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Working with a general class of linear Hamiltonian systems 
on intervals with at least one singular endpoint which can be 
limit-point, limit-circle, or limit-intermediate, we show that 
renormalized oscillation results can be obtained in a natural 
way through consideration of the Maslov index associated 
with appropriately chosen paths of Lagrangian subspaces 
of C2n. In the first part of the analysis we associate our 
linear Hamiltonian systems with families of well-defined self-
adjoint operators, and in the latter part we employ the 
renormalized oscillation approach to count the number of 
eigenvalues these operators have on fixed intervals (λ1, λ2)
whose closures do not intersect the essential spectrum of 
the operators. We conclude the analysis with two illustrative 
examples, indicating how the theory can be implemented 
in practice. This extends previous work by the authors for 
regular linear Hamiltonian systems.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

We consider linear Hamiltonian systems

Jy′ = (B0(x) + λB1(x))y; y(x;λ) ∈ C2n, n ∈ N, (1.1)
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where J denotes the standard symplectic matrix

J =
(

0n −In
In 0n

)
.

We specify (1.1) on intervals (a, b), with −∞ ≤ a < b ≤ +∞, and we assume throughout 
that B0, B1 ∈ L1

loc((a, b), C2n×2n), and additionally that B0(x) and B1(x) are both self-
adjoint for a.e. x ∈ (a, b), with also B1(x) non-negative for a.e. x ∈ (a, b). For convenient 
reference, we refer to these assumptions as Assumptions (A). In addition, we make the 
following Atkinson-type positivity assumption.

(B) If y(·; λ) ∈ ACloc((a, b), C2n) is any non-trivial solution of (1.1), then

d∫
c

(B1(x)y(x;λ), y(x;λ))dx > 0,

for all [c, d] ⊂ (a, b). (Here, ACloc denotes local absolute continuity, and (·, ·) denotes the 
usual inner product on C2n.)

Our goal is to associate (1.1) with one or more self-adjoint operators L (see Lemma 1.1
below), and to use renormalized oscillation theory to count the number of eigenvalues 
N ([λ1, λ2)) that each such operator has on a given interval [λ1, λ2) ⊂ R for which the 
closure [λ1, λ2] has empty intersection with the essential spectrum of the operator. We 
will formulate our results for two cases: (1) when x = a is a regular boundary point for 
(1.1); and (2) when x = a is a singular boundary point for (1.1). (We take (1.1) to be 
singular at x = b in both cases; the case in which (1.1) is regular at both endpoints has 
been analyzed in [16].) The case in which (1.1) is regular at x = a corresponds with the 
following additional assumption.

(A)′ The value a is finite, and for any c ∈ (a, b), we have B0, B1 ∈ L1((a, c), C2n×2n).

Our starting point will be to specify an appropriate Hilbert space to work in, and 
for this we follow [24]. We denote by L̃2

B1
((a, b), C2n) the set of all Lebesgue measurable

functions f defined on (a, b) so that

‖f‖B1 :=
( b∫

a

(B1(x)f(x), f(x))dx
)1/2

< ∞.

Correspondingly, we denote by ZB1 the subset of L̃2
B1

((a, b), C2n) comprising elements 
f ∈ L̃2

B1
((a, b), C2n) so that ‖f‖B1 = 0. Our Hilbert space will be the quotient space,

L2
B ((a, b),C2n) := L̃2

B ((a, b),C2n)/ZB1 .
1 1
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I.e., two functions f, g ∈ L2
B1

((a, b), C2n) are equivalent if and only if ‖f − g‖B1 = 0. 
With this specification, ‖ · ‖B1 is a norm on L2

B1
((a, b), C2n). We equip L2

B1
((a, b), C2n)

with the inner product

〈f, g〉B1 :=
b∫

a

(B1(x)f(x), g(x))dx.

In all of these specifications, we emphasize that B1(x) need not be an invertible matrix.
We now introduce a maximal operator associated with (1.1).

Definition 1.1. (i) We denote by DM the collection of all

y ∈ ACloc((a, b),C2n) ∩ L2
B1

((a, b),C2n)

for which there exists some f ∈ L2
B1

((a, b), C2n) so that

Jy′ −B0(x)y = B1(x)f,

for a.e. x ∈ (a, b). We will refer to DM as the maximal domain, and we note that f is 
uniquely determined in L2

B1
((a, b), C2n). (If f and g are two functions associated with the 

same y ∈ DM , then B1(x)(f−g) = 0 for a.e. x ∈ (a, b), so that f = g in L2
B1

((a, b), C2n).)
(ii) We define the maximal operator LM : L2

B1
((a, b), C2n) → L2

B1
((a, b), C2n) as the 

operator with domain DM taking a given y ∈ DM to the unique f ∈ L2
B1

((a, b), C2n)
guaranteed by the definition of DM . We note particularly that y(·; λ) ∈ DM solves (1.1)
iff and only if LMy = λy a.e. in (a, b).

The following terminology will be convenient for the discussion.

Definition 1.2. We say that a solution y(·; λ) ∈ ACloc((a, b), C2n) of (1.1) lies left in (a, b)
if for any c ∈ (a, b), the restriction of y(·; λ) to (a, c) is in L2

B1
((a, c), C2n). Likewise, we 

say that a solution y(·; λ) ∈ ACloc((a, b), C2n) of (1.1) lies right in (a, b) if for any 
c ∈ (a, b), the restriction of y(·; λ) to (c, b) is in L2

B1
((c, b), C2n). For each fixed λ ∈ C

we will denote by ma(λ) the dimension of the space of solutions to (1.1) that lie left in 
(a, b), and we will denote by mb(λ) the dimension of the space of solutions to (1.1) that 
lie right in (a, b).

We will show in Section 2 that if Assumptions (A) and (B) hold, then for any λ ∈ C\R, 
(1.1) admits at least n solutions that lie left in (a, b) and at least n solutions that lie 
right in (a, b). According to Theorem V.2.2 in [24], ma(λ) and mb(λ) are both constant 
for all λ with Imλ > 0, and the same statement is true for Imλ < 0. In the event that 
B0(x) and B1(x) have real-valued entries for a.e. x ∈ (a, b), it is furthermore the case 
that ma(λ) and mb(λ) are both constant for all λ ∈ C\R. (See our Remark 2.1.) We will 
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allow B0(x) and B1(x) to have complex-valued entries, but we will make the following 
consistency assumption:

(C) The values ma(λ) and mb(λ) are both constant for all λ ∈ C\R. We denote these 
common values ma and mb.

In the event that Assumption (A)′ also holds, it’s clear that ma(λ) = 2n for all λ ∈ C. 
In the terminology of our next definition, this means that under Assumption (A)′, (1.1)
is in the limit circle case at x = a. In this case, Assumption (C) holds immediately for 
x = a, with ma = 2n.

Definition 1.3. If ma = n, we say that (1.1) is in the limit point case at x = a, and if 
ma = 2n, we say that (1.1) is in the limit circle case at x = a. If ma ∈ (n, 2n), we say 
that (1.1) is in the limit-ma case at x = a. Analogous specifications are made at x = b.

Under Assumptions (A), (B), and (C), and for some fixed λ0 ∈ C\R we will show that 
by taking an appropriate selection of solutions that lie left in (a, b), {ua

j (x; λ0)}nj=1, and 
an appropriate selection of solutions that lie right in (a, b), {ub

j(x; λ0)}nj=1, we can specify 
the domain of a self-adjoint restriction of LM , which we will denote L. For the purposes 
of this introduction, we will sum this development up in the following lemma, for which 
we denote by Ua(x; λ0) the matrix comprising the vector functions {ua

j (x; λ0)}nj=1 as its 
columns, and by U b(x; λ0) the matrix comprising the vector functions {ub

j(x; λ0)}nj=1 as 
its columns. The selection process is described in detail in Section 2; see especially the 
summary in Remark 2.4.

Lemma 1.1. (i) Let Assumptions (A), (B), and (C) hold, and let λ0 ∈ C\R be fixed. 
Then there exists a selection of solutions {ua

j (x; λ0)}nj=1 to (1.1) (with λ = λ0) that lie 
left in (a, b), along with a selection of solutions {ub

j(x; λ0)}nj=1 to (1.1) (with λ = λ0) 
that lie right in (a, b) so that the restriction of LM to the domain

D := {y ∈ DM : lim
x→a+

Ua(x;λ0)∗Jy(x) = 0, lim
x→b−

U b(x;λ0)∗Jy(x) = 0}

is a self-adjoint operator. We will denote this operator L.

(ii) Let Assumptions (A), (A)′, (B), and (C) hold, and let λ0 ∈ C\R be fixed. In 
addition, let α ∈ Cn×2n denote any fixed matrix satisfying rankα = n and αJα∗ = 0. 
Then there exists a selection of solutions {ub

j(x; λ0)}nj=1 to (1.1) (with λ = λ0) that lie 
right in (a, b) so that the restriction of LM to the domain

Dα := {y ∈ DM : αy(a) = 0, lim
x→b−

U b(x;λ0)∗Jy(x) = 0}

is a self-adjoint operator. We will denote this operator Lα.

In order to set some notation and terminology for this discussion, we make the fol-
lowing standard definitions.
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Definition 1.4. We denote by ρ(L) the usual resolvent set

ρ(L) := {λ ∈ C : (L − λI)−1 : L2
B1

((a, b),Cn) → L2
B1

((a, b),Cn)

is a bounded linear operator},

and we denote by σ(L) the spectrum of L, σ(L) := C\ρ(L). In addition, we define the 
point spectrum of L to be the collection of eigenvalues,

σp(L) := {λ ∈ C : Ly = λy for some y ∈ D\{0}},

and we define the essential spectrum of L, denoted σess(L) to be the collection of all 
λ ∈ C so that λ /∈ ρ(L) and λ is not an isolated eigenvalue of L with finite multiplicity. 
Finally, we define the discrete spectrum of L to be σdiscrete(L) = σ(L)\σess(L). We will 
use precisely the same definitions for Lα, with D replaced by Dα.

Our primary tool for this analysis will be the Maslov index, and as a starting point 
for a discussion of this object, we define what we will mean by a Lagrangian subspace of 
C2n.

Definition 1.5. We say � ⊂ C2n is a Lagrangian subspace of C2n if � has dimension n
and

(Ju, v) = 0, (1.2)

for all u, v ∈ �. In addition, we denote by Λ(n) the collection of all Lagrangian subspaces 
of C2n, and we will refer to this as the Lagrangian Grassmannian.

Remark 1.1. Following the convention of Arnol’d’s foundational paper [2], the notation 
Λ(n) is often used to denote the Lagrangian Grassmannian associated with R2n. Our 
expectation is that it can be used in the current setting of C2n without confusion. We 
note that the Lagrangian Grassmannian associated with C2n has been considered by 
a number of authors, including (ordered by publication date) Bott [4], Kostrykin and 
Schrader [21], Arnol’d [3], and Schulz-Baldes [33,34]. It is shown in all of these references 
that Λ(n) is homeomorphic to the set of n ×n unitary matrices U(n), and in [33,34] the 
relationship is shown to be diffeomorphic. It is also shown in [33] that the fundamental 
group of Λ(n) is isomorphic to the integers Z.

Any Lagrangian subspace of C2n can be spanned by a choice of n linearly independent 
vectors in C2n. We will generally find it convenient to collect these n vectors as the 
columns of a 2n ×n matrix X, which we will refer to as a frame for �. Moreover, we will 
often coordinatize our frames as X =

(
X
Y

)
, where X and Y are n ×n matrices. Following 

[10] (p. 274), we specify a metric on Λ(n) in terms of appropriate orthogonal projections. 
Precisely, let Pi denote the orthogonal projection matrix onto �i ∈ Λ(n) for i = 1, 2. I.e., 
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if Xi denotes a frame for �i, then Pi = Xi(X∗
iXi)−1X∗

i . We take our metric d on Λ(n)
to be defined by

d(�1, �2) := ‖P1 − P2‖,

where ‖ ·‖ can denote any matrix norm. We will say that a path of Lagrangian subspaces 
� : I → Λ(n) is continuous provided it is continuous under the metric d.

Suppose �1(·), �2(·) denote continuous paths of Lagrangian subspaces �i : I → Λ(n), 
i = 1, 2, for some parameter interval I (not necessarily closed and bounded). The Maslov 
index associated with these paths, which we will denote Mas(�1, �2; I), is a count of the 
number of times the paths �1(·) and �2(·) intersect, counted with both multiplicity and 
direction. (In this setting, if we let t∗ denote the point of intersection (often referred to 
as a crossing point), then multiplicity corresponds with the dimension of the intersection 
�1(t∗) ∩ �2(t∗); a precise definition of what we mean in this context by direction will be 
given in Section 3.)

In order to formulate our results for the case in which (1.1) is regular at x = a, we 
introduce the 2n × n matrix solution Xα(x; λ) to the initial value problem

JX′
α = (B0(x) + λB1(x))Xα

Xα(a;λ) = Jα∗.
(1.3)

Under our assumptions (A), (A)′, we can conclude that for each λ ∈ C, Xα(·; λ) ∈
ACloc([a, b), C2n×n). In addition, Xα ∈ C([a, b) ×C, C2n×n), and Xα(x; ·) is analytic in 
λ. (See, for example, [43].) As shown in [14], for each pair (x, λ) ∈ [a, b) ×R, Xα(x; λ) is 
the frame for a Lagrangian subspace of C2n, which we will denote �α(x; λ). (In [14], the 
authors make slightly stronger assumptions on B0(x) and B1(x), but their proof carries 
over immediately into our setting.)

For the frame associated with the right endpoint, we let [λ1, λ2], λ1 < λ2, be such 
that [λ1, λ2] ∩ σess(Lα) = ∅. In Section 2, we will show that for each λ ∈ [λ1, λ2], there 
exists a 2n × n matrix solution Xb(x; λ) to the ODE

JX′
b =(B0(x) + λB1(x))Xb

lim
x→b−

U b(x;λ0)∗JXb(x;λ) = 0,
(1.4)

where the matrix U b(x; λ0) is described in Lemma 1.1 (and the paragraph leading into 
that lemma). In addition, we will check that for each pair (x, λ) ∈ [a, b) ×[λ1, λ2], Xb(x; λ)
is the frame for a Lagrangian subspace of C2n, which we will denote �b(x; λ), and we will 
also check that �b ∈ C([a, b) × [λ1, λ2], Λ(n)).

In Section 4, we will establish the following theorem.

Theorem 1.1. Let Assumptions (A), (A)′, (B), and (C) hold, and assume that for some 
pair λ1, λ2 ∈ R, λ1 < λ2, we have σess(Lα) ∩ [λ1, λ2] = ∅. If �α(·; λ1) and �b(·; λ2)
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denote the paths of Lagrangian subspaces of C2n constructed just above, and Nα([λ1, λ2))
denotes a count of the number of eigenvalues Lα has on the interval [λ1, λ2), then

Nα([λ1, λ2)) ≥ Mas(�α(·;λ1), �b(·;λ2); [a, b)), (1.5)

where

Mas(�α(·;λ1), �b(·;λ2); [a, b)) := lim
c→b−

Mas(�α(·;λ1), �b(·;λ2); [a, c]),

and part of the assertion is that this limit exists. If additionally λ1, λ2 /∈ σp(Lα), then 
we have equality in (1.5).

In the case that (A)′ doesn’t hold, so that (1.1) is singular at x = a, we let [λ1, λ2], 
λ1 < λ2, be such that [λ1, λ2] ∩ σess(L) = ∅. We will show in Section 2 that for each 
λ ∈ [λ1, λ2] there exists a 2n × n matrix solution Xa(x; λ) to the ODE

JX′
a =(B0(x) + λB1(x))Xa

lim
x→a+

Ua(x;λ0)∗JXa(x;λ) = 0,
(1.6)

where the matrix Ua(x; λ0) is described in Lemma 1.1 (and the paragraph leading into 
that lemma). In addition, we will check that for each pair (x, λ) ∈ (a, b) × [λ1, λ2], 
Xa(x; λ) is the frame for a Lagrangian subspace of C2n, which we will denote �a(x; λ), 
and that �a ∈ C((a, b) × [λ1, λ2], Λ(n)).

In Section 4, we will establish the following theorem.

Theorem 1.2. Let Assumptions (A), (B), and (C) hold, and assume that for some pair 
λ1, λ2 ∈ R, λ1 < λ2, we have σess(L) ∩ [λ1, λ2] = ∅. If �a(·; λ1) and �b(·; λ2) denote the 
paths of Lagrangian subspaces of C2n constructed just above, and N ([λ1, λ2)) denotes a 
count of the number of eigenvalues L has on the interval [λ1, λ2), then

N ([λ1, λ2)) ≥ Mas(�a(·;λ1), �b(·;λ2); (a, b)), (1.7)

where the Maslov index on the right-hand side of (1.7) is computed by taking a limit in 
Mas(�a(·; λ1), �b(·; λ2); [c1, c2]) as c1 → a+ and c2 → b−, and part of the assertion is that 
this double limit exists. If additionally λ1, λ2 /∈ σp(L), then we have equality in (1.7).

In order to relate our results to previous work on renormalized oscillation theory, we 
observe that in some cases the Maslov index can be expressed as a sum of nullities for 
certain evolving matrix Wronskians. To understand this, we first specify the following 
terminology: for two paths of Lagrangian subspaces �1, �2 : I → Λ(n), we say that the 
evolution of the pair �1, �2 is monotonic provided all intersections occur in the same 
direction. If the intersections all correspond with the positive direction, then we can 
compute
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Mas(�1, �2; I) =
∑
t∈I

dim(�1(t) ∩ �2(t)).

Suppose X1(t) =
(
X1(t)
Y1(t)

)
and X2(t) =

(
X2(t)
Y2(t)

)
respectively denote frames for Lagrangian 

subspaces of C2n, �1(t) and �2(t). Then we can express this last relation as

Mas(�1, �2; I) =
∑
t∈I

dim ker(X1(t)∗JX2(t)).

(See Lemma 2.2 of [16].)
In the current setting, the necessary monotonicity follows similarly as in the proof of 

Theorem 1.1 in [16]. With this observation, we obtain the following theorem.

Theorem 1.3. Under the assumptions of Theorem 1.1 (without the requirement λ1, λ2 /∈
σp(Lα)), we can write

Mas(�α(·;λ1), �b(·;λ2); [a, b)) =
∑

x∈[a,b)

dim kerXα(x;λ1)∗JXb(x;λ2),

and under the assumptions of Theorem 1.2 (without the requirement λ1, λ2 /∈ σp(L)), we 
can write

Mas(�a(·;λ1), �b(·;λ2); (a, b)) =
∑

x∈(a,b)

dim kerXa(x;λ1)∗JXb(x;λ2).

In the remainder of this section, we briefly review the origins of renormalized oscilla-
tion theory, placing our result in the broader context, and we also set out a plan for the 
paper and summarize our notational conventions. For the first, renormalized oscillation 
theory was introduced in [12] in the context of single Sturm-Liouville equations, and was 
subsequently developed in [40,41] for Jacobi operators and Dirac operators. (See [35]
for an expository discussion of these early developments.) More recently, Gesztesy and 
Zinchenko have extended these early results to the setting of (1.1) in the limit point case 
[13], though with a set-up and approach substantially different from the ones employed 
in the current analysis. In [16], the authors of the current analysis showed in the con-
text of regular linear Hamiltonian systems that renormalized oscillation results can be 
established in a natural way via the Maslov index. (See also [8] for a related analysis 
that employs the notion of oscillation numbers and [9] for a study of the connection 
between oscillation numbers and the Maslov index.) The current analysis seems to be 
the first effort to extend the renormalized oscillation approach to the limit circle and 
limit intermediate cases.

In order to understand the motivation behind this approach, we can contrast it 
with standard oscillation theory, exemplified by Sturm’s oscillation theorem for Sturm-
Liouville operators [36]. As a specific point of comparison, we will use a (standard) 
oscillation result that the authors have obtained for Sturm-Liouville equations on the 
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half-line, (a, b) = (0, ∞), where x = 0 is a regular boundary point (see [17]). If we focus 
on the case of Dirichlet boundary conditions at x = 0 (i.e., α = (I 0)), then Theorem 1.1 
of [17] asserts (under fairly strong assumptions on the coefficient matrices associated with 
the Sturm-Liouville operator), that the number of eigenvalues that the Sturm-Liouville 
operator has below some λ∗ ∈ R can be expressed as

Mor(L;λ∗) =
∑
x>0

dim kerXb(x;λ∗), (1.8)

where Xb denotes the first n × n coordinate in the frame Xb. We see immediately, that 
the number of eigenvalues between λ1 and λ2 can be computed in this case as

N ([λ1, λ2)) =
∑
x>0

dim kerXb(x;λ2) −
∑
x>0

dim kerXb(x;λ1). (1.9)

The difficulty with this approach is twofold. First, for conditions other than Dirichlet, 
the right-hand side of (1.8) becomes a count of signed intersections between �b(x; λ∗)
and �α(0; λ∗), and so cannot be expressed as a sum of nullities; and second, if the strong 
coefficient conditions of [17] are dropped, the right-hand side of (1.8) can become infinite, 
even in the Dirichlet case. Consequently, (1.9) can take the form ∞ −∞, even in cases for 
which N ([λ1, λ2)) is finite. Indeed, this latter observation seems to have been the primary 
motivation for the approach [12,35]. (See Section 5 for a specific implementation of our 
theory in this setting.)

Plan of the paper. In Section 2, we prove Lemma 1.1, establishing the existence and 
nature of the family of self-adjoint operators L and Lα that will be the objects of our 
study. In Section 3, we provide some background on the Maslov index, along with some 
results we’ll need for the subsequent analysis. In Section 4, we prove Theorems 1.1 and 
1.2, and in Section 5 we conclude with two specific illustrative applications.

Notational conventions. Throughout the analysis, we will use the notation ‖ · ‖B1 and 
〈·, ·〉B1 respectively for our weighted norm and inner product. In the case that (1.1) is 
regular at x = a, we will denote the associated map of Lagrangian subspaces by �α, 
and we will denote by Xα a specific corresponding map of frames. Likewise, if (1.1) is 
singular at x = a, we will use �a and Xa, and for x = b (always assumed singular), we 
will use �b and Xb. In order to accommodate limits associated with our bilinear form, 
we will adopt the notation

(Jy, z)a := lim
x→a+

(Jy(x), z(x)); (Jy, z)b := lim
x→b−

(Jy(x), z(x)),

along with

(Jy, z)ba := (Jy, z)b − (Jy, z)a.

Here and throughout, we use (·, ·) to denote the usual inner product in C2n.
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2. The self-adjoint operators L and Lα

In this section, we adapt the approach of [26–28] (as developed in Chapter VI of [24]) 
to the setting of (1.1).

2.1. Niessen subspaces

We begin by fixing some c ∈ (a, b), and letting Φ(x; λ) denote the fundamental matrix 
specified by

JΦ′ = (B0(x) + λB1(x))Φ; Φ(c;λ) = I2n. (2.1)

For pairs (x, λ) ∈ (a, b) ×C\R we define the 2n × 2n matrix

A(x;λ) := 1
2Imλ

Φ(x;λ)∗(J/i)Φ(x;λ),

observing that for each fixed λ ∈ C\R, we have A(·; λ) ∈ ACloc((a, b), C2n×2n), 
with A(x; λ) self-adjoint for all (x, λ) ∈ (a, b) × C\R. It follows that the eigenval-
ues {μj(x; λ)}2n

j=1 of A(x; λ) can be ordered so that μj(x; λ) ≤ μj+1(x; λ) for all 
j ∈ {1, 2, . . . , 2n − 1}.

