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The Ornstein-Zernike (OZ) integral equation theory is a powerful approach to simple liquids due
to its low computational cost and the fact that, when combined with an appropriate closure equation,
the theory is thermodynamically complete. However, approximate closures proposed to date exhibit
pressure or free energy inconsistencies that produce inaccurate or ambiguous results, limiting the
usefulness of the Ornstein-Zernike approach. To address this problem, we have developed a new
closure approximation that simultaneously enforces both pressure and free energy consistency and
tests it for a single-component Lennard-Jones fluid. The closure is a simple power series in the
direct and total correlation functions for which we have derived analytical formulas for the excess
Helmholtz free energy and chemical potential. These expressions contain a partial molar volume-like
term, similar to excess chemical potential correction terms recently developed. Using our new bridge
approximation, we have calculated the pressure, Helmholtz free energy, and chemical potential for
the Lennard-Jones fluid using the Kirkwood charging, thermodynamic integration techniques, and
analytic expressions. These results are compared with those from the hypernetted chain equation
and the Verlet-modified closure against Monte Carlo and equations-of-state data for reduced
densities of ρ∗ < 1 and temperatures of T ∗ = 1.5, 2.74, and 5. Our new closure shows consistency
among all thermodynamic paths, except for one expression of the Gibbs-Duhem relation, whereas
the hypernetted chain equation and Verlet-modified closure only exhibit consistency between a few
relations. Accuracy of the new closure is comparable to Verlet-modified closure and a significant
improvement to results obtained from the hypernetted chain equation.

I. INTRODUCTION

Integral equation and classical density functional
theories of the statistical mechanics of liquids have
increasingly been used in the study of biological and
condensed matter systems due to their low computational
cost and the physical insights they provide. Over the
years, fundamental theories, such as the Ornstein-Zernike
(OZ) equation [1] and classical density functional theory
(CDFT) [2], have been developed to deal with complex
solutes and molecular solvents; e.g., reference interaction
site model (RISM) theories [3–7], molecular OZ[8, 9], and
molecular CDFT [10]. Common to all these theories is
the requirement of a closure relation. Unfortunately,
approximations to the closure equation invariably
introduce path-dependencies to state variables – i.e.,
thermodynamic inconsistencies – that should not exist.
Importantly, quantitatively different pressures and free
energies are calculated when different thermodynamic
routes are employed. Such inconsistencies limit the
physical insights that can be gained and affect the
accuracy of the theory. This has not gone unnoticed
by the community and a variety of methods have
been developed to remove different path dependencies.
Despite an immense amount of work on the subject,
no closure approximation has been developed that
incorporates both free energy and pressure consistency.
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A popular approach to addressing pressure
inconsistencies found in early closures has been to enforce
pressure consistency. In this approach, the approximate
closure contains one or more free parameters, which are
adjusted to ensure density derivatives of the pressure
calculated from the virial and compressibility paths
agree. Examples of this approach includes closures
due to Verlet [11, 12], Martynov-Sarkisov (MS) [13],
Rogers-Young (RY) [14], Zerah-Hansen (ZH) [15], and
Balloni-Pastore-Galli-Gazillo (BPGG) [16], Martynov
and Vompe (MV) [17], Duh and Haymet (DH) [18],
and Lee [19]. While these closures have had success in
improving the prediction of pressure and some other
state variables, free energies and chemical potentials
have been approximated and path-independence has not
been conclusively shown. In fact, for several closures
path-dependence has been clearly demonstrated [20–23].

Insights to the problem of free energy inconsistencies
were provided by Kast [24], who derived sufficient
conditions for a closure to be path independent.
While satisfying Kast’s conditions is not required for
path-independence, only the partial series expansion
of order-n (PSE-n) [25] closures, which includes HNC
[26] and Kovalenko-Hirata (KH) [7] closures, have been
shown to satisfy them. Indeed, nearly all other closures
in the literature explicitly depend on the indirect
correlation function or modifications to the potential
energy function and exhibit path dependence. However,
PSE-n closures do not display pressure consistency and
provide inaccurate pressure estimates [27], which affects
the accuracy of the free energy prediction. In fact,
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to compensate for the large pressure errors, a number
of partial molar volume (PMV) corrections have been
developed for use with 3D-RISM and mDFT theories
[28–31].

In this work, we combine both approaches by
proposing a closure approximation that both satisfies the
Kast path-independence criteria for the free Helmholtz
energy and has adjustable parameters through which
pressure consistency may be enforced. We show that this
closure not only satisfies both pressure and free energy
consistency relations but also internal energy-pressure,
free-energy pressure, and Gibbs-Duhem consistency.
Furthermore, we derived analytic, closed-form formulas
for both the chemical potential and Helmholtz free energy
for a simple Lennard-Jones (LJ) fluid. This formula
for the chemical potential is functionally similar to the
HNC relation with the Universal Correction [28] applied.
To demonstrate the effectiveness of this approach, we
present results for pressure for the LJ potential at
densities ρσ3 = 0.1 to 1.1, and temperatures T ∗ =
1.5, 2.74 and 5 in reduced units using the HNC, the
Verlet-modified (VM) [32], and our new bridge function
approximation. Several consistency relations are checked
for all three approximations and results for the excess free
energy and excess chemical potential are compared with
available simulation and equation of state data [33–35].

The paper is organized as follows. In Section
II we discuss theoretical formulations for obtaining
the correlation functions for the LJ fluid, the
bridge functions, thermodynamic consistency and path
dependence. In this section we also discuss calculations
of the excess chemical potential and excess Helmholtz
free energy. Numerical procedures used to calculate
thermodynamic quantities are described in Section III.
In Section IV we present our results and in Section V we
discuss them, followed by conclusions.

