—(Jub (s X)) uf (3 A) + uj (s N)* Tup (3 A)
—((Bo(@) + ABu(x))uf (; ) ug (3 A) + uf (25 )* ((Bo(x) + ABi(2))uj,(x; A)
uj (3 A)* ((Bo(w) + ABi(2)uj, (23 A) + uf (23 A)* ((Bo(2) + ABi(2))uj, (23 A) = 0.

We see that u?(ac; A)*Jub (23 \) is constant for all x € (a,b). In addition, according to
Lemma 2.6, we have

11r£17 uj( 3 \)*Jul (z; ) = 0.

We conclude that u5(z; A)* Juj,(«; A) = 0 for all z € (a,b).

We see 1mmed1ate1y that the first n elements {u (z; \)}?_, (or any other n elements

1
taken from {uf(xz;\)}9_,) form the basis for a Lagranglanj subspace of C2?" for all x €
(a,b). If d > n, we get a contradiction to the maximality of Lagrangian subspaces, and
so we can conclude that d = n (recalling that this is under the assumption that d > n).
This, of course, leaves open the possibility that the dimension of the space of solutions

of (1.1) that lie right in (a,b) and satisfy (2.43) is less than n. O

Lemma 2.8. Let Assumptions (A), (B), and (C) hold. Then for any fized A € R, there
exists a matriz v € C™*2" satisfying (2./4) so that X is not an eigenvalue of L,

Proof. First, we recall that A is an eigenvalue of Ez’b if and only if there exists a solution
y(:;A) € ACioc([c,b), C*") N L, ((c,b),C*™)

to (1.1) so that (2.42) and (2.43) are both satisfied. Also, according to Lemma 2.7, the

space of solutions of (1.1) that lie right in (¢, b) and satisfy (2.43) has dimension at most

n. We begin by assuming that this space of solutions has dimension n, and we denote a
basis for the space by {uf(x; \)}/_,
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As usual, we let ®(x; \) denote a fundamental matrix for (1.1), initialized by ®(c; \) =
Iy, If U%(z; \) denotes the matrix comprising {u?(x; A)}j—; as its columns, then there

Rb()‘)) so that

exists a 2n X n matrix Rb(/\) = (Sb()\)

U(w;A) = ®(2; )R (M),
for all « € [c,b). Recalling the identity
O(z; ) TO(x;A) =J
(i.e., (2.7) with A € R), we can compute
UP(z; N JUb (25 X) = RE(O\)*®(2; M) * J®(2; )RP(N) = RP(A\)*JRY(N).

We know from Lemma 2.7 that U®(x;\) is a frame for a Lagrangian subspace of C2",
and it follows immediately that the same is true for R%()).

A value A € R will be an eigenvalue of Elb if and only if there exists a vector v € C"
so that y(z; \) = ®(z; \)RP(A\)v satisfies

vy(e; A) = 0,

which we can express (since ®(c;\) = Ia,) as YR?(A\)v = 0. This relation will hold for
a vector v # 0 if and only if the Lagrangian subspaces with frames Jv* and R’()\)
intersect. We choose v = R?(\)*, noting that in this case

yJy* =RE(\)*JRP(N) = 0

(i.e., this is a valid choice for v, satisfying (2.44)) but yR?(A) = R?(\)*RP()) is certainly
non-singular, so A is not an eigenvalue of Elb.

In the event that the space of solutions of (1.1) that lie right in (¢, b) and satisfy (2.43)
has dimension less than n, the matrix R?(\) (as constructed just above) will have fewer
than n columns, but we can add columns (which don’t correspond with solutions of (1.1)
that lie right in (c,b) and satisfy (2.43)) to create the basis for a Lagrangian subspace
of C?". We can then proceed precisely as before, and we conclude that the Lagrangian
subspace with frame Jv* does not intersect the Lagrangian subspace with frame R?()),
certainly including the elements that correspond with solutions of (1.1) that lie right in
(c,b) and satisfy (2.43). O

Remark 2.6. It’s clear from the proof of Lemma 2.8 that the boundary matrix v generally
depends on the value A. In cases for which this dependence is especially important to
the discussion, we will write () for clarity.
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Lemma 2.9. Let Assumptions (A), (B), and (C) hold. In addition, let A1, 2 € R, \; <
A2, and suppose gess(L) N [A1, A2] = 0. Then for each X € [\, A2], the space of solutions
of (1.1) that lie right in (a,b) and satisfy (2.43) has dimension n. If we let {u?(x; M
denote a basis for this space, then for each x € (a,b), the vectors {u?(x; A)}i_1 comprise
a basis for a Lagrangian subspace of C*".

Proof. We fix any A\ € [A1, Ao], and observe from Lemma 2.8 that we can select y(\) €
C™*27 gatisfying (2.44) so that ) is not an eigenvalue of EZ’(Z;\). In addition, we know from
Theorem 11.5 in [43], appropriately adapted to our setting, that aess(ﬁz’(bk)) C Oess(L), sO
we can conclude (using our assumption gess(£) N[A1, A2] = 0) that, in fact, A € p(EZ’(b/\)).
This last inclusion allows us to apply Theorem 7.1 in [43], which asserts (among other
things) that the space of solutions of (1.1) that lie right in (¢, b) and satisfy (2.43) has
the same dimension for each A\ € p(ﬁz,(b)‘)). We know by construction that for Ag this
dimension is precisely n, and so we can conclude that it must be n for our fixed value
A € [A1, A2] as well. We can now conclude from Lemma 2.7 that this space must be
a Lagrangian subspace of C?" for each x € (c,b). Finally, we note that the elements
{ulj’»(x; A)}7_; extend by linear continuation to (a,b) and lie right in (a, b) if and only if
they lie right in (¢,b). O

Lemma 2.10. Let Assumptions (A), (B), and (C) hold, and suppose that for some
fized A\« € R there is an open interval I containing A so that oess(L) N1 = (. Let
{ug(x;k*)};—gl denote a basis for the n-dimensional space of solutions of (1.1) that lie
right in (a,b) and satisfy (2.43) (guaranteed to exist by Lemma 2.9). Then there exists
a boundary matriz v, = v(As) and a constant r > 0, depending on A\, and L:Z’*b, so that
the elements {ul(x; \.)})—, can be analytically extended in X to the ball B(A;7). The
analytic extensions {ulj(x, A}y comprise a basis for the space of solutions of (1.1) that

lie right in (a,b) and satisfy (2.43), and moreover they satisfy the relations
J(@,\ug)’(x; A) = Bl(x)u?(:c; A) + (Bo(z) + ABy (m))@,\ug’»(m; A), (2.45)
for all (x,\) € (a,b) x B(A;1), and

lim ul(w; N )*JOhub (25 0.) =0, Vi ke{l,2,...,n}. (2.46)

z—b— 7

Proof. Let A, € [\, A2] be fixed, and use Lemma 2.8 to find a boundary matrix . so
that A\« € p(£]%). Our extensions {ub(x; A)}7_, will satisfy the equation

J(u}) = (Bo(x) + ABy(z))ul, (2.47)

which we can re-write as

J(uf) — (Bo(x) + \Bi(2)ul = (A — A) By (z)ul. (2.48)

J
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If a solution to (2.48) exists and is contained in DZ,*bv then we can express it as
Fj (2300, 0) = (A = M)(L8, = AD)Thuj(52)
Here, the resolvent
R(LT M) = (L2~ M)

maps elements of L% ((c,b),C*") into D7, so in particular F}’(x; Axy A) lies right in (c, b)
and satisfies (2.43).

Clearly, F j’.’(x; Ass Ax) = 0, so in order to identify an analytic extension of ug(m; Ax)s
we look for solutions of (2.47) of the form

ul (s A) = uf (25 A) + (A = M)R(LL Al (5 A). (2.49)

Rearranging terms, we can express this relation as

(I = (A= X)R(LL Al (5 A) = ub (5 M) (2.50)
By the standard theory of Neumann series (for example, the discussion of Example 4.9
on p. 32 of [19]), if

[ = AR(EZ A < 1 (251)
then we can solve (2.50) with
WBN) = (1= (A= AR A) (M), 2:52)

Here, the map A — u5(-;A) € L ((a,b), C?") is analytic in X.
Since A\, € p(ﬁz*b), there exists a constant C' > 0, depending on A, and El*b so that

IR(LE: A < C.

In this way, we see that we can use (2.52) so long as |A — A| < r :=1/C. We conclude

that (2.49) has a unique solution u}(+;X) € L% ((a,b),C?"). We've already noted that
Fjl?(x; As;A) is contained in D]}, and we also have that ué’»(-; M) lies right in (¢,b) and

satisfies (2.43). We can conclude that u?(:n;)\) is a solution of (2.47) that lies right in
(¢,b) and satisfies (2.43). Proceeding similarly for each j € {1,2,...,n}, we obtain a
collection of extensions {u?(x; Mg

In addition, by virtue of (2.50)-(2.52), we see that {uz’-(x;)\)};}:l inherits linear in-
dependence from the set {u}(z;\.)}7—;. We conclude from Lemma 2.7 that the set
{u?(x, M)} comprises a basis for the space of solutions of (1.1) that lie right in (c,b)

and satisfy (2.43), and additionally that for each z € (¢,b) the vectors {uf(x; A)}/_,
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comprise the basis of a Lagrangian subspace of C2". As in the proof of Lemma 2.9, the
elements {u (z; M)} extend by continuation to (a,b) and lie right in (a,b) if and only
if they lie right in (c b).

We emphasize that in the preceding discussion the analyticity refers to analyticity of
the map A — u}(+; A) taking elements A € B(A,;7) to elements u%(; ) € Lg ((c,b),C").
To conclude our proof, we additionally verify that for each fixed € [c,b) the map
A ué’.(m; A) is analytic as a map from B(\;r) to C2". For this, we will use the Green’s
function for £Z,*b — A1, which is constructed in detail in our appendix (with no use of
the current extensions). Denoting this Green’s function GZ:‘b(x,f ; Ax), we can write, for
any [ € L, ((c.b).C*"),

R(LT A f = / G (2,6 M) B () F(€)de.

In Section A.1, we will show that G (x,&; A\s) can be expressed as

G (2,65 0.) = ~B(z;0) (00 RPOL)) M) (J(1)* 0)" ®(&M)* c<E<az<b
T 2@ (J0)T 0 M) (00 RYA))T@(EN)T e<a<E<h,

where M(\,) is a fixed 2n x 2n matrix as specified in Section A.1, ®(z; ) is a fun-
damental matrix for (1.1) initiated with ®(c; \.) = I2,, and the matrix U®(x; \,), with
columns {u (z; M)}, has been expressed as Ub(z; M) = ®(z; M) RO (\).