Since A(c; λ) = 1
2Imλ (J/i), we see that A(c; λ) has an eigenvalue with multiplicity n

at − 1
2|Imλ| and an eigenvalue with multiplicity n at + 1

2|Imλ| . According to Theorem II.5.4 
in [19], we can understand the motion of the eigenvalues {μj(x; λ)}2n

j=1 as x increases (or 
decreases) by evaluating the matrix A′(x; λ), where prime denotes differentiation with 
respect to x. To this end, we find by direct calculation that

A′(x;λ) = Φ(x;λ)∗B1(x)Φ(x;λ) (2.2)

for all (x, λ) ∈ (a, b) ×C\R. We can conclude from Assumption (B) that each eigenvalue 
μj(x; λ) must be continuous and non-decreasing as a function of x. In addition, since the 
fundamental matrix Φ(x; λ) is invertible for all (x, λ) ∈ (a, b) ×C\R, we see that A(x; λ)
is likewise invertible, and so none of its eigenvalues can cross 0 for any x ∈ (a, b). We 
conclude that for all (x, λ) ∈ (a, b) ×C\R, we have the ordering

μ1(x;λ) ≤ μ2(x;λ) ≤ · · · ≤ μn(x;λ) < 0 < μn+1(x;λ) ≤ μn+2(x;λ) ≤ ... ≤ μ2n(x;λ).
(2.3)

As x decreases toward x = a, these eigenvalues are all non-increasing, and so in 
particular the limits

μa
j (λ) := lim μj(x;λ)
x→a+
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exist for each j ∈ {n + 1, n + 2, . . . , 2n}. Moreover, for each j ∈ {1, 2, . . . , n}, these 
same limits either exist or diverge to −∞. Likewise, as x increases toward x = b, the 
eigenvalues {μj(x; λ)}2n

j=1 are all non-decreasing, and so in particular the limits

μb
j(λ) := lim

x→b−
μj(x;λ)

exist for each j ∈ {1, 2, . . . , n}. Moreover, for each j ∈ {n + 1, n + 2, . . . , 2n}, these same 
limits either exist or diverge to +∞.

Lemma 2.1. Let Assumptions (A) and (B) hold, and let λ ∈ C\R be fixed. Then the 
dimension ma(λ) of the subspace of solutions to (1.1) that lie left in (a, b) is precisely 
the number of eigenvalues μj(x; λ) ∈ σ(A(x; λ)) that approach a finite limit as x → a+. 
Likewise, the dimension mb(λ) of the subspace of solutions to (1.1) that lie right in (a, b)
is precisely the number of eigenvalues μj(x; λ) ∈ σ(A(x; λ)) that approach a finite limit 
as x → b−.

Proof. We will carry out the proof for mb(λ); the proof for ma(λ) is similar. Integrating 
(2.2), we see that A(x; λ) can alternatively be expressed as

A(x;λ) = 1
2Imλ

(J/i) +
x∫

c

Φ(ξ;λ)∗B1(ξ)Φ(ξ;λ)dξ. (2.4)

We temporarily let m̃b(λ) denote the number of eigenvalues of A(x; λ) that have a 
finite limit as x → b−; precisely, this will be the set {μj(x; λ)}m̃b(λ)

j=1 . Let {vj(x; λ)}m̃b(λ)
j=1

denote an orthonormal basis of eigenvectors associated with these eigenvalues, noting 
that these elements may not be continuous in x. We can take any element vj(x; λ) from 
this collection and multiply (2.4) on the left by vj(x; λ)∗ and on the right by vj(x; λ) to 
obtain

vj(x;λ)∗{A(x;λ) − 1
2Imλ

(J/i)}vj(x;λ) =
x∫

c

vj(x;λ)∗Φ(ξ;λ)∗B1(ξ)Φ(ξ;λ)vj(x;λ)dξ.

(2.5)
The left-hand side of this last relation is

μj(x;λ) − 1
2iImλ

vj(x;λ)∗Jvj(x;λ),

and so is bounded above for all x ∈ (c, b). Now, consider any sequence of values {xk}∞k=1
so that xk increases to b as k → ∞. The corresponding sequence {vj(xk; λ)}∞k=1 lies on 
the unit sphere in C2n (a compact set), so there exists a subsequence {xki

}∞i=1 so that 
{vj(xki

; λ)}∞i=1 converges to some vbj(λ) on the unit sphere in C2n. We claim that it 
follows that the functions {Φ(x; λ)vbj(λ)}m̃b(λ)

j=1 lie right in (a, b). To see this, we assume 
to the contrary that for some j ∈ {1, 2, . . . , m̃b(λ)},
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b∫
c

vbj(λ)∗Φ(ξ;λ)∗B1(ξ)Φ(ξ;λ)vbj(λ)dξ = ∞.

In this case, if we are given any constant K > 0, we can take b′ ∈ (c, b) sufficiently close 
to b (sufficiently large if b = ∞) so that

b′∫
c

vbj(λ)∗Φ(ξ;λ)∗B1(ξ)Φ(ξ;λ)vbj(λ)dξ > K. (2.6)

By a straightforward calculation, we can check that by taking xki
sufficiently close to b

(sufficiently large if b = ∞), we can make

b′∫
c

vj(xki
;λ)∗Φ(ξ;λ)∗B1(ξ)Φ(ξ;λ)vj(xki

;λ)dξ

as close as we like to the integral in (2.6). In particular, we can find a positive integer N
sufficiently large so that for all i ≥ N , we have

b′∫
c

vj(xki
;λ)∗Φ(ξ;λ)∗B1(ξ)Φ(ξ;λ)vj(xki

;λ)dξ ≥ K.

Possibly by taking N even larger, we can ensure that xki
> b′, and it follows from our 

Assumption (B) that

xki∫
c

vj(xki
;λ)∗Φ(ξ;λ)∗B1(ξ)Φ(ξ;λ)vj(xki

;λ)dξ

>

b′∫
c

vj(xki
;λ)∗Φ(ξ;λ)∗B1(ξ)Φ(ξ;λ)vj(xki

;λ)dξ ≥ K.

Since K can be taken as large as we like, this contradicts the boundedness ensured by 
(2.5). We conclude that indeed the functions {Φ(x; λ)vbj(λ)}m̃b(λ)

j=1 lie right in (a, b), and 

since the set {vbj(λ)}m̃b(λ)
j=1 retains orthonormality in the limit, we see that the functions 

{Φ(x; λ)vbj(λ)}m̃b(λ)
j=1 are linearly independent as solutions of (1.1).

On the other hand, if we allow {vj(x; λ)}2n
j=m̃b(λ)+1 to denote an orthonormal basis 

of eigenvectors associated with the eigenvalues of A(x; λ) that do not have finite limits 
as x → b−, then we find that the functions {Φ(x; λ)vbj(λ)}2n

m̃b(λ)+1 form a basis for a 
(2n − m̃b(λ))-dimensional subspace of solutions of (1.1) that do not lie right in (a, b).
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Combining these observations, we conclude that {Φ(x; λ)vbj(λ)}m̃b(λ)
j=1 comprises a basis 

for the subspace of all solutions to (1.1) that lie right in (a, b), and so in particular, 
m̃b(λ) = mb(λ). �

Lemma 2.1 suggests that we need to better understand the nature of the eigenvalues 
of A(x; λ). As a starting point, we observe the relation

Φ(x; λ̄)∗(J/i)Φ(x;λ) = (J/i), (2.7)

for all x ∈ (a, b), which can be verified by showing that the quantity on the left is 
independent of x (its derivative is zero) and evaluating at x = c, where Φ(c; λ) = I2n. 
(Although we are currently working with the case Im λ 
= 0, (2.7) holds for λ ∈ R as 
well.) Since (J/i) is self-adjoint, we likewise have (by taking an adjoint on both sides of 
(2.7))

Φ(x;λ)∗(J/i)Φ(x; λ̄) = (J/i), (2.8)

and this relation allows us to write

Φ(x; λ̄) = (J/i)(Φ(x;λ)∗)−1(J/i).

In this way, we see that we can write

A(x; λ̄) = − 1
2Imλ

Φ(x; λ̄)∗(J/i)Φ(x; λ̄)

= − 1
2Imλ

(J/i)(Φ(x;λ))−1(J/i)(J/i)(J/i)(Φ(x;λ)∗)−1(J/i)

= − 1
(2Imλ)2 (J/i)A(x;λ)−1(J/i).

Upon subtracting a term ρI from both sides of this last relation (for any ρ ∈ R), we 
obtain the relation

A(x; λ̄) − ρI = −ρ(J/i)A(x;λ)−1{A(x;λ) + 1
ρ(2Imλ)2 I}(J/i). (2.9)

These considerations allow us to conclude the following lemma, adapted from Theorem 
VI.2.1 of [24].

Lemma 2.2. Let Assumption (A) hold (not necessarily Assumption (B)). For any λ ∈
C\R, a value ρ ∈ R is an eigenvalue of A(x; ̄λ) if and only if the value − 1

ρ(2Imλ)2 is an 
eigenvalue of A(x; λ). It follows immediately that if we order the eigenvalues of A(x; λ)
according to (2.3), and order the eigenvalues of A(x; ̄λ) similarly, then we have
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μj(x; λ̄) = − 1
(2Imλ)2μn+j(x;λ) ; j = 1, 2, . . . , n;

μj(x; λ̄) = − 1
(2Imλ)2μj−n(x;λ) ; j = n + 1, n + 2, . . . , 2n.

Moreover, for j = 1, 2, . . . , n, if vj(x; ̄λ) is an eigenvector of A(x; ̄λ) associated with 
eigenvalue μj(x; ̄λ), then

vn+j(x;λ) = (J/i)vj(x; λ̄)

is an eigenvector of A(x; λ) associated with eigenvalue μn+j(x; λ). Likewise, for j =
n + 1, n + 2, . . . , 2n, if vj(x; ̄λ) is an eigenvector of A(x; ̄λ) associated with eigenvalue 
μj(x; ̄λ), then

vj−n(x;λ) = (J/i)vj(x; λ̄)

is an eigenvector of A(x; λ) associated with eigenvalue μj−n(x; λ).

Similarly as in the proof of Lemma 2.1, we can use compactness of the unit sphere 
in C2n to associate limiting vectors {vbj(λ)}2n

j=1 and {vbj(λ̄)}2n
j=1 respectively with the 

eigenvectors {vj(x; λ)}2n
j=1 and {vj(x; ̄λ)}2n

j=1. These limiting vectors naturally inherit 
both orthonormality and the relations of Lemma 2.2,

vbn+j(λ) = (J/i)vbj(λ̄); j = 1, 2, . . . , n

vbj−n(λ) = (J/i)vbj(λ̄); j = n + 1, n + 2, . . . , 2n,
(2.10)

with precisely the same statements holding for the limit x → a+ with the superscript b
replaced by the superscript a.

We note for later use that for any indices j ∈ {1, 2, . . . , n}, k ∈ {1, 2, . . . , 2n}, we can 
use (2.10) to see that

vbj(λ̄)∗Jvbk(λ) = ((J/i)vbn+j(λ))∗Jvbk(λ) = vbn+j(λ)∗(J/i)Jvbk(λ)

= ivbn+j(λ)∗vbk(λ) = iδkn+j ,
(2.11)

where δkn+j is a Kroenecker delta function, and the final equivalence is due to orthonor-
mality. Likewise, for any indices j ∈ {n + 1, n + 2, . . . , 2n}, k ∈ {1, 2, . . . , 2n}, we see 
from (2.10) that

vbj(λ̄)∗Jvbk(λ) = ((J/i)vbn+j(λ))∗Jvbk(λ) = vbj−n(λ)∗(J/i)Jvbk(λ)

= ivb (λ)∗vb(λ) = iδk .
(2.12)
j−n k j−n
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For j = 1, 2, . . . , n, we set

ybj(x;λ) = Φ(x;λ)vbj(λ)

zbj(x;λ) = Φ(x;λ)vbn+j(λ).
(2.13)

It’s clear from our construction that ybj(·; λ) lies right in (a, b) for each j ∈ {1, 2, . . . , n}, 
while zbj(·; λ) lies right in (a, b) if and only if μb

n+j(λ) is finite. We have seen that the 
total number of the values {μb

j(λ)}2n
j=1 that are finite is mb(λ), and we will also find 

it convenient to introduce the value rb(λ) := mb(λ) − n. Following [26–28], for each 
j ∈ {1, 2, . . . , n}, we define the two-dimensional space

N b
j (λ) := Span{ybj(·;λ), zbj(·;λ)}, (2.14)

and following [24] we refer to the collection {N b
j (λ)}nj=1 as the Niessen subspaces at 

b. According to our labeling convention, the Niessen subspaces {N b
j (λ)}rb(λ)

j=1 all satisfy 
dimN b

j (λ) ∩L2
B1

((c, b), C2n) = 2, while the remaining Niessen subspaces {N b
j (λ)}nrb(λ)+1

satisfy dimN b
j (λ) ∩ L2

B1
((c, b), C2n) = 1. (Here, c continues to be any value c ∈ (a, b).)

We see from Lemma 2.2 that as x increases to b, we will have μj(x; ̄λ) → +∞ if and 
only if μj−n(x; λ) → 0. In this way, the values mb(λ) and mb(λ̄) are both determined 
by the eigenvalues of A(x; λ) as x → b−. A similar statement holds at x = a. We 
emphasize, however, that the values mb(λ) and mb(λ̄) do not necessarily agree. This is 
precisely why we need our consistency Assumption (C). As noted in the Introduction, 
under Assumption (C) we will denote the mutual value of mb(λ) and mb(λ̄) by mb, and 
we will also denote the mutual value of rb(λ) and rb(λ̄) by rb.

Remark 2.1. We note that if the matrices B0(x) and B1(x) have real-valued entries 
so that B0(x) + λB1(x) = B0(x) + λ̄B1(x), then we will have Φ(x;λ) = Φ(x; ̄λ), and 
correspondingly A(x;λ) = A(x; ̄λ). In this case, for each j ∈ {1, 2, . . . , 2n},

μj(x;λ) = μj(x;λ) = μj(x; λ̄). (2.15)

In particular, ma(λ) = ma(λ̄) and mb(λ) = mb(λ̄), and so our Assumption (C) will 
hold. More generally, if B0(x) and B1(x) are allowed to have complex-valued entries 
(though still kept self-adjoint), then examples can be constructed in which ma(λ) (resp. 
mb(λ)) takes on any specified integer value in [n, 2n) and independently ma(λ̄) (resp. 
mb(λ̄)) also takes on any specified integer value in this interval. See, for example, [18]
for a specific family of examples, and Section 5 in [20] for a broader discussion. To the 
authors’ knowledge, the question of necessary and sufficient conditions on B0(x) and 
B1(x) in order for our Assumption (C) to hold remains an interesting open question.

In the next part of our development, the ratios {μj(x; λ)/μn+j(x; λ)}nj=1 will have an 
important role, and we emphasize that Assumption (C) becomes crucial at this point. 
To see this, we first observe from Lemma 2.2 the relation
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μj(x; λ̄)
μn+j(x; λ̄)

= −
1

(2Imλ)2μn+j(x;λ)
1

(2Imλ)2μj(x;λ)
= μj(x;λ)

μn+j(x;λ) . (2.16)

For j = rb(λ) + 1, . . . , n, we have

lim
x→b−

μn+j(x;λ) = ∞; =⇒ lim
x→b−

μj(x; λ̄) = 0,

and so both sides of (2.16) approach 0 as x → b−. On the other hand, for j = 1, . . . , rb(λ), 
we have

lim
x→b−

μn+j(x;λ) = μb
n+j(λ); =⇒ lim

x→b−
μj(x; λ̄) = μb

j(λ̄),

where the values μb
n+j(λ) and μb

j(λ̄) are both non-zero real numbers, and so do not fully 
determine the limits of (2.16) as x → b−. In particular, in order to determine these limits, 
we require either the limit of μn+j(x; ̄λ) or the limit of μj(x; b) as x → b−. Precisely the 
same statements hold with λ replaced by λ̄, so for j = 1, . . . , rb(λ̄), we have

lim
x→b−

μn+j(x; λ̄) = μb
n+j(λ̄); =⇒ lim

x→b−
μj(x;λ) = μb

j(λ),

where the values μb
n+j(λ̄) and μb

j(λ) are both non-zero real numbers. We can conclude 

that if rb(λ) = rb(λ̄), then the ratios {μj(x; λ)/μn+j(x; λ)}rb(λ)
j=1 will all have real non-zero 

limits as x → b−.
Working now under Assumption (C), we choose n solutions of (1.1) that lie right in 

(a, b), taking precisely one from each Niessen subspace N b
j (λ) in the following way. First, 

for each j ∈ {1, 2, . . . , rb}, we let βj(λ) be any complex number on the circle

|βb
j (λ)| =

√
−μb

j(λ)/μb
n+j(λ),

where as described just above, these ratios cannot be 0, and we set

ub
j(x;λ) = ybj(x;λ) + βb

j (λ)zbj(x;λ).

Next, for each j ∈ {rb + 1, rb + 2, . . . , n}, we set

ub
j(x;λ) = ybj(x;λ).

Correspondingly, we will denote by {rbj(λ)}nj=1 the vectors specified so that ub
j(x; λ) =

Φ(x; λ)rbj(λ) for each j ∈ {1, 2, . . . , n}. Precisely, this means that

rbj(λ) = vbj(λ) + βb
j (λ)vbn+j(λ), j ∈ {1, 2, . . . , rb},

rb(λ) = vb(λ), j ∈ {r + 1, r + 2, . . . , n}.
j j b b
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We can now collect the vectors {rbj(λ)}nj=1 into a frame

Rb(λ) =
(
rb1(λ) rb2(λ) . . . rbn(λ)

)
. (2.17)

In addition to the above specifications, for the Niessen subspaces {N b
j (λ)}rbj=1, it will 

be useful to introduce notation for elements linearly independent to the {ub
j(x; λ)}rbj=1. 

For each j ∈ {1, 2, . . . , rb}, we take any complex number γj(λ) so that |γj(λ)| = |βj(λ)|
but γj(λ) 
= βj(λ), and we define the Niessen complement to ub

j(x; λ) to be

vbj(x;λ) = ybj(x;λ) + γb
j (λ)zbj(x;λ). (2.18)

With this notation in place, we can adapt Theorem VI.3.1 from [24] to the current 
setting.

Lemma 2.3. Let Assumptions (A), (B) and (C) hold, and let the Niessen elements 
{ub

j(x; λ)}nj=1 and the Niessen complements {vbj(x; λ)}rbj=1 be specified as above. Then 
the following hold:

(i) For each j, k ∈ {1, 2, . . . , n},

(Jub
j(·;λ), ub

k(·;λ))b = 0.

(ii) For each j ∈ {1, 2, . . . , n}, k ∈ {1, 2, . . . , rb},

(Jub
j(·;λ), vbk(·;λ))b =

{
0 j 
= k

κb
j = 2iImλ(μb

j(λ) + γb
j (λ)βb

j (λ)μb
n+j(λ)) 
= 0 j = k.

Proof. See Theorem VI.3.1 in [24]. We note here only two key points: (1) We require 
Assumption (C) in order to ensure that κb

j 
= 0; and (2) in anticipation of Lemma 2.4, 
we are introducing the notation

(Ju, v)b := lim
x→b−

(Ju(x), v(x)). �
Claim 2.1. Let Assumptions (A), (B), and (C) hold, and suppose the Niessen elements 
for (1.1) are chosen to be

ub
j(x;λ) = Φ(x;λ)(vbj(λ) + βb

j (λ)vbn+j(λ)), j ∈ {1, 2, . . . , rb}
vbj(x;λ) = Φ(x;λ)(vbj(λ) + γb

j (λ)vbn+j(λ)), j ∈ {1, 2, . . . , rb}
ub
j(x;λ) = Φ(x;λ)vbj(λ), j ∈ {rb + 1, rb + 2, . . . , n},

with βb
j (λ) and γb

j (λ) specified just above (in particular, as well-defined non-zero values). 
Then the Niessen elements for (1.1) with λ replaced by λ̄ can be chosen to be
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ub
j(x; λ̄) = Φ(x; λ̄)(vbj(λ̄) + βb

j (λ̄)vbn+j(λ̄)), j ∈ {1, 2, . . . , rb}
vbj(x; λ̄) = Φ(x; λ̄)(vbj(λ̄) + γb

j (λ̄)vbn+j(λ̄)), j ∈ {1, 2, . . . , rb}
ub
j(x; λ̄) = Φ(x; λ̄)vbj(λ̄), j ∈ {rb + 1, rb + 2, . . . , n},

with βb
j (λ̄) = −βb

j (λ) and γb
j (λ̄) = −γb

j (λ) for all j ∈ {1, 2, . . . rb}.

Proof. This statement follows almost entirely from our labeling conventions, and the only 
part that we will explicitly check is the final assertion that we can take βb

j(λ̄) = −βb
j (λ)

and γb
j (λ̄) = −γb

j (λ). For this, we observe from (2.16) that

μb
j(λ̄)

μb
n+j(λ̄)

= −
1

(2Imλ)2μb
n+j(λ)

1
(2Imλ)2μb

j(λ)
=

μb
j(λ)

μb
n+j(λ)

,

and consequently

|βb
j (λ̄)| =

√
−μb

j(λ̄)/μb
n+j(λ̄) = |βb

j (λ)|.

Since we can take βb
j (λ̄) to be any complex number with this modulus, we can set 

βb
j (λ̄) = −βb

j (λ), and subsequently we are justified in choosing γb
j (λ̄) = −γb

j (λ). �
Claim 2.2. Let the Assumptions and notation of Claim 2.1 hold, and let Rb(λ) denote the 
matrix defined in (2.17). If Rb(λ̄) denotes the matrix defined in (2.17) with λ replaced 
by λ̄ and the Niessen elements described in Claim 2.1, then

Rb(λ̄)∗JRb(λ) = 0.

Proof. First, for j, k ∈ {1, 2, . . . , rb}, we have

rbj(λ̄)∗Jrbk(λ) = (vbj(λ̄)∗ + βb
j (λ̄)vbn+j(λ̄)∗)J(vbk(λ) + βb

k(λ)vbn+k(λ))

= vbj(λ̄)∗Jvbk(λ) + βb
k(λ)vbj(λ̄)∗Jvbn+k(λ)

+ βb
j (λ̄)vbn+j(λ̄)∗Jvbk(λ) + βb

j (λ̄)βb
k(λ)vbn+j(λ̄)∗vbn+k(λ)

=
{

0 j 
= k

i(βb
k(λ) + βb

k(λ̄)) j = k,

where in obtaining the final inequality we’ve used the relations (2.11) and (2.12). Recall-
ing our convention from Claim 2.1, we see that we in fact have

rbj(λ̄)∗Jrbk(λ) = 0, ∀ j, k ∈ {1, 2, . . . , rb}.