II. THEORY

Ornstein-Zernike equation

Many excellent descriptions of the OZ equation can
be found in the literature such as [36, 37]. Briefly, the
OZ equation divides the contributions to equilibrium
liquid structure into direct and indirect contributions.
For a homogeneous and a single component system at
temperature T and number density ρ, it may be written
in the form

h(r) = c(r) + ρ

∫
c(|r − r′)h(r′)dr′ (1)

where h(r) and c(r) are the total and the direct
correlation functions, respectively. With these functions,
one can define the indirect correlation, γ ≡ h(r) − c(r),
and radial distribution functions, g(r) = h(1) + 1.

To solve Eq. (1), one needs a second equation called a
closure relation, that relates the correlation functions to

a spherically symmetric pair potential u(r) between the
liquid particles. This closure equation is defined as

h(r) = exp[−βu(r) + γ(r) +B(r)]− 1, (2)

where B(r) is the bridge function, β = 1/kBT , and
kB is the Boltzmann constant. B(r) can be expressed
as a power series in ρ of irreducible diagrams [38]
but, in practice, is approximated as some combination
of u (r), h (r), and c (r). By solving Eqs. (1) and
(2) self-consistently, both correlation functions may be
obtained. Commonly used closures include the HNC,

BHNC(r) = 0, (3)

and a VM approximation [32],

BVM(r) = −1

2

ϕγ2
a

1 + αγa
, (4)

where ϕ and α are free parameters to be optimized. Here
γa ≡ γ − βua and ua(r) is the attractive part of the pair
potential discussed by Weeks, Chandler and Andersen
[39].

Thermodynamic quantities

Once the pair distribution function g(r) is obtained,
thermodynamic quantities of interest can be computed.
The pressure from the virial equation of state, pv, [36] is
computed as,

βpv

ρ
= 1− ρ

6

∫
drr

∂βu(r)

∂r
g(r), (5)

where β = 1/kbT , kb is Boltzmann’s constant and T
is temperature. The isothermal compressibility, χT , is
computed through the compressibility route [36],

β(ρχT )
−1 = β

(
∂pc

∂ρ

)
T

= 1− ρ

∫
c(r)dr (6)

where pc is the pressure from the compressibility route
and the pressure can be computed as

βpc

ρ
=

β

ρ

∫ ρ

0

dρ′ρ′−1χ−1
T . (7)

The internal energy may be directly computed as

E = Ei + Ee

=
3

2
kbT +

ρ

2

∫
g (r)u (r) dr (8)

where Ee is the excess internal energy and Ei is the
internal energy of the ideal gas.
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Calculation of the excess Helmholtz free energy

The most common technique of handling the free
energy is the Kirwood charging technique [40, 41], in
which the free energy difference between two different
states represented with two different Hamiltonians
is calculated by gradually “switching between” the
Hamiltonians using the coupling parameter λ . When
λ = 0, the system is represented by a Hamiltonian
corresponding to the initial state, and for λ = 1 by
a Hamiltonian corresponding to the final state. By
gradually turning on interactions between all N particle
at once, the system may stay at a given temperature T .
Then the excess Helmholtz free energy, Ae, is obtained in
terms of thermodynamic integration with the Kirkwood
charging formula,

βAe

N
=

ρ

2

∫ 1

0

dλ

∫
dr

∂βu(r, λ)

∂λ
g(r, λ). (9)

Another approach to calculating the free energy,
which also represents another thermodynamic path, is
to integrate from zero to the desired density [34, 42]

βAe

N
=

∫ ρ

0

1

ρ′

(βp
ρ′

− 1
)
dρ′. (10)

When this is evaluated numerically, the pressure must be
calculated at each intermediate density.

Calculation of the excess chemical potential

As with the Helmholtz free energy, there are numerous
physical and non-physical paths to the excess chemical
potential, µe, (i.e., the Gibbs free energy per particle).
Again, the commonly used Kirkwood charging formula
[40, 41] may be applied,

βµe = ρ

∫ 1

0

dλ

∫
dr

∂βuUV(r, λ)

∂λ
gUV(r, λ). (11)

In the language of charging technique, one may add one
(marked) solute particle, U, from infinity to a given point
into the N−1 particle solvent system solvent, V, and the
intermolecular interactions between them scales until the
added particle is not distinguished from the others. For
the Kirkwood approach, Eq. (11), λ scales interactions of
one (marked) particle with others, that is, when λ = 0,
the particle is removed and when λ = 1, the particle is
fully coupled to the system.

As with the Helmholtz free energy, a density dependent
path can be derived. Following Watts [43] we obtain from
the Gibbs-Duhem relation

µe =

∫ ρ

0

dρ′
1

ρ′

[(
∂P

∂ρ′

)
T

− kT

]
(12)

where we may use a numeric derivative of the pressure
or analytic derivatives provide by Eqs. (5) or (6) (see
Appendix A).

In another approach, we may use the relation PV =
G−A to write for a single-component system

βµe =
βAe

N
+

βp

ρ
− 1. (13)

Various expressions for the free energy and pressure can
be used here, admitting the combinations of different
physical and non-physical paths. For example, we may
use Eqs. (10) with (6),

βµe =

∫ ρ

0

1

ρ′

(βp
ρ′

− 1
)
dρ′ − 1

ρ

∫ ρ

0

ρ′dρ′
∫

c(r, ρ′)dr,

(14)
Eqs. (10) with (5),

βµe =

∫ ρ

0

1

ρ′

(βp
ρ′

− 1
)
dρ′ − ρ

6

∫
drr

∂βu(r)

∂r
g(r) (15)

Eqs. (9) with (6),

βµe =
ρ

2

∫ 1

0

dλ

∫
dr

∂βu(r, λ)

∂λ
g(r, λ)

−1

ρ

∫ ρ

0

ρ′dρ′
∫

c(r, ρ′)dr′ (16)

or Eqs. (9) with (5),

βµe =
ρ

2

∫ 1

0

dλ

∫
dr

∂βu(r, λ)

∂λ
g(r, λ)

−ρ

6

∫
drr

∂βu(r)

∂r
g(r). (17)

The bridge function and thermodynamic consistency
and path dependence

A closed form expression for the bridge function is not
known so one must attempt to build an approximate
bridge function B(r) either theoretically or empirically.
For the former approach, one needs to compute a series
expansion for B(r) in powers of the density in which
each term may represent the sum of diagrams which are
computed in terms of the multidimensional integrals, and
so cannot be completely utilized in practice [38, 44, 45].