Fixing € [¢,b), we observe that ®(-; \.)(J(v.)* 0) € L% ((¢,b),C?") (by continuity
on a bounded interval), and ®(-; A.)(0 R*(\,)) € L% ((z,b),C?") (since ®(+; A )RP(A,)
lies right in (¢, b)). It follows readily that there exists a value C'(z; A«) so that

|((RIEL AN @)] < Ca AN 2, (e, c2

for all f € L% ((c,b),C?"). Using, in addition, the boundedness of R(LI%; M), We can

write

(R(CZ},%A*)kU?(ﬁ)\*))(x)‘ < O M) IRLT M) 5 (5 M) 12, (o). c2m)

< O A IRALT s Al (5 ALz, (b, c2m)-
Based on the right-hand side of (2.52), we can consider the sum
(T=A=AIR(LL X)) M (5 A)) (@) = D A=A (R(LT: M) b (500)) (). (2.53)
k=0

The summands are bounded by
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A= Aff [ (R(LT3 ) Ful (5 00)) ()
(2.54)

< A= A PC @ A IREEL AP (A2, (enezn):

so that as long as (2.51) holds, the sum (2.53) converges absolutely, and so necessarily
to an analytic function of .

To understand (2.45), we first observe from (2.53) and (2.54) that for any d € (¢, b)
there exists a value K, depending only on ¢, d, A., and r, so that

uf(z; )] < KoV (,A) € [e,d] x B(Ass7).

(Here, we are using the fact that C'(z; A.) is bounded on compact subsets [c,d] C [¢,b).)
Next, upon term-by-term differentiation of the series on the right-hand side of (2.53),
we see that

Oy (@5 2) = SR\ = AL R(LT: A Ful (5 00)) (@), (2.55)
k=1
from which we can estimate
|Oauf (25 M)] < Ca; ) [|uf (5 Az, ((e,b),c2m) D EX = AT IR(LT Al

k=1
We can conclude similarly as for u?(:c; A) that for any d € (¢, b) there exists a value K7,
depending only on ¢, d, A\, and r, so that
|8,\u§’-(x; M <K;p VY (x,A) € [c,d] x B(A;7).

Starting now from the relation (2.47), we can integrate to write

x

Jub(w; A) = Jub(e: ) + / (Bo(€) + AB1 (6))ul (€ \)de.

(&

According to the above estimates the quantity dx((Bo(§)+ABy (f))u?({; A)) is dominated
uniformly in A € B(A,;r) by the integrable (on [c, z]) function

[B1(&) Ko + (IBo(E)] + ([As] +7)[B1(E)]) K-

These considerations justify the use of the Lebesgue Dominated Convergence Theorem
to differentiate under the integral sign in A to get

x

JOuj(w; ) = Joxu(e; \) +/Bl(€)ug(€;>\) + (Bo(€) + AB1(€))duj (& N)dE.

C
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Differentiating subsequently in z, we obtain (2.45).
Turning to (2.46), if we substitute A = A, into (2.55), we obtain the relation
Oxu (M) = (R(LY: A)uj (5. 00)) ().
Here, R(L]%; A\) maps L, ((c,b), C*") into D3, and so in particular Oaub(x; A, ) satisfies
(2.43). Tt follows as in the proof of Lemma 2.6 that

lim ui(w;)\*)*JaAu?(m; Ae) =0,
T—b~

for all k € {1,2,...,n}, and since this is true for all j € {1,2,...,n}, we can conclude
(2.46). O

Lemma 2.11. Let Assumptions (A), (B), and (C) hold, and suppose A1, Ao € R, A1 < Ao
are such that oess(L) N [A1,A2] = 0. In addition, for each (x,A) € (a,b) X [A1,As],
let £y(z;A) denote the Lagrangian subspace with basis {uz’-(:c;/\)}?zl constructed in
Lemma 2.9. Then £y : (a,b) x [A1,A2] — A(n) is continuous, and moreover, we can
choose the basis elements for y(x; \) to be piecewise analytic in X in [A1, Aa].

Proof. First, for each fixed A, € [A1, \2], we can use Lemma 2.10 to obtain a locally

analytic family of bases {ug’)‘* (z; M)}y, for all [\ = A.| < 7., where r, > 0 is a constant
depending on A, and £]%. This process creates an open cover of [A1, A2], comprising the

union of all of these disks. Next, we use compactness of the interval [A1, As] to extract

N

a finite subcover, which we denote {B(\;71) j—1, where for notational convenience, we

can select the values {)\i}jvzl so that
M= A <A< . <AV =),

and where the values rJ > 0 are constants respectively associated with the values M in
our construction of the family of disks.

Starting at AL, we can take {u}(z; A1)}

=1 to be a basis for the Lagrangian subspace

1
Oy(z; AL). As ) increases from AL, the analytic extensions {u?’A*(x;)\)}}‘:l in B(ALr})
comprise bases for the Lagrangian paths £,(z;\). By construction, the set B(A\j;7l) N

B()\%;r2) must be non-empty. We take any A2 € R in this intersection, and we note

*9 0ok
1
that at this value of A the analytic extensions {u;”‘ (; )\i’2)}§-‘:1 in B(AL,rl) serve as

n

. . . . b,A2 1,2
a basis for the same Lagrangian subspace as the analytic extensions {uj (z; A7) i=1

1
in B(\2,r2). This allows us to continuously switch from the frame {u?’)‘* (z; )\1’2)};;1 to

bAZ, (1,2
the frame {u;™" (z; A7)}, ]
We now allow A to increase from A1, and take the elements {u?’)‘* (z; M)}, as our
choice of bases for the Lagrangian subspaces £,(x; \). By construction, the set B(A\Z;r2)N

B()\2;r?) must be non-empty, and we take any A2% € R in this intersection, noting that
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2
at this value of A\ the analytic extensions {u?’A*(x;)\z’s)}?:l in B(A\2,72) serve as a

3
basis for the same Lagrangian subspace as the analytic extensions {u?—’)‘* (x; )\3’3)}?:1 in
B(\2,r?). Continuing in this way, we see that £ : (¢,b) X [A\1, 2] — A(n) is continuous.
Summarizing our notation, the interval [A1, A2] has been partitioned into values

A = A0 < AL2 c \23 L \NELN c ZNNFL L

k
and we use the frame {ug’/\*(x; A)}j—y on the interval AFTLE ABRL for all k=
k
1,2,...,N. It’s clear from the construction that for each j € {1,2,...,n}, u?’A* (z;\) is
ARk 3Rkl
1,2

analytic in A on ( , so the frame obtained by patching these bases together

at the points {)\8’1, A5, )\iV’NH} is piecewise analytic. O

With appropriate modifications, Lemmas 2.6-2.11 can be stated with {u$(z; )}/,
replaced by {uf(x;A)}}_;. In addition, under the assumption (A)’, the analysis of £ in
this section can be carried out for £%, and in particular, Lemmas 2.9, 2.10, and 2.11
hold with £ replaced by L.

3. The Maslov index

Our framework for computing the Maslov index is adapted from Section 2 of [16], and
we briefly sketch the main ideas here. Given any pair of Lagrangian subspaces ¢; and {5

with respective frames X; = ();11) and X5 = (ij% we consider the matrix

W= —(X; +iY1) (X1 —iY7) N (Xe —iYa)(Xp +iYs) "t (3.1)

In [16], the authors establish: (1) the inverses appearing in (3.1) exist; (2) W is indepen-
dent of the specific frames X; and X5 (as long as these are indeed frames for ¢; and /¢5);
(3) W is unitary; and (4) the identity

dim(¢; N £y) = dim(ker(W 4 I)). (3.2)

Given two continuous paths of Lagrangian subspaces ¢; : [0,1] — A(n), i = 1,2, with
respective frames X; : [0,1] — C2"X"_ relation (3.2) allows us to compute the Maslov
index Mas(¢1,¢2;[0,1]) as a spectral flow through —1 for the path of matrices

W(t) == —(X1(t) + 1YL (£)) (X1 (t) —iYi()) (X (t) — iYa(t))(Xa(t) +iYa(t) L. (3.3)

In [16], the authors provide a rigorous definition of the Maslov index based on the
spectral flow developed in [29]. Here, rather, we give only an intuitive discussion. As
a starting point, if —1 € (W (t,)) for some t, € [0,1], then we refer to t, as a cross-
ing point, and its multiplicity is taken to be dim(¢;(t.) N ¢2(t.)), which by virtue of

(3.2) is equivalent to the multiplicity of —1 as an eigenvalue of W (t,). We compute the
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Maslov index Mas(¢1, ¢2; [0,1]) by allowing ¢ to increase from 0 to 1 and incrementing
the index whenever an eigenvalue crosses —1 in the counterclockwise direction, while
decrementing the index whenever an eigenvalue crosses —1 in the clockwise direction.
These increments/decrements are counted with multiplicity, so for example, if a pair of
eigenvalues crosses —1 together in the counterclockwise direction, then a net amount of
+2 is added to the index. Regarding behavior at the endpoints, if an eigenvalue of W
rotates away from —1 in the clockwise direction as t increases from 0, then the Maslov
index decrements (according to multiplicity), while if an eigenvalue of W rotates away
from —1 in the counterclockwise direction as ¢ increases from 0, then the Maslov index
does not change. Likewise, if an eigenvalue of W rotates into —1 in the counterclockwise
direction as t increases to 1, then the Maslov index increments (according to multiplic-
ity), while if an eigenvalue of W rotates into —1 in the clockwise direction as ¢ increases
to 1, then the Maslov index does not change. Finally, it’s possible that an eigenvalue
of W will arrive at —1 for t = ¢, and remain at —1 as t traverses an interval. In these
cases, the Maslov index only increments/decrements upon arrival or departure, and the
increments/decrements are determined as for the endpoints (departures determined as
with ¢ = 0, arrivals determined as with ¢ = 1).

One of the most important features of the Maslov index is homotopy invariance, for
which we need to consider continuously varying families of Lagrangian paths. To set
some notation, we denote by P(Z) the collection of all paths L£(t) = (¢1(t), ¢2(t)), where
01,05 : T — A(n) are continuous paths in the Lagrangian—Grassmannian. We say that
two paths £, M € P(Z) are homotopic provided there exists a family H; so that Ho = L,
H1 =M, and H,(t) is continuous as a map from (t,s) € Z x [0,1] into A(n) x A(n).

The Maslov index has the following properties.

(P1) (Path Additivity) If £ € P(Z) and a,b,c € Z, with a < b < ¢, then

Mas(L; [a, ¢]) = Mas(L; [a, b]) + Mas(L; [b, c]).

(P2) (Homotopy Invariance) If Z = [a,b] and £, M € P(Z) are homotopic with L(a) =
M(a) and L(b) = M(b) (i-e., if £, M are homotopic with fixed endpoints) then

Mas(L; [a, b]) = Mas(M; [a, b]).

Straightforward proofs of these properties appear in [15] for Lagrangian subspaces of
R27, and proofs in the current setting of Lagrangian subspaces of C2" are essentially
identical.