Next, for j ∈ {1, 2, . . . , rb}, k ∈ {rb + 1, rb + 2, . . . , n}, we have
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rbj(λ̄)∗Jrbk(λ) = (vbj(λ̄)∗ + βb
j (λ̄)vbn+j(λ̄)∗)Jvbk(λ) = 0

where again we’ve used the relations (2.11) and (2.12). The cases j ∈ {rb+1, rb+2, . . . , n}, 
k ∈ {1, 2, . . . , rb} and j, k ∈ {rb + 1, rb + 2, . . . , n} can be handled similarly. �

With appropriate labeling, statements analogous to Lemma 2.3 and Claims 2.1 and 
2.2 can be established with b replaced by a.

2.2. Properties of L and Lα

Turning now to consideration of the operators L and Lα, we will take as our starting 
point the following formulation of Green’s identity for our maximal operator LM .

Lemma 2.4 (Green’s Identity). Let Assumptions (A) hold, and let LM be the maximal 
operator specified in Definition 1.1. Then for any y, z ∈ DM , we have

〈LMy, z〉B1 − 〈y,LMz〉B1 = (Jy, z)ba, (2.19)

where

(Jy, z)ba = (Jy, z)b − (Jy, z)a,

with

(Jy, z)a := lim
x→a+

(Jy(x), z(x)),

(Jy, z)b := lim
x→b−

(Jy(x), z(x))

(for which the limits are well-defined). In particular, if y and z satisfy LMy = λy and 
LMz = λz then

2iImλ〈y, z〉B1 = (Jy, z)ba. (2.20)

Proof. To begin, we take any y, z ∈ DM , and we let f, g ∈ L2
B1

((a, b), C2n) respectively 
denote the uniquely defined functions so that LMy = f and LMz = g. By definition of 
DM , this means that we have the relations

Jy′ −B0(x)y = B1(x)f

Jz′ −B0(x)z = B1(x)g,

for a.e. x ∈ (a, b). We compute the C2n inner product

(B1LMy, z) = (B1f, z) = (Jy′ −B0y, z) = (Jy′, z) − (y,B0z), a.e. x ∈ (a, b),
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where in obtaining the final equality we have used our assumption that B0(x) is self-
adjoint for a.e. x ∈ (a, b). Likewise,

(B1y,LMz) = (B1y, g) = (y,B1g) = (y, Jz′−B0z) = (y, Jz′)−(y,B0z), a.e. x ∈ (a, b).

Subtracting the latter of these relations from the former, we see that

d

dx
(Jy, z) = (B1LMy, z) − (B1y,LMz).

For any c, d ∈ (a, b), c < d, we can integrate this last relation to see that

(Jy(d), z(d)) − (Jy(c), z(c)) =
d∫

c

(B1(x)LMy(x), z(x))dx−
d∫

c

(B1(x)y(x),LMz(x))dx.

If we allow d to remain fixed, then since y, z ∈ L2
B1

((a, b), C2n) we see that the limit

(Jy, z)a := lim
c→a+

(Jy(c), z(c))

is well-defined. In particular, we can write

(Jy(d), z(d)) − (Jy, z)a =
d∫

a

(B1(x)LMy(x), z(x))dx−
d∫

a

(B1(x)y(x),LMz(x))dx.

If we now take d → b−, we obtain precisely (2.19). Relation (2.20) is an immediate 
consequence of (2.19). �

We turn next to the identification of appropriate domains D and Dα on which the 
respective restrictions of LM are self-adjoint. This development is adapted from Chapter 
6 in [30], and we begin by making some preliminary definitions. We set

Dc := {y ∈ DM : y has compact support in (a, b)},

and we denote by Lc the restriction of LM to Dc. We can show, as in Theorem 3.9 of [43]
that L∗

c = LM , and from Theorem 3.7 of that same reference (adapted to the current 
setting) we know that Dc is dense in L2

B1
((a, b), C2n).

Remark 2.2. The minimal operator L0 associated with LM is the closure of Lc. We 
know from Theorem 8.6 in [42] that Lc has a self-adjoint extension if and only if its 
defect indices γ±(Lc) agree, where

γ±(Lc) := dim ran(Lc ∓ iI)⊥ = dim ker(LM ± iI).
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In addition, we know from Theorem 7.1 of [43] that

dim ker(LM ± iI) = ma(∓i) + mb(∓i) − 2n.

Our Assumption (C) assures us that ma(i) = ma(−i) and mb(i) = mb(−i) so that 
γ−(Lc) = γ+(Lc). I.e., under Assumption (C) the defect indices agree, so Lc has a 
self-adjoint extension.

For any λ ∈ C\R, we let {ub
j(x; λ)}nj=1 denote a selection of Niessen elements as 

described in Claim 2.1, and we denote by U b(x; λ) the 2n × n matrix comprising the 
vectors {ub

j(x; λ)}nj=1 as its columns. Likewise we let {ua
j (x; λ)}nj=1 denote a collection of 

Niessen elements that can similarly be specified in association with x = a, and we denote 
by Ua(x; λ) the 2n ×n matrix comprising the vectors {ua

j (x; λ)}nj=1 as its columns. Next, 
we verify that we can construct functions {ũa

j (x; λ)}nj=1 and {ũb
j(x; λ)}nj=1 so that for 

each j ∈ {1, 2, . . . , n} we have ũa
j (·; λ), ̃ub

j(·; λ) ∈ DM , and moreover

ũa
j (x;λ) =

{
ua
j (x;λ) near x = a

0 near x = b
; ũb

j(x;λ) =
{

0 near x = a

ub
j(x;λ) near x = b.

(2.21)

To this end, we use the following lemma from [38], which is proven (with minor changes) 
as Lemma 3.1 in [39].

Lemma 2.5 (Lemma 3.1 in [38]). For any [a1, b1] ⊂ (a, b), a1 < b1, let Da1,b1,M denote the 
maximal domain as specified in Definition 1.1, except with (a, b) replaced by (a1, b1) and 
ACloc((a, b), C2n) replaced by AC([a1, b1], C2n). Then for every given pair v1, v2 ∈ C2n, 
there exists y ∈ Da1,b1,M so that y(a1) = v1 and y(b1) = v2.

In order to construct ũa
j (x; λ), we fix any [a1, b1] ⊂ (a, b), a1 < b1, and use Lemma 2.5

to find y ∈ Da1,b1,M so that y(a1) = ua
j (a1; λ) and y(b1) = 0. By definition of Da1,b1,M , 

there exists a corresponding f ∈ L2
B1

((a1, b1), C2n) so that Jy′ − B0(x)y = B1(x)f for 
a.e. x ∈ (a1, b1). Then we can set

ũa
j (x;λ) :=

⎧⎪⎪⎨
⎪⎪⎩
ua
j (x;λ) x ∈ (a, a1]

y(x;λ) x ∈ (a1, b1)
0 x ∈ [b1, b).

Since ua
j (x; λ) lies left in (a, b), ua

j (·; λ) ∈ ACloc((a, b), C2n), and y(·; λ) ∈ AC([a1, b1],
C2n), we see that

ũa
j (·;λ) ∈ L2

B1
((a, b),C2n) ∩ACloc((a, b),C2n).

In addition, if we set
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f̃(x;λ) :=

⎧⎪⎪⎨
⎪⎪⎩
λua

j (x;λ) x ∈ (a, a1)
f(x;λ) x ∈ (a1, b1)
0 x ∈ (b1, b),

then f̃(·; λ) ∈ L2
B1

((a, b), C2n) and Jũa ′
j − B0(x)ũa

j = B1(x)f̃ for a.e. x ∈ (a, b), so 
ũa
j (·; λ) ∈ DM . We can proceed similarly for the elements {ũb

j(x; λ)}nj=1.
For some fixed λ0 ∈ C\R, we now specify the domain

Dλ0 := Dc + Span
{
{ũa

j (·;λ0)}nj=1, {ũb
j(·;λ0)}nj=1

}
, (2.22)

and we denote by Lλ0 the restriction of LM to Dλ0 .

Theorem 2.1. Let Assumptions (A), (B) and (C) hold. Then the operator Lλ0 is essen-
tially self-adjoint, and so in particular, L := Lλ0 = L∗

λ0
is self-adjoint. The domain D

of L is

D = {y ∈ DM : lim
x→a+

Ua(x;λ0)∗Jy(x) = 0, lim
x→b−

U b(x;λ0)∗Jy(x) = 0}. (2.23)

Remark 2.3. The identification of self-adjoint extensions of Lc is taken up more fully 
in the papers and book by Krall [22–24], and in the series of papers by Sun and Shi 
[37–39]. Nonetheless, our formulation of Theorem 2.1 takes a different form, tailored to 
our analysis, than the associated theorems in these references. In addition, our proof of 
Theorem 2.1 will serve to set up some notation and relations that we will find useful in 
the subsequent discussion.

Proof of Theorem 2.1. First, we check that Lλ0 is symmetric. Using (2.19), we immedi-
ately see that for any y, z ∈ Dc we have

〈Lλ0y, z〉B1 − 〈y,Lλ0z〉B1 = (Jy, z)ba = 0,

and we can similarly use (2.19) along with the identities (for y ∈ Dc)

(Jy, ũa
j )ba = 0, (Jy, ũb

j)ba = 0, (Jũa
j , ũ

b
k)ba = 0,

for all j, k ∈ {1, 2, . . . , n} (following from support of the elements in all cases). It remains 
to show that

(Jũa
j , ũ

a
k)ba = 0 and (Jũb

j , ũ
b
k)ba = 0, (2.24)

but these identities are immediate from Lemma 2.3 (along with the analogous statement 
associated with x = a), so symmetry is established.

Next, we’ll show that Lλ0 is essentially self-adjoint. According to Theorem 5.21 in 
[42], it suffices to show that for some (and hence for all) λ ∈ C\R,
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ran(Lλ0 − λI) = L2
B1

((a, b),C2n), and ran(Lλ0 − λ̄I) = L2
B1

((a, b),C2n). (2.25)

Since we can proceed with any λ ∈ C\R, we can take λ0 from (2.22) as our choice. This 
is what we’ll do, though for notational convenience we will denote this value by λ for 
the rest of this proof.

We will show that

ran(Lλ0 − λI)⊥ = {0}, and ran(Lλ0 − λ̄I)⊥ = {0}, (2.26)

from which (2.25) is clear, since

L2
B1

((a, b),C2n) = ran(Lλ0 − λI)⊥ ⊕ ran(Lλ0 − λI), (2.27)

and likewise with λ replaced by λ̄.
Starting with the second relation in (2.26), we suppose that for some u ∈

L2
B1

((a, b), C2n), 〈(Lλ0 − λ̄I)ψ, u〉B1 = 0 for all ψ ∈ Dλ0 , and our goal is to show 
that this implies that u = 0. First, if we restrict to ψ ∈ Dc, then we have

〈(Lc − λ̄I)ψ, u〉B1 = 0, ∀ψ ∈ Dc. (2.28)

This relation implies that u ∈ dom((Lc − λ̄I)∗) (= DM ), so we’re justified in writing

〈ψ, (LM − λI)u〉B1 = 0, ∀ψ ∈ Dc. (2.29)

Since Dc is dense in L2
B1

((a, b), C2n), we can conclude that u must satisfy (LM−λI)u = 0.
Next, we also have the relation

〈(Lλ0 − λ̄I)ψ, u〉B1 = 0, ∀ψ ∈ Span
{
{ũa

j }nj=1, {ũb
j}nj=1

}
. (2.30)

For each j ∈ {1, 2, . . . , n}, ũb
j ∈ DM , and we’ve already established that u ∈ DM , so we 

can apply Green’s identity (2.19) to see that

〈(Lλ0 − λ̄I)ũb
j , u〉B1 = 〈ũb

j , (LM − λI)u〉B1 + (Jũb
j , u)ba. (2.31)

Since (LM −λI)u = 0, we see that (Jũb
j , u)ba = 0. In addition, since ũb

j is zero near x = a, 
we have (Jũb

j , u)a = 0, and consequently we can conclude (Jũb
j , u)b = 0. That is,

lim
x→b−

u(x)∗Jũb
j(x;λ) = 0.

If we take the adjoint of this relation, and recall that ũb
j is identical to ub

j for x near b, 
then we can express this limit in our preferred form

lim ub
j(x;λ)∗Ju(x) = 0.
x→b−
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This last relation is true for all j ∈ {1, 2, . . . , n}, and a similar relation holds near x = a. 
We can summarize these observations with the following limits

lim
x→a+

Ua(x;λ)∗Ju(x) = 0,

lim
x→b−

U b(x;λ)∗Ju(x) = 0.
(2.32)

We would like to show the following: the first of these relations ensures that u can be 
expressed as a linear combination of the columns of Ua(·; λ), while the second ensures 
that u can be expressed as a linear combination of the columns of U b(·; λ).

Here, u ∈ DM and LMu = λu, so u must be a linear combination of the Niessen 
elements that lie left in (a, b), and at the same time, u must be a linear combination 
of the Niessen elements that lie right in (a, b). If we focus on the case x = b, our 
labeling scheme sets {N b

j (λ)}rbj=1 to be the Niessen subspaces satisfying dimN b
j (λ) ∩

L2
B1

((c, b), C2n) = 2 and sets {N b
j (λ)}nj=rb+1 to be the Niessen subspaces satisfying 

dimN b
j (λ) ∩ L2

B1
((c, b), C2n) = 1. Here, we recall that rb = mb − n, where mb denotes 

the dimension of the space of solutions to (1.1) that lie right in (a, b).
The elements {ub

j(x; λ)}rbj=1 and {vbj(x; λ)}rbj=1 are as described in Claim 2.1, and 
by construction, the collection {{ub

j(x; λ)}nj=1, {vbj(x; λ)}rbj=1} is a basis for the space 
of solutions to (1.1) that lie right in (a, b), so we can write

u(x) =
n∑

j=1
cj(λ)ub

j(x;λ) +
rb∑
j=1

dj(λ)vbj(x;λ),

for some appropriate scalar functions (of λ) {cj(λ)}nj=1, {dj(λ)}rbj=1. The boundary op-
erator

Bb(λ)u := lim
x→b−

U b(x;λ)∗Ju(x)

annihilates the elements {ub
j(x; λ)}nj=1, so we immediately see that

Bb(λ)u =
rb∑
j=1

dj(λ)Bb(λ)vbj(·;λ).

According to Lemma 2.3, we have

(Bb(λ)vbj(·;λ))i =
{

0 i 
= j

κb
j 
= 0 i = j.

In this way, we see that

Bb(λ)u = (d1(λ)κ1 . . . drb(λ)κrb 0 0 . . . 0)T ,



P. Howard, A. Sukhtayev / Journal of Functional Analysis 283 (2022) 109525 25
and this can only be identically 0 if dj(λ) = 0 for all j ∈ {1, 2, . . . , rb}. We conclude that 
there exists a ζb(λ) ∈ Cn so that u(x) = U b(x; λ)ζb(λ) for all x ∈ (a, b), and similarly we 
can check that there exists a ζa(λ) ∈ Cn so that u(x) = Ua(x; λ)ζa(λ) for all x ∈ (a, b). 
This allows us to compute, using (2.20),

2iIm λ‖u‖2
B1

= (Ju, u)ba = (Ju, u)b − (Ju, u)a
= (JU bζb, U bζb)b − (JUaζa, Uaζa)a = 0.

We conclude from Atkinson positivity (i.e., Assumption (B)) that u = 0 in L2
B1

((a, b),
C2n), and this establishes the second relation in (2.26).

We now turn to the first relation in (2.26). For this, we suppose that for some u ∈
L2
B1

((a, b), C2n), 〈(Lλ0 − λI)ψ, u〉B1 = 0 for all ψ ∈ Dλ0 , and our goal is to show that 
this implies that u = 0. First, precisely as in the previous case, we can conclude that we 
must have u ∈ DM , and LMu = λ̄u, and continuing as with the previous case, we next 
find that

lim
x→a+

Ua(x;λ)∗Ju(x) = 0,

lim
x→b−

U b(x;λ)∗Ju(x) = 0.
(2.33)

In this case, u solves the ODE system

Ju′ = (B0(x) + λ̄B1(x))u, (2.34)

so in particular there exists some vector ζ(λ̄) ∈ C2n so that

u(x) = Φ(x; λ̄)ζ(λ̄),

where Φ(x; ̄λ) denotes a fundamental matrix solution for (2.34) with Φ(c; ̄λ) = I2n. 
Recalling that U b(x; λ) = Φ(x; λ)Rb(λ), this allows us to compute

U b(x;λ)∗Ju(x) = Rb(λ)∗Φ(x;λ)∗JΦ(x; λ̄)ζ(λ̄) = Rb(λ)∗Jζ(λ̄),

where we’ve used (from (2.7)) the relation

Φ(x;λ)∗JΦ(x; λ̄) = J.

In this way, we see that we can only have

lim
x→b−

U b(x;λ)∗Ju(x) = 0

if

Rb(λ)∗Jζ(λ̄) = 0. (2.35)
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The n × 2n matrix Rb(λ)∗ has rank n, with corresponding nullity n, and we know from 
Claim 2.2 that the kernel of Rb(λ)∗ is spanned by the columns of JRb(λ̄). We see that 
(2.35) can only hold if ζ(λ̄) ∈ colspanRb(λ̄), and in this case there exists a vector ζb(λ̄) ∈
Cn so that ζ(λ̄) = Rb(λ̄)ζb(λ̄), and consequently u(x) = Φ(x; ̄λ)ζ(λ̄) = U b(x; ̄λ)ζb(λ̄). 
Likewise, we must have u(x) = Ua(x; ̄λ)ζa(λ̄) for some ζa(λ̄) ∈ Cn. Since u ∈ DM

satisfies LMu = λ̄u, (2.20) becomes

−2iIm λ‖u‖2
B1

= (Ju, u)ba
= (JU b(·; λ̄)ζb(λ̄), U b(·; λ̄)ζb(λ̄))b − (JUa(·; λ̄)ζa(λ̄), Ua(·; λ̄)ζa(λ̄))a.

(2.36)
By construction, the columns of Ua(x; ̄λ) are Niessen elements for (1.1) with λ replaced 
by λ̄, and similarly for U b(x; ̄λ), so we can conclude from Lemma 2.3 (applied with λ
replaced by λ̄) that the two quantities on the right-hand side of (2.36) are both 0. In 
this way, we see that ‖u‖B1 = 0 and so u = 0 in L2

B1
((a, b), C2n). This establishes the 

second identity in (2.26).
Next, we characterize the operator L, along with its domain D = dom(L). First, we 

have

Lc ⊂ Lλ0 =⇒ L∗
λ0

⊂ L∗
c ,

and since L∗
λ0

= L and L∗
c = LM , we see that L ⊂ LM . This leaves only the question 

of what additional restrictions we have on D (in addition to the requirements of DM ). 
Here,

D = {u ∈ DM : there exists v ∈ L2
B1

((a, b),C2n)

so that 〈Lλ0ψ, u〉B1 = 〈ψ, v〉B1 for all ψ ∈ Dλ0}.

Let u ∈ DM . For all ψ ∈ Dc, we can immediately write

〈Lλ0ψ, u〉B1 = 〈Lcψ, u〉B1 = 〈ψ,LMu〉B1 = 〈ψ, v〉B1 , (v = LMu),

so in particular there are no additional restrictions on D. On the other hand, for any 
j ∈ {1, 2, . . . , n}, we have Green’s Identity

〈Lλ0 ũ
a
j , u〉B1 = 〈ũa

j ,LMu〉B1 − (Jũa
j , u)a, (2.37)

where we’ve recalled that ũa
j is 0 near x = b. We require (Jũa

j , u)a = 0, and since this 
must be true for all j ∈ {1, 2, . . . , n}, we obtain the additional condition

lim
x→a+

Ua(x;λ)∗Ju(x) = 0.

(Here, we’re using the fact that D ⊂ DM to ensure that LMu is the only candidate for 
v.) Proceeding similarly for x = b, we obtain additionally



P. Howard, A. Sukhtayev / Journal of Functional Analysis 283 (2022) 109525 27
lim
x→b−

U b(x;λ)∗Ju(x) = 0.

We’ve now exhausted the elements from Dλ0 , so these are the only possible additional 
constraints imposed on D. This completes the proof. �

By essentially identical considerations, we can establish a similar theorem for Lα. In 
this case, we introduce solutions {uα

j (x; λ)}nj=1 to (1.1) initialized so that if Uα(x; λ)
denotes the 2n × n matrix comprising the elements {uα

j (x; λ)}nj=1 as its columns, then 
Uα(a; λ) = Jα∗. We now fix some λ0 ∈ C\R, and specify the domain

Dα
λ0

:= Dc + Span
{
{ũα

j (·;λ0)}nj=1, {ũb
j(·;λ0)}nj=1

}
. (2.38)

We denote by Lα
λ0

the restriction of LM to Dα
λ0

.

Theorem 2.2. Let Assumptions (A), (A)′, (B), and (C) hold. Then the operator Lα
λ0

is 
essentially self-adjoint, and so in particular, Lα := Lα

λ0
= (Lα

λ0
)∗ is self-adjoint. The 

domain Dα of Lα is

Dα = {y ∈ DM : αy(a) = 0, lim
x→b−

U b(x;λ0)∗Jy(x) = 0}. (2.39)

Remark 2.4. In conjunction with Lemma 1.1, we summarize the developments of Sec-
tions 2.1 and 2.2. In order to specify the operator L, we make a selection of Niessen 
elements {ua

j (x; λ)}nj=1 and {ub
j(x; λ)}nj=1 as described in Claim 2.1, and we denote by 

Ua(x; λ) the matrix comprising the vector functions {ua
j (x; λ)}nj=1 as its columns, and by 

U b(x; λ) the matrix comprising the vector functions {ub
j(x; λ)}nj=1 as its columns. Then 

L is obtained from the maximal operator LM by imposing the boundary conditions

lim
x→a+

Ua(x;λ)∗Jy(x) = 0; and lim
x→b−

U b(x;λ)∗Jy(x) = 0,

and Lα is obtained from the maximal operator Lα
M by imposing the boundary conditions

αy(a) = 0; and lim
x→b−

U b(x;λ)∗Jy(x) = 0.

We conclude this subsection with some additional observations about the nature of 
the self-adjoint operator L, beginning with a remark about the boundary conditions 
specified in our definition of D in Theorem 2.1. On the surface, there appear to be n
conditions at each of x = a and x = b, which we could specify as

lim
x→a+

ua
k(x;λ0)∗Jy(x) = 0; lim

x→b−
ub
k(x;λ0)∗Jy(x) = 0, ∀ k ∈ {1, 2, . . . , n}.

We check, however, in the following claim that for any y ∈ DM , the first condition 
holds automatically for all k ∈ {ra + 1, . . . , n}, while the second holds automatically for 
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all k ∈ {rb + 1, . . . , n}. This means that in specifying D, we only genuinely impose ra
conditions at x = a and rb conditions at x = b. Moreover, the conditions imposed at 
x = a correspond precisely with the Niessen elements {ua

k(x; λ0)}rak=1 corresponding with 
respective Niessen subspaces {Na

k (λ0)}rak=1 for which dimNa
k (λ0) ∩L2

B1
((a, c), C2n) = 2, 

and likewise the conditions imposed at x = b correspond precisely with the Niessen 
elements {ub

k(x; λ0)}rbk=1 corresponding with respective Niessen subspaces {N b
k(λ0)}rbk=1

for which dimN b
k(λ0) ∩ L2

B1
((c, b), C2n) = 2. It follows that we can equivalently specify 

the domain D from Theorem 2.1 as

D =
{
y ∈ DM : lim

x→a+
ua
k(x;λ0)∗Jy(x) = 0, ∀ k ∈ {1, 2, . . . , ra},

lim
x→b−

ub
k(x;λ0)∗Jy(x) = 0, ∀ k ∈ {1, 2, . . . , rb}

}
.