The latter case is technically easer than the former.
However, when constructing B(r), one should take care
to preserve the thermodynamic consistency, which is
the property that state variables are path independent
and do not depend on the path taken in the physical
or mathematical sense. There are several types of
thermodynamic consistency conditions, for example [46–
48]: virial and compressibility pressure,

pv = pc, (18)
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internal energy and pressure,

ρ2
(
∂βE/N

∂ρ

)
T

= −T

(
∂βp

∂T

)
ρ

, (19)

virial pressure and free energy,

βµe =
βAe

N
+

βpv

ρ
− 1, (20)

and Gibbs-Duhem (
dµ

dp

)
T

=
1

ρ
. (21)

These conditions can either be directly tested for or
explicitly enforced e.g., through the introduction free
parameters in the closure relation that can be tuned.
In this work, we enforce Eq. (18) and test the other
three relations. Internal energy and pressure consistency
is checked through numerical and analytic derivatives
of Eqs. (1), (8), and (5), while virial pressure and
energy consistency is checked with Eq. (15). The
Gibbs-Duhem relation is checked with Eqs. (A2) and
(A1); however, if

(
dpv

dρ

)
T

=
(

dpc

dρ

)
T

is not satisfied,
these three equations are not equivalent. For example,
HNC exhibits Gibbs-Duhem consistency when the viral
pressure is used, Eq. (A2), but not if the compressibility
is used, Eq. (12).

In addition, path independence is required for the
chemical potential and Helmholtz free energy. For
example, Eqs. (9) and (11) should not depend on how
the coupling parameter is included. To handle this
path-dependence issue, Kast has given the sufficient
conditions for constructing bridge function B(r), which
implies path-independence [24]. Kast found that path
independence is implied if the variational parameter

q =

∂B
∂γ − ∂B

∂c + 1
∂B
∂u − β

(22)

is independent of the spatial coordinates and λ (see
also Appendix B). Therefore, any function B(γ − βu),
B(c + βu), B(h, γ − βu), B(h, c + βu) and B(h) has
guaranteed path independence in RISM theory and,
therefore, OZ theory. Importantly, renormalized bridge
functions, where only the long-range or short-range part
of the potential is used, do not satisfy this condition. Nor
do functions that are a function of γ, B (γ). Such bridge
functions may be path-independent but this is difficult
to prove and must be done on an individual basis.

A free energy and pressure path-independent closure

In this work we employ the virial and compressibility
pressure consistency, commonly known as “pressure
consistency”, and free energy consistency. Among

mentioned bridge approximations, none of them satisfy
both thermodynamic conditions we considered here.
The VM, ZH, RY and MV approximations satisfy
pressure consistency while the HNC, PSE-n, and
KH approximations satisfy the path-independence.
Therefore, we propose a new approximation for B(r)
which satisfies both the thermodynamic consistency and
path-independence conditions,

B(r) = ac(r) +
∑
i

bih
i(r), i = 1, 2, 3, . . . (23)

where a and b are free parameters, which may be selected
to satisfy other consistency conditions. Although
this proposed equation explicitly includes the direct
correlation function, it satisfies the requirements for
path-independence since Eq. (22) is constant and
independent of spatial coordinate/coupling parameter.
Details are given in Appendix B. For simplicity, in the
numerical part of this work we employ only the first order
expansion of the proposed bridge function,

B = ac(r) + bh(r). (24)

In order to simplify the computational work required,
it is advantageous to have an analytical, closed-form
formula to evaluate the excess free energy or chemical
potential. Using the Kirkwood charging formula, Eq. (9),
and Eq. (23) we can obtain an analytic formula for
evaluation of the excess Helmholtz free energy (see
Appendix C):

βAe

N
=

βAHNC

N
+

ρ

2

∫
drgB − a

2

1

8π3

∫
dk

[
ĥ− 1

ρ

× ln |1 + ρĥ|
]
− ρ

2

∫ ∑
i

bi
i+ 1

hi+1dr, (i = 1, 2, . . .)

(25)

Here is βAHNC/N is the HNC-type expression for the
excess Helmholtz free energy with appropriate bridge
function B(r),

βAHNC

N
=

ρ

2

∫
dr

(1
2
h2 − c

)
+

1

2

1

8π3

∫
dk

[
ĉ+

1

ρ
ln |1− ρĉ|

]
. (26)

Using similar approach (see Appendix C) we can obtain
an approximate analytical expression for the VM closure

βAe

N
=

βAHNC

N
+

ρ

2

∫
drgB +

ρ

4

1

8π3

∫
dkĥ

×
∫ 1

0

dν

ϕ
(
ρν2ĥ2/

(
1 + ρνĥ

))2

1 + αρν2ĥ2/
(
1 + ρνĥ

)
 . (27)

where ν is a coupling parameter.
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For excess chemical potential we have derived a
formula with a proposed bridge function (see Appendix
B and Appendix C):

βµe = βµHNC + ρ

∫
drgB−

ρ

∫
dr

[1
2
ahc+ (

∑
i=1

bi
i+ 1

hi+1)
]
, (28)

where βµHNC is the HNC-type expression for the excess
chemical potential with appropriate bridge function B(r)
[38, 49],

βµHNC = ρ

∫
dr

(1
2
h2 − c− 1

2
hc

)
. (29)

We note that terms beyond βµHNC in (28) resemble
partial molar volume corrections that have been used
extensively in for 3D-RISM and MDFT (see Appendix
D).

The VM closure has no known closed-form, analytic
expression for the excess chemical potential. Instead,
we will employ a commonly used approximate closed
expression [21, 50–53],

βµe ≈ βµHNC + ρ

∫
dr

(
B +

2h

3
B
)
. (30)

With Eqs. (25) to (30) the excess Helmholtz free energy
and chemical potential can be computed using only a
single state at the given temperature and density.