As noted previously, the direction we associate with a crossing point is determined by
the direction in which eigenvalues of W rotate through —1 (counterclockwise is positive,
while clockwise is negative). In order to analyze this direction in specific cases, we will
make use of the following lemma from [16].
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Lemma 3.1. Suppose {1, : T — A(n) denote paths of Lagrangian subspaces of C*" with
respective frames X, = ();11) and Xo = (i(,;) that are differentiable at ty € Z. If the
matrices

=X (to)*JX (to) = X1(to) Y] (to) — Y1(to)" X1 (to)
and (noting the sign change)
X (to)* JX5(to) = —(X2(to) Y5 (to) — Ya(to)* X5(t0))

are both non-negative, and at least one is positive definite, then the eigenvalues of W(t)
rotate in the counterclockwise direction as t increases through ty. Likewise, if both of these
matrices are non-positive, and at least one is negative definite, then the eigenvalues of
W (t) rotate in the clockwise direction as t increases through to.

4. Proofs of the main theorems
In this section, we use our Maslov index framework to prove Theorems 1.1 and 1.2.
4.1. Proof of Theorem 1.1

Fix any pair A, A2 € R, A\; < Ag, so that gess(£Y) N [A1, A2] = 0, and let £4(z; )
denote the map of Lagrangian subspaces associated with the frames X, (x;\) specified
in (1.3). Keeping in mind that Ay is fixed, let £,(x; A2) denote the map of Lagrangian
subspaces associated with the frames Xj(x; A2) specified in (1.4). We emphasize that
since Ao is fixed we don’t yet require Lemma 2.11 to extend the frame Xj(x; A2) to
additional values A € [A1, A2]. We will establish Theorem 1.1 by considering the Maslov
index for £, (x; ) and £p(z; A2) along a path designated as the Maslov boz in the next
paragraph. As described in Section 3, this Maslov index is computed as a spectral flow
for the matrix

Wz A) = —(Xa(2;0) + 1Yo (25 0) (Xa (25 \) — iV (23 0)) 71

(4.1)
X (Xp (x5 X2) — 1Y (23 M2)) (Xp (25 X2) + Y3 (23 A2)) 1.

By Maslov Box, in this case we mean the following sequence of contours, specified for
some value ¢ € (a,b) to be chosen sufficiently close to b during the analysis (sufficiently
large if b = 400): (1) fix z = a and let X increase from Ay to Ag (the bottomn shelf); (2)
fix A = A2 and let x increase from a to ¢ (the right shelf); (3) fix x = c and let A decrease
from Ay to A1 (the top shelf); and (4) fix A = A; and let « decrease from c to a (the left
shelf). (See Fig. 4.1.)

Right shelf. We begin our analysis with the right shelf, for which X, and X, are both
evaluated at Ag. By construction, ¢, (+; A2) will intersect £,(+; A2) at some x (and so for
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T
— Mas(la(c; ), €(c; A2); [M1, Az)
+ ¢
= =
> S
= 9
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= <
< =
= =
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Mas(la (a3 -), €y (a; X2); [A1, A2])
+ a
A A1 A2

Fig. 4.1. The Maslov Box.

all z € [a, c]) with dimension m if and only if A is an eigenvalue of £ with multiplicity
m. In the event that A, is not an eigenvalue of £, there will be no crossing points along
the right shelf. On the other hand, if A5 is an eigenvalue of £* with multiplicity m, then

W (x; A2) will have —1 as an eigenvalue with multiplicity m for all « € [a,c|. In either

case,
Mas(la (- A2), €p(+; A2); [a, c]) = 0.

Bottom shelf. For the bottom shelf, £, (a; \) is fixed, independent of A, so in particular

lo(a; A) = Lo(a; A2) for all A € [A1, A2]. In this way, W(a; \) is actually independent of
A, and so we certainly have

Mas(ﬁa(a; -),Eb(a; )\2); [)\1, )\2]) =0.

Moreover, £,(a; A) will intersect £;(a; A2) with intersection dimension m if and only if
Ao is an eigenvalue of £* with multiplicity m. In the event that Ao is not an eigenvalue
of £, there will be no crossing points along the bottom shelf. On the other hand, if Ao
is an eigenvalue of £% with multiplicity m, then W(a; A) will have —1 as an eigenvalue
with multiplicity m for all A € [Aq, Aa].

Top shelf. For the top shelf, W (¢; \) detects intersections between £ (c; \) and £, (c; A2)
as A decreases from Ao to A;. Such intersections correspond precisely with eigenvalues of

the finite-interval (or truncated) operator £ ., with domain

Dg,c = {y € Da,c,M : ay(a) =0, Xb(c; AQ)*Jy(C) = 0}1

where D, . ar denotes the domain of the maximal operator specified as in Definition 1.1,
except on (a, ¢). Similarly as in Section 2, we can check that LY . is a self-adjoint operator.
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(In fact, since L .. is posed on a bounded interval (a, ¢) with By, By € L*((a, ¢), C*"*2"),
self-adjointness can be established by more routine considerations.)

We know from Lemma 3.1 that monotonicity in A is determined by
—Xa(c; N)*J0x X0 (5 A), and we readily compute

(,%XZ(J:; N JIhX (73 A) = XL (2 M) T X (5 N) + X (25 M) TOX (25 M)

= =X/ (2; )" J*O\X o (25 \) + Xo (23 \)*ONI XL, (25 N)
= —Xa(@;A)" (Bo(z) + AB1(2)) 0 Xa(z;A)
+ Xa(x; ) (Bo(z) + AB1(x)) 02X (23 A) + X500 (Bo(x) + AB1(2)) X (25 A)

=X (z; \)* By ()Xo (x; N),

where the differentiation of X, (z;A) in « and A, including the exchange of order of
these derivatives, is straightforward since the columns of X, (z;\) are simply solutions
to standard initial value problems. Integrating on [a, z], and noting that 95X, (a; A) = 0,
we see that

X o (@5 A)* 03K o (a3 A) = / X o (4 N B ()Xo (5 )y

Monotonicity along the top shelf follows by setting x = ¢ and appealing to Assumption
(B). In this way, we see that Assumption (B) ensures that as A increases the eigenvalues
of W (e; \) will rotate monotonically in the clockwise direction. Since each crossing along

the top shelf corresponds with an eigenvalue of Lg ., we can conclude that

Nae([A1;A2)) = = Mas(la(c; -), £ (c; A2); [A1, Az)), (4.2)

where N ([A1, A2)) denotes a count, including multiplicities, of the eigenvalues of L .
on [A1, /\2) We note that A; is included in the count, because in the event that (c, )\1)
is a crossing point, eigenvalues of W(c, A) will rotate away from —1 in the clockwise
direction as A increases from \; (thus decrementing the Maslov index). Likewise, Ao is
not included in the count, because in the event that (¢, A2) is a crossing point, eigenvalues
of W (e; A) will rotate into —1 in the clockwise direction as A increases to Ao (thus leaving
the Maslov index unchanged).

Left shelf. Our analysis so far leaves only the left shelf to consider, and we observe
that the Maslov index on the left shelf can be expressed as

—Mas(,(-; A1), €b(; A2); [a, c]).

Using path additivity and homotopy invariance, we can sum the Maslov indices on each
shelf of the Maslov Box to arrive at the relation
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N (A1, A2)) = Mas(La (55 A1), 4o (- A2); [a, c]). (4.3)

In order to obtain a statement about N*([A1,\2)), we observe that eigenvalues of
L~ correspond precisely with intersections of £, (c; A) and €(c; A). (We emphasize that
in this last statement, ¢, is evaluated at A, not Ay, and so we are using Lemma 2.11).
Employing a monotonicity argument similar to the one above for the top shelf, we can
conclude that

NY([A1,A2)) = — Mas(lo(c; ), bo(c;+); M1, A2))- (4.4)

Remark 4.1. The monotonicity argument in the case of (4.4) is a bit more subtle than in
the case above for the top shelf, and in order to keep the analysis as complete as possible,
we include the full argument in the appendix.

Our next goal is to relate the Maslov index on the right-hand side of (4.4) to Maslov
indices in which A only varies in one or the other of ¢,(c; A) and £(c; A). For this, we
have the following claim.

Claim 4.1. Under the assumptions of Theorem 1.1 (without the requirement A1, Ay &
op(LY)), and for any c € (a,b),

Mas(4q(c; ), €o(c;+); [A1, A2]) = Mas(€a(c; A1), o(c;+); [A1, A2])
+ Mas(la(c; ), €y(c; A2); [A1, A2)).

Proof. With ¢ € (a,b) fixed, we consider £,(c;-), €p(c;-) : [A1, A2] = A(n) and set

VT/C(A,;L) = —(Xales N\) + Yo (c; M) (Xale; A) — iYo(c; A) 71
X (Xp(c; ) — iYp(e; 1) (Xo(c; ) + iYp(c; )~

We now compute the Maslov index associated with W, (), i) along the triangular path in
[A1, A2] X [A1, A2] comprising the following three paths: (1) fix A = Ay and let p increase
from A1 to Ag; (2) fix p = Ay and let X increase from A\ to Ag; and (3) let A and p
decrease together (i.e., with A = p) from A to A;. (See Fig. 4.2.) The claim follows from
path additivity and homotopy invariance. O

We can conclude from (4.2), (4.4), and Claim 4.1 that
NQ([/\l, )\2)) = ./V.;jc([)q, /\2)) - Mas(ﬁa(c; /\1), éb(c; '); [)\1, /\2]) (45)
By monotonicity,

Mas(£qo(c; A1), €y(c; )5 [A1, A2]) <0,
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Fig. 4.2. Triangular path in the (A, pu)-plane for Claim 4.1.

from which we can additionally conclude that
N ([A1, A2)) = Ngie([Ar, A2)).
In light of (4.3), this gives
N([A1, A2)) = Mas(la (55 A1), (5 A2); [a, c]). (4.6)

Here, we emphasize that under our assumption that oess(L£*) N [A1, A2] = 0, the count
N“([A1,A2)) must be finite.