Claim 2.3. Suppose Assumptions (A), (B), and (C) hold, and fix any λ0 ∈ C\R. If 
{ub

k(x; λ0)}nk=rb+1 is a choice of Niessen elements as specified in Claim 2.1, and y is any 
element of the maximal domain DM , then

lim
x→b−

ub
k(x;λ0)∗Jy(x) = 0, ∀ k ∈ {rb + 1, . . . , n}.

Likewise, if {ua
k(x; λ0)}nk=ra+1 is a choice of Niessen elements specified similarly as in 

Claim 2.1, and y is any element of the maximal domain DM , then

lim
x→a+

ua
k(x;λ0)∗Jy(x) = 0, ∀ k ∈ {ra + 1, . . . , n}.

Proof. Since y ∈ DM , we have that there exists f ∈ L2
B1

((a, b), C2n) so that LMy = f , 
which we can express as

(LM − λ0I)y = f − λ0y.

We can view this as an inhomogeneous equation for y (i.e., with inhomogeneity f−λ0y), 
and express the solution in the usual way as the sum of some particular solution to 
the inhomogeneous problem and a linear combination of solutions to the associated 
homogeneous problem.

For the particular solution yp, we note that λ0 /∈ σ(L), and so we can solve

(L − λ0I)yp = f − λ0y,

with

yp = (L − λ0I)−1(f − λ0y) ∈ D.

Since yp ∈ D, we have the relations
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lim
x→a+

Ua(x;λ0)∗Jyp(x) = 0, lim
x→b−

U b(x;λ0)∗Jyp(x) = 0,

and so in particular

lim
x→b−

ub
k(x;λ0)∗Jyp(x) = 0, ∀ k ∈ {1, 2, . . . , n}.

The homogeneous solutions yh satisfy (LM − λ0I)yh = 0, and since y lies right in 
(a, b), any such yh must be a linear combination of the Niessen elements {ub

j(x; λ0)}nj=1
and {vbj(x; λ0)}rbj=1 (once again, as specified in Claim 2.1). I.e., there exist constants 
{cj(λ0)}nj=1 and {dj(λ0)}rbj=1 so that

yh(x) =
n∑

j=1
cj(λ0)ub

j(x;λ0) +
rb∑
j=1

dj(λ0)vbj(x;λ0), a.e. x ∈ (a, b).

Here, we emphasize that the elements {ub
j(x; λ0)}nj=1 and {vbj(x; λ0)}rbj=1 are not generally 

in DM (they may not lie left in (a, b)), but they nonetheless comprise a basis for the 
space of solutions of (1.1) (with λ = λ0) that lie right in (a, b). According to Lemma 2.3, 
we have

lim
x→b−

U b(x;λ0)∗Jub
j(x) = 0, ∀ j ∈ {1, 2, . . . , n},

so

lim
x→b−

U b(x;λ0)∗Jyh(x) = lim
x→b−

U b(x;λ0)∗J
rb∑
j=1

dj(λ0)vbj(x;λ0)

=
rb∑
j=1

dj(λ0)
(

lim
x→b−

U b(x;λ0)∗Jvbj(x;λ0)
)
.

In particular,

lim
x→b−

ub
k(x;λ0)∗Jyh(x) =

rb∑
j=1

dj(λ0)
(

lim
x→b−

ub
k(x;λ0)∗Jvbj(x;λ0)

)
, ∀ k ∈ {1, 2, . . . , n}.

Writing y = yh + yp, we see that

lim
x→b−

ub
k(x;λ0)∗Jy(x) =

rb∑
j=1

dj(λ0)
(

lim
x→b−

ub
k(x;λ0)∗Jvbj(x;λ0)

)
, ∀ k ∈ {1, 2, . . . , n}.

(2.40)
Last, we recall from Lemma 2.3 that for any k ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , rb}

lim ub
k(x;λ0)∗Jvbj(x;λ0) = 0, ∀ j 
= k,
x→b−
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so in particular the set {vbj(x; λ0)}rbj=1 is annihilated under this limit by the set 
{ub

k(x; λ0)}nk=rb+1. The claim now follows immediately from (2.40) for the case of 
{ub

k(x; λ0)}nk=rb+1, and the case of {ua
k(x; λ0)}nk=ra+1 follows similarly. �

Remark 2.5. According to Theorem 3.11 in [43] (slightly adapted to our setting), if 
u ∈ DM and

(Jv, u)ba = 0 ∀ v ∈ DM ,

then u is in the domain of the minimal operator L0 (see Remark 2.2). Accord-
ing to Claim 2.3, we have that for each of the Niessen elements {ub

k(x; λ0)}nk=rb+1, 
(Jv, ub

k(·; λ0))b = 0 for all v ∈ DM . If we modify the Niessen elements to {ũb
k(x; λ0)}nk=rb+1

⊂ DM as described in (2.21), we see that for each k ∈ {1, 2, . . . , rb}

(Jv, ũb
k(·;λ0))ba = 0 ∀ v ∈ DM .

We can conclude that these elements {ũb
k(x; λ0)}nk=rb+1 reside in the domain of the 

minimal operator D0. Notably for comparison with [43], this means that these elements 
are zero elements of the quotient space DM/D0 (cf. Theorem 4.6 in [43]).

Turning to our second observation about L, we note that it’s clear from the speci-
fication of D that L appears to depend on λ0 through the boundary conditions. Let’s 
temporarily recognize this possible dependence by writing L as L(λ0), and with this 
notation in place, we ask the following question: is it the case, as one might expect, that 
L(λ0)∗ = L(λ̄0)? In order to answer this, we first observe that when we write L(λ̄0), we 
mean the closure Lλ̄0

, where Lλ̄0
denotes the restriction of the maximal operator LM

(which certainly has no dependence on λ0) to the domain

Dλ̄0
:= Dc + Span

{
{ũa

j (·; λ̄0)}nj=1, {ũb
j(·; λ̄0)}nj=1

}
, (2.41)

where the elements {ũa
j (·; ̄λ0)}nj=1 and {ũb

j(·; ̄λ0)}nj=1 are modifications as described fol-
lowing Lemma 2.5 of the Niessen elements {ua

j (·; ̄λ0)}nj=1 and {ub
j(·; ̄λ0)}nj=1 described 

in the second part of Claim 2.1 (details only given for {ub
j(·; ̄λ0)}nj=1). By construction, 

Ua(x; λ0) = Φ(x; λ0)Ra(λ0), U b(x; λ0) = Φ(x; λ0)Rb(λ0), Ua(x; ̄λ0) = Φ(x; ̄λ0)Ra(λ̄0), 
and U b(x; ̄λ0) = Φ(x; ̄λ0)Rb(λ̄0), where Rb(λ0) and Rb(λ̄0) are described in Claim 2.2, 
and Ra(λ0) and Ra(λ̄0) are similar. It follows that

Ua(x;λ0)∗JUa(x; λ̄0) = Ra(λ0)∗Φ(x;λ0)∗JΦ(x; λ̄0)Ra(λ̄0) = Ra(λ0)∗JRa(λ̄0),

where in obtaining the second inequality we have used (2.7). From the proof of Claim 2.2
we have Ra(λ0)∗JRa(λ̄0) = 0, so we can conclude that Ua(x; λ0)∗JUa(x; ̄λ0) = 0 for all 
x ∈ (a, b), yielding trivially
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lim
x→a+

Ua(x;λ0)∗Jũa
j (x; λ̄0) = 0

for all j ∈ {1, 2, . . . , n}. On the other hand, from the support of the modified elements 
{ũa

j (x; ̄λ0)}nj=1 we trivially have

lim
x→b−

U b(x;λ0)∗Jũa
j (x; λ̄0) = 0,

so that {ũa
j (x; ̄λ0)}nj=1 ⊂ D. Likewise, {ũb

j(x; ̄λ0)}nj=1 ⊂ D, and in this way we see that 
Dλ̄0

⊂ D. As in the proof of Theorem 2.1, we can check that Lλ̄0
is essentially self-adjoint, 

so that Lλ̄0
is a self-adjoint operator, and since Dλ̄0

⊂ D, we must have dom(Lλ̄0
) = D, 

so that Lλ̄0
= L(λ0). But Lλ̄0

= L(λ̄0), so we have

L(λ0)∗ = L(λ0) = L(λ̄0).

As a final observation about L, we note that during the proof of Claim 2.3 we see that 
any y ∈ DM can be decomposed as y = yp + yh, where yp ∈ D and yh is an appropriate 
linear combination of Niessen elements that lie right in (a, b) (or, alternatively, an appro-
priate linear combination of Niessen elements that lie left in (a, b)). Since yp necessarily 
satisfies the limits

lim
x→a+

Ua(x;λ0)∗Jyp(x) = 0; lim
x→b−

U b(x;λ0)∗Jyp(x) = 0,

and similar limits exist (though are not necessarily 0) for all Niessen elements appearing 
in yh, we can conclude that for any y ∈ DM the limits

lim
x→a+

Ua(x;λ0)∗Jy(x); lim
x→b−

U b(x;λ0)∗Jy(x),

certainly exist. The boundary conditions specified in D then just eliminate elements 
y ∈ DM for which one or both of these (well-defined) limits is non-zero.

2.3. Continuation to R

In the preceding considerations, we fixed some λ0 ∈ C\R and used this value to specify 
the self-adjoint operators L and Lα. With these operators in hand, we would next like to 
fix values λ ∈ R and construct solutions ua(x; λ) to Ly = λy that lie left in (a, b), along 
with solutions ub(x; λ) to Ly = λy that lie right in (a, b) (and similarly for Lα). One 
difficulty we face is that the matrix A(x; λ) from Section 2.1 is not defined for λ ∈ R, 
and so we cannot directly extend Niessen’s development to this setting. (Though see 
Section 5 for a calculation along these lines.) Instead of extending Niessen’s development 
directly, we’ll take advantage of our assumption that [λ1, λ2] does not intersect the 
essential spectrum of our operator of interest, along with a standard theorem from [43]
about self-adjoint operators.
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As a starting point, we fix some c ∈ (a, b) and consider (1.1) on (c, b) with boundary 
conditions

γy(c) = 0, (2.42)

and

lim
x→b−

U b(x;λ0)∗Jy(x) = 0, (2.43)

where the boundary matrix γ ∈ Cn×2n must satisfy

rank γ = n, and γJγ∗ = 0, (2.44)

but otherwise will be chosen as needed during the analysis.
Similarly as in Section 2.2, we can associate (1.1)-(2.42)-(2.43) with a self-adjoint 

operator Lγ
c,b, with domain

Dγ
c,b := {y ∈ Dc,b,M : γy(c) = 0, lim

x→b−
U b(x;λ0)Jy(x) = 0}.

Here, Dc,b,M denotes the domain of the maximal operator associated with (1.1) on (c, b).
We start with a lemma.

Lemma 2.6. Let Assumptions (A), (B), and (C) hold. For any fixed λ ∈ C, suppose 
ub(x; λ) and vb(x; λ) denote any two solutions of (1.1) (if such solutions exist) that lie 
right in (a, b) and satisfy (2.43). Then

(Jub(·;λ), vb(·;λ))b = 0.

Proof. First, with c as specified prior to the lemma, we can use Lemma 2.5 to construct 
functions ũb(·; λ), ̃vb(·; λ) ∈ Dc,b,M so that

ũb(x;λ) =
{

0 near x = c

ub(x;λ) near x = b,
ṽb(x;λ) =

{
0 near x = c

ub(x;λ) near x = b.

Since ũb(x; λ) and ṽb(x; λ) lie right in (c, b) and satisfy (2.43), it’s clear that 
ũb(x; λ), ̃vb(x; λ) are contained in Dγ

c,b. Using self-adjointness of Lγ
c,b, we can write

0 = 〈Lγ
c,bũ

b(·;λ), ṽb(·;λ)〉B1 − 〈ũb(·;λ),Lγ
c,bṽ

b(·;λ)〉B1

= (Jũb(·;λ), ṽb(·;λ))bc = (Jũb(·;λ), ṽb(·;λ))b.

Since ũb(x; λ), ̃vb(x; λ) are identical to ub(x; λ), vb(x; λ) for x near b, this gives the 
claim. �
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Lemma 2.7. Let Assumptions (A), (B), and (C) hold. Then for any fixed λ ∈ R, the 
space of solutions of (1.1) (if such solutions exist) that lie right in (a, b) and satisfy 
(2.43) has dimension at most n. In the event that the dimension of this space is n, we let 
{ub

j(x; λ)}nj=1 denote a choice of basis. Then for each x ∈ (a, b) the vectors {ub
j(x; λ)}nj=1

comprise the basis for a Lagrangian subspace of C2n.

Proof. Let d denote the dimension of the space of solutions of (1.1) that lie right in 
(a, b) and satisfy (2.43), and suppose d ≥ n. Let {ub

j(x; λ)}dj=1 denote a basis for this 
space, and notice that for any j, k ∈ {1, 2, . . . , d} (and with ′ denoting differentiation 
with respect to x),

(ub
j(x;λ)∗Jub

k(x;λ))′ = ub ′
j (x;λ)∗Jub

k(x;λ) + ub
j(x;λ)∗Jub ′

k (x;λ)

= −(Jub ′
j (x;λ))∗ub

k(x;λ) + uj(x;λ)∗Jub ′
k (x;λ)

= −((B0(x) + λB1(x))ub
j(x;λ))∗ub

k(x;λ) + ub
j(x;λ)∗((B0(x) + λB1(x))ub

k(x;λ)

= −ub
j(x;λ)∗((B0(x) + λB1(x))ub

k(x;λ) + ub
j(x;λ)∗((B0(x) + λB1(x))ub

k(x;λ) = 0.

We see that ub
j(x; λ)∗Jub

k(x; λ) is constant for all x ∈ (a, b). In addition, according to 
Lemma 2.6, we have

lim
x→b−

ub
j(x;λ)∗Jub

k(x;λ) = 0.

We conclude that ub
j(x; λ)∗Jub

k(x; λ) = 0 for all x ∈ (a, b).
We see immediately that the first n elements {ub

j(x; λ)}nj=1 (or any other n elements 
taken from {ub

j(x; λ)}dj=1) form the basis for a Lagrangian subspace of C2n for all x ∈
(a, b). If d > n, we get a contradiction to the maximality of Lagrangian subspaces, and 
so we can conclude that d = n (recalling that this is under the assumption that d ≥ n). 
This, of course, leaves open the possibility that the dimension of the space of solutions 
of (1.1) that lie right in (a, b) and satisfy (2.43) is less than n. �
Lemma 2.8. Let Assumptions (A), (B), and (C) hold. Then for any fixed λ ∈ R, there 
exists a matrix γ ∈ Cn×2n satisfying (2.44) so that λ is not an eigenvalue of Lγ

c,b.

Proof. First, we recall that λ is an eigenvalue of Lγ
c,b if and only if there exists a solution

y(·;λ) ∈ ACloc([c, b),C2n) ∩ L2
B1

((c, b),C2n)

to (1.1) so that (2.42) and (2.43) are both satisfied. Also, according to Lemma 2.7, the 
space of solutions of (1.1) that lie right in (c, b) and satisfy (2.43) has dimension at most 
n. We begin by assuming that this space of solutions has dimension n, and we denote a 
basis for the space by {ub

j(x; λ)}nj=1.
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As usual, we let Φ(x; λ) denote a fundamental matrix for (1.1), initialized by Φ(c; λ) =
I2n. If U b(x; λ) denotes the matrix comprising {ub

j(x; λ)}nj=1 as its columns, then there 

exists a 2n × n matrix Rb(λ) =
(Rb(λ)
Sb(λ)

)
so that

U b(x;λ) = Φ(x;λ)Rb(λ),

for all x ∈ [c, b). Recalling the identity

Φ(x;λ)∗JΦ(x;λ) = J

(i.e., (2.7) with λ ∈ R), we can compute

U b(x;λ)∗JU b(x;λ) = Rb(λ)∗Φ(x;λ)∗JΦ(x;λ)Rb(λ) = Rb(λ)∗JRb(λ).

We know from Lemma 2.7 that U b(x; λ) is a frame for a Lagrangian subspace of C2n, 
and it follows immediately that the same is true for Rb(λ).

A value λ ∈ R will be an eigenvalue of Lγ
c,b if and only if there exists a vector v ∈ Cn

so that y(x; λ) = Φ(x; λ)Rb(λ)v satisfies

γy(c;λ) = 0,

which we can express (since Φ(c; λ) = I2n) as γRb(λ)v = 0. This relation will hold for 
a vector v 
= 0 if and only if the Lagrangian subspaces with frames Jγ∗ and Rb(λ)
intersect. We choose γ = Rb(λ)∗, noting that in this case

γJγ∗ = Rb(λ)∗JRb(λ) = 0

(i.e., this is a valid choice for γ, satisfying (2.44)) but γRb(λ) = Rb(λ)∗Rb(λ) is certainly 
non-singular, so λ is not an eigenvalue of Lγ

c,b.
In the event that the space of solutions of (1.1) that lie right in (c, b) and satisfy (2.43)

has dimension less than n, the matrix Rb(λ) (as constructed just above) will have fewer 
than n columns, but we can add columns (which don’t correspond with solutions of (1.1)
that lie right in (c, b) and satisfy (2.43)) to create the basis for a Lagrangian subspace 
of C2n. We can then proceed precisely as before, and we conclude that the Lagrangian 
subspace with frame Jγ∗ does not intersect the Lagrangian subspace with frame Rb(λ), 
certainly including the elements that correspond with solutions of (1.1) that lie right in 
(c, b) and satisfy (2.43). �
Remark 2.6. It’s clear from the proof of Lemma 2.8 that the boundary matrix γ generally 
depends on the value λ. In cases for which this dependence is especially important to 
the discussion, we will write γ(λ) for clarity.
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Lemma 2.9. Let Assumptions (A), (B), and (C) hold. In addition, let λ1, λ2 ∈ R, λ1 <

λ2, and suppose σess(L) ∩ [λ1, λ2] = ∅. Then for each λ ∈ [λ1, λ2], the space of solutions 
of (1.1) that lie right in (a, b) and satisfy (2.43) has dimension n. If we let {ub

j(x; λ)}nj=1
denote a basis for this space, then for each x ∈ (a, b), the vectors {ub

j(x; λ)}nj=1 comprise 
a basis for a Lagrangian subspace of C2n.

Proof. We fix any λ ∈ [λ1, λ2], and observe from Lemma 2.8 that we can select γ(λ) ∈
Cn×2n satisfying (2.44) so that λ is not an eigenvalue of Lγ(λ)

c,b . In addition, we know from 

Theorem 11.5 in [43], appropriately adapted to our setting, that σess(Lγ(λ)
c,b ) ⊂ σess(L), so 

we can conclude (using our assumption σess(L) ∩ [λ1, λ2] = ∅) that, in fact, λ ∈ ρ(Lγ(λ)
c,b ). 

This last inclusion allows us to apply Theorem 7.1 in [43], which asserts (among other 
things) that the space of solutions of (1.1) that lie right in (c, b) and satisfy (2.43) has 
the same dimension for each λ ∈ ρ(Lγ(λ)

c,b ). We know by construction that for λ0 this 
dimension is precisely n, and so we can conclude that it must be n for our fixed value 
λ ∈ [λ1, λ2] as well. We can now conclude from Lemma 2.7 that this space must be 
a Lagrangian subspace of C2n for each x ∈ (c, b). Finally, we note that the elements 
{ub

j(x; λ)}nj=1 extend by linear continuation to (a, b) and lie right in (a, b) if and only if 
they lie right in (c, b). �
Lemma 2.10. Let Assumptions (A), (B), and (C) hold, and suppose that for some 
fixed λ∗ ∈ R there is an open interval I containing λ∗ so that σess(L) ∩ I = ∅. Let 
{ub

j(x; λ∗)}nj=1 denote a basis for the n-dimensional space of solutions of (1.1) that lie 
right in (a, b) and satisfy (2.43) (guaranteed to exist by Lemma 2.9). Then there exists 
a boundary matrix γ∗ = γ(λ∗) and a constant r > 0, depending on λ∗ and Lγ∗

c,b, so that 
the elements {ub

j(x; λ∗)}nj=1 can be analytically extended in λ to the ball B(λ∗; r). The 
analytic extensions {ub

j(x; λ)}nj=1 comprise a basis for the space of solutions of (1.1) that 
lie right in (a, b) and satisfy (2.43), and moreover they satisfy the relations

J(∂λub
j)′(x;λ) = B1(x)ub

j(x;λ) + (B0(x) + λB1(x))∂λub
j(x;λ), (2.45)

for all (x, λ) ∈ (a, b) ×B(λ∗; r), and

lim
x→b−

ub
j(x;λ∗)∗J∂λub

k(x;λ∗) = 0, ∀ j, k ∈ {1, 2, . . . , n}. (2.46)

Proof. Let λ∗ ∈ [λ1, λ2] be fixed, and use Lemma 2.8 to find a boundary matrix γ∗ so 
that λ∗ ∈ ρ(Lγ∗

c,b). Our extensions {ub
j(x; λ)}nj=1 will satisfy the equation

J(ub
j)′ = (B0(x) + λB1(x))ub

j , (2.47)

which we can re-write as

J(ub
j)′ − (B0(x) + λ∗B1(x))ub

j = (λ− λ∗)B1(x)ub
j . (2.48)
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If a solution to (2.48) exists and is contained in Dγ∗
c,b, then we can express it as

F b
j (x;λ∗, λ) = (λ− λ∗)(Lγ∗

c,b − λ∗I)−1ub
j(·;λ).

Here, the resolvent

R(Lγ∗
c,b;λ∗) := (Lγ∗

c,b − λ∗I)−1

maps elements of L2
B1

((c, b), C2n) into Dγ∗
c,b, so in particular F b

j (x; λ∗, λ) lies right in (c, b)
and satisfies (2.43).

Clearly, F b
j (x; λ∗, λ∗) = 0, so in order to identify an analytic extension of ub

j(x; λ∗), 
we look for solutions of (2.47) of the form

ub
j(x;λ) = ub

j(x;λ∗) + (λ− λ∗)R(Lγ∗
c,b;λ∗)ub

j(·;λ). (2.49)

Rearranging terms, we can express this relation as

(I − (λ− λ∗)R(Lγ∗
c,b;λ∗))ub

j(·;λ) = ub
j(·;λ∗). (2.50)

By the standard theory of Neumann series (for example, the discussion of Example 4.9 
on p. 32 of [19]), if

‖(λ− λ∗)R(Lγ∗
c,b;λ∗)‖ < 1, (2.51)

then we can solve (2.50) with

ub
j(·;λ) = (I − (λ− λ∗)R(Lγ∗

c,b;λ∗))−1ub
j(·;λ∗). (2.52)

Here, the map λ �→ ub
j(·; λ) ∈ L2

B1
((a, b), C2n) is analytic in λ.