As one would expect, setting B = 0 in the derived
expressions for the HFE and chemical potential leads
directly to expressions in the HNC approximation,
Eq. (26). We note that for the excess free energy
similar expressions to formula (27) had been given by
Kiselyov and Martynov [21], but for the PY and MS
approximations.

III. NUMERICAL PROCEDURE

In this work we consider a single-component fluid
whose an interparticle potential is give by the
Lennard-Jones potential

u(r) = 4ϵ

((σ
r

)12

−
(σ
r

)6
)
, (31)

where σ and ϵ are the size and energy parameters of
the LJ potential, respectively. For all calculations we
use reduced units, in which σ and ϵ are the base units
for length and energy. This gives the reduced number
density, ρ∗ = ρσ3, temperature T ∗ = kBT/ϵ, and
pressure, p∗ = pσ3/ϵ.

Even when the free energy should be a
path-independent property, the details of how the
coupling constant is included in the potential energy
are numerically important, as a simple linear coupling,

u (r, λ) = λu (r), leads to large numerical errors. For
this reason, a shifted and scaled LJ potential may be
used, such as [54]

u(r, λ) = 4λϵ
[( σ2

r2 + (1− λ)s

)6

−
( σ2

r2 + (1− λ)s

)3]
(32)

where s > 0 is an arbitrary constant. In this approach,
for each different value of λ from 0 to 1, a new g(r, λ)
is computed. Numerically computing the integral in
Eq. (9) then requires solving the OZ equation at different
λ. Depending on the precision required, this can be
computation onerous.

An in-house MATLAB [55] code was developed to
solve the OZ equation, Eq. (1), using HNC, VM, and
Eq. (24) bridge approximations to obtain thermodynamic
properties of the LJ fluid using the theoretical
formulations described in the preceding sections. A
simple Picard iterative method was applied and the
numerical tolerance for the root mean squared residual
of the direct correlation functions during successive
iterations was set at 10−10. All calculations were
performed with the same number of grid points, N =
8192, and length parameter, L = 32σ. Thermodynamic
quantities were computed for T ∗ = 1.5, 2.74, and 5 and
ρσ3 = 0.1 to 1.1 in increments of 0.1.

At each temperature and pressure reported, pressure
consistency was enforced by optimizing coefficients (a, b)
in Eq. (23) and (ϕ, α) in Eq. (4) to satisfy the consistency
condition. The pressure consistency equation was
converged to |pv − pc| ≤ 10−6 using the ‘fminsearch’
multidimensional unconstrained nonlinear minimization
routine of MATLAB. This required calculating the
pressure from the virial and compressibility routes for
each set of coefficients proposed by the minimizer.
For the virial pressure, Eq. (5) was use directly. To
calculated the compressibility pressure, Eq. (7) was
employed where the trial coefficients were fixed for all
intermediate densities, ρ′, in the integral. HNC was
excluded from pressure consistency enforcement since it
has no adjustable parameters.

Numerical calculations of the pressure, free energy,
and chemical potential used the mid-point integration
with step sizes dλ = 0.005 and dρ′ = 0.025 for
the Kirkwood charging and thermodynamic integration
formulas, respectively. Bridge function coefficients were
held constant for each of these calculations. For Eq. (32),
s = 0.5 was used.

IV. RESULTS

Pressure consistency

In Table I we compare pressures obtained from
HNC, VM, and Eq. (24) bridge approximations for
the LJ potential at ρσ3 = 0.9 and T ∗ = 1.5, 2.74
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FIG. 1. Absolute pressure, pσ3/ϵ, as a function of density,
ρσ3. Green, black and blue lines are from the HNC, VM and
Eq. (24) bridge corrections respectively. Red crosses are from
the equations of state in [35]. Cyan crosses are available MC
data from [33] and [34] for T ∗ = 2.74 and 5.

and 5. As expected, both VM and Eq. (24) show
virial-compressibility consistency while HNC does not.
Furthermore, while both VM and (24) are within a few
percent of MC and EOS data [33–35] and each other
at T ∗ = 2.74 and 5, HNC values differ considerably
at all temperatures. At T ∗ = 1.5, Eq. (24) is still an
improvement over HNC but has increased relative error.

We note that if we use dpv = dpc consistency
instead, the obtained numerical values for both pressures
would be close, but inconsistent. For example, for the
LJ potential at T ∗ = 2.74 and ρ∗ = 0.9, the VM
approximation gives pvσ3/ϵ = 12.70 and pcσ3/ϵ = 13.05
while our closure gives pvσ3/ϵ = 12.94 and pcσ3/ϵ =
13.92. Therefore, we did not employ the dpv = dpc

consistency in this work.
As seen in Figure 1, the pressure for all three models

is in good agreement with EOS data at low densities,
regardless of temperature. HNC, however, diverges from
the EOS as the density increases, always overestimating
the pressure, while VM stays within a few percent.
Eq. (24) also behaves like VM for T ∗ = 2.74 and
5, tracking the EOS pressure within a few percent.
However, at T ∗ = 1.5, also predicts excessively high
pressures at high densities.

Figure 2 shows optimized values of coefficients (a, b) of

ρσ
3
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c
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e
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1

FIG. 2. Coefficients a (red, filled) and b (blue, unfilled) for
Eq. (24) vs ρσ3 at T ∗ = 1.5 (diamonds), 2.74 (squares) and 5
(circles).

Eq. (23) vs ρσ3, which are obtained by enforcing viral
and compressibility pressure consistency, Eq. (18). As
seen here, the coefficients have both a temperature and
pressure dependence though it appears to be diminished
as density increases.

Energy-pressure consistency

Table II shows the consistency of pressure and internal
energy through density and temperature derivatives, as
given in Eq. (19). As the virial pressure is used, both
HNC and Eq. (24) show consistency while VM does not.
If the pressure was calculated from the compressibility
route, the results for Eq. (24) would be unaffected but
HNC would fail to show consistency.