The right-hand side of (4.6) is computed over the compact interval [a, ¢|] on which (1.1)
can be viewed as a regular system, as analyzed in [16]. In [16], the authors show that
the direction of crossing points for such systems (under assumptions more general than
those made here) are all positive as = increases from a to c. (See the statement and proof
of Theorem 1.1 in [16].) It follows that as ¢ — b~ the values Mas(€n(; A1), & (+; A2); [a, ¢])
are monotonically non-decreasing, and since N'“([A1, A\2)) is finite, we can conclude that
the limit

lim Mas(€s(; A1), 8(+; A2); [a, ]),

c—b—
must exist, and in fact that it must be the case that this limit is obtained for all ¢
sufficiently close to b (sufficiently large if b = +00). As asserted in Theorem 1.1, we denote
this limit by Mas(€4,(+; A1), €y(-; A2); [@, b)). In this way, the first assertion of Theorem 1.1
is obtained by taking a limit on both sides of (4.6) as ¢ — b~

For the second assertion of Theorem 1.1 we additionally assume that A1, Ay & 0,(L%),

and we will closely follow the approach taken in [13]. We emphasize that while we are
using almost precisely the same argument as in [13], formulated under our conventions
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and notation, our result is not limited to the limit-point case (as assumed in [13]). Since
A2 & o(LY), we are justified in working with the resolvent operator

R(LY Ng) := (LY — N ) 7!

which we can specify in terms of the Green’s function G*(z,§; \2) constructed in the
appendix. In particular, for any f € L% ((a,b),C*") we can write

R(L% o) f = / G (a0, € \o) By () F(€) .

we first note that by
virtue of the appearance of Ao in the boundary condition at = = ¢, Ay is an eigenvalue
of L&

a,c

Turning to the operator £y . specified above with domain Dg

a,c?

if and only if it is an eigenvalue of £%. We are assuming Ay ¢ o(L%), so we can
conclude that Ao ¢ o(Lg ), and this allows us to work with the resolvent operator

R(LqeiA2) o= (L5 = AD) ™!

which we can specify in terms of a Green’s function G§ .(x,&; A2). In particular, for any
VS L231((a76), C2") we can write

(L2 i) = / G2 (1, € Do) B (€) (€ de.

Proceeding with a construction similar to that for G*(z,&; \2) in Section A.1, we find
that G .(7,&; A\2) can be expressed as

GZ‘,C(Jf,f; >\2) :Ga(x7€;)‘2)7 vaé.e (a,c).

According to Lemma 2 in Section 4 of Chapter XIII in [32] (also, Theorem 2.3 in Part
IX of [7]), we can express the spectrum of R(L*; \3) as

PRI DN} = {5 A eolen):

In particular, we see that £ has an eigenvalue on the interval (A1, A2) if and only
if R(LY; \2) has an eigenvalue on the interval (—oo, (A; — A2)™1), with corresponding
algebraic and geometric multiplicities as well. We can express this as

1
vyl

N (A1, A2)) = NR((~ (4.7)

where the right-hand side of (4.7) denotes a count, including multiplicities, of the eigen-
values of R(L%; \2) on the interval (—oo, (A7 — A2)~!). Likewise,
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1
0
7/\1_)\2 )

N (M, h0)) = N R (- (4.8)
where the right-hand side of (4.8) denotes a count, including multiplicities, of the eigen-
values of R(LY .; A2) on the interval (—oo, (A1 — A2) ™).

For ease of notation, we will denote by I, : L% ((a,b), C*") — L% ((a,c),C*") the
restriction operator

Ha,cf = f

)

(ase)

and we will denote by P, : LE ((a,b),C*") — L% ((a,b), C*") the truncation operator

[ in(e0)
P“’Cf_{o in (c,b).

With this notation, we can write (exploiting our Green’s function associated with £%)

R(LO

a,c’

Ao)g e f = o R(LY A2)Pae ]
for all f € Lj ((a,b),C?"). If we express L ((a,b), C*") as a direct sum
12, ((0,),€") = Mo oL, ((0,6),C2") & (I — Mae) L3, ((a,0),C2),  (4.9)
then we can write
(R(LG i 2) ®0)f = (RUL i Mo)lLacf ) &0 »
= (M0 R(E%5 200)Pacf ) 0 = PoR(LS A2)Paef- Y
(Cf. Corollary 3.3 in [13].)

Claim 4.2. For each f € L% ((a,b),C*"),

c—b”

Pa,cR(Ea; >\2)7)a,c.f — R(Ea; )\Z)fa

in LE ((a,b),C?"). Le., Pa,cR(LY A2)Pa,c converges to R(LY; A2) in the strong sense
asc—b~.

Proof. Writing I = P, .+ (I — Pq,), we can compute
||Pa,cR<£a; )\2),Pa,cf - R(‘Ca; )‘Q)f”Bl
= ”Pa,cR(ﬁa? )‘Q)Pa,cf - Pa,cR(£a§ Ao)f— (I — Pa,C)R(£a§ A2) fll B,

<|1Pa, e RILY A2) Paef — Pae RILY A2) fll By + (1 = Pa,e) RILY A2) f I B4
= ||Pa,cR(£a? )‘2)(7)11,0 - I)fHBl + H(I - PG’C)R(‘C% )‘2)f||Bl~
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For the first of these last two summands, we can write
1Pa,c R(LY; A2)(Pae — ) fll B, < [[Pa,c RILY; A2) | (Pae — 1) fI B, -

Since Ay € p(LY), || Pa,c R(LY; A2)]| is bounded. Also,

b

|(Pae — Df I3, = / (Bi(2)f (), f(x))dz.

(&

Here, (B1(:)f(-), f()) € L*((a,b),C?") and we can conclude that
lim {|(Pa,c —I)fll, = 0.
c—b~

The summand ||(I — P c)R(LY A2)f|lB, can be handled similarly with R(L*; A\2)f
(which is in L?((a,b),C?")) replacing f. O

As noted in [13] (during the proof of Theorem 3.6), we can use a slight restatement
of Lemma 5.2 from [12], along with the strong convergence established in Claim 4.2 just
above, to conclude that

1 1
< lim inf N ((—
v 7/\2)) < limin N (o0, o))

NOR((— (4.11)

where the count on the right-hand side of (4.11) corresponds with the number of
eigenvalues, counted with multiplicity, that P, (R(L*; A2)P,s, has on the interval
(=00, (A1 = A2)7H).
Claim 4.3. For each c € (a,b),
0 (R(LG ¢; A2) © 0) = 0(R(LG 5 A2)),

and so by virtue of (4.10)

0(Pa,c R(LY A2)Pa,c) = 0 (R(L 3 A2))-
In particular,

o 1
A=A

- 1
A=A

NER((= ) = N R (=
Proof. First, we check that

op(R(LG,c; A2) ® 0) = 0p(R(LG ; A2))-
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For this, we observe that

R(LG ; A2)a,chp = plla,cd (4.12)

for some ¢ € L% ((a,b),C?") if and only if

(R(‘Cg,c; )‘2) @ O)Pa,c¢ = Npa,c(b; (413)

from which its clear that II, .¢ is an eigenfunction for R(LS

o A2) with eigenvalue p if

and only if P, ¢ is an eigenfunction for R(Lg

a,c?

; A2) @ 0 with eigenvalue p.

Next, since £g . is regular at both endpoints, its spectrum is entirely discrete. In
particular, this means that if u ¢ o,(R(LS .5 A2)) U{0} then p € p(R(LY .5 A2)). (Since
L3 . is unbounded, 0 € o(R(LY .; A2)\op(R(LY 5 A2))-)

For pu € p(R(LY o5 A2)), the operator

RALG ¢ A2) = i1z, ((a,e),c2m)
maps L% ((a,c), C*") onto L% ((a,c),C*"). We claim that it follows that
(R(£5.c:A2) ©0) = pl 13, ((ap),C2m)

maps L% ((a,b), C*") onto L% ((a,b), C*™). To see this, we take any f € L% ((a,b),C?"),
and we will identify ¢ € L% ((a,b), C*") so that

((R(L5c:02) © 0) = s, (o con) )10 = . (4.14)

Since R(Lg .; A2) — /,LILZBI((a’C)’(C%L) maps L% ((a,c), C*") onto L% ((a,c),C?"), we can
find ¢ € L% ((a,c),C?") so that

(R(ﬁg,a A2) — UILQBI((a,c),(CZ“)>¢ =1, f.

It follows that

_ e in (a,c)
v {lf in (c,b)

satisfies (4.14). This gives the claim. O

Using (respectively) (4.7), (4.11), Claim 4.3, (4.8), and (4.3) for the first five relations
below, we can now compute as follows:
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1
=5

N (A1, A2) = N (=

1
< lim inf N ((—o0,
< lim inf N (=00, S

1
— inf R ((_
fn inf N (=00, 3—-

= liminf N, (A1, A2))
c—b— ’

= limli)r}f Mas(€o,(+; A1), p(+; A2); [a, c])
= Mas(la (3 A1), 0(+; A2); [a, b)).
We conclude that
N®((A1;A2)) < Mas(la (5 A1), £ (55 A2); [a, b)),

and this gives the claim of equality in Theorem 1.1. For this final observation, we note
that since Ag ¢ 0,(L%), we cannot have a crossing point at & = a (cf. remarks about the
bottom shelf above), and so the interval [a, b) can be replaced by (a,b). O

Remark 4.2. We see from the preceding discussion (especially (4.5)) that we have equality
in Theorem 1.1 if and only if

Mas(€a(c; A1), £o(c;+); [A1, A2]) = 0, (4.15)

for all ¢ € (a,b) sufficiently close to b (sufficiently large if b = +00). In making this
observation, we’ve used the fact that for each ¢ € (a,b), Mas(,(c; A1), o(c;); [A1, X))
is a non-negative integer, so we can only have

lim Mas(£q(c; A1), £y(c;+); [A1, A2]) = 0

c—b—

if (4.15) holds as described. By monotonicity as A varies, this last relation is true if and
only if

lo(es M) Nbp(e; X)) = {0}, VA€M, A2), (4.16)

for all ¢ € (a,b) sufficiently close to b (sufficiently large if b = 4+00). Here, the rotation
is clockwise, so \s is excluded, since a crossing-point arrival as A increases to A\ would
not affect the Maslov index.

4.2. Proof of Theorem 1.2

Similarly as in the proof of Theorem 1.1, we fix any pair A1, Ao € R, A\; < Ao for which
Tess (L) N [A1, A2] = 0. For the proof of Theorem 1.2, we let £,(z; A2) be as in the proof



52 P. Howard, A. Sukhtayev / Journal of Functional Analysis 283 (2022) 109525

of Theorem 1.1, and we let £,(x; \) denote the map of Lagrangian subspaces associated
with the frames X,(z;A) constructed as in Lemma 2.11, except with the analysis on
(a, ¢) rather than (c,b). We will establish Theorem 1.2 by considering the Maslov index
for £,(xz; A) and £,(x; A2) along the Maslov box designated just below. As described in
Section 3, this Maslov index is computed as a spectral flow for the matrix

W (2;\) = —(Xa (@A) + iV (25 M) (Xa (23 A) — Ve (25 0) "

4.17
X (Xp(x; Aa) — Y5 (25 A2)) (X (25 A2) +in(.’L‘;)\2))_1 ( )
(re-defined from Section 4.1).

In this case, the Maslov Box will consist of the following sequence of contours, spec-
ified for some values cj,co € (a,b), ¢; < c2 to be chosen sufficiently close to a and b
(respectively) during the analysis: (1) fix z = ¢; and let A increase from A1 to Ay (the
bottom shelf); (2) fix A = Ay and let x increase from c; to co (the right shelf); (3) fix
x = cg and let X decrease from As to A1 (the top shelf); and (4) fix A = A\; and let =
decrease from ¢y to ¢1 (the left shelf). (The figure is similar to Fig. 4.1).