Since λ∗ ∈ ρ(Lγ∗
c,b), there exists a constant C > 0, depending on λ∗ and Lγ∗

c,b so that

‖R(Lγ∗
c,b;λ∗)‖ ≤ C.

In this way, we see that we can use (2.52) so long as |λ − λ∗| < r := 1/C. We conclude 
that (2.49) has a unique solution ub

j(·; λ) ∈ L2
B1

((a, b), C2n). We’ve already noted that 
F b
j (x; λ∗, λ) is contained in Dγ∗

c,b, and we also have that ub
j(·; λ∗) lies right in (c, b) and 

satisfies (2.43). We can conclude that ub
j(x; λ) is a solution of (2.47) that lies right in 

(c, b) and satisfies (2.43). Proceeding similarly for each j ∈ {1, 2, . . . , n}, we obtain a 
collection of extensions {ub

j(x; λ)}nj=1.
In addition, by virtue of (2.50)-(2.52), we see that {ub

j(x; λ)}nj=1 inherits linear in-
dependence from the set {ub

j(x; λ∗)}nj=1. We conclude from Lemma 2.7 that the set 
{ub

j(x; λ)}nj=1 comprises a basis for the space of solutions of (1.1) that lie right in (c, b)
and satisfy (2.43), and additionally that for each x ∈ (c, b) the vectors {ub

j(x; λ)}nj=1
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comprise the basis of a Lagrangian subspace of C2n. As in the proof of Lemma 2.9, the 
elements {ub

j(x; λ)}nj=1 extend by continuation to (a, b) and lie right in (a, b) if and only 
if they lie right in (c, b).

We emphasize that in the preceding discussion the analyticity refers to analyticity of 
the map λ �→ ub

j(·; λ) taking elements λ ∈ B(λ∗; r) to elements ub
j(·; λ) ∈ L2

B1
((c, b), C2n). 

To conclude our proof, we additionally verify that for each fixed x ∈ [c, b) the map 
λ �→ ub

j(x; λ) is analytic as a map from B(λ∗; r) to C2n. For this, we will use the Green’s 
function for Lγ∗

c,b − λ∗I, which is constructed in detail in our appendix (with no use of 
the current extensions). Denoting this Green’s function Gγ∗

c,b(x, ξ; λ∗), we can write, for 
any f ∈ L2

B1
((c, b), C2n),

R(Lγ∗
c,b;λ∗)f =

b∫
c

Gγ∗
c,b(x, ξ;λ∗)B1(ξ)f(ξ)dξ.

In Section A.1, we will show that Gγ∗
c,b(x, ξ; λ∗) can be expressed as

Gγ∗(x, ξ;λ∗) =
{
−Φ(x;λ∗)

(
0 Rb(λ∗)

)
M(λ∗) (J(γ∗)∗ 0)∗ Φ(ξ;λ∗)∗ c < ξ < x < b

Φ(x;λ∗) (J(γ∗)∗ 0)M(λ∗)
(
0 Rb(λ∗)

)∗ Φ(ξ;λ∗)∗ c < x < ξ < b,

where M(λ∗) is a fixed 2n × 2n matrix as specified in Section A.1, Φ(x; λ∗) is a fun-
damental matrix for (1.1) initiated with Φ(c; λ∗) = I2n, and the matrix U b(x; λ∗), with 
columns {ub

j(x; λ∗)}nj=1, has been expressed as U b(x; λ∗) = Φ(x; λ∗)Rb(λ∗).
Fixing x ∈ [c, b), we observe that Φ(·; λ∗)(J(γ∗)∗ 0) ∈ L2

B1
((c, b), C2n) (by continuity 

on a bounded interval), and Φ(·; λ∗)(0 Rb(λ∗)) ∈ L2
B1

((x, b), C2n) (since Φ(·; λ∗)Rb(λ∗)
lies right in (c, b)). It follows readily that there exists a value C(x; λ∗) so that

∣∣∣(R(Lγ∗
c,b;λ∗)f)(x)

∣∣∣ ≤ C(x;λ∗)‖f‖L2
B1

((c,b),C2n),

for all f ∈ L2
B1

((c, b), C2n). Using, in addition, the boundedness of R(Lγ∗
c,b; λ∗), we can 

write∣∣∣(R(Lγ∗
c,b;λ∗)kub

j(·;λ∗))(x)
∣∣∣ ≤ C(x;λ∗)‖R(Lγ∗

c,b;λ∗)k−1ub
j(·;λ∗)‖L2

B1
((c,b),C2n)

≤ C(x;λ∗)‖R(Lγ∗
c,b;λ∗)‖k−1‖ub

j(·;λ∗)‖L2
B1

((c,b),C2n).

Based on the right-hand side of (2.52), we can consider the sum

((I−(λ−λ∗)R(Lγ∗
c,b;λ∗))−1ub

j(·;λ∗))(x) =
∞∑
k=0

(λ−λ∗)k(R(Lγ∗
c,b;λ∗)kub

j(·;λ∗))(x). (2.53)

The summands are bounded by
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|λ− λ∗|k
∣∣∣(R(Lγ∗

c,b;λ∗)kub
j(·;λ∗))(x)

∣∣∣
≤ |λ− λ∗|kC(x;λ∗)‖R(Lγ∗

c,b;λ∗)‖k−1‖ub
j(·;λ∗)‖L2

B1
((c,b),C2n),

(2.54)

so that as long as (2.51) holds, the sum (2.53) converges absolutely, and so necessarily 
to an analytic function of λ.

To understand (2.45), we first observe from (2.53) and (2.54) that for any d ∈ (c, b)
there exists a value K0, depending only on c, d, λ∗, and r, so that

|ub
j(x;λ)| ≤ K0 ∀ (x, λ) ∈ [c, d] ×B(λ∗; r).

(Here, we are using the fact that C(x; λ∗) is bounded on compact subsets [c, d] ⊂ [c, b).) 
Next, upon term-by-term differentiation of the series on the right-hand side of (2.53), 
we see that

∂λu
b
j(x;λ) =

∞∑
k=1

k(λ− λ∗)k−1(R(Lγ∗
c,b;λ∗)kub

j(·;λ∗))(x), (2.55)

from which we can estimate

|∂λub
j(x;λ)| ≤ C(x;λ∗)‖ub

j(·;λ∗)‖L2
B1

((c,b),C2n)

∞∑
k=1

k|λ− λ∗|k−1‖R(Lγ∗
c,b;λ∗‖k−1.

We can conclude similarly as for ub
j(x; λ) that for any d ∈ (c, b) there exists a value K1, 

depending only on c, d, λ∗, and r, so that

|∂λub
j(x;λ)| ≤ K1 ∀ (x, λ) ∈ [c, d] ×B(λ∗; r).

Starting now from the relation (2.47), we can integrate to write

Jub
j(x;λ) = Jub

j(c;λ) +
x∫

c

(B0(ξ) + λB1(ξ))ub
j(ξ;λ)dξ.

According to the above estimates the quantity ∂λ((B0(ξ) +λB1(ξ))ub
j(ξ; λ)) is dominated 

uniformly in λ ∈ B(λ∗; r) by the integrable (on [c, x]) function

|B1(ξ)|K0 + (|B0(ξ)| + (|λ∗| + r)|B1(ξ)|)K1.

These considerations justify the use of the Lebesgue Dominated Convergence Theorem 
to differentiate under the integral sign in λ to get

J∂λu
b
j(x;λ) = J∂λu

b
j(c;λ) +

x∫
B1(ξ)ub

j(ξ;λ) + (B0(ξ) + λB1(ξ))∂ub
j(ξ;λ)dξ.
c
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Differentiating subsequently in x, we obtain (2.45).
Turning to (2.46), if we substitute λ = λ∗ into (2.55), we obtain the relation

∂λu
b
j(x;λ∗) = (R(Lγ∗

c,b;λ∗)ub
j(·;λ∗))(x).

Here, R(Lγ∗
c,b; λ∗) maps L2

B1
((c, b), C2n) into Dγ∗

c,b, and so in particular ∂λub
j(x; λ∗) satisfies 

(2.43). It follows as in the proof of Lemma 2.6 that

lim
x→b−

ub
k(x;λ∗)∗J∂λub

j(x;λ∗) = 0,

for all k ∈ {1, 2, . . . , n}, and since this is true for all j ∈ {1, 2, . . . , n}, we can conclude 
(2.46). �
Lemma 2.11. Let Assumptions (A), (B), and (C) hold, and suppose λ1, λ2 ∈ R, λ1 < λ2
are such that σess(L) ∩ [λ1, λ2] = ∅. In addition, for each (x, λ) ∈ (a, b) × [λ1, λ2], 
let �b(x; λ) denote the Lagrangian subspace with basis {ub

j(x; λ)}nj=1 constructed in 
Lemma 2.9. Then �b : (a, b) × [λ1, λ2] → Λ(n) is continuous, and moreover, we can 
choose the basis elements for �b(x; λ) to be piecewise analytic in λ in [λ1, λ2].

Proof. First, for each fixed λ∗ ∈ [λ1, λ2], we can use Lemma 2.10 to obtain a locally 
analytic family of bases {ub,λ∗

j (x; λ)}nj=1, for all |λ −λ∗| < r∗, where r∗ > 0 is a constant 
depending on λ∗ and Lγ∗

c,b. This process creates an open cover of [λ1, λ2], comprising the 
union of all of these disks. Next, we use compactness of the interval [λ1, λ2] to extract 
a finite subcover, which we denote {B(λj

∗; rj∗)}Nj=1, where for notational convenience, we 
can select the values {λj

∗}Nj=1 so that

λ1 =: λ1
∗ < λ2

∗ < · · · < λN
∗ := λ2,

and where the values rj∗ > 0 are constants respectively associated with the values λj
∗ in 

our construction of the family of disks.
Starting at λ1

∗, we can take {ub
j(x; λ1

∗)}nj=1 to be a basis for the Lagrangian subspace 

�b(x; λ1
∗). As λ increases from λ1

∗, the analytic extensions {ub,λ1
∗

j (x; λ)}nj=1 in B(λ1
∗, r

1
∗)

comprise bases for the Lagrangian paths �b(x; λ). By construction, the set B(λ∗
1; r1

∗) ∩
B(λ2

∗; r2
∗) must be non-empty. We take any λ1,2

∗ ∈ R in this intersection, and we note 

that at this value of λ the analytic extensions {ub,λ1
∗

j (x; λ1,2
∗ )}nj=1 in B(λ1

∗, r
1
∗) serve as 

a basis for the same Lagrangian subspace as the analytic extensions {ub,λ2
∗

j (x; λ1,2
∗ )}nj=1

in B(λ2
∗, r

2
∗). This allows us to continuously switch from the frame {ub,λ1

∗
j (x; λ1,2

∗ )}nj=1 to 

the frame {ub,λ2
∗

j (x; λ1,2
∗ )}nj=1.

We now allow λ to increase from λ1,2
∗ , and take the elements {ub,λ2

∗
j (x; λ)}nj=1 as our 

choice of bases for the Lagrangian subspaces �b(x; λ). By construction, the set B(λ2
∗; r2

∗) ∩
B(λ3

∗; r3
∗) must be non-empty, and we take any λ2,3

∗ ∈ R in this intersection, noting that 
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at this value of λ the analytic extensions {ub,λ2
∗

j (x; λ2,3
∗ )}nj=1 in B(λ2

∗, r
2
∗) serve as a 

basis for the same Lagrangian subspace as the analytic extensions {ub,λ3
∗

j (x; λ2,3
∗ )}nj=1 in 

B(λ3
∗, r

3
∗). Continuing in this way, we see that �b : (c, b) × [λ1, λ2] → Λ(n) is continuous.

Summarizing our notation, the interval [λ1, λ2] has been partitioned into values

λ1 =: λ0,1
∗ < λ1,2

∗ < λ2,3
∗ < · · · < λN−1,N

∗ < λN,N+1
∗ := λ2,

and we use the frame {ub,λk
∗

j (x; λ)}nj=1 on the interval [λk−1,k
∗ , λk,k+1

∗ ] for all k =
1, 2, . . . , N . It’s clear from the construction that for each j ∈ {1, 2, . . . , n}, ub,λk

∗
j (x; λ) is 

analytic in λ on (λk−1,k
∗ , λk,k+1

∗ ), so the frame obtained by patching these bases together 
at the points {λ0,1

∗ , λ1,2
∗ , . . . , λN,N+1

∗ } is piecewise analytic. �
With appropriate modifications, Lemmas 2.6–2.11 can be stated with {ub

j(x; λ)}nj=1
replaced by {ua

j (x; λ)}nj=1. In addition, under the assumption (A)′, the analysis of L in 
this section can be carried out for Lα, and in particular, Lemmas 2.9, 2.10, and 2.11
hold with L replaced by Lα.

3. The Maslov index

Our framework for computing the Maslov index is adapted from Section 2 of [16], and 
we briefly sketch the main ideas here. Given any pair of Lagrangian subspaces �1 and �2
with respective frames X1 =

(
X1
Y1

)
and X2 =

(
X2
Y2

)
, we consider the matrix

W̃ := −(X1 + iY1)(X1 − iY1)−1(X2 − iY2)(X2 + iY2)−1. (3.1)

In [16], the authors establish: (1) the inverses appearing in (3.1) exist; (2) W̃ is indepen-
dent of the specific frames X1 and X2 (as long as these are indeed frames for �1 and �2); 
(3) W̃ is unitary; and (4) the identity

dim(�1 ∩ �2) = dim(ker(W̃ + I)). (3.2)

Given two continuous paths of Lagrangian subspaces �i : [0, 1] → Λ(n), i = 1, 2, with 
respective frames Xi : [0, 1] → C2n×n, relation (3.2) allows us to compute the Maslov 
index Mas(�1, �2; [0, 1]) as a spectral flow through −1 for the path of matrices

W̃ (t) := −(X1(t) + iY1(t))(X1(t) − iY1(t))−1(X2(t) − iY2(t))(X2(t) + iY2(t))−1. (3.3)

In [16], the authors provide a rigorous definition of the Maslov index based on the 
spectral flow developed in [29]. Here, rather, we give only an intuitive discussion. As 
a starting point, if −1 ∈ σ(W̃ (t∗)) for some t∗ ∈ [0, 1], then we refer to t∗ as a cross-
ing point, and its multiplicity is taken to be dim(�1(t∗) ∩ �2(t∗)), which by virtue of 
(3.2) is equivalent to the multiplicity of −1 as an eigenvalue of W̃ (t∗). We compute the 
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Maslov index Mas(�1, �2; [0, 1]) by allowing t to increase from 0 to 1 and incrementing 
the index whenever an eigenvalue crosses −1 in the counterclockwise direction, while 
decrementing the index whenever an eigenvalue crosses −1 in the clockwise direction. 
These increments/decrements are counted with multiplicity, so for example, if a pair of 
eigenvalues crosses −1 together in the counterclockwise direction, then a net amount of 
+2 is added to the index. Regarding behavior at the endpoints, if an eigenvalue of W̃
rotates away from −1 in the clockwise direction as t increases from 0, then the Maslov 
index decrements (according to multiplicity), while if an eigenvalue of W̃ rotates away 
from −1 in the counterclockwise direction as t increases from 0, then the Maslov index 
does not change. Likewise, if an eigenvalue of W̃ rotates into −1 in the counterclockwise 
direction as t increases to 1, then the Maslov index increments (according to multiplic-
ity), while if an eigenvalue of W̃ rotates into −1 in the clockwise direction as t increases 
to 1, then the Maslov index does not change. Finally, it’s possible that an eigenvalue 
of W̃ will arrive at −1 for t = t∗ and remain at −1 as t traverses an interval. In these 
cases, the Maslov index only increments/decrements upon arrival or departure, and the 
increments/decrements are determined as for the endpoints (departures determined as 
with t = 0, arrivals determined as with t = 1).

One of the most important features of the Maslov index is homotopy invariance, for 
which we need to consider continuously varying families of Lagrangian paths. To set 
some notation, we denote by P(I) the collection of all paths L(t) = (�1(t), �2(t)), where 
�1, �2 : I → Λ(n) are continuous paths in the Lagrangian–Grassmannian. We say that 
two paths L, M ∈ P(I) are homotopic provided there exists a family Hs so that H0 = L, 
H1 = M, and Hs(t) is continuous as a map from (t, s) ∈ I × [0, 1] into Λ(n) × Λ(n).

The Maslov index has the following properties.

(P1) (Path Additivity) If L ∈ P(I) and a, b, c ∈ I, with a < b < c, then

Mas(L; [a, c]) = Mas(L; [a, b]) + Mas(L; [b, c]).

(P2) (Homotopy Invariance) If I = [a, b] and L, M ∈ P(I) are homotopic with L(a) =
M(a) and L(b) = M(b) (i.e., if L, M are homotopic with fixed endpoints) then

Mas(L; [a, b]) = Mas(M; [a, b]).

Straightforward proofs of these properties appear in [15] for Lagrangian subspaces of 
R2n, and proofs in the current setting of Lagrangian subspaces of C2n are essentially 
identical.

As noted previously, the direction we associate with a crossing point is determined by 
the direction in which eigenvalues of W̃ rotate through −1 (counterclockwise is positive, 
while clockwise is negative). In order to analyze this direction in specific cases, we will 
make use of the following lemma from [16].
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Lemma 3.1. Suppose �1, �2 : I → Λ(n) denote paths of Lagrangian subspaces of C2n with 
respective frames X1 =

(
X1
Y1

)
and X2 =

(
X2
Y2

)
that are differentiable at t0 ∈ I. If the 

matrices

−X1(t0)∗JX′
1(t0) = X1(t0)∗Y ′

1(t0) − Y1(t0)∗X ′
1(t0)

and (noting the sign change)

X2(t0)∗JX′
2(t0) = −(X2(t0)∗Y ′

2(t0) − Y2(t0)∗X ′
2(t0))

are both non-negative, and at least one is positive definite, then the eigenvalues of W̃ (t)
rotate in the counterclockwise direction as t increases through t0. Likewise, if both of these 
matrices are non-positive, and at least one is negative definite, then the eigenvalues of 
W̃ (t) rotate in the clockwise direction as t increases through t0.

4. Proofs of the main theorems

In this section, we use our Maslov index framework to prove Theorems 1.1 and 1.2.

4.1. Proof of Theorem 1.1

Fix any pair λ1, λ2 ∈ R, λ1 < λ2, so that σess(Lα) ∩ [λ1, λ2] = ∅, and let �α(x; λ)
denote the map of Lagrangian subspaces associated with the frames Xα(x; λ) specified 
in (1.3). Keeping in mind that λ2 is fixed, let �b(x; λ2) denote the map of Lagrangian 
subspaces associated with the frames Xb(x; λ2) specified in (1.4). We emphasize that 
since λ2 is fixed we don’t yet require Lemma 2.11 to extend the frame Xb(x; λ2) to 
additional values λ ∈ [λ1, λ2]. We will establish Theorem 1.1 by considering the Maslov 
index for �α(x; λ) and �b(x; λ2) along a path designated as the Maslov box in the next 
paragraph. As described in Section 3, this Maslov index is computed as a spectral flow 
for the matrix

W̃ (x;λ) = −(Xα(x;λ) + iYα(x;λ))(Xα(x;λ) − iYα(x;λ))−1

× (Xb(x;λ2) − iYb(x;λ2))(Xb(x;λ2) + iYb(x;λ2))−1.
(4.1)

By Maslov Box, in this case we mean the following sequence of contours, specified for 
some value c ∈ (a, b) to be chosen sufficiently close to b during the analysis (sufficiently 
large if b = +∞): (1) fix x = a and let λ increase from λ1 to λ2 (the bottom shelf ); (2) 
fix λ = λ2 and let x increase from a to c (the right shelf ); (3) fix x = c and let λ decrease 
from λ2 to λ1 (the top shelf ); and (4) fix λ = λ1 and let x decrease from c to a (the left 
shelf ). (See Fig. 4.1.)

Right shelf. We begin our analysis with the right shelf, for which Xα and Xb are both 
evaluated at λ2. By construction, �α(·; λ2) will intersect �b(·; λ2) at some x (and so for 
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x

λ λ1 λ2
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a

Mas(�α(a; ·), �b(a;λ2); [λ1, λ2])

M
as

(�
α
(·

;λ
2
),
� b
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2
);
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,
c
])
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−
M
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(�

α
(·

;λ
1
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� b

(·
;λ

2
);

[a
,
c
])

Fig. 4.1. The Maslov Box.

all x ∈ [a, c]) with dimension m if and only if λ2 is an eigenvalue of Lα with multiplicity 
m. In the event that λ2 is not an eigenvalue of Lα, there will be no crossing points along 
the right shelf. On the other hand, if λ2 is an eigenvalue of Lα with multiplicity m, then 
W̃ (x; λ2) will have −1 as an eigenvalue with multiplicity m for all x ∈ [a, c]. In either 
case,

Mas(�α(·;λ2), �b(·;λ2); [a, c]) = 0.

Bottom shelf. For the bottom shelf, �α(a; λ) is fixed, independent of λ, so in particular 
�α(a; λ) = �α(a; λ2) for all λ ∈ [λ1, λ2]. In this way, W̃ (a; λ) is actually independent of 
λ, and so we certainly have

Mas(�α(a; ·), �b(a;λ2); [λ1, λ2]) = 0.

Moreover, �α(a; λ) will intersect �b(a; λ2) with intersection dimension m if and only if 
λ2 is an eigenvalue of Lα with multiplicity m. In the event that λ2 is not an eigenvalue 
of Lα, there will be no crossing points along the bottom shelf. On the other hand, if λ2
is an eigenvalue of Lα with multiplicity m, then W̃ (a; λ) will have −1 as an eigenvalue 
with multiplicity m for all λ ∈ [λ1, λ2].

Top shelf. For the top shelf, W̃ (c; λ) detects intersections between �α(c; λ) and �b(c; λ2)
as λ decreases from λ2 to λ1. Such intersections correspond precisely with eigenvalues of 
the finite-interval (or truncated) operator Lα

a,c, with domain

Dα
a,c := {y ∈ Da,c,M : αy(a) = 0, Xb(c;λ2)∗Jy(c) = 0},

where Da,c,M denotes the domain of the maximal operator specified as in Definition 1.1, 
except on (a, c). Similarly as in Section 2, we can check that Lα

a,c is a self-adjoint operator. 
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(In fact, since Lα
a,c is posed on a bounded interval (a, c) with B0, B1 ∈ L1((a, c), C2n×2n), 

self-adjointness can be established by more routine considerations.)
We know from Lemma 3.1 that monotonicity in λ is determined by

−Xα(c; λ)∗J∂λXα(c;λ), and we readily compute

∂

∂x
X∗

α(x;λ)J∂λXα(x;λ) = X′
α(x;λ)∗J∂λXα(x;λ) + Xα(x;λ)∗J∂λX′

α(x;λ)

= −X′
α(x;λ)∗J∗∂λXα(x;λ) + Xα(x;λ)∗∂λJX′

α(x;λ)

= −Xα(x;λ)∗(B0(x) + λB1(x))∂λXα(x;λ)

+ Xα(x;λ)∗(B0(x) + λB1(x))∂λXα(x;λ) + X∗
α∂λ(B0(x) + λB1(x))Xα(x;λ)

= Xα(x;λ)∗B1(x)Xα(x;λ),

where the differentiation of Xα(x; λ) in x and λ, including the exchange of order of 
these derivatives, is straightforward since the columns of Xα(x; λ) are simply solutions 
to standard initial value problems. Integrating on [a, x], and noting that ∂λXα(a; λ) = 0, 
we see that

Xα(x;λ)∗J∂λXα(x;λ) =
x∫

a

Xα(y;λ)∗B1(y)Xα(y;λ)dy.