Chemical potential and Helmholtz free energy

To test the path independence of our new closure,
we calculated the excess Helmholtz free energy Ae/ϵ
using the Kirkwood charging formula Eq. (9), density
integration Eq. (10) and the respective analytical
formulas, Eqs. (25), (26), and (27). In Table III we
show the values for Ae/ϵ at T ∗ = 1.5, 2.74 and 5 for
ρσ3 = 0.9. As expected, results from HNC and (24)
show no path dependence. The VM results, however,
are path-dependent, with the Kirkwood and density
integration formulas giving different, but close, values.
The analytical expression for VM is not expected to
be consistent with the numerical values, as it is an
approximation, though it gives reasonable values. In
contrast to the calculated pressure, Eq. (24) has the best
agreement with EOS at the values at low temperatures
while VM performs better at high temperatures. HNC
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TABLE I. The pressure, pσ3/ϵ, from virial and compressibility routes for the LJ potential at ρσ3 = 0.9.

T ∗ = 1.5 T ∗ = 2.74 T ∗ = 5
HNC VM Eq. (24) HNC VM Eq. (24) HNC VM Eq. (24)

Virial 9.104 6.421 7.688 15.99 12.64 13.15 26.12 21.92 22.32
Compressibility 3.781 6.421 7.688 9.415 12.64 13.15 18.12 21.92 22.32

MC 12.68[33]
EOS 6.365[35] 12.72[35] 22.19[35]

TABLE II. Internal energy-pressure consistency for the LJ
potential at ρσ3 = 0.9.

T∗ = 2.74 T∗ = 5

HNC VM Eq. (24) HNC VM Eq. (24)
ρ2

(
∂βE/N

∂ρ

)
T

0.910 0.120 0.550 1.267 0.563 0.949

−T
(

∂βp
∂T

)
ρ

0.910 0.099 0.550 1.267 0.675 0.949
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FIG. 3. Helmholtz free energy per particle, Ae/ϵ, as a function
of density, ρσ3. Green, black and blue lines are from the HNC,
VM and Eq. (24) bridge corrections respectively. Red crosses
are from the equations of state in [35]. Cyan crosses are MC
simulation data taken from [33] and [34] for T ∗ = 2.74 and 5.

over estimates the Helmholtz free energy in all cases and
has the largest relative error.

Results for the excess Helmholtz free energy over a
range of densities are shown in Figure 3 for temperatures
T ∗ = 2.74 and 5. HNC overestimates the free
energy while the new bridge approximation tends to
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FIG. 4. Excess chemical potential, µe/ϵ, as a function of
density, ρσ3. Green, black and blue lines are from the HNC,
VM and Eq. (24) bridge corrections respectively. Red crosses
are from the equations of state in [35].

underestimate the free energy at higher densities. This
is most apparent at T ∗ = 2.74 but the same behavior
is also observed at T ∗ = 5. Only values for the
analytical expression for the VM free energy are shown,
but these are in good agreement with simulation at all
temperatures and densities.

Several paths for the excess chemical potential
are compared in Table IV for all three closure
approximations. We can see that for all closures the
agreement of the various numerical approaches with the
analytic expression depends on which path was used.
All closures display inconsistency between the virial and
compressibility expressions for Gibbs-Duhem, Eq. (12).
This is due to inconsistency in the density derivative of
the pressure, which all of these closures exhibit. We note
that the virial expression for Gibbs-Duhem is consistent
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TABLE III. The excess Helmholtz free energy, Ae/ϵ, per particle for the LJ potential at ρσ3 = 0.9.

T ∗ = 1.5 T ∗ = 2.74 T ∗ = 5
HNC VM Eq. (24) HNC VM Eq. (24) HNC VM Eq. (24)

Kirkwood Eq. (9) 0.115 -0.600 -0.752 3.904 2.630 2.251 9.570 8.009 7.315
TI density Eq. (10) 0.115 -0.951 -0.752 3.904 2.700 2.251 9.570 8.127 7.315

Analytic Eq. (26, Eq. (25), Eq. (27)) 0.115 -0.493 -0.752 3.904 2.961 2.251 9.570 8.194 7.315
MC 2.850[33]
EOS -0.720[35] 2.850[35] 8.248[35]

TABLE IV. The excess chemical potential µe/ϵ for the LJ potential at ρσ3 = 0.9.

T ∗ = 1.5 T ∗ = 2.74 T ∗ = 5
HNC VM Eq. (24) HNC VM Eq. (24) HNC VM Eq. (24)

Gibbs-Duhem
Compressibility Eq. (A2) 1.479 5.505 6.693 9.811 14.52 13.77 22.32 27.80 27.33

Virial Eq. (A1) 8.726 4.680 6.292 18.93 14.00 14.13 33.59 27.49 27.12
Kirkwood-compressibility Eq. (16) 2.816 5.035 6.291 11.62 13.93 14.13 24.70 27.38 27.12

Kirkwood-virial Eq. (17) 8.730 5.035 6.292 18.93 13.93 14.13 33.59 27.37 27.12
Free energy and pressure

TI density-compressibility Eq. (14) 2.816 4.684 6.291 11.62 14.00 14.13 24.70 27.50 27.12
TI density virial Eq. (15) 8.730 4.684 6.292 18.93 14.00 14.13 33.59 27.49 27.12

Analytic (Eqs. (29, (30), (28))
8.730 5.517 6.293 18.93 14.65 14.13 33.59 27.60 27.12

EOS [35] 4.852 14.24 27.90

with the analytic expression for both HNC and Eq. (24).
Consistency for different thermodynamic routes for

the free energy-pressure equation, Eq. (13), naturally
depends on the consistency of the free energy and
pressure of the respective closures. HNC has free
energy consistency but not pressure consistency – as
long as the virial path is used Gibbs-Duhem, free energy
and pressure, and the analytic expressions all agree.
Conversely, VM has pressure consistency but not free
energy consistency, so Kirkwood and density paths to
the free energy and chemical potential do not agree.
However, density integration is consistent with the virial
Gibbs-Duhem expression. Because Eq. (24) exhibits both
free energy and pressure consistency, all routes agree,
except for the compressibility Gibbs-Duhem expression.