Right shelf. In this case, our calculation along the right shelf detects intersections
between £, (x; A2) and f,(x; A2) as x increases from ¢; to co. By construction, £4(+; A2)
will intersect £,(-; A2) at some value x € [c1, c2] with dimension m if and only if A is an
eigenvalue of £ with multiplicity m. In the event that Ay is not an eigenvalue of L, there
will be no crossing points along the right shelf. On the other hand, if A\s is an eigenvalue
of £ with multiplicity m, then W(x, A2) will have —1 as an eigenvalue with multiplicity
m for all © € [c1, ¢2]. In either case,

Mas(£q (3 A2), £y(+ A2); [e1, c2]) = 0. (4.18)

Bottom shelf. For the bottom shelf, we’re looking for intersections between £, (cy; \)
and £y(cq1; A2) as A increases from Aq to Ag. Since £, (x; \) corresponds with solutions that
lie left in (a,b), this leads to a calculation similar to the calculation of

Mas(€q (¢ ), lo(c; A2); [A1, Az]),

which arose in our analysis of the top shelf for the proof of Theorem 1.1. For the moment,
the only thing we will note about this quantity is that due to monotonicity in A (following
similarly as in Section A.2), we have the inequality

Mas({a(c1;-), o (15 A2); [A1, A2]) < 0. (4.19)

Top shelf. For the top shelf, W(co; \) detects intersections between £, (c2;\) and
lp(c2; A2) as A decreases from Ao to A1. In this way, intersections correspond precisely
with eigenvalues of the restriction £, ., of the maximal operator associated with (1.1)
on (a,c2) to the domain
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Doy ={Y € Daey zlgle+ U(xz;00) " Jy(z) =0, Xp(ea; A2)*Jy(e2) =0}

Similarly as in Section 2, we can check that £, ., is a self-adjoint operator.
We can verify monotonicity along the top shelf almost precisely as Section A.2; and
we can conclude from this that

Na702([>\1, /\2)) = — Mas(ﬁa(CQ; '),Eb(CQ; /\2); [)\1, )\2]), (420)

where N, ., ([A1, A2)) denotes a count of the number of eigenvalues that £, ., has on the
interval [A1, A2). (The inclusion of A; and exclusion of s are precisely as discussed in
the proof of Theorem 1.1.)

Similarly as with Claim 4.1, we obtain the relation

Mas(ﬁa(CQ; '), éb(CQ; '); [)\1, )\2]) = Mas(éa(CQ; )\1)761)(02; -); [)\17 )\2])

(4.21)
+ Mas(€q(c2; ), € (ca; A2); [A1, A2)).

Recalling that N ([A1, A2)) denotes the number of eigenvalues that £ has on the interval
[A1,A2), we can write

N([A1, A2)) = —Mas(la(c2; ), bo(c2; ); [M1, A2])
= — Mas(lq(c2; A1), lo(c2;+); [A1, A2]) — Mas(€q(c2;+), €y(ca; A2); [A1, A2))

= Na,es ([A1;, A2)) — Mas(la(c2; A1), £y (c2;7); [Ar, Ag)).
(4.22)
Left shelf. Our analysis so far leaves only the left shelf to consider, and we observe
that it can be expressed as

—Mas(€, (-5 A1), €y (55 A2); [e1, e2])-

Using path additivity and homotopy invariance, we can sum the Maslov indices on each
shelf of the Maslov Box to arrive at the relation

Naes ([, A2)) = Mas(La (-5 A1), €p(5 A2); [e1, e]) — Mas(€q(eas ), Lo (e Az)s [A1, Aa]).
(4.23)
Using (4.22) and (4.23), we can now write

N([A1,A2)) = N, ([A1, A2)) — Mas(la(c2; A1), Gy (c2;+); [Ar, A2])
= Mas(€a (5 M), 65 A2); [e1, c2]) — Mas(La(ea; ), fo(ers Aa); [M, Ao]) - (4:24)
— Mas(£y(c2; A1), €y(c2; )5 [A1, Aa])-

Recalling the monotonicity relation (4.19), and noting likewise the inequality

Mas(£q(c2; A1), €o(c2;-); [A1, A2]) <0,
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we can conclude the inequality
N(P\l, )\2)) Z Mas(fa('; )\1), éb(-; )\2); [61, CQ]). (425)

The right-hand side of (4.25) is computed over the compact interval [c1, c3] on which
(1.1) can be viewed as a regular system, as analyzed in [16]. In [16], the authors show
that the direction of crossing points for such systems (under assumptions more general
than those made here) are all positive as x increases from ¢; to co. (See the statement
and proof of Theorem 1.1 in [16].) It follows that as ¢; — a™ and ¢y — b~ the values
Mas(€q (+; A1), b(+; A2); [c1, c2]) are monotonically non-decreasing, and since N'([A1, A2))
is finite, we can conclude that the limit

Jim Mas(fa (5 M), £(5 A2)i e, ea]),

cog—b—
must exist, and in fact that it must be the case that this limit is obtained for all ¢;
sufficiently close to a (sufficiently negative if @ = —o0) and all ¢y sufficiently close to
b (sufficiently large if b = +00). As asserted in Theorem 1.2, we denote this limit by
Mas (o (-3 A1), €y(+; A2); (a,b)). In this way, the first assertion of Theorem 1.2 is obtained
by taking a limit on both sides of (4.25) as ¢; — a™ and ¢2 — b~

For the second assertion of Theorem 1.2 we additionally assume that A, A ¢ 0,(L).

Our goal is to show that

N((A1;A2)) < Mas(£a (5 A1), € (5 A2); (a, b)), (4.26)

and we note from (4.24) that this is implied if both of the following two conditions hold:

fa(Cl; )\) N Eb(Cl; )\2) = {0}, Ve [)\1, )\2), (427)
for all ¢; € (a,b) sufficiently close to a (sufficiently negative if a = —o0), and
ga(CQ; )\1) N gb(CQ; )\) = {0}, Ve [)\1, /\2), (428)

for all ¢y € (a,b) sufficiently close to b (sufficiently large if b = +00). (The inclusion of
A1 in the intervals and exclusion of s is discussed in Remark 4.2.)

We proceed by dividing the analysis into two half-interval problems. For this, we first
fix any ¢ € (a,b), and we introduce a new operator L.; as the restriction of L. as to
the domain

Dep :={y € Dep,m : Xalc; A1) Jy(e) =0, 11&17 UP(z; Mo)* Jy(z) = 0}.
x
We can view L, as a special case of the operator £, analyzed in Section 4.1, with a
replaced by ¢ and « replaced by X, (c; A1)*J. It follows that £, (x; A1) from Section 4.1
is replaced by £, (x; A1), so that by virtue of Remark 4.2, we can conclude that
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fa(CQ;)\l) mgb(CQ;)\)) = {0}, Ve [)\1, )\2),

for all ¢o € (a,b) sufficiently close to b (sufficiently large if b = +00). This is precisely
(4.28).
Likewise, we introduce an operator L, . as the restriction of L, . p to the domain

Do :={y €Depm : xlggr U(x;00)" Jy(z) =0, Xp(e; A2)* Jy(c) = 0}.
Proceeding similarly as in Section 4.1, we find that in this case
Ea(cl;)\)ﬂéb(cl;)\g)) = {0}, V)\G [)\1,)\2),

for all ¢; € (a,b) sufficiently close to a (sufficiently negative if « = —o0). This is precisely
(4.27).

As already noted, (4.27) and (4.28) together imply (4.26), and this completes the
proof of Theorem 1.2. 0O

5. Applications

In this section, we will discuss two specific applications of our main results, though
we first need to make one further observation associated with Niessen’s approach. We
recall that the key element in Niessen’s approach is an emphasis on the matrix

Alz; A) = (2 \)"(J/1) @ (x5 M),

1
M
where ®(x; \) denotes a fundamental matrix for (1.1), and we clearly require Im \ #
0. We saw in Section 2 that if {p;(x;\) 521 denote the eigenvalues of A(z; ), then
the number of solutions of (1.1) that lie left in (a,b) is precisely the number of these
eigenvalues with a finite limit as « approaches a, while the number of solutions of (1.1)
that lie right in (a,b) is precisely the number of these eigenvalues with a finite limit
as x approaches b. Under Assumption (C), these numbers are constant in A on the set
C\R, and so we can categorize the limit-case (i.e., limit-point, limit-circle, or limit-m)
of (1.1) at x = a (resp. x = b) by fixing some A € C\R and computing the values
{1 (x; N) ?Zl as x tends to a (resp. as x tends to b). (This is precisely what we will do in
our examples below.) Furthermore, we have additionally seen in Section 2 that for each
;(x; A) (with or without a finite limit), we can associate a (sub)sequence of eigenvectors
{vj(xx; A\)}72, that converges, as j, — a¥, to some v(\) that lies on the unit circle
in C?", and similarly for a sequence xj, — b~. If y;(x;\) has a finite limit as  — a™,
then ®(z; \)v$(A) will lie left in (a, b), while if yz;(x; A) has a finite limit as z — b~, then
®(a; A)vh(A) will lie right in (a,b).

In practice, we would like to extend these ideas to values A € R, and for this, we
replace A(x; A) with
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B(xz; ) := O(z;X)" JOADP(x; N). (5.1)
If we differentiate (5.1) with respect to x, we find that
B (x;\) = ®(z;\)* By (2)®(z; \), (5.2)

and upon integrating we see that we can alternatively express B(x; A) as

x

B(a; \) = / B(E: \) By (6)B(E: \) e, (5.3)

c

where we’ve observed that since ®(c; \) = Ia,,, we have B(c; A) = 0. Recalling that By (z)
is self-adjoint for a.e. z € (a,b), we see from this relation that B(z;A) is self-adjoint
for all z € (a,b). Consequently, the eigenvalues of B(z;A) must be real-valued, and we
denote these values {;(z; A)}32,. Since B(c; A) = 0, we can conclude that v;(c; A) =0
for all j € {1,2,...,2n}, and all A\ € R. In addition, according to (5.2), along with
Condition (B), for each fixed A € R, the eigenvalues {v;(z; )\)}?Zl will be non-decreasing
as z increases. As x — b~ each eigenvalue v;(x; ) will either approach +oo or a finite
limit. In the latter case, we set

le?()\) = lim v;(z;N).

r—b~
Likewise, as  — a™, each eigenvalue vj(x; \) will either approach —co or a finite limit.
In the latter case, we set

vi(A) = mlirzh vi(x; A).
Comparing the relations (2.4) and (5.3), we see that the proof of Lemma 2.1 can be
adapted with almost no changes to establish the following lemma.