Monotonicity along the top shelf follows by setting x = c and appealing to Assumption
(B). In this way, we see that Assumption (B) ensures that as λ increases the eigenvalues 
of W̃ (c; λ) will rotate monotonically in the clockwise direction. Since each crossing along 
the top shelf corresponds with an eigenvalue of Lα

a,c, we can conclude that

Nα
a,c([λ1, λ2)) = −Mas(�α(c; ·), �b(c;λ2); [λ1, λ2]), (4.2)

where Nα
a,c([λ1, λ2)) denotes a count, including multiplicities, of the eigenvalues of Lα

a,c

on [λ1, λ2). We note that λ1 is included in the count, because in the event that (c, λ1)
is a crossing point, eigenvalues of W̃ (c; λ) will rotate away from −1 in the clockwise 
direction as λ increases from λ1 (thus decrementing the Maslov index). Likewise, λ2 is 
not included in the count, because in the event that (c, λ2) is a crossing point, eigenvalues 
of W̃ (c; λ) will rotate into −1 in the clockwise direction as λ increases to λ2 (thus leaving 
the Maslov index unchanged).

Left shelf. Our analysis so far leaves only the left shelf to consider, and we observe 
that the Maslov index on the left shelf can be expressed as

−Mas(�α(·;λ1), �b(·;λ2); [a, c]).

Using path additivity and homotopy invariance, we can sum the Maslov indices on each 
shelf of the Maslov Box to arrive at the relation
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Nα
a,c([λ1, λ2)) = Mas(�α(·;λ1), �b(·;λ2); [a, c]). (4.3)

In order to obtain a statement about Nα([λ1, λ2)), we observe that eigenvalues of 
Lα correspond precisely with intersections of �α(c; λ) and �b(c; λ). (We emphasize that 
in this last statement, �b is evaluated at λ, not λ2, and so we are using Lemma 2.11). 
Employing a monotonicity argument similar to the one above for the top shelf, we can 
conclude that

Nα([λ1, λ2)) = −Mas(�α(c; ·), �b(c; ·); [λ1, λ2]). (4.4)

Remark 4.1. The monotonicity argument in the case of (4.4) is a bit more subtle than in 
the case above for the top shelf, and in order to keep the analysis as complete as possible, 
we include the full argument in the appendix.

Our next goal is to relate the Maslov index on the right-hand side of (4.4) to Maslov 
indices in which λ only varies in one or the other of �α(c; λ) and �b(c; λ). For this, we 
have the following claim.

Claim 4.1. Under the assumptions of Theorem 1.1 (without the requirement λ1, λ2 /∈
σp(Lα)), and for any c ∈ (a, b),

Mas(�α(c; ·), �b(c; ·); [λ1, λ2]) = Mas(�α(c;λ1), �b(c; ·); [λ1, λ2])

+ Mas(�α(c; ·), �b(c;λ2); [λ1, λ2]).

Proof. With c ∈ (a, b) fixed, we consider �α(c; ·), �b(c; ·) : [λ1, λ2] → Λ(n) and set

W̃c(λ, μ) := −(Xα(c;λ) + iYα(c;λ))(Xα(c;λ) − iYα(c;λ))−1

× (Xb(c;μ) − iYb(c;μ))(Xb(c;μ) + iYb(c;μ))−1.

We now compute the Maslov index associated with W̃c(λ, μ) along the triangular path in 
[λ1, λ2] × [λ1, λ2] comprising the following three paths: (1) fix λ = λ1 and let μ increase 
from λ1 to λ2; (2) fix μ = λ2 and let λ increase from λ1 to λ2; and (3) let λ and μ
decrease together (i.e., with λ = μ) from λ2 to λ1. (See Fig. 4.2.) The claim follows from 
path additivity and homotopy invariance. �

We can conclude from (4.2), (4.4), and Claim 4.1 that

Nα([λ1, λ2)) = Nα
a,c([λ1, λ2)) − Mas(�α(c;λ1), �b(c; ·); [λ1, λ2]). (4.5)

By monotonicity,

Mas(�α(c;λ1), �b(c; ·); [λ1, λ2]) ≤ 0,
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Fig. 4.2. Triangular path in the (λ, μ)-plane for Claim 4.1.

from which we can additionally conclude that

Nα([λ1, λ2)) ≥ Nα
a,c([λ1, λ2)).

In light of (4.3), this gives

Nα([λ1, λ2)) ≥ Mas(�α(·;λ1), �b(·;λ2); [a, c]). (4.6)

Here, we emphasize that under our assumption that σess(Lα) ∩ [λ1, λ2] = ∅, the count 
Nα([λ1, λ2)) must be finite.

The right-hand side of (4.6) is computed over the compact interval [a, c] on which (1.1)
can be viewed as a regular system, as analyzed in [16]. In [16], the authors show that 
the direction of crossing points for such systems (under assumptions more general than 
those made here) are all positive as x increases from a to c. (See the statement and proof 
of Theorem 1.1 in [16].) It follows that as c → b− the values Mas(�α(·; λ1), �b(·; λ2); [a, c])
are monotonically non-decreasing, and since Nα([λ1, λ2)) is finite, we can conclude that 
the limit

lim
c→b−

Mas(�α(·;λ1), �b(·;λ2); [a, c]),

must exist, and in fact that it must be the case that this limit is obtained for all c
sufficiently close to b (sufficiently large if b = +∞). As asserted in Theorem 1.1, we denote 
this limit by Mas(�α(·; λ1), �b(·; λ2); [a, b)). In this way, the first assertion of Theorem 1.1
is obtained by taking a limit on both sides of (4.6) as c → b−.

For the second assertion of Theorem 1.1 we additionally assume that λ1, λ2 /∈ σp(Lα), 
and we will closely follow the approach taken in [13]. We emphasize that while we are 
using almost precisely the same argument as in [13], formulated under our conventions 
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and notation, our result is not limited to the limit-point case (as assumed in [13]). Since 
λ2 /∈ σ(Lα), we are justified in working with the resolvent operator

R(Lα;λ2) := (Lα − λ2I)−1,

which we can specify in terms of the Green’s function Gα(x, ξ; λ2) constructed in the 
appendix. In particular, for any f ∈ L2

B1
((a, b), C2n) we can write

R(Lα;λ2)f =
b∫

a

Gα(x, ξ;λ2)B1(ξ)f(ξ)dξ.

Turning to the operator Lα
a,c specified above with domain Dα

a,c, we first note that by 
virtue of the appearance of λ2 in the boundary condition at x = c, λ2 is an eigenvalue 
of Lα

a,c if and only if it is an eigenvalue of Lα. We are assuming λ2 /∈ σ(Lα), so we can 
conclude that λ2 /∈ σ(Lα

a,c), and this allows us to work with the resolvent operator

R(Lα
a,c;λ2) := (Lα

a,c − λ2I)−1,

which we can specify in terms of a Green’s function Gα
a,c(x, ξ; λ2). In particular, for any 

f ∈ L2
B1

((a, c), C2n) we can write

R(Lα
a,c;λ2)f =

c∫
a

Gα
a,c(x, ξ;λ2)B1(ξ)f(ξ)dξ.

Proceeding with a construction similar to that for Gα(x, ξ; λ2) in Section A.1, we find 
that Gα

a,c(x, ξ; λ2) can be expressed as

Gα
a,c(x, ξ;λ2) = Gα(x, ξ;λ2), ∀x, ξ ∈ (a, c).

According to Lemma 2 in Section 4 of Chapter XIII in [32] (also, Theorem 2.3 in Part 
IX of [7]), we can express the spectrum of R(Lα; λ2) as

σ(R(Lα;λ2))\{0} =
{ 1
λ− λ2

: λ ∈ σ(Lα)
}
.

In particular, we see that Lα has an eigenvalue on the interval (λ1, λ2) if and only 
if R(Lα; λ2) has an eigenvalue on the interval (−∞, (λ1 − λ2)−1), with corresponding 
algebraic and geometric multiplicities as well. We can express this as

Nα((λ1, λ2)) = Nα,R((−∞,
1

λ1 − λ2
)), (4.7)

where the right-hand side of (4.7) denotes a count, including multiplicities, of the eigen-
values of R(Lα; λ2) on the interval (−∞, (λ1 − λ2)−1). Likewise,
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Nα
a,c((λ1, λ2)) = Nα,R

a,c ((−∞,
1

λ1 − λ2
)), (4.8)

where the right-hand side of (4.8) denotes a count, including multiplicities, of the eigen-
values of R(Lα

a,c; λ2) on the interval (−∞, (λ1 − λ2)−1).
For ease of notation, we will denote by Πa,c : L2

B1
((a, b), C2n) → L2

B1
((a, c), C2n) the 

restriction operator

Πa,cf = f
∣∣∣
(a,c)

,

and we will denote by Pa,c : L2
B1

((a, b), C2n) → L2
B1

((a, b), C2n) the truncation operator

Pa,cf =
{
f in (a, c)
0 in (c, b).

With this notation, we can write (exploiting our Green’s function associated with Lα)

R(Lα
a,c;λ2)Πa,cf = Πa,cR(Lα;λ2)Pa,cf,

for all f ∈ L2
B1

((a, b), C2n). If we express L2
B1

((a, b), C2n) as a direct sum

L2
B1

((a, b),C2n) = Πa,cL
2
B1

((a, b),C2n) ⊕ (I − Πa,c)L2
B1

((a, b),C2n), (4.9)

then we can write

(R(Lα
a,c;λ2) ⊕ 0)f =

(
R(Lα

a,c;λ2)Πa,cf
)
⊕ 0

=
(
Πa,cR(Lα;λ2)Pa,cf

)
⊕ 0 = Pa,cR(Lα;λ2)Pa,cf.

(4.10)

(Cf. Corollary 3.3 in [13].)

Claim 4.2. For each f ∈ L2
B1

((a, b), C2n),

Pa,cR(Lα;λ2)Pa,cf
c→b−−→ R(Lα;λ2)f,

in L2
B1

((a, b), C2n). I.e., Pa,cR(Lα; λ2)Pa,c converges to R(Lα; λ2) in the strong sense 
as c → b−.

Proof. Writing I = Pa,c + (I − Pa,c), we can compute

‖Pa,cR(Lα;λ2)Pa,cf −R(Lα;λ2)f‖B1

= ‖Pa,cR(Lα;λ2)Pa,cf − Pa,cR(Lα;λ2)f − (I − Pa,c)R(Lα;λ2)f‖B1

≤ ‖Pa,cR(Lα;λ2)Pa,cf − Pa,cR(Lα;λ2)f‖B1 + ‖(I − Pa,c)R(Lα;λ2)f‖B1

= ‖P R(Lα;λ )(P − I)f‖ + ‖(I − P )R(Lα;λ )f‖ .
a,c 2 a,c B1 a,c 2 B1
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For the first of these last two summands, we can write

‖Pa,cR(Lα;λ2)(Pa,c − I)f‖B1 ≤ ‖Pa,cR(Lα;λ2)‖‖(Pa,c − I)f‖B1 .

Since λ2 ∈ ρ(Lα), ‖Pa,cR(Lα; λ2)‖ is bounded. Also,

‖(Pa,c − I)f‖2
B1

=
b∫

c

(B1(x)f(x), f(x))dx.

Here, (B1(·)f(·), f(·)) ∈ L1((a, b), C2n) and we can conclude that

lim
c→b−

‖(Pa,c − I)f‖B1 = 0.

The summand ‖(I − Pa,c)R(Lα; λ2)f‖B1 can be handled similarly with R(Lα; λ2)f
(which is in L2((a, b), C2n)) replacing f . �

As noted in [13] (during the proof of Theorem 3.6), we can use a slight restatement 
of Lemma 5.2 from [12], along with the strong convergence established in Claim 4.2 just 
above, to conclude that

Nα,R((−∞,
1

λ1 − λ2
)) ≤ lim inf

c→b−
Nα,R

c ((−∞,
1

λ1 − λ2
)), (4.11)

where the count on the right-hand side of (4.11) corresponds with the number of 
eigenvalues, counted with multiplicity, that Pa,cR(Lα; λ2)Pa,c has on the interval 
(−∞, (λ1 − λ2)−1).

Claim 4.3. For each c ∈ (a, b),

σ(R(Lα
a,c;λ2) ⊕ 0) = σ(R(Lα

a,c;λ2)),

and so by virtue of (4.10)

σ(Pa,cR(Lα;λ2)Pa,c) = σ(R(Lα
a,c;λ2)).

In particular,

Nα,R
c ((−∞,

1
λ1 − λ2

)) = Nα,R
a,c ((−∞,

1
λ1 − λ2

)).

Proof. First, we check that

σp(R(Lα
a,c;λ2) ⊕ 0) = σp(R(Lα

a,c;λ2)).
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For this, we observe that

R(Lα
a,c;λ2)Πa,cφ = μΠa,cφ (4.12)

for some φ ∈ L2
B1

((a, b), C2n) if and only if

(R(Lα
a,c;λ2) ⊕ 0)Pa,cφ = μPa,cφ, (4.13)

from which its clear that Πa,cφ is an eigenfunction for R(Lα
a,c; λ2) with eigenvalue μ if 

and only if Pa,cφ is an eigenfunction for R(Lα
a,c; λ2) ⊕ 0 with eigenvalue μ.

Next, since Lα
a,c is regular at both endpoints, its spectrum is entirely discrete. In 

particular, this means that if μ /∈ σp(R(Lα
a,c; λ2)) ∪ {0} then μ ∈ ρ(R(Lα

a,c; λ2)). (Since 
Lα
a,c is unbounded, 0 ∈ σ(R(Lα

a,c; λ2)\σp(R(Lα
a,c; λ2)).)

For μ ∈ ρ(R(Lα
a,c; λ2)), the operator

R(Lα
a,c;λ2) − μIL2

B1
((a,c),C2n)

maps L2
B1

((a, c), C2n) onto L2
B1

((a, c), C2n). We claim that it follows that

(R(Lα
a,c;λ2) ⊕ 0) − μIL2

B1
((a,b),C2n)

maps L2
B1

((a, b), C2n) onto L2
B1

((a, b), C2n). To see this, we take any f ∈ L2
B1

((a, b), C2n), 
and we will identify ψ ∈ L2

B1
((a, b), C2n) so that

(
(R(Lα

a,c;λ2) ⊕ 0) − μIL2
B1

((a,b),C2n)

)
ψ = f. (4.14)

Since R(Lα
a,c; λ2) − μIL2

B1
((a,c),C2n) maps L2

B1
((a, c), C2n) onto L2

B1
((a, c), C2n), we can 

find φ ∈ L2
B1

((a, c), C2n) so that

(
R(Lα

a,c;λ2) − μIL2
B1

((a,c),C2n)

)
φ = Πa,cf.

It follows that

ψ :=
{
φ in (a, c)
− 1

μf in (c, b)

satisfies (4.14). This gives the claim. �
Using (respectively) (4.7), (4.11), Claim 4.3, (4.8), and (4.3) for the first five relations 

below, we can now compute as follows:
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Nα((λ1, λ2)) = Nα,R((−∞,
1

λ1 − λ2
))

≤ lim inf
c→b−

Nα,R
c ((−∞,

1
λ1 − λ2

))

= lim inf
c→b−

Nα,R
a,c ((−∞,

1
λ1 − λ2

))

= lim inf
c→b−

Nα
a,c((λ1, λ2))

= lim inf
c→b−

Mas(�α(·;λ1), �b(·;λ2); [a, c])

= Mas(�α(·;λ1), �b(·;λ2); [a, b)).

We conclude that

Nα((λ1, λ2)) ≤ Mas(�α(·;λ1), �b(·;λ2); [a, b)),

and this gives the claim of equality in Theorem 1.1. For this final observation, we note 
that since λ2 /∈ σp(Lα), we cannot have a crossing point at x = a (cf. remarks about the 
bottom shelf above), and so the interval [a, b) can be replaced by (a, b). �
Remark 4.2. We see from the preceding discussion (especially (4.5)) that we have equality 
in Theorem 1.1 if and only if

Mas(�α(c;λ1), �b(c; ·); [λ1, λ2]) = 0, (4.15)

for all c ∈ (a, b) sufficiently close to b (sufficiently large if b = +∞). In making this 
observation, we’ve used the fact that for each c ∈ (a, b), Mas(�α(c; λ1), �b(c; ·); [λ1, λ2])
is a non-negative integer, so we can only have

lim
c→b−

Mas(�α(c;λ1), �b(c; ·); [λ1, λ2]) = 0

if (4.15) holds as described. By monotonicity as λ varies, this last relation is true if and 
only if

�α(c;λ1) ∩ �b(c;λ) = {0}, ∀λ ∈ [λ1, λ2), (4.16)

for all c ∈ (a, b) sufficiently close to b (sufficiently large if b = +∞). Here, the rotation 
is clockwise, so λ2 is excluded, since a crossing-point arrival as λ increases to λ2 would 
not affect the Maslov index.

4.2. Proof of Theorem 1.2

Similarly as in the proof of Theorem 1.1, we fix any pair λ1, λ2 ∈ R, λ1 < λ2 for which 
σess(L) ∩ [λ1, λ2] = ∅. For the proof of Theorem 1.2, we let �b(x; λ2) be as in the proof 
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of Theorem 1.1, and we let �a(x; λ) denote the map of Lagrangian subspaces associated 
with the frames Xa(x; λ) constructed as in Lemma 2.11, except with the analysis on 
(a, c) rather than (c, b). We will establish Theorem 1.2 by considering the Maslov index 
for �a(x; λ) and �b(x; λ2) along the Maslov box designated just below. As described in 
Section 3, this Maslov index is computed as a spectral flow for the matrix

W̃ (x;λ) = −(Xa(x;λ) + iYa(x;λ))(Xa(x;λ) − iYa(x;λ))−1

× (Xb(x;λ2) − iYb(x;λ2))(Xb(x;λ2) + iYb(x;λ2))−1
(4.17)

(re-defined from Section 4.1).
In this case, the Maslov Box will consist of the following sequence of contours, spec-

ified for some values c1, c2 ∈ (a, b), c1 < c2 to be chosen sufficiently close to a and b
(respectively) during the analysis: (1) fix x = c1 and let λ increase from λ1 to λ2 (the 
bottom shelf ); (2) fix λ = λ2 and let x increase from c1 to c2 (the right shelf ); (3) fix 
x = c2 and let λ decrease from λ2 to λ1 (the top shelf ); and (4) fix λ = λ1 and let x
decrease from c2 to c1 (the left shelf ). (The figure is similar to Fig. 4.1).

Right shelf. In this case, our calculation along the right shelf detects intersections 
between �a(x; λ2) and �b(x; λ2) as x increases from c1 to c2. By construction, �a(·; λ2)
will intersect �b(·; λ2) at some value x ∈ [c1, c2] with dimension m if and only if λ2 is an 
eigenvalue of L with multiplicity m. In the event that λ2 is not an eigenvalue of L, there 
will be no crossing points along the right shelf. On the other hand, if λ2 is an eigenvalue 
of L with multiplicity m, then W̃ (x; λ2) will have −1 as an eigenvalue with multiplicity 
m for all x ∈ [c1, c2]. In either case,

Mas(�a(·;λ2), �b(·;λ2); [c1, c2]) = 0. (4.18)

Bottom shelf. For the bottom shelf, we’re looking for intersections between �a(c1; λ)
and �b(c1; λ2) as λ increases from λ1 to λ2. Since �a(x; λ) corresponds with solutions that 
lie left in (a, b), this leads to a calculation similar to the calculation of

Mas(�α(c; ·), �b(c;λ2); [λ1, λ2]),

which arose in our analysis of the top shelf for the proof of Theorem 1.1. For the moment, 
the only thing we will note about this quantity is that due to monotonicity in λ (following 
similarly as in Section A.2), we have the inequality

Mas(�a(c1; ·), �b(c1;λ2); [λ1, λ2]) ≤ 0. (4.19)

Top shelf. For the top shelf, W̃ (c2; λ) detects intersections between �a(c2; λ) and 
�b(c2; λ2) as λ decreases from λ2 to λ1. In this way, intersections correspond precisely 
with eigenvalues of the restriction La,c2 of the maximal operator associated with (1.1)
on (a, c2) to the domain
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Da,c2 := {y ∈ Da,c2,M : lim
x→a+

Ua(x;λ0)∗Jy(x) = 0, Xb(c2;λ2)∗Jy(c2) = 0}.

Similarly as in Section 2, we can check that La,c2 is a self-adjoint operator.
We can verify monotonicity along the top shelf almost precisely as Section A.2, and 

we can conclude from this that

Na,c2([λ1, λ2)) = −Mas(�a(c2; ·), �b(c2;λ2); [λ1, λ2]), (4.20)

where Na,c2([λ1, λ2)) denotes a count of the number of eigenvalues that La,c2 has on the 
interval [λ1, λ2). (The inclusion of λ1 and exclusion of λ2 are precisely as discussed in 
the proof of Theorem 1.1.)

Similarly as with Claim 4.1, we obtain the relation

Mas(�a(c2; ·), �b(c2; ·); [λ1, λ2]) = Mas(�a(c2;λ1), �b(c2; ·); [λ1, λ2])

+ Mas(�a(c2; ·), �b(c2;λ2); [λ1, λ2]).
(4.21)

Recalling that N ([λ1, λ2)) denotes the number of eigenvalues that L has on the interval 
[λ1, λ2), we can write

N ([λ1, λ2)) = −Mas(�a(c2; ·), �b(c2; ·); [λ1, λ2])

= −Mas(�a(c2;λ1), �b(c2; ·); [λ1, λ2]) − Mas(�a(c2; ·), �b(c2;λ2); [λ1, λ2])

= Na,c2([λ1, λ2)) − Mas(�a(c2;λ1), �b(c2; ·); [λ1, λ2]).
(4.22)

Left shelf. Our analysis so far leaves only the left shelf to consider, and we observe 
that it can be expressed as

−Mas(�a(·;λ1), �b(·;λ2); [c1, c2]).

Using path additivity and homotopy invariance, we can sum the Maslov indices on each 
shelf of the Maslov Box to arrive at the relation

Na,c2([λ1, λ2)) = Mas(�a(·;λ1), �b(·;λ2); [c1, c2]) − Mas(�a(c1; ·), �b(c1;λ2); [λ1, λ2]).
(4.23)

Using (4.22) and (4.23), we can now write

N ([λ1, λ2)) = Na,c2([λ1, λ2)) − Mas(�a(c2;λ1), �b(c2; ·); [λ1, λ2])

= Mas(�a(·;λ1), �b(·;λ2); [c1, c2]) − Mas(�a(c1; ·), �b(c1;λ2); [λ1, λ2])

− Mas(�a(c2;λ1), �b(c2; ·); [λ1, λ2]).