VM and Eq. (24) have similar accuracy for the
chemical potential over a range of temperatures and
compare well to the EOS, as shown in Figure 4. Again,
HNC over-estimates the MC data and is significantly
higher than VM and Eq. (24). Analytic expressions were
used for all three closures. Overall, Eq. (24) has better
agreement with the excess chemical potential than it does
with the Helmhotz free energy (Figure 3) especially at
high temperatures and is similar to that observed for the
pressure (Figure 1).

V. DISCUSSION

Thermodynamically consistent behavior is an essential
property for a successful theory of liquids. The primary

result of this work is the development of a closure
for the OZ equation that has both pressure and free
energy consistency. While pressure consistent and free
energy path independent closures have been developed
before, this is the first time that a single closure has
demonstrated both.

A. Thermodynamic Consistency

To examine how satisfying both types of
thermodynamic consistency can improve the predictive
power of the OZ equation, we compared our results
against VM and HNC closures. These alternately satisfy
virial-compressibility pressure consistency (VM) or path
independence for the free energy respectively (HNC)
but not both. All other closures that we are aware
of like-wise either only satisfy virial-compressibility
pressure consistency or path independence for the
chemical potential and free energy. As expected,
enforcing pressure consistency improves predictions of
the pressure from VM and Eq. (24) compared to HNC,
particularly at high temperature and density.

We have more routes to the free energy and chemical
potential, which allows us to examine in greater detail
the implications of thermodynamic consistency or lack
thereof. Because Eq. (24) satisfies the Kast criteria [24]
(see Appendix B) and pressure consistency is enforced, all
routes to the free energy and chemical potential provide
consistent results except for the Gibbs-Duhem expression
using the compressibility, Eq. (A2), which we discuss
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below. HNC does have internal energy-virial consistency
but not pressure consistency, so any expression that
uses the compressibility route is inconsistent but viral
and Kirkwood results are consistent, which includes the
analytic expressions. The VM closure only exhibits
pressure consistency, so analytic expressions are simply
approximations. Numeric results may agree with each
other but only when the only difference is whether the
pressure is calculated from the viral or compressibility
route.

To achieve consistency for all routes to the chemical
potential tested here it is necessary to have consistency of
the density derivative of the pressure,

(
dpv

dρ

)
T
=

(
dpc

dρ

)
T

,
while satisfying pressure consistency. None of the three
closures satisfy this, as is demonstrated by the results for
the Gibbs-Duhem expression for the chemical potential,
Table IV. For this additional consistency, it is necessary
that the free parameters in the bridge be independent of
density.

An additional consequence of free energy path
independence is that we were able to derive analytical,
closed form formulas for the excess free energy and excess
chemical potential for our new closure. This allows the
excess free energy and excess chemical potential to be
computed without the Kirkwood charging or any other
numerical form of thermodynamic integration. Indeed,
we find that these formulas are completely consistent
with the various numerical paths we have tested for
Eq. (25). This is in contrast to the approximate formulas
for VM, which are in poor agreement with various
numerical results.

B. Partial molar volume correction

Some physical insight to the success of our new closure
can be gained by comparing it to the various partial
molar volume based corrections that have been proposed
for 3D-RISM theory and molecular density functional
theory (MDFT) [28–31]. Upon close inspection of
our analytic formula for the excess chemical potential,
Eq. (D1), and the Universal Correction applied to HNC,
Eq. (D5), we find that though the coefficients are
slightly different, the leading terms are nearly identical.
PMV corrections used in 3D-RISM and MDFT work
by compensating for mechanical work (pressure-volume)
required to introduce a solute. In the case of HNC-like
closures, the pressure is much too high, leading to
chemical potentials that are also much too large. By
enforcing pressure consistency of our proposed closure,
the pressure is directly tuned and accounted for at the
closure level without fitting to external data.

PMV corrections have been used successfully for water
( e.g., [29–31, 56–58]) and other solvents (e.g., [59–62]).
Because room temperature and atmospheric pressure are
typical physical conditions for solvated biological and
non-biological systems, we anticipate that this closure

will work well where PMV corrections have been used
before. For example, simulations of water are commonly
performed at T = 298.15K and ρ = 997 kg/m3 or
T ∗ = 3.82 and ρ∗ = 1.06 using the SPC/E model [63].
These conditions correspond to the highest temperatures
and densities we tested, where we observed pressures and
chemical potentials in good agreement with the equation
of state. Non-polar solvents, such as cyclohexane, have
similar reduced temperatures but lower densities than
water for similar calculations. Indeed, we expect that
this closure will perform well for typical solvation free
energy calculations for which PMV corrections have been
used in the past.

VI. CONCLUSION

In this work we have proposed a new closure equation,
Eq. (23), for the Ornstein-Zernike equation that satisfies
both virial-compressibility pressure consistency and path
independence for the chemical potential and free energy.
As a consequence, this closure also exhibits internal
energy-pressure, free energy-pressure, and Gibbs-Duhem
consistency. This consistency was demonstrated by
calculating solutions to the Ornstein-Zernike equation
with just the first order of our new closure, Eq. (24),
for the Lennard-Jones potential at thermodynamic
parameters T ∗ = 1.5, 2.74 and 5, and ρσ3 = 0.1 to
1.1. In addition, we were able to derive closed form
expressions for the free energy and chemical potential.
We anticipate that this closure will be particularly useful
for calculations of common solvents in 3D-RISM and
molecular CDFT calculations where PMV corrections are
currently used.
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Appendix A: Density derivative path to the
chemical potential

Following [43], when we hold the temperature
constant, starting from the thermodynamic identity

dG = V dp− SdT,
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we have (
∂G

∂p

)
T

= V(
∂µ

∂p

)
T

= ρ−1(
∂µ

∂ρ

)
T

(
∂ρ

∂p

)
T

= ρ−1

(
∂µe

∂ρ

)
T

+

(
∂µi

∂ρ

)
T

= ρ−1

[(
∂pe

∂ρ

)
T

+

(
∂P i

∂ρ

)
T

]
.