Lemma 5.1. Let Assumptions (A) and (B) hold, and let A\ € [\, A2] be fized. Then the
dimension mq(\) of the subspace of solutions to (1.1) that lie left in (a,b) is precisely
the number of eigenvalues vj(x; \) € o(B(z; X)) that approach a finite limit as © — a™.
Likewise, the dimension my(X) of the subspace of solutions to (1.1) that lie right in (a,b)
is precisely the number of eigenvalues v;(x; \) € o(B(xz; \)) that approach a finite limit
asx — b~

Remark 5.1. We emphasize that as opposed to the case A € C\R, we cannot conclude
from these considerations that mg,(\), mp(A) > n. Rather, in this case we conclude these
inequalities for all A € [A1, Ag] from Lemma 2.9 (under assumptions (A), (B), and (C)).
Here, as usual, we are taking [A1, A2] N oess(L£) = 0 (or, likewise, [A1, Ad2] N oess(LY) = 0).
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If, for each x € (a,b), we let {w;(z; A)}32, denote an orthonormal collection of eigen-
?Zla
we can find (for each j € {1,2,...,2n}) a sequence {w;(xx; A)}32, that converges, as

vectors associated with the eigenvalues {v;(x; A) then as in the proof of Lemma 2.1,

xp — at, to some w$(A) on the unit circle in C?", and likewise we can find a sequence
{w;(xr; N}, that converges, as x — b~, to some w?()\) on the unit circle in C2".
Moreover, if vj(2; A) has a finite limit as  — a™, then ®(z; \)w$(A) will lie left in (a, b),
while if v;(z; \) has a finite limit as x — b~ then ®(x; )\)w?(/\) will lie right in (a, ).

These considerations provide a practical method for constructing the frames X, (z; A)
and X, (z; A) that we’ll need in order to implement Theorems 1.1 and 1.2. Most directly,
if (1.1) is limit-point at © = a (respectively, x = b), then the procedure described in
the previous paragraph will provide precisely n linearly independent solutions to (1.1)
that lie left in (a,b) (respectively, right in (a, b)), and these can be taken to comprise the
columns of X, (x;A\) (respectively, Xp(z;A)). See Section 5.1 for an application in this
setting (i.e., the limit point setting).

More generally, Lemma 2.1 can be used to construct left and right lying solutions of
(1.1) for some \g € C\R, and these can then be used to specify the Niessen elements de-
scribed in the lead-in to Lemma 2.3. Le., the matrices U%(x; \g) and U®(z; \g) discussed
in Section 2 can be constructed in this way. Working, for example, with the solutions
constructed above for A € R that lie left in (a,b), we can identify n linearly independent
solutions {uf(z;A)}}_; that satisfy

lim U"(x; Ao)" Juj(z; A) = 0.

z—at

This collection {u$(x;A)}7_; can be taken to comprise the columns of X, (z; ), and we
can proceed similarly for = b. See Section 5.2 for an application in this setting (i.e.,
the limit circle setting).

We now turn to our applications.

5.1. Counting eigenvalues in spectral gaps
In this section, we discuss (single) Schrodinger equations

H¢ = _¢” + V('T)(b = )‘¢7 in (07 OO)
a19(0) + az¢’(0) = 0,
where V(z) is a bounded, real-valued potential obtained by compactly perturbing a

periodic potential Vp(z), and aq,as € R are not both 0. In this case, it’s well known
that H is self-adjoint when viewed as an operator on the domain

dom(H) = {¢ € L*((0,00),C) : ¢,¢' € AC10c([0, 20),C),
H¢ € L*((0,00),C), a16(0) + as¢’(0) = 0}.
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If we set

Hog = —¢" + Vo(z)p = A¢, in (0,00),

along with any self-adjoint boundary condition at = 0, then oess(Hp) can be expressed
as a union of closed intervals

N
$
H'C8
QQ

or in some special cases as a similar finite union that includes an unbounded interval
[bn, +00). (See, e.g., [25] and the references cited there.) The intervals {[a;, b;]}32; are
referred to as spectral bands for Hy, and the intervening intervals [bj, a;41] are referred
to as spectral gaps. (It may be the case that b; = a;41, leaving no gap.) In addition, if
Vo(z) is perturbed to a new potential V (z) = Vo(x) + Vi(z), where Vi € L((0,0),R),
then we will have oess(H) = 0ess(Hp). (See, for example, Corollary XIII.4.2 in [32].)
However, it may be the case that H has additional eigenvalues in the spectral gaps,
including up to an infinite number accumulating at an endpoint of essential spectrum.
Let [bj,a;11], b; < aj+1 denote some particular spectral gap. Then our approach allows
us to fix any interval (A1, A2) € [bj,aj41], A1, A2 ¢ o(H) and determine the number of
eigenvalues on this interval.

As a specific example, taken from [1] (so that we have known results to compare with),
we consider H with

60

V(z) = Vo(z) + Vi(x) = sin(x) + Tra2

ay = cos(m/8), ag = sin(n/8).
In [1], the authors identify the first two spectral gaps for Hy as
J1 = (—00,—.3785), Jo = (—.3477,.5948),

and they verify that —.3477 serves as an accumulation point for eigenvalues of H in the
interval Jy. In addition, the authors identify the 13 right-most eigenvalues of H in this
interval. (In these calculations, the authors proceed with a higher degree of precision
than given above; see [1] for the full results.)

In order to place this equation in our setting, we set y = (zl) =( ¢,) from which we
arrive at (1.1) with

Bo(x) + ABi(z) = (‘Sm(x)o‘ Tt ?) A (O 8> (5.4)

With these choices of By(x) and Bj(x), (1.1)—(5.4) is regular at z = 0 and of course
singular at © = +00. (L.e., we are in the case in which (A)’ holds.) In order to determine
if (1.1)=(5.4) is limit-point or limit-circle at +oo, we fix A\g = ¢ (arbitrarily selected
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as an element \g € C\R) and numerically generate the eigenvalues of A(x; o) as z
increases. (In this case, we initialize the fundamental matrix ®(x;\g) at x = 0.) We
know from our general theory developed in Section 2 that the eigenvalues {1 (; Ao)}7—,
of A(z; No) will satisfy (with our choice of indexing) p1(x; o) < 0 < pa(x;Ao) for all
xz € (0,00). As x increases, these eigenvalues will both monotonically increase, and so
1 (z; Ag) will certainly approach a finite limit (since it is bounded above by 0). In this
way, the limit case is determined by whether po(x;Ao) approaches a finite limit as
tends to 4+o0o. Computing numerically, we find j2(5; A\g) = 1.1543 x 10%, suggesting that
H is limit-point at 4-oc0.

Remark 5.2. Throughout this section, our numerical calculations are intended only to
illustrate the theory, and we make no effort to rigorously justify either the values we
obtain or the conclusions we draw from them. For example, in this last calculation, we
have not attempted to find a rigorous error interval for the value of ps(5;\g), and we
offer no additional direct justification that us(x; Ag) is indeed tending to +oo as = tends
to +00. Nonetheless, we observe that in this case it follows from Corollary 1 in Chapter
9 of [5] that H is indeed limit-point at +oo, and from this we can conclude that this
limiting behavior must be qualitatively correct. In all cases, the calculations are carried
out with built-in MATLAB functions, primarily ode/5.m.

Since (1.1)—(5.4) is limit-point at +oo, our construction of the self-adjoint operator
associated with (1.1)—(5.4) yields a single self-adjoint operator £* with domain

D = {y € Dy : ay(0) = 0}.
(See Claim 2.3 regarding the absence of a condition at b = +00.)

Remark 5.3. It’s straightforward to check that H and £* have precisely the same sets
of essential spectrum, and also the same sets of discrete eigenvalues.

Since (1.1)—(5.4) is regular at = 0, we can find X, (z; A1) by solving the initial value
problem

JX! = (Bo(z) + MB1(2))Xa; Xa(0501) = (_CZ;T(IE:;/S))

For Xy (z; A2), our observation that H is limit-point at +o0o allows us to conclude that
Xp(x; A2) must be the unique (up to constant multiple) solution of JX] = (By(z) +
A1B1(x))X, that lies right in (a, b). In order to find X;(x; A2), we compute the eigenvalues
of B(z;A2) for (relatively) large values of z. Specifically, we will take Ay = .2, and for
this value we find v1(5; A2) = .0039 and v5(5; A2) = 1.0724 x 10®. The unit eigenvector
associated with v (5; o) is



60 P. Howard, A. Sukhtayev / Journal of Functional Analysis 283 (2022) 109525

wi(5iA2) = ( 19916832818

.1287022477)

Regarding these values, our only justification for keeping so many decimal places is
that the value of wi(x;\2) remains consistent to this many places as we continue to
increase x beyond 5. We emphasize that while our general theory requires the selection
of a convergent subsequence of eigenvectors, the actual (numerically generated) sequence
of eigenvectors converges quickly and with extraordinary consistency. According to our
general theory, we can take Xj(x;\2) = ®(z; A2)w?(\2), and we will approximate the
limit-obtained vector w?(\2) with wy (5; A2).

Equipped now with frames X, (2; A1) and Xp(x; A2), we can readily compute

Mas(q,(+; A1), o (-5 A2); (0, +00)) (5.5)

as a spectral flow for W (x; \;) as specified in (4.1). (In this case, W (z;\;) is a scalar,
and so serves as its own eigenvalue for the spectral flow.)

For this example, we have the advantage of knowing in advance accurate values for
the 13 right-most eigenvalues of H on the interval Jo. The right-most five of these are
as follows:

—.3154, —.2946, —.2542, —.1613, .1332,

obtained from [1], in which the values are actually computed to substantially higher
precision than presented here. We will illustrate our approach by counting the right-
most four eigenvalues, and also by providing the full Maslov box associated with this
calculation. For this, we will keep A2 = .2 as above, and set A\; = —.3100. Computing
(5.5) via a spectral flow for W (z; \;), we identify crossing points at 14.5, 20.2, 26.8, and
33.7, after which W(x, A1) begins to oscillate through values in the third quadrant of the
complex plane. (These crossing points can be obtained with much greater precision, but
there’s no advantage in this.) We conclude that in this case

N?((A1; A2)) = Mas(la (3 A1), £ (3 A2); (0, +00)) = 4,

as expected. This is the entirety of the necessary calculation associated with the number
of eigenvalues that H has on the interval (—.31,.2), but in order to illustrate the idea,
we provide the full Maslov box associated with this calculation, along with the relevant
spectral curves (see Fig. 5.1, created with MATLAB.) In this figure, we see clearly that
each spectral curve intersects the boundary of the Maslov box precisely twice, once along
the left shelf and once along the top shelf. Intersections along the top shelf correspond
with eigenvalues of H, and so it is exactly this correspondence (via the spectral curves)
that allows us to count crossing points along the left shelf rather than along the top
shelf. We emphasize that, strictly speaking, the top shelf should be associated with a
limit as © — 400, but the dynamics are already thoroughly apparent for x = 50, as
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The Maslov Box for H
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Fig. 5.1. The Full Maslov Box for H on [—.31,.2].

depicted. As discussed in [16], the monotonicity of the spectral curves in this figure is
a general feature of renormalized oscillation theory, and follows from monotonicity in A
along horizontal shelves and monotonicity in « on vertical shelves.