(4.24)

Recalling the monotonicity relation (4.19), and noting likewise the inequality

Mas(�a(c2;λ1), �b(c2; ·); [λ1, λ2]) ≤ 0,
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we can conclude the inequality

N ([λ1, λ2)) ≥ Mas(�a(·;λ1), �b(·;λ2); [c1, c2]). (4.25)

The right-hand side of (4.25) is computed over the compact interval [c1, c2] on which 
(1.1) can be viewed as a regular system, as analyzed in [16]. In [16], the authors show 
that the direction of crossing points for such systems (under assumptions more general 
than those made here) are all positive as x increases from c1 to c2. (See the statement 
and proof of Theorem 1.1 in [16].) It follows that as c1 → a+ and c2 → b− the values 
Mas(�α(·; λ1), �b(·; λ2); [c1, c2]) are monotonically non-decreasing, and since N ([λ1, λ2))
is finite, we can conclude that the limit

lim
c1→a+
c2→b−

Mas(�α(·;λ1), �b(·;λ2); [c1, c2]),

must exist, and in fact that it must be the case that this limit is obtained for all c1
sufficiently close to a (sufficiently negative if a = −∞) and all c2 sufficiently close to 
b (sufficiently large if b = +∞). As asserted in Theorem 1.2, we denote this limit by 
Mas(�α(·; λ1), �b(·; λ2); (a, b)). In this way, the first assertion of Theorem 1.2 is obtained 
by taking a limit on both sides of (4.25) as c1 → a+ and c2 → b−.

For the second assertion of Theorem 1.2 we additionally assume that λ1, λ2 /∈ σp(L). 
Our goal is to show that

N ((λ1, λ2)) ≤ Mas(�a(·;λ1), �b(·;λ2); (a, b)), (4.26)

and we note from (4.24) that this is implied if both of the following two conditions hold:

�a(c1;λ) ∩ �b(c1;λ2) = {0}, ∀λ ∈ [λ1, λ2), (4.27)

for all c1 ∈ (a, b) sufficiently close to a (sufficiently negative if a = −∞), and

�a(c2;λ1) ∩ �b(c2;λ) = {0}, ∀λ ∈ [λ1, λ2), (4.28)

for all c2 ∈ (a, b) sufficiently close to b (sufficiently large if b = +∞). (The inclusion of 
λ1 in the intervals and exclusion of λ2 is discussed in Remark 4.2.)

We proceed by dividing the analysis into two half-interval problems. For this, we first 
fix any c ∈ (a, b), and we introduce a new operator Lc,b as the restriction of Lc,b,M to 
the domain

Dc,b := {y ∈ Dc,b,M : Xa(c;λ1)∗Jy(c) = 0, lim
x→b−

U b(x;λ0)∗Jy(x) = 0}.

We can view Lc,b as a special case of the operator Lα
a,b analyzed in Section 4.1, with a

replaced by c and α replaced by Xa(c; λ1)∗J . It follows that �α(x; λ1) from Section 4.1
is replaced by �a(x; λ1), so that by virtue of Remark 4.2, we can conclude that
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�a(c2;λ1) ∩ �b(c2;λ)) = {0}, ∀λ ∈ [λ1, λ2),

for all c2 ∈ (a, b) sufficiently close to b (sufficiently large if b = +∞). This is precisely 
(4.28).

Likewise, we introduce an operator La,c as the restriction of La,c,M to the domain

Da,c := {y ∈ Dc,b,M : lim
x→a+

Ua(x;λ0)∗Jy(x) = 0, Xb(c;λ2)∗Jy(c) = 0}.

Proceeding similarly as in Section 4.1, we find that in this case

�a(c1;λ) ∩ �b(c1;λ2)) = {0}, ∀λ ∈ [λ1, λ2),

for all c1 ∈ (a, b) sufficiently close to a (sufficiently negative if a = −∞). This is precisely 
(4.27).

As already noted, (4.27) and (4.28) together imply (4.26), and this completes the 
proof of Theorem 1.2. �
5. Applications

In this section, we will discuss two specific applications of our main results, though 
we first need to make one further observation associated with Niessen’s approach. We 
recall that the key element in Niessen’s approach is an emphasis on the matrix

A(x;λ) = 1
2Imλ

Φ(x;λ)∗(J/i)Φ(x;λ),

where Φ(x; λ) denotes a fundamental matrix for (1.1), and we clearly require Imλ 
=
0. We saw in Section 2 that if {μj(x; λ)}2n

j=1 denote the eigenvalues of A(x; λ), then 
the number of solutions of (1.1) that lie left in (a, b) is precisely the number of these 
eigenvalues with a finite limit as x approaches a, while the number of solutions of (1.1)
that lie right in (a, b) is precisely the number of these eigenvalues with a finite limit 
as x approaches b. Under Assumption (C), these numbers are constant in λ on the set 
C\R, and so we can categorize the limit-case (i.e., limit-point, limit-circle, or limit-m) 
of (1.1) at x = a (resp. x = b) by fixing some λ ∈ C\R and computing the values 
{μj(x; λ)}2n

j=1 as x tends to a (resp. as x tends to b). (This is precisely what we will do in 
our examples below.) Furthermore, we have additionally seen in Section 2 that for each 
μj(x; λ) (with or without a finite limit), we can associate a (sub)sequence of eigenvectors 
{vj(xk; λ)}∞k=1 that converges, as xk → a+, to some vaj (λ) that lies on the unit circle 
in C2n, and similarly for a sequence xk → b−. If μj(x; λ) has a finite limit as x → a+, 
then Φ(x; λ)vaj (λ) will lie left in (a, b), while if μj(x; λ) has a finite limit as x → b−, then 
Φ(x; λ)vbj(λ) will lie right in (a, b).

In practice, we would like to extend these ideas to values λ ∈ R, and for this, we 
replace A(x; λ) with
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B(x;λ) := Φ(x;λ)∗J∂λΦ(x;λ). (5.1)

If we differentiate (5.1) with respect to x, we find that

B′(x;λ) = Φ(x;λ)∗B1(x)Φ(x;λ), (5.2)

and upon integrating we see that we can alternatively express B(x; λ) as

B(x;λ) =
x∫

c

Φ(ξ;λ)∗B1(ξ)Φ(ξ;λ)dξ, (5.3)

where we’ve observed that since Φ(c; λ) = I2n, we have B(c; λ) = 0. Recalling that B1(x)
is self-adjoint for a.e. x ∈ (a, b), we see from this relation that B(x; λ) is self-adjoint 
for all x ∈ (a, b). Consequently, the eigenvalues of B(x; λ) must be real-valued, and we 
denote these values {νj(x; λ)}2n

j=1. Since B(c; λ) = 0, we can conclude that νj(c; λ) = 0
for all j ∈ {1, 2, . . . , 2n}, and all λ ∈ R. In addition, according to (5.2), along with 
Condition (B), for each fixed λ ∈ R, the eigenvalues {νj(x; λ)}2n

j=1 will be non-decreasing 
as x increases. As x → b−, each eigenvalue νj(x; λ) will either approach +∞ or a finite 
limit. In the latter case, we set

νbj (λ) := lim
x→b−

νj(x;λ).

Likewise, as x → a+, each eigenvalue νj(x; λ) will either approach −∞ or a finite limit. 
In the latter case, we set

νaj (λ) := lim
x→a+

νj(x;λ).

Comparing the relations (2.4) and (5.3), we see that the proof of Lemma 2.1 can be 
adapted with almost no changes to establish the following lemma.

Lemma 5.1. Let Assumptions (A) and (B) hold, and let λ ∈ [λ1, λ2] be fixed. Then the 
dimension ma(λ) of the subspace of solutions to (1.1) that lie left in (a, b) is precisely 
the number of eigenvalues νj(x; λ) ∈ σ(B(x; λ)) that approach a finite limit as x → a+. 
Likewise, the dimension mb(λ) of the subspace of solutions to (1.1) that lie right in (a, b)
is precisely the number of eigenvalues νj(x; λ) ∈ σ(B(x; λ)) that approach a finite limit 
as x → b−.

Remark 5.1. We emphasize that as opposed to the case λ ∈ C\R, we cannot conclude 
from these considerations that ma(λ), mb(λ) ≥ n. Rather, in this case we conclude these 
inequalities for all λ ∈ [λ1, λ2] from Lemma 2.9 (under assumptions (A), (B), and (C)). 
Here, as usual, we are taking [λ1, λ2] ∩ σess(L) = ∅ (or, likewise, [λ1, λ2] ∩ σess(Lα) = ∅).
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If, for each x ∈ (a, b), we let {wj(x; λ)}2n
j=1 denote an orthonormal collection of eigen-

vectors associated with the eigenvalues {νj(x; λ)}2n
j=1, then as in the proof of Lemma 2.1, 

we can find (for each j ∈ {1, 2, . . . , 2n}) a sequence {wj(xk; λ)}∞k=1 that converges, as 
xk → a+, to some wa

j (λ) on the unit circle in C2n, and likewise we can find a sequence 
{wj(xk; λ)}∞k=1 that converges, as xk → b−, to some wb

j(λ) on the unit circle in C2n. 
Moreover, if νj(x; λ) has a finite limit as x → a+, then Φ(x; λ)wa

j (λ) will lie left in (a, b), 
while if νj(x; λ) has a finite limit as x → b−, then Φ(x; λ)wb

j(λ) will lie right in (a, b).
These considerations provide a practical method for constructing the frames Xa(x; λ)

and Xb(x; λ) that we’ll need in order to implement Theorems 1.1 and 1.2. Most directly, 
if (1.1) is limit-point at x = a (respectively, x = b), then the procedure described in 
the previous paragraph will provide precisely n linearly independent solutions to (1.1)
that lie left in (a, b) (respectively, right in (a, b)), and these can be taken to comprise the 
columns of Xa(x; λ) (respectively, Xb(x; λ)). See Section 5.1 for an application in this 
setting (i.e., the limit point setting).

More generally, Lemma 2.1 can be used to construct left and right lying solutions of 
(1.1) for some λ0 ∈ C\R, and these can then be used to specify the Niessen elements de-
scribed in the lead-in to Lemma 2.3. I.e., the matrices Ua(x; λ0) and U b(x; λ0) discussed 
in Section 2 can be constructed in this way. Working, for example, with the solutions 
constructed above for λ ∈ R that lie left in (a, b), we can identify n linearly independent 
solutions {ua

j (x; λ)}nj=1 that satisfy

lim
x→a+

Ua(x;λ0)∗Jua
j (x;λ) = 0.

This collection {ua
j (x; λ)}nj=1 can be taken to comprise the columns of Xa(x; λ), and we 

can proceed similarly for x = b. See Section 5.2 for an application in this setting (i.e., 
the limit circle setting).

We now turn to our applications.

5.1. Counting eigenvalues in spectral gaps

In this section, we discuss (single) Schrödinger equations

Hφ := −φ′′ + V (x)φ = λφ, in (0,∞)

α1φ(0) + α2φ
′(0) = 0,

where V (x) is a bounded, real-valued potential obtained by compactly perturbing a 
periodic potential V0(x), and α1, α2 ∈ R are not both 0. In this case, it’s well known 
that H is self-adjoint when viewed as an operator on the domain

dom(H) = {φ ∈ L2((0,∞),C) : φ, φ′ ∈ ACloc([0,∞),C),

Hφ ∈ L2((0,∞),C), α φ(0) + α φ′(0) = 0}.
1 2
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If we set

H0φ := −φ′′ + V0(x)φ = λφ, in (0,∞),

along with any self-adjoint boundary condition at x = 0, then σess(H0) can be expressed 
as a union of closed intervals

σess(H0) =
∞⋃
j=1

[aj , bj ],

or in some special cases as a similar finite union that includes an unbounded interval 
[bN , +∞). (See, e.g., [25] and the references cited there.) The intervals {[aj , bj ]}∞j=1 are 
referred to as spectral bands for H0, and the intervening intervals [bj, aj+1] are referred 
to as spectral gaps. (It may be the case that bj = aj+1, leaving no gap.) In addition, if 
V0(x) is perturbed to a new potential V (x) = V0(x) + V1(x), where V1 ∈ L1((0, ∞), R), 
then we will have σess(H) = σess(H0). (See, for example, Corollary XIII.4.2 in [32].) 
However, it may be the case that H has additional eigenvalues in the spectral gaps, 
including up to an infinite number accumulating at an endpoint of essential spectrum. 
Let [bj , aj+1], bj < aj+1 denote some particular spectral gap. Then our approach allows 
us to fix any interval (λ1, λ2) ∈ [bj , aj+1], λ1, λ2 /∈ σ(H) and determine the number of 
eigenvalues on this interval.

As a specific example, taken from [1] (so that we have known results to compare with), 
we consider H with

V (x) = V0(x) + V1(x) = sin(x) + 60
1 + x2 , α1 = cos(π/8), α2 = sin(π/8).

In [1], the authors identify the first two spectral gaps for H0 as

J1 = (−∞,−.3785), J2 = (−.3477, .5948),

and they verify that −.3477 serves as an accumulation point for eigenvalues of H in the 
interval J2. In addition, the authors identify the 13 right-most eigenvalues of H in this 
interval. (In these calculations, the authors proceed with a higher degree of precision 
than given above; see [1] for the full results.)

In order to place this equation in our setting, we set y =
(
y1
y2

)
=

(
φ
φ′

)
, from which we 

arrive at (1.1) with

B0(x) + λB1(x) =
(
− sin(x) − 60

1+x2 0
0 1

)
+ λ

(
1 0
0 0

)
. (5.4)

With these choices of B0(x) and B1(x), (1.1)–(5.4) is regular at x = 0 and of course 
singular at x = +∞. (I.e., we are in the case in which (A)′ holds.) In order to determine 
if (1.1)–(5.4) is limit-point or limit-circle at +∞, we fix λ0 = i (arbitrarily selected 
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as an element λ0 ∈ C\R) and numerically generate the eigenvalues of A(x; λ0) as x
increases. (In this case, we initialize the fundamental matrix Φ(x; λ0) at x = 0.) We 
know from our general theory developed in Section 2 that the eigenvalues {μj(x; λ0)}2

j=1
of A(x; λ0) will satisfy (with our choice of indexing) μ1(x; λ0) < 0 < μ2(x; λ0) for all 
x ∈ (0, ∞). As x increases, these eigenvalues will both monotonically increase, and so 
μ1(x; λ0) will certainly approach a finite limit (since it is bounded above by 0). In this 
way, the limit case is determined by whether μ2(x; λ0) approaches a finite limit as x
tends to +∞. Computing numerically, we find μ2(5; λ0) = 1.1543 × 109, suggesting that 
H is limit-point at +∞.

Remark 5.2. Throughout this section, our numerical calculations are intended only to 
illustrate the theory, and we make no effort to rigorously justify either the values we 
obtain or the conclusions we draw from them. For example, in this last calculation, we 
have not attempted to find a rigorous error interval for the value of μ2(5; λ0), and we 
offer no additional direct justification that μ2(x; λ0) is indeed tending to +∞ as x tends 
to +∞. Nonetheless, we observe that in this case it follows from Corollary 1 in Chapter 
9 of [5] that H is indeed limit-point at +∞, and from this we can conclude that this 
limiting behavior must be qualitatively correct. In all cases, the calculations are carried 
out with built-in MATLAB functions, primarily ode45.m.

Since (1.1)–(5.4) is limit-point at +∞, our construction of the self-adjoint operator 
associated with (1.1)–(5.4) yields a single self-adjoint operator Lα with domain

Dα = {y ∈ DM : αy(0) = 0}.

(See Claim 2.3 regarding the absence of a condition at b = +∞.)

Remark 5.3. It’s straightforward to check that H and Lα have precisely the same sets 
of essential spectrum, and also the same sets of discrete eigenvalues.

Since (1.1)–(5.4) is regular at x = 0, we can find Xα(x; λ1) by solving the initial value 
problem

JX′
α = (B0(x) + λ1B1(x))Xα; Xα(0;λ1) =

(
− sin(π/8)
cos(π/8)

)
.

For Xb(x; λ2), our observation that H is limit-point at +∞ allows us to conclude that 
Xb(x; λ2) must be the unique (up to constant multiple) solution of JX′

b = (B0(x) +
λ1B1(x))Xb that lies right in (a, b). In order to find Xb(x; λ2), we compute the eigenvalues 
of B(x; λ2) for (relatively) large values of x. Specifically, we will take λ2 = .2, and for 
this value we find ν1(5; λ2) = .0039 and ν2(5; λ2) = 1.0724 × 1015. The unit eigenvector 
associated with ν1(5; λ2) is
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w1(5;λ2) =
(
−.1287022477
.9916832818

)
.

Regarding these values, our only justification for keeping so many decimal places is 
that the value of w1(x; λ2) remains consistent to this many places as we continue to 
increase x beyond 5. We emphasize that while our general theory requires the selection 
of a convergent subsequence of eigenvectors, the actual (numerically generated) sequence 
of eigenvectors converges quickly and with extraordinary consistency. According to our 
general theory, we can take Xb(x; λ2) = Φ(x; λ2)wb

1(λ2), and we will approximate the 
limit-obtained vector wb

1(λ2) with w1(5; λ2).
Equipped now with frames Xα(x; λ1) and Xb(x; λ2), we can readily compute

Mas(�α(·;λ1), �b(·;λ2); (0,+∞)) (5.5)

as a spectral flow for W̃ (x; λ1) as specified in (4.1). (In this case, W̃ (x; λ1) is a scalar, 
and so serves as its own eigenvalue for the spectral flow.)

For this example, we have the advantage of knowing in advance accurate values for 
the 13 right-most eigenvalues of H on the interval J2. The right-most five of these are 
as follows:

−.3154, −.2946, −.2542, −.1613, .1332,

obtained from [1], in which the values are actually computed to substantially higher 
precision than presented here. We will illustrate our approach by counting the right-
most four eigenvalues, and also by providing the full Maslov box associated with this 
calculation. For this, we will keep λ2 = .2 as above, and set λ1 = −.3100. Computing 
(5.5) via a spectral flow for W̃ (x; λ1), we identify crossing points at 14.5, 20.2, 26.8, and 
33.7, after which W̃ (x; λ1) begins to oscillate through values in the third quadrant of the 
complex plane. (These crossing points can be obtained with much greater precision, but 
there’s no advantage in this.) We conclude that in this case

Nα((λ1, λ2)) = Mas(�a(·;λ1), �b(·;λ2); (0,+∞)) = 4,

as expected. This is the entirety of the necessary calculation associated with the number 
of eigenvalues that H has on the interval (−.31, .2), but in order to illustrate the idea, 
we provide the full Maslov box associated with this calculation, along with the relevant 
spectral curves (see Fig. 5.1, created with MATLAB.) In this figure, we see clearly that 
each spectral curve intersects the boundary of the Maslov box precisely twice, once along 
the left shelf and once along the top shelf. Intersections along the top shelf correspond 
with eigenvalues of H, and so it is exactly this correspondence (via the spectral curves) 
that allows us to count crossing points along the left shelf rather than along the top 
shelf. We emphasize that, strictly speaking, the top shelf should be associated with a 
limit as x → +∞, but the dynamics are already thoroughly apparent for x = 50, as 
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Fig. 5.1. The Full Maslov Box for H on [−.31, .2].

depicted. As discussed in [16], the monotonicity of the spectral curves in this figure is 
a general feature of renormalized oscillation theory, and follows from monotonicity in λ
along horizontal shelves and monotonicity in x on vertical shelves.

5.2. Energy levels for the hydrogen atom

When Schrödinger’s equation for the hydrogen atom is expressed in spherical coor-
dinates and analyzed by separation of variables, the resulting radial equation can be 
expressed in the form

Hφ := − 1
x2 (x2φ′)′ − γ

x
φ + �(� + 1)

x2 φ = λφ, (5.6)

where γ > 0 is a physical constant and � is an integer associated with angular momentum 
(see, e.g., Chapter 12 in [11]). The natural domain for φ in (5.6) is (0, ∞), and it’s clear 
that H is singular at both endpoints. In this case, we postpone specifying a precise 
domain for H, though see Remark 5.6 at the end of this section for full details along 
these lines.

It’s well known that any self-adjoint extension of the minimal operator associated 
with H has essential spectrum [0, +∞) (see, e.g., [31]), and in addition the eigenvalues 
of H are typically reported in physics literature to be

λn = −( γ )2, n = � + 1, � + 2, . . . (5.7)
2n
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(see, e.g., [11]). In this section we would like to use our framework to understand how 
these values should be interpreted. For specificity, we will take γ = 4, and we’ll focus 
on the case � = 0, which is particularly interesting from our point of view because H is 
limit-circle at x = 0 in this case, whereas it is limit-point at x = 0 for all � ≥ 1.

In order to place (5.6) in our setting, we set y =
(
y1
y2

)
=

(
φ

x2φ′

)
, from which we arrive 

at (1.1) with

B0(x) + λB1(x) =
(
γx− �(� + 1) 0

0 1
x2

)
+ λ

(
x2 0
0 0

)
. (5.8)

This puts us in the setting of Assumptions (A), (B), and (C), for which we can construct 
a self-adjoint restriction L for the maximal operator LM associated with (1.1)–(5.8).

We begin by setting λ0 = i and verifying (numerically) that (1.1)–(5.8) is limit-circle 
at x = 0. In this case, we initialize the fundamental matrix Φ(x; λ0) at x = 1, and 
we compute the eigenvalues of A(x; λ0), as x tends toward 0. At x = 10−5, we find 
μ1(10−5; λ0) = −.7478 and μ2(10−5; λ0) = .3343, with both values stable as x continues 
to decrease, suggesting that H is indeed limit-circle at x = 0. Respectively, we find the 
associated unit eigenvectors of A(10−5; λ0) to be

v1(10−5;λ0) =
(

.7834
−.0001 + .6216i

)
, v2(10−5;λ0) =

(
.0001 + .6216i

.7834

)
,

and we take these vectors as approximations for the limit-obtained eigenvectors va1(λ0)
and va2 (λ0).

Remark 5.4. The clear relation between the vectors v1(10−5; λ0) and v2(10−5; λ0) is a 
consequence of (2.10). To see this, we first observe that since B0(x) and B1(x) are 
real-valued in this case, we can take v1(10−5;λ0) to be an eigenvector associated with 
μ1(10−5; λ0). In this way, our choice of v1(10−5; λ0) will be a constant multiple of 
v1(10−5;λ0), say v1(10−5; λ0) = cv1(10−5;λ0). But from the first relation in (2.10) we 
can write

v2(10−5;λ0) = (J/i)v1(10−5;λ0) = c

(
−.0001i + .6216

−.7834i

)
= −ic

(
.0001 + .6216i

.7834

)
.

The choice c = i gives v2(10−5; λ0) as stated.

As discussed in Section 2, there will be a single Niessen subspace for this prob-
lem, and it will be spanned by two elements that both lie left in (0, +∞), namely 
ya1 (x; λ0) = Φ(x; λ0)va1 (λ0) and ya2 (x; λ0) = Φ(x; λ0)va2 (λ0). In order to specify our 
boundary condition at x = 0, we also need to compute

ρ =
√

−μ1(λ0)/μ2(λ0) = 1.4956,
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and select some β ∈ C with |β| = ρ. (See the discussion leading into Lemma 2.3.) Given 
this choice, we will specify our boundary condition via the element

Ua(x;λ0) = Φ(x;λ0)(va1 (λ0) + βva2 (λ0)).