In the second step we have the Gibbs-Duhem relation
and in the last step we have split the chemical potential
into excess, e, and ideal, i, contributions. For the ideal
contribution on the right hand side we have(

∂pi

∂ρ

)
T

=
∂

∂ρ
ρkT = kT

where we have used the ideal gas law. For the excess
chemical potential, we then have(

∂µe

∂ρ

)
T

= ρ−1

[(
∂p

∂ρ

)
T

− kT

]
µe =

∫ ρ

0

dρ′
1

ρ′

[(
∂p

∂ρ′

)
T

− kT

]
We may use either Eq. (5) or Eq. (6) for the derivative
of the pressure. Using Eq. (5), we have

µe =

∫ ρ

0

dρ′
1

ρ′

[
kT

(
1− 2

ρ′

6

∫
drr

∂βu(r)

∂r
g(r)

− ρ′2

6

∫
drr

∂βu(r)

∂r

∂g(r)

∂ρ′

)
− kT

]
= −kT

∫ ρ

0

dρ′
[1
3

∫
drr

∂βu(r)

∂r
g(r)

+
ρ′

6

∫
drr

∂βu(r)

∂r

∂g(r)

∂ρ′

]
. (A1)

Using Eq. (6) we have

µe =

∫ ρ

0

dρ′
1

ρ′

[
kT

(
1− ρ′

∫
c(r, ρ′)dr

)
− kT

]
= −kT

∫ ρ

0

dρ′
∫

c(r, ρ′)dr (A2)

which is the result obtained by [43].

Appendix B: Free energy path independence and
closed-form chemical potential

Kast [24] uses a variational approach to obtain a
constrained formula for the excess chemical potential

µe =

∫ 1

0

∫
ρ(h+ 1)

∂u

∂λ
+ pP + vV dr dλ

+
q

(2π)3

∫ 1

0

∫
Qdk (B1)

where, in the general case,

P = exp(−βu+ γ +B)− h− 1,

V = h− c− γ,

Q = ρĉ
∂ĉ

∂λ

(
1 +

ρĉ

1− ρĉ

)
− ∂ĉ

∂λ
ρĥ

and p, v, and q are variational parameters to be solved
for. For path-independence to be satisfied, the functional
derivatives of Eq. (B1) with respect to h, c, γ, and u must
be zero:

∂µe

∂h
= ρ

∂u

∂λ
+ p

[
∂B

∂h
(h+ 1)− 1

]
− qρ

∂c

∂λ
+ v = 0,

(B2)
∂µe

∂c
= p

∂B

∂c
(h+ 1) + qρ

∂h

∂λ
− v = 0, (B3)

∂µe

∂γ
= p

(
∂B

∂γ
+ 1

)
(h+ 1)− v = 0, (B4)

∂µe

∂u
= p

(
∂B

∂u
− β

)
(h+ 1)− ρ

∂h

∂λ
= 0. (B5)

This system of equations is then solved for p, v and q,
giving

p = ρ
∂h

∂λ

1(
∂B
∂u − β

)
(h+ 1)

, (B6)

v = ρ
∂h

∂λ

∂B
∂γ + 1
∂B
∂u − β

, (B7)

q =

∂B
∂γ − ∂B

∂c + 1
∂B
∂u − β

. (B8)

For a closure with bridge approximation given by Eq. (23)
we may obtain

p = −β−1(h+ 1)−1 ∂h

∂λ
v = −β−1ρ

∂h

∂λ
,

q = −β−1(1− a). (B9)

From the equation for q in Eq. (B9) it is seen that the
proposed bridge approximation Eq. (23) has satisfied this
path independence condition.

Combining Eqs. (B2) with (11) and p, v and q we have

µe = µHNC − ρ

∫ 1

0

∫
dr dλ

1(
∂B
∂u − β

){
∂h

∂λ
(h+ 1)

[
∂B

∂h
+

∂B

∂γ

]
− ∂c

∂λ
(h+ 1)

(
∂B

∂t
− ∂B

∂c

)}
. (B10)

It is straightforward to extend this to multicomponent
1D- or 3D-RISM cases.
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For the specific case of Eq. (23) we have

∂B

∂u
= 0,

∂B

∂γ
= 0,

∂B

∂c
= a,

∂B

∂h
=

∑
i=1

ibih
i−1,

and Eq. (B10) reduces to

µe = µHNC − ρ

β

∫
dr{

b1h+
∑
i=2

(
bi + bi−1

(
1− 1

i

))
hi

− 1

2
ahc+ ac

}
(B11)

Appendix C: Closed form expressions for free
energy and chemical potential

To eliminate a derivative of ∂u/∂λ in the Kirkwood
charging formulas, Eqs. (9) and (11), we begin with the
exact expression

(1 + h(r, λ)) = e−βu(r,λ)+h(r,λ)−c(r,λ)+B(r,λ). (C1)

Taking the derivative of both sides we arrive at

β(1 + h)
∂u

∂λ
=

∂

∂λ

(1
2
h2 − c+B

)
− h

∂c

∂λ
+ h

∂B

∂λ
. (C2)

Inserting Eq. (C2) into the Kirkwood charging formula
for the excess free energy, Eq. (9), we have

βAe

N
=

ρ

2

∫
dr

(1
2
h2 − c+B

)
− ρ

2

∫ 1

0

dλ

∫
drh

∂c

∂λ

+
ρ

2

∫ 1

0

dλ

∫
drh

∂B

∂λ
(C3)

In the second integral we need to express h in terms of c
in order to integrate over λ, that is,∫ 1

0

dλ

∫
drh

∂c

∂λ
=

∫ 1

0

dν

∫
drhc

=
1

8π3

∫ 1

0

dν

∫
dk ĥ(νc) ĉ

=
1

8π3

∫ 1

0

dν

∫
dk

νĉ

1− ρνĉ
ĉ

=
1

8π3

∫
dkĉ2

∫ 1

0

dν
ν

1− ρνĉ

= − 1

8π3

1

ρ

∫
dk

[
ĉ+

1

ρ
ln |1− ρĉ|

]
.