5.2. Energy levels for the hydrogen atom

When Schrodinger’s equation for the hydrogen atom is expressed in spherical coor-
dinates and analyzed by separation of variables, the resulting radial equation can be
expressed in the form

o
He:= —%(:c%’)’ - %aﬁ + %aﬁ =\, (5.6)

where v > 0 is a physical constant and / is an integer associated with angular momentum
(see, e.g., Chapter 12 in [11]). The natural domain for ¢ in (5.6) is (0, 00), and it’s clear
that H is singular at both endpoints. In this case, we postpone specifying a precise
domain for H, though see Remark 5.6 at the end of this section for full details along
these lines.

It’s well known that any self-adjoint extension of the minimal operator associated
with H has essential spectrum [0, 4+00) (see, e.g., [31]), and in addition the eigenvalues
of H are typically reported in physics literature to be

_ (2 _
Mo =—(5 )% m=L+1042,. . (5.7)
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(see, e.g., [11]). In this section we would like to use our framework to understand how
these values should be interpreted. For specificity, we will take v = 4, and we’ll focus
on the case ¢ = 0, which is particularly interesting from our point of view because H is
limit-circle at z = 0 in this case, whereas it is limit-point at z = 0 for all £ > 1.

In order to place (5.6) in our setting, we set y = (Z;) = (zfd),), from which we arrive
at (1.1) with

Bo(x) + ABi(z) = (W_%(“l) g) +A <”§ 8) . (5.8)

z2

This puts us in the setting of Assumptions (A), (B), and (C), for which we can construct
a self-adjoint restriction £ for the maximal operator £, associated with (1.1)—(5.8).

We begin by setting Ao = ¢ and verifying (numerically) that (1.1)—(5.8) is limit-circle
at = 0. In this case, we initialize the fundamental matrix ®(z;XAo) at x = 1, and
we compute the eigenvalues of A(z;\o), as x tends toward 0. At x = 1075, we find
w1(107%; Xo) = —.7478 and u2(1075; \g) = .3343, with both values stable as 2 continues
to decrease, suggesting that H is indeed limit-circle at = 0. Respectively, we find the
associated unit eigenvectors of A(107°; \g) to be

7834 0001 + .6216i
1072 \) = 107% o) =
v1(107% Ao) (.0001+.6216i)’ v2(107% Ao) ( 7834 )

and we take these vectors as approximations for the limit-obtained eigenvectors v$(Ag)
and v§ (o).

Remark 5.4. The clear relation between the vectors v1(1075;X\g) and v2(1075; Xg) is a
consequence of (2.10). To see this, we first observe that since By(z) and Bj(x) are
real-valued in this case, we can take v1(1075; )\g) to be an eigenvector associated with
p1(107%: Xg). In this way, our choice of v1(1075;\g) will be a constant multiple of
v1(1075; \g), say v1(107%; Xg) = cv1(1073; \g). But from the first relation in (2.10) we
can write

— —.00017z + .6216 .0001 + .62162
v2(10_5;)\0):(J/i)v1(10_5;)\0):c< T ):-c( ’ ’)

—.7834% 7834
The choice ¢ = i gives v2(1075; \g) as stated.

As discussed in Section 2, there will be a single Niessen subspace for this prob-
lem, and it will be spanned by two elements that both lie left in (0,+o0), namely
yi(z; o) = (x5 M0)v§(No) and y§(x; Ag) = P(x;M0)vs(Ng). In order to specify our
boundary condition at x = 0, we also need to compute

p =/ —H1(Xo)/p2(Ao) = 1.4956,
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and select some § € C with |3 = p. (See the discussion leading into Lemma 2.3.) Given
this choice, we will specify our boundary condition via the element

U(x5 X0) = (3 Ao) (V] (Ao) + B3 (Ao))-

We emphasize that each choice of 8 from the circle |f| = p will correspond with a
different boundary condition, and so with a different self-adjoint restriction of Lp;. In
order to fix a specific case, we will take S to be the real value 5; = 1.4956, where the
subscript anticipates that we will later consider an alternative choice.

Next, we fix Ay = —5, and construct a frame X, (z; A1) satisfying
JX! = (Bo(z) + M\ B1(1))X,; lim+ U®(x;00)" X o (23 701) = 0. (5.9)
r—ra

In order to do this, we work with the matrix B(z; A1), for which we compute the eigen-
values {v;(z;A\1)}5_, and the associated eigenvectors {w;(z;A1)}5_; as x tends to 0.
Taking an approximation obtained by evaluating B(z; A1) at * = 1075, we obtain the
approximate values v{(A1) = —.4205, v§(A\;) = —.1106, with associated approximate
limit-obtained unit vectors

— 8615 5077
a(\y) = a(\) = .
wi () ( 5077 ) w3 (M) <—.8615)

We can now compute X, (x; A1) as a linear combination
Xa(w; A1) = (5 A1) (crwy (M) + cowi (A1),

for some appropriate constants ¢; and cy. In particular, ¢; and ¢y are determined by the
limit specified in (5.9). We can express this as

c1 lim+ U(x; 00)* JP(x; A\)wf (A1) + co lim U*(x; Xo)* J® (x5 A1)w§ (A1) = 0.

z—a z—at

We approximate the limits by evaluation at z = 107° to obtain

lm U%(2; Ao)* J® (23 A )w®(Ar) 2 —1.2050 + 1.2050i

r—at

Hm U5 00)" JO(x; A)wg (A1) = —.6139 + .6139i.

r—at

It follows immediately that we can choose ¢; and ¢y to be ¢; = 1, co = (—1.2050 +
1.2050¢)/(—.6139 4 .6139¢) = —1.9629. We conclude that

Xa(@; M) = S(z; M)w(Ar); - w (M) = (gg@

where w®(\1) has been normalized to have unit length.
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We now turn to the right endpoint b = 4+o00. If we evaluate A(z;4) at = 25, we obtain
eigenvalues p11(25;7) = 1.9352 x 10722 and u2(25;4) = 4.6925 x 10!, This indicates that
2 (z;4) is tending toward 400 as x increases to +00, and we conclude that (1.1)—(5.8) is
limit-point at b = +o00. This means that no additional boundary condition is necessary
at b = 4+00. We will denote by Lg, the operator obtained from £,; by adding our choice
of boundary condition taken above at the left endpoint.

Remark 5.5. Similarly as with our first application, these calculations have not been
rigorously justified, but the limit-circle/point conclusions have been rigorously justified
elsewhere. In particular, if we adopt the change of variables ¢ = ¢/, then (5.6) with
£ = 0 becomes

Hipi= " = T =X,
which is known to be limit-circle at z = 0 and limit-point at +oo (see, e.g., [6]).

At this point, we have precisely specified a self-adjoint restriction £g, of £y associated
with (1.1)-(5.8); namely, we restrict the maximal operator £y to the domain

Dg, :={y €Dy : lirél U(x; A0)" Jy(z) = 0},
z—0~

with no condition required at b = +o00, because L, is limit-point at that endpoint.

In an effort to count the first three eigenvalues of H, we will set Ay = —3/8, and in
order to compute Xy (z; A2), we will compute the eigenvalues and eigenvectors of B(z; A2)
as z tends toward +oo. Taking x = 40 in this case, we find v;(40; —3/8) = 6.3054 and
15(40; —3/8) = 3.7724 x 10*!. The unit eigenvector associated with v (40; —3/8) is

40; -3/8) =
wi(40;=3/8) <.9419370335

—.3357895545>
where similarly as with our previous application, the number of decimals given is simply
an indication of the consistent values as  continues to increase. We use w1 (40; —3/8) as
an approximation of w?(—3/8), and we set Xy (z;\2) = ®(z; Ao)wh(—3/8).

Equipped now with frames X, (z; A1) and X;(x; A2), we can readily compute

Mas(£a (3 A1), 6y(+5 A2); (0, +00)) (5.10)

as a spectral flow for the matrix W (x; \;) as specified in (4.17). We find crossing points
at approximately z = 1.95 and & = 5.00, after which the value of W (z;\;) remains
near —1, without crossing, as = continues to increase. We conclude that Hg, has two
eigenvalues on the interval [—5, —3/8].

Naively, based on (5.7) with £ = 0 and v = 4, we might have expected to find
three eigenvalues on the interval [—5, —3/8] (namely, —4, —1, —4/9), but we recall that
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the eigenvalues given in (5.7) correspond with a particular choice of boundary condi-
tion (based on physical considerations). In particular, the argument from physics goes
roughly as follows. For £ = 0, we can find a basis for the solutions of (5.6) that includes

one solution that remains bounded as z tends to 0 and one solution that does not (and
@

I2¢I

left in (0,400)). Based on physical arguments, the unbounded solution is generally elim-

both of which correspond via the above relation y = (Y1) = (,5,,) with functions that lie

inated, and this effectively selects a particular left-hand boundary condition. Precisely,

this physical argument asserts that we need to identify a fixed vector w € C? so that

Xa(x; A1) = @(x; \)w remains bounded as = approaches 0. By a straightforward min-
7121
—.7020

choice of . In particular, we can identify the value of 8 € C, |8| = p so that

imization argument, we find w = ( ) This solution corresponds with a particular

lim_ (@ (23 o) (1 (o) + ng(/\o)))*th(x; A)w = 0.

z—0t1

We can approximate 3 by setting £ = 10~° and computing

v1(A0) " @(z; Ao) " JP(2; Ar)w ‘ ‘
— =.2952—-14 = 2052+ 1.4 .
O B TB(ae g = 2952~ LAGG = 5122052 + 146631

I

8

Using this choice of £, which we denote (2, leads to a new boundary condition, specified
via U%(x; Ao) = P(z; M) (v1(Ao) + Bav2(Ag)), and consequently to a new operator Lg, .
Computing (5.10) in this case, we count three eigenvalues by virtue of crossing points at
.68, 2.00, and 5.00.

We conclude with the following remark, addressing some details that have been set
aside during the discussion of this application.

Remark 5.6. It’s natural to view H as an operator on a weighted Hilbert space
L2,((0,00),C) with inner product

+oo

(6, V)02 = / 22(2)d(2)dz.