We emphasize that each choice of β from the circle |β| = ρ will correspond with a 
different boundary condition, and so with a different self-adjoint restriction of LM . In 
order to fix a specific case, we will take β to be the real value β1 = 1.4956, where the 
subscript anticipates that we will later consider an alternative choice.

Next, we fix λ1 = −5, and construct a frame Xa(x; λ1) satisfying

JX′
a = (B0(x) + λ1B1(x))Xa; lim

x→a+
Ua(x;λ0)∗JXa(x;λ1) = 0. (5.9)

In order to do this, we work with the matrix B(x; λ1), for which we compute the eigen-
values {νj(x; λ1)}2

j=1 and the associated eigenvectors {wj(x; λ1)}2
j=1 as x tends to 0. 

Taking an approximation obtained by evaluating B(x; λ1) at x = 10−5, we obtain the 
approximate values νa1 (λ1) = −.4205, νa2 (λ1) = −.1106, with associated approximate 
limit-obtained unit vectors

wa
1(λ1) =

(
−.8615
.5077

)
, wa

2(λ1) =
(
−.5077
−.8615

)
.

We can now compute Xa(x; λ1) as a linear combination

Xa(x;λ1) = Φ(x;λ1)(c1wa
1(λ1) + c2w

a
2(λ1)),

for some appropriate constants c1 and c2. In particular, c1 and c2 are determined by the 
limit specified in (5.9). We can express this as

c1 lim
x→a+

Ua(x;λ0)∗JΦ(x;λ1)wa
1(λ1) + c2 lim

x→a+
Ua(x;λ0)∗JΦ(x;λ1)wa

2(λ1) = 0.

We approximate the limits by evaluation at x = 10−5 to obtain

lim
x→a+

Ua(x;λ0)∗JΦ(x;λ1)wa
1(λ1) ∼= −1.2050 + 1.2050i

lim
x→a+

Ua(x;λ0)∗JΦ(x;λ1)wa
2(λ1) ∼= −.6139 + .6139i.

It follows immediately that we can choose c1 and c2 to be c1 = 1, c2 = (−1.2050 +
1.2050i)/(−.6139 + .6139i) = −1.9629. We conclude that

Xa(x;λ1) = Φ(x;λ1)wa(λ1); wa(λ1) =
(
.0613
.9981

)
,

where wa(λ1) has been normalized to have unit length.
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We now turn to the right endpoint b = +∞. If we evaluate A(x; i) at x = 25, we obtain 
eigenvalues μ1(25; i) = 1.9352 × 10−22 and μ2(25; i) = 4.6925 × 1011. This indicates that 
μ2(x; i) is tending toward +∞ as x increases to +∞, and we conclude that (1.1)–(5.8) is 
limit-point at b = +∞. This means that no additional boundary condition is necessary 
at b = +∞. We will denote by Lβ1 the operator obtained from LM by adding our choice 
of boundary condition taken above at the left endpoint.

Remark 5.5. Similarly as with our first application, these calculations have not been 
rigorously justified, but the limit-circle/point conclusions have been rigorously justified 
elsewhere. In particular, if we adopt the change of variables φ = ψ/x, then (5.6) with 
� = 0 becomes

Hψ := −ψ′′ − γ

x
ψ = λψ,

which is known to be limit-circle at x = 0 and limit-point at +∞ (see, e.g., [6]).

At this point, we have precisely specified a self-adjoint restriction Lβ1 of LM associated 
with (1.1)–(5.8); namely, we restrict the maximal operator LM to the domain

Dβ1 := {y ∈ DM : lim
x→0−

Ua(x;λ0)∗Jy(x) = 0},

with no condition required at b = +∞, because LM is limit-point at that endpoint.
In an effort to count the first three eigenvalues of H, we will set λ2 = −3/8, and in 

order to compute Xb(x; λ2), we will compute the eigenvalues and eigenvectors of B(x; λ2)
as x tends toward +∞. Taking x = 40 in this case, we find ν1(40; −3/8) = 6.3054 and 
ν2(40; −3/8) = 3.7724 × 1011. The unit eigenvector associated with ν1(40; −3/8) is

w1(40;−3/8) =
(
−.3357895545
.9419370335

)
,

where similarly as with our previous application, the number of decimals given is simply 
an indication of the consistent values as x continues to increase. We use w1(40; −3/8) as 
an approximation of wb

1(−3/8), and we set Xb(x; λ2) = Φ(x; λ2)wb
1(−3/8).

Equipped now with frames Xa(x; λ1) and Xb(x; λ2), we can readily compute

Mas(�a(·;λ1), �b(·;λ2); (0,+∞)) (5.10)

as a spectral flow for the matrix W̃ (x; λ1) as specified in (4.17). We find crossing points 
at approximately x = 1.95 and x = 5.00, after which the value of W̃ (x; λ1) remains 
near −1, without crossing, as x continues to increase. We conclude that Hβ1 has two 
eigenvalues on the interval [−5, −3/8].

Naively, based on (5.7) with � = 0 and γ = 4, we might have expected to find 
three eigenvalues on the interval [−5, −3/8] (namely, −4, −1, −4/9), but we recall that 
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the eigenvalues given in (5.7) correspond with a particular choice of boundary condi-
tion (based on physical considerations). In particular, the argument from physics goes 
roughly as follows. For � = 0, we can find a basis for the solutions of (5.6) that includes 
one solution that remains bounded as x tends to 0 and one solution that does not (and 
both of which correspond via the above relation y =

(
y1
y2

)
=

(
φ

x2φ′

)
with functions that lie 

left in (0, +∞)). Based on physical arguments, the unbounded solution is generally elim-
inated, and this effectively selects a particular left-hand boundary condition. Precisely, 
this physical argument asserts that we need to identify a fixed vector w ∈ C2 so that 
Xa(x; λ1) = Φ(x; λ1)w remains bounded as x approaches 0. By a straightforward min-
imization argument, we find w =

(
.7121
−.7020

)
. This solution corresponds with a particular 

choice of β. In particular, we can identify the value of β ∈ C, |β| = ρ so that

lim
x→0+

(
Φ(x;λ0)(v1(λ0) + βv2(λ0))

)∗
JΦ(x;λ1)w = 0.

We can approximate β by setting x = 10−5 and computing

β̄ ∼= −v1(λ0)∗Φ(x;λ0)∗JΦ(x;λ1)w
v2(λ0)∗Φ(x;λ0)∗JΦ(x;λ1)w

= .2952 − 1.4663i =⇒ β ∼= .2952 + 1.4663i.

Using this choice of β, which we denote β2, leads to a new boundary condition, specified 
via Ua(x; λ0) = Φ(x; λ0)(v1(λ0) + β2v2(λ0)), and consequently to a new operator Lβ2 . 
Computing (5.10) in this case, we count three eigenvalues by virtue of crossing points at 
.68, 2.00, and 5.00.

We conclude with the following remark, addressing some details that have been set 
aside during the discussion of this application.

Remark 5.6. It’s natural to view H as an operator on a weighted Hilbert space 
L2
x2((0, ∞), C) with inner product

〈φ, ψ〉x2 =
+∞∫
0

x2φ(x)ψ̄(x)dx.

With this specification, H is self-adjoint on the domain

dom(H) =
{
φ ∈ L2

x2((0,∞),C) : φ, φ′ ∈ ACloc((0,∞),C),

Hφ ∈ L2
x2((0,∞),C), lim

x→0+

(
Φ(x;λ0)(v1(λ0) + βv2(λ0))

)∗
J

(
φ(x)

x2φ′(x)

)
= 0

}
.

Likewise, the operator H from Remark 5.5 is self-adjoint on the domain
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dom(H) =
{
ψ ∈ L2((0,∞),C) : ψ,ψ′ ∈ ACloc((0,∞),C),

Hψ ∈ L2((0,∞),C), lim
x→0+

(
Ψ(x;λ0)(v1(λ0) + βv2(λ0))

)∗
J

(
ψ(x)
ψ′(x)

)
= 0

}
,

where Ψ(x; λ) is a fundamental matrix associated with H,

JΨ′ = B̃(x;λ)Ψ; Ψ(1;λ) =
(

1 0
1 1

)
, B̃(x;λ) =

(
γ
x + λ 0

0 1

)
.

With these precise specifications, it’s straightforward to verify that H and L (the 
latter constructed as in Lemma 1.1) have precisely the same sets of essential spectrum, 
and also the same sets of discrete eigenvalues. In addition, these spectral sets also agree 
with their counterparts for H.
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Appendix A

In this appendix, we include a full derivation of our Green’s function Gα(x, ξ; λ)
associated with the operator Lα, and we also provide details on the monotonicity (in λ) 
arguments from the proofs of Theorems 1.1 and 1.2.

A.1. The Green’s function

During the proof of Lemma 2.10, we made use of a Green’s function associated with 
the operator Lγ

c,b, and in our proof of Theorem 1.1, we will make brief use of effectively 
the same Green’s function, with Lγ

c,b replaced by Lα. For completeness, we include in 
the current section a full construction of this Green’s function. Precisely, we assume (A),
(A)′, (B), and (C) all hold, and for any fixed λ ∈ R ∩ ρ(Lα) we construct the Green’s 
function Gα(x, ξ; λ) for the equation

(Lα − λI)y = f. (A.1)

This will allow us to express the action of the resolvent operator

R(Lα;λ) = (Lα − λI)−1

as
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R(Lα;λ)f =
b∫

a

Gα(x, ξ;λ)B1(ξ)f(ξ)dξ.

Equation (A.1) is equivalent to the ODE

Jy′ − (B0(x) + λB1(x))y = B1(x)f, y ∈ Dα, (A.2)

which we can solve with variation of parameters. For this, we let Φ(x; λ) denote a funda-
mental matrix for (1.1), initialized by Φ(a; λ) = I2n, and we look for solutions to (A.2)
of the form y(x; λ) = Φ(x; λ)v(x; λ), where v(x; λ) is a vector function to be determined. 
Computing directly, we find that this leads to the relation JΦv′ = B1f . Recalling (2.7)
(with λ ∈ R), we see that

(JΦ(x;λ))−1 = −JΦ(x;λ)∗,

allowing us to write

v′(x;λ) = −JΦ(x;λ)∗B1(x)f(x).

Upon integration, we obtain

v(x;λ) = −
x∫

a

JΦ(ξ;λ)∗B1(ξ)f(ξ)dξ + k(λ),

for some vector k(λ) independent of x, and we conclude

y(x;λ) = −Φ(x;λ)
x∫

a

JΦ(ξ;λ)∗B1(ξ)f(ξ)dξ + Φ(x;λ)k(λ). (A.3)

In order to identify k(λ), we impose the boundary conditions associated with Dα. 
First, for the boundary condition at x = a, we set x = a in (A.3) to see that αy(a) = 0
becomes αk(λ) = 0, which we can express as

(Jα∗)∗Jk(λ) = 0. (A.4)

For the boundary condition at b, we have

lim
x→b−

U b(x;λ0)∗Jy(x) = 0. (A.5)

If we let U b(x; λ) denote the 2n ×n matrix comprising as its columns the basis elements 
{ub

j(x; λ)}nj=1 described in Lemma 2.9, then by construction we have
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lim
x→b−

U b(x;λ0)∗JU b(x;λ) = 0. (A.6)

If we alternatively impose the boundary condition

lim
x→b−

U b(x;λ)∗Jy(x) = 0, (A.7)

then by the Lagrangian property we are effectively looking for a Green’s function that can 
be expressed in terms of U b(x; λ) for a < ξ < x < b. It follows from (A.6) that Gα(x, ξ; λ)
will then satisfy the required boundary condition (A.5) (which can be checked directly 
with our final form of the Green’s function). In addition, we note that since the elements 
{ub

j(x; λ)}nj=1 are necessarily linearly independent, there must exist a rank-n 2n × n

matrix Rb(λ) so that U b(x; λ) = Φ(x; λ)Rb(λ).
We proceed now by multiplying (A.3) on the left by U b(x; λ)∗J , giving

U b(x;λ)∗Jy(x;λ) = −U b(x;λ)∗JΦ(x;λ)
x∫

a

JΦ(ξ;λ)∗B1(ξ)f(ξ)dξ

+ U b(x;λ)∗JΦ(x;λ)k(λ)

=
x∫

a

Rb(λ)∗Φ(ξ;λ)∗B1(ξ)f(ξ)dξ + Rb(λ)∗Jk(λ),

where we’ve used the identity (2.7). By construction, Φ(·; λ)Rb(λ) ∈ L2
B1

((a, b), C2n), so 
in the limit as x → b−, we obtain the relation

b∫
a

Rb(λ)∗Φ(ξ;λ)∗B1(ξ)f(ξ)dξ + Rb(λ)∗Jk(λ) = 0. (A.8)

Combining (A.4) and (A.8), we obtain the system

(
(Jα∗)∗
Rb(λ)∗

)
Jk(λ) =

( 0
−
∫ b

a
Rb(λ)∗Φ(ξ;λ)∗B1(ξ)f(ξ)dξ

)
. (A.9)

We set

E(λ) :=
(
Jα∗ Rb(λ)

)
,

and we observe that if λ /∈ σ(Lα) then E(λ) is invertible. This is because Ua(x; λ) =
Φ(x; λ)Jα∗ and U b(x; λ) = Φ(x; λ)Rb(λ), so that

Ua(x;λ)∗JU b(x;λ) = (Jα∗)∗JRb(λ).



P. Howard, A. Sukhtayev / Journal of Functional Analysis 283 (2022) 109525 69
For λ /∈ σess(Lα) the left-hand side of this last relation is non-singular if and only if 
λ /∈ σp(Lα) (because λ /∈ σp(Lα) if and only if the Lagrangian subspaces with frames 
Ua(x; λ) and U b(x; λ) do not intersect), and the right-hand side of this last relation is 
non-singular if and only if E(λ) is non-singular. Accordingly, we can solve (A.9) with

k(λ) = J(E(λ)∗)−1
b∫

a

(
0 Rb(λ)

)∗ Φ(ξ;λ)∗B1(ξ)f(ξ)dξ.

Upon substitution back into (A.3), we obtain

y(x;λ) = −Φ(x;λ)
x∫

a

JΦ(ξ;λ)∗B1(ξ)f(ξ)dξ

+ Φ(x;λ)J(E(λ)∗)−1
b∫

a

(
0 Rb(λ)

)∗ Φ(ξ;λ)∗B1(ξ)f(ξ)dξ

= −Φ(x;λ)J(E(λ)∗)−1E(λ)∗
x∫

a

Φ(ξ;λ)∗B1(ξ)f(ξ)dξ

+ Φ(x;λ)J(E(λ)∗)−1
b∫

a

(
0 Rb(λ)

)∗ Φ(ξ;λ)∗B1(ξ)f(ξ)dξ.

Continuing with this calculation, we next see that

y(x;λ) = −Φ(x;λ)J(E(λ)∗)−1 (Jα∗ 0)∗
x∫

a

Φ(ξ;λ)∗B1(ξ)f(ξ)dξ

− Φ(x;λ)J(E(λ)∗)−1 (0 Rb(λ)
)∗ x∫

a

Φ(ξ;λ)∗B1(ξ)f(ξ)dξ

+ Φ(x;λ)J(E(λ)∗)−1 (0 Rb(λ)
)∗ b∫

a

Φ(ξ;λ)∗B1(ξ)f(ξ)dξ

= −Φ(x;λ)J(E(λ)∗)−1 (Jα∗ 0)∗
x∫

a

Φ(ξ;λ)∗B1(ξ)f(ξ)dξ

+ Φ(x;λ)J(E(λ)∗)−1 (0 Rb(λ)
)∗ b∫

x

Φ(ξ;λ)∗B1(ξ)f(ξ)dξ.

We see by inspection that
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Gα(x, ξ;λ) =
{
−Φ(x;λ)J(E(λ)∗)−1 (Jα∗ 0)∗ Φ(ξ;λ)∗ a < ξ < x < b

Φ(x;λ)J(E(λ)∗)−1 (0 Rb(λ)
)∗ Φ(ξ;λ)∗ a < x < ξ < b.

We can express Gα(x, ξ; λ) in a more symmetric form. To see this, we first observe 
that

E(λ)∗JE(λ) =
(

−αJ
Rb(λ)∗

)
J
(
Jα∗ Rb(λ)

)

=
(

αJα∗ αRb(λ)
−Rb(λ)∗α∗ Rb(λ)∗JRb(λ)

)
=

(
0 αRb(λ)

−(αRb(λ))∗ 0

)
,

where we’ve used the observations that Jα∗ and Rb(λ) are frames for Lagrangian sub-
spaces of C2n. Here, αRb(λ) = (Jα∗)∗JRb(λ), and we’ve already seen that this matrix 
is non-singular so long as λ /∈ σ(Lα). This allows us to write

(E(λ)∗JE(λ))−1 =
(

0 −((αRb(λ))∗)−1

(αRb(λ))−1 0

)
. (A.10)

It follows that

− (Jα∗ 0) E(λ)−1J(E(λ)∗)−1 (0 Rb(λ)
)∗

= (Jα∗ 0)
(

0 −((αRb(λ))∗)−1

(αRb(λ))−1 0

)(
0

Rb(λ)∗
)

= − (Jα∗ 0)
(

((αRb(λ))∗)−1Rb(λ)∗
0

)
= −(Jα∗)(αRb(λ)∗)−1Rb(λ)∗.

On the other hand, (A.10) also allows us to write

(E(λ)∗)−1 = JE(λ)
(

0 −((αRb(λ))∗)−1

(αRb(λ))−1 0

)
,

from which we see that

(E(λ)∗)−1 (0 Rb(λ)
)∗ = JE(λ)

(
0 −((αRb(λ))∗)−1

(αRb(λ))−1 0

)(
0

Rb(λ)∗
)

= J
(
Jα∗ Rb(λ)

)(−((αRb(λ))∗)−1Rb(λ)∗
0

)
= α∗((αRb(λ))∗)−1Rb(λ)∗.

In this way, we see that

J(E(λ)∗)−1 (0 Rb(λ)
)∗ = (Jα∗ 0) E(λ)−1J(E(λ)∗)−1 (0 Rb(λ)

)∗
.

We will set

M(λ) := E(λ)−1J(E(λ)∗)−1,



P. Howard, A. Sukhtayev / Journal of Functional Analysis 283 (2022) 109525 71
from which we observe that

M(λ)∗ = −M(λ).

For a < x < ξ < b, we will re-write Gα(x, ξ; λ) by using the relation

J(E(λ)∗)−1 (0 Rb(λ)
)∗ = (Jα∗ 0)M(λ)

(
0 Rb(λ)

)∗
,

and proceeding similarly for a < ξ < x < b, we find

J(E(λ)∗)−1 (Jα∗ 0)∗ =
(
0 Rb(λ)

)
M(λ) (Jα∗ 0)∗ .

These relations allow us to express Gα(x, ξ; λ) as

Gα(x, ξ;λ) =
{
−Φ(x;λ)

(
0 Rb(λ)

)
M(λ) (Jα∗ 0)∗ Φ(ξ;λ)∗ a < ξ < x < b

Φ(x;λ) (Jα∗ 0)M(λ)
(
0 Rb(λ)

)∗ Φ(ξ;λ)∗ a < x < ξ < b.

A.2. Monotonicity as λ varies

In this section, we verify that the Maslov index specified on the right-hand side of 
(4.3) is a monotonic count of crossing points, each negatively directed. From Lemma 3.1, 
we know that the signs of the associated crossing points are determined by the matrices

−Xα(c;λ)∗J∂λXα(x;λ) (A.11)

and

Xb(c;λ)∗J∂λXb(x;λ). (A.12)

We’ve already seen from our analysis of the top shelf that (A.11) is negative definite 
for all c ∈ (a, b), so we focus here on making a similar conclusion about (A.12). For 
this, we recall that the columns of Xb(x; λ) comprise the basis elements for �b(x; λ)
described in Lemma 2.11. By construction, these basis elements are analytic in λ on 
the intervals (λ1, λ

1,2
∗ ), (λ1,2

∗ , λ2,3
∗ ), ..., (λN−2,N−1

∗ , λN−1,N
∗ ), (λN−1,N

∗ , λ2); more pre-
cisely, on (λ1, λ

1,2
∗ ) the columns of Xb(x; λ) are analytic extensions of the basis elements 

{ub
j(x; λ1

∗)}, on (λ1,2
∗ , λ2,3

∗ ) the columns of Xb(x; λ) are analytic extensions of the basis 
elements {ub

j(x; λ2
∗)}, and so on, with the values {λj

∗}Nj=1 as specified in the proof of 
Lemma 2.11. Here, we recall that λ1

∗ = λ1, λN
∗ = λ2, and λj

∗ ∈ (λj−1,j
∗ , λj,j+1

∗ ) for all 
j ∈ {2, . . . , N − 1}. In addition, we know from Lemma 2.10, that with this construction 
we have the relation

lim Xb(x;λj
∗)∗J∂λXb(x;λj

∗) = 0 (A.13)

x→b−
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for all j ∈ {1, 2, . . . , n}.
In order to understand rotation as λ varies near λj

∗, we first use (2.45) (from 
Lemma 2.10) to compute (precisely as with the corresponding calculation for Xα(x; λ)
in our analysis of the top shelf in the proof of Theorem 1.1)

∂

∂x
Xb(x;λj

∗)∗J∂λXb(x;λj
∗) = Xb(x;λj

∗)∗B1(x)Xb(x;λj
∗). (A.14)

Integrating on (c, x), we can write

Xb(x;λj
∗)∗J∂λXb(x;λj

∗) = Xb(c;λj
∗)∗J∂λXb(c;λj

∗) +
x∫

c

Xb(ξ;λj
∗)∗B1(ξ)Xb(ξ;λj

∗)dξ.

Using (A.13), we see that

Xb(c;λj
∗)∗J∂λXb(c;λj

∗) = −
b∫

c

Xb(ξ;λj
∗)∗B1(ξ)Xb(ξ;λj

∗)dξ, (A.15)

allowing us to conclude, similarly as we did with Xα(c; λ)∗J∂λXα(c; λ) in the proof 
of Theorem 1.1, that the matrix on the left-hand side of (A.15) is negative definite 
for all c ∈ (a, b), and by continuity in λ that Xb(c; λ)∗J∂λXb(c; λ) is negative definite 
for all λ sufficiently close to λj

∗. Possibly by taking a finer partition of [λ1, λ2] in the 
proof of Lemma 2.11 (i.e., by taking N larger and the associated radii smaller), we can 
ensure in this way that Xb(c; λ)∗J∂λXb(c; λ) is negative definite on each interval in our 
partition, (λ1, λ

1,2
∗ ), (λ1,2

∗ , λ2,3
∗ ), ..., (λN−2,N−1

∗ , λN−1,N
∗ ), (λN−1,N

∗ , λ2). We can conclude 
that the direction of crossings on each of these intervals is negative, and since these 
intervals partition [λ1, λ2], that the direction of all crossings on [λ1, λ2] is negative (as λ
increases).
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