(C4)

Here we used (∂c/∂λ)dλ = cdν and ν̂c = νĉ and
Parseval’s Theorem

∫
a(r)b(r)dr = (1/8π3)

∫
âb̂dk [21].

For the third integral, we can write

∫ ∫ 1

0

h
∂B

∂h
dλdr =

∫
hBdr −

∫ ∫ 1

0

B
∂h

∂λ
dλdr. (C5)

If we assume that h(r, λ) ≈ λh(r) and use expression
Eq. (23) for B(r), the second integral of Eq. (C5) becomes∫ ∫ 1

0

ac
∂h

∂λ
dλdr +

∑
i

bi

∫ ∫ 1

0

hi ∂h

∂λ
dλdr

=
1

8π3

a

ρ

∫
dk

[
ĥ− 1

ρ
ln |1 + ρĥ|

]
+

∫
dr

∑
i

bi
i+ 1

hi+1. (C6)

Combining Eqs. (C5)-(C6), we have
βAe

N
=

ρ

2

∫
dr

(1
2
h2 − c

)
+

1

2

1

8π3

∫
dk

[
ĉ+

1

ρ
ln |1− ρĉ|

]
+

ρ

2

∫
drgB

− a

2

1

8π3

∫
dk

[
ĥ− 1

ρ
ln |1 + ρĥ|

]
− ρ

2

∫ ∑
i

bi
i+ 1

hi+1dr. (C7)

For the VM closure, we may follow the same procedure
with the caveat that a particular coupling of λ and µ
has been selected. Since the VM closure is not path
independent, the result is an approximation. Proceeding
with this understanding, the second integral of Eq. (C5)
may become∫ 1

0

dλ

∫
B
∂h

∂λ
dr =

∫ 1

0

dν

∫
Bhdr

=
1

8π3

∫ 1

0

dν

∫
dk B̂(νh) ĥ

= −1

2

1

8π3

∫
dkĥ

∫ 1

0

dν

×
ϕ
(
ρν2ĥ2/(1 + ρνĥ)

)2

1 + αν2ĥ2/(1 + ρνĥ)
. (C8)

Then combining Eqs. (C5) and (C8) we have
βAe

N
=

ρ

2

∫
dr

(1
2
h2 − c

)
+

1

2

1

8π3

∫
dk

[
ĉ+

1

ρ
ln |1− ρĉ|

]
+

ρ

2

∫
drgB

+
ρ

4

1

8π3

∫
dkĥ

∫ 1

0

dν
ϕ(ρν2ĥ2/(1 + ρνĥ))2

(1 + αν2ĥ2/(1 + ρνĥ))
.

(C9)
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For the excess chemical potential βµe, from Eqs. (11)
and (C2), we can write

βµe = ρ

∫
dr

(1
2
h2

UV − cUV +BUV

)
− ρ

∫ 1

0

dλ

∫
drhUV

∂cUV
∂λ

+ ρ

∫ 1

0

dλ

∫
drhUV

∂BUV
∂λ

. (C10)

Where UV denotes correlation functions between a
marked solute particle, U, and the bulk solvent liquid,
V. While this looks almost identical to Eq. (C3), in this
case λ scales the interaction between the single marked
particle and the liquid rather than all of the interactions
in the liquid. The OZ equation for the solute particle is
then [64]

hUV(r) = cUV(r) + ρ

∫
cUV(|r − r′)hVV(r′)dr′.

Because hVV(r) does not depend on λ, we may choose
that c(r, λ) = λc(r), which leads to

βµe = ρ

∫
dr

(1
2
h2 − c− 1

2
hc

)
+ ρ

∫
drgB

− ρ

∫
dr

[1
2
ahc+ (

∑
i

bi
i+ 1

hi+1)
]

(C11)

In evaluation of the excess chemical potential βµe for
the VM approximation, the second integral of Eq. (C5)
becomes

∫
B
∂h

∂λ
dλdr =

∫
B′hdr ≈

∫
B

3
hdr. (C12)

Here B′ denotes the series of integrated bridge diagrams
with the h bond removed [21]. Combining Eqs. (C5) and

(C12), and inserting them in Eq. (C11), we have

βµe = ρ

∫
dr

(1
2
h2−c−1

2
hc

)
+ρ

∫
dr(B+

2h

3
B). (C13)

Appendix D: Connection to PMV corrections

The analytic expression for the excess chemical
potential, Eq. (28), bears a strong resemblance to PMV
corrections that have been used with 3D-RISM theory
and molecular density functional theory [28–31]. To see
the connection, we first expand Eq. (28) to the form

βµe = β

{
µHNC + aρ

∫
drc+ b1ρ

∫
drh

+
a

2
ρ

∫
drhc−

∑
i=2

(
bi + bi−1

(
1− 1

i

))
ρ

∫
drhi

}
(D1)

The most general of the PMV corrections is the Universal
Correction [28], which can be applied to the HNC
expression as

βµUC = β
{
µHNC + aρv + b

}
, (D2)

where a and b are parameters fit to experiment and v is
the PMV,

v = kBTχT

(
1− ρ

∫
c (r) dr

)
. (D3)

It is useful to expand v using an alternate expression for
the isothermal compressibility [36, 37, 65],

χT =
β

ρ
+ β

∫
h dr. (D4)

Combining (D2), (D3), and (D4), we have

βµUC = β

{
µHNC + aρ

∫
drc+ aρ

∫
drh

−aρ2
(∫

drh

)(∫
drc

)
+ a+ b

}
(D5)

While Eqs. (D1) and (D5) are not in perfect agreement,
they are quite similar.
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