0

With this specification, H is self-adjoint on the domain

dom(H) = {¢ € L2,((0,00),C) : ¢, ¢ € AC1e((0, 00),C),

Ho € 12:((0.9).€), iy, (@(aida)(oa000) + 5ex00) 7 (571 ) =0}

T—0+ x2¢/ (x

Likewise, the operator H from Remark 5.5 is self-adjoint on the domain
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dom(H) = {4 € L3((0,5),C) : 1,/ € ACiue((0, ), C),

Hy € 17((0,00),©), T, (@(;X0) (01 (Ao) +502(A0)))*J(1/’(x)> ~o},

z—0t

where ¥(z; ) is a fundamental matrix associated with H,

T = B3 A)V; q/(m):G ‘1)) @(x;x):(%ﬁ ‘1))

With these precise specifications, it’s straightforward to verify that H and L (the
latter constructed as in Lemma 1.1) have precisely the same sets of essential spectrum,
and also the same sets of discrete eigenvalues. In addition, these spectral sets also agree
with their counterparts for H.
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Appendix A

In this appendix, we include a full derivation of our Green’s function G*(z,&;\)
associated with the operator £%, and we also provide details on the monotonicity (in \)
arguments from the proofs of Theorems 1.1 and 1.2.

A.1. The Green’s function

During the proof of Lemma 2.10, we made use of a Green’s function associated with
the operator [,Z,b, and in our proof of Theorem 1.1, we will make brief use of effectively
the same Green’s function, with Elb replaced by L£%. For completeness, we include in
the current section a full construction of this Green’s function. Precisely, we assume (A),
(A)’, (B), and (C) all hold, and for any fixed A € RN p(L*) we construct the Green’s
function G*(x,&; A) for the equation

(LY = M)y = f. (A.1)
This will allow us to express the action of the resolvent operator
R(LYA) = (LY = AI)7!

as
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b
R(LY ) f = / GO (. € N B () £ (€) .

Equation (A.1) is equivalent to the ODE
Jy' = (Bo(x) + ABi(2))y = Bi(z)f, y €D, (A.2)

which we can solve with variation of parameters. For this, we let ®(z; A) denote a funda-
mental matrix for (1.1), initialized by ®(a; A\) = I2,, and we look for solutions to (A.2)
of the form y(z; \) = ®(x; N)v(z; A), where v(x; ) is a vector function to be determined.
Computing directly, we find that this leads to the relation J®v' = Bj f. Recalling (2.7)
(with A € R), we see that

(J®(z;N) = —J®(z; \)*,
allowing us to write
V(2 A) = —J®(z;\)* By () f ().

Upon integration, we obtain

x

o(@; \) = / JB(E N By (€) F(€)de + K(N),

a

for some vector k(A) independent of z, and we conclude

y(: \) = —B(z; \) / JB(E N B (€) F(€)d + Bz (). (A.3)

In order to identify k()\), we impose the boundary conditions associated with D.
First, for the boundary condition at © = a, we set z = a in (A.3) to see that ay(a) =0
becomes ak(A) = 0, which we can express as

(Ja™)*Jk(N) = 0. (A4)
For the boundary condition at b, we have

lim U°(x; \o)* Jy(x) = 0. (A.5)

r—b—

If we let U’(x; \) denote the 2n x n matrix comprising as its columns the basis elements
{ub(x; A)}7_, described in Lemma 2.9, then by construction we have
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lim U®(z; \o)* JU(z; \) = 0. (A.6)

r—b~

If we alternatively impose the boundary condition

lim U(z; \)*Jy(z) =0, (A7)

z—b—

then by the Lagrangian property we are effectively looking for a Green’s function that can
be expressed in terms of U®(z; \) for a < & < x < b. It follows from (A.6) that G*(z, &; \)
will then satisfy the required boundary condition (A.5) (which can be checked directly
with our final form of the Green’s function). In addition, we note that since the elements

{u (z; M)}, are necessarily linearly independent, there must exist a rank-n 2n x n
matrix Rb(/\) so that U(x; \) = ®(x; MRP(N).
We proceed now by multiplying (A.3) on the left by U®(z; \)*J, giving

U (s N)" Jy(a; A) = —Ub(:r;k)*ﬁ)(x;%)/J‘I>(§;>\)*B1(§)f(£)d£

+ Uz \)* T® (25 M) k()

- / RO(\)*®(E: \)* By (€) £(€)de + RP(\)* Th(N),

where we’ve used the identity (2.7). By construction, ®(-; A)RP(A) € L% ((a,b),C?"), so
in the limit as x — b~, we obtain the relation

/ R(\)*®(¢; \)* By (€) f(€)de + RY(N)* Tk()) = 0. (A8)

Combining (A.4) and (A.8), we obtain the system

(800 ) 709 = (_ prmocayatenr s e ) (4.9)

We set
EN) = (Ja* RE(N)),

and we observe that if A ¢ o(L*) then £(\) is invertible. This is because U%(z;\) =
®(x;\)Ja* and UP(x; \) = ®(2; \)RP(N), so that

U (2 \)* JU (x5 \) = (Ja*)* JRE(N).
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For A\ ¢ 0ess(L”) the left-hand side of this last relation is non-singular if and only if
X ¢ 0p(LY) (because A ¢ o,(L*) if and only if the Lagrangian subspaces with frames
U%(z;A) and U®(z; \) do not intersect), and the right-hand side of this last relation is
non-singular if and only if £()) is non-singular. Accordingly, we can solve (A.9) with

b

k(\) = J(E(N)) ! / (0 RYN))" ®(EN) B () f(€)de.

a
Upon substitution back into (A.3), we obtain

x

y(: N) = —B(z; \) / JB(E \)* B () f(€)de

—b(a; \)J(EN)) LEN / B(E: N)" By (€)f(€)de

a

b

FBENIEN) T [ (0 RIW)" (&GN BIO e

a

Continuing with this calculation, we next see that

y(aA) = —0(a; )T (EN) T (Jar 0)" [ @(&N) Bi(€)f(§)d¢

—®(x; N)J(EN) (0 RYN))T [ (&N Bi() f(€)de

+ (23 A)J(EN)TH(0 RYWN))" [ (&) Bu(§)F(€)de
=Pz N)J(EN)TH (Tt 0)" [ D& N)* Bu(€) f(€)dE

+ () J(EN) (0 RYN))T [ B(& M) B(€) f(€)de.

e D\a p\@ p\g D\&

We see by inspection that
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—®(z; N)J(EN)) " (Ja* 0) P(EN* a<é<a<b
0

O (23 A)J(EN)) 7 ( )

G‘I(%f;”:{ RY(V)) @(EA)" a<z<E<b.

We can express G%(x,&; A) in a more symmetric form. To see this, we first observe
that

EN*TEN) = (R_b?;‘])*> J (Ja* RE(N))

- <—fioi’{§)**a* Rb((f\gjf(f)\{)b@)) - (—(aRObMD* QRS(A)>’

where we've used the observations that Ja* and R?()\) are frames for Lagrangian sub-
spaces of C2". Here, aR’()\) = (Ja*)*JR?(\), and we've already seen that this matrix
is non-singular so long as A ¢ o(£%). This allows us to write

ey (0 (@R
EWIEN ™ = (s ). (.10

It follows that

*

—(Ja* 0)ENTII(EMN) T (0 RY(N))

0 0 s T ()

= (a0 (RO 0y @Rr ) ) R

On the other hand, (A.10) also allows us to write

(6()\)*)71 _ Jg()\) <(aRb(()>\))1 _((O(RbéA))*)1> ,

from which we see that

€0 0 RO =26 oty ) ()

—((aR*(A)*) 'R (A)*

— 7 (ga R ( ) ) =@ (@R ) R

In this way, we see that

*

JEMNHTH(0 RYW) = (Jar 0)EN)TIEW)TH(0 R ()"

We will set
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from which we observe that

For a < x < £ < b, we will re-write G*(x,&; A) by using the relation
JENHT(0 RPW)) = (Ja* 0)MON) (0 RP(N)",
and proceeding similarly for a < £ < x < b, we find
JENH(Jar 0)"=(0 RYN))MQ) (Jar 0)".
These relations allow us to express G(x,&; \) as

G n) = | T2EN (0 R M) (Jao 0)" 8GN a<f<a<b
IS - (I)(x;)\)(:]oé* O)M()\)(O Rb()\))*CI)(f;)\)* CL<$<§<b,

A.2. Monotonicity as A varies

In this section, we verify that the Maslov index specified on the right-hand side of
(4.3) is a monotonic count of crossing points, each negatively directed. From Lemma 3.1,
we know that the signs of the associated crossing points are determined by the matrices

=X (e ) TN X (x5 A) (A.11)
and
Xp(e; ) JoaXp (25 A). (A.12)

We've already seen from our analysis of the top shelf that (A.11) is negative definite
for all ¢ € (a,b), so we focus here on making a similar conclusion about (A.12). For
this, we recall that the columns of X;(z;\) comprise the basis elements for f,(x; )
described in Lemma 2.11. By construction, these basis elements are analytic in A on
the intervals (Al,Ai’Q), (/\i’2,/\3’3), ey (Afo’Nfl,)\ivfl’N), ()\i\]*l’N,)\z); more pre-
cisely, on (A1, AL'?) the columns of Xy (z; \) are analytic extensions of the basis elements
{ué’(x, ADY, on (AF2,A3?) the columns of Xj(z; ) are analytic extensions of the basis
elements {uf(z; %)}, and so on, with the values {X.}}_, as specified in the proof of
Lemma 2.11. Here, we recall that AL = Ay, AN = Xy, and X € (X757, M1 for all
j€{2,...,N —1}. In addition, we know from Lemma 2.10, that with this construction
we have the relation

lim Xy (25 M) * JOhXp (25 M) = 0 (A.13)

r—b—
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for all j € {1,2,...,n}.

In order to understand rotation as A\ varies near A, we first use (2.45) (from
Lemma 2.10) to compute (precisely as with the corresponding calculation for X, (x; )
in our analysis of the top shelf in the proof of Theorem 1.1)

Xl M) oK M) = Ko M) B ()Xo ). (A1)

Integrating on (¢, z), we can write
X s M) TN (03 ) = Xoles A" T0NKole M) + [ Xol€s M) B (©Ko(E5 M
c
Using (A.13), we see that

b
X (e M) JONXKy (e M) = — / X, (€ M) By (€)X (6 M) de (A1)

allowing us to conclude, similarly as we did with X, (c; A\)*JO X4 (c; A) in the proof
of Theorem 1.1, that the matrix on the left-hand side of (A.15) is negative definite
for all ¢ € (a,b), and by continuity in A that X;(c; \)*JOxXy(c; ) is negative definite
for all A sufficiently close to M. Possibly by taking a finer partition of [A1, Ag] in the
proof of Lemma 2.11 (i.e., by taking N larger and the associated radii smaller), we can
ensure in this way that X,(c; A\)*JO Xy (c; A) is negative definite on each interval in our
partition, ()\1,)\}:2), ()\1’2,)\3’3), - ()\*N*2’N71,)\*N*1’N), (AiVil’N,AQ). We can conclude
that the direction of crossings on each of these intervals is negative, and since these
intervals partition [A1, Az, that the direction of all crossings on [A1, A2] is negative (as A
increases).
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