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TORSION FREE ENDOTRIVIAL MODULES FOR FINITE
GROUPS OF LIE TYPE

JoN F. CARLSON, JESPER GRODAL, NADIA MAZZA AND DANIEL K. NAKANO

We determine the torsion free rank of the group of endotrivial modules for
any finite group of Lie type, in both defining and nondefining characteristic.
Equivalently, we classify the maximal rank 2 elementary abelian £-subgroups
in any finite group of Lie type, for any prime £. This classification may be of
independent interest.

1. Introduction

Endotrivial modules play a significant role in the modular representation theory
of finite groups; in particular, they are the invertible elements in the Green ring
of the stable module category of finitely generated modules for the group algebra.
Tensoring with an endotrivial module is a self equivalence of the stable module
category and these operations generate the Picard group of self equivalences of
Morita type in this category. The endopermutation modules, defined for finite
groups of prime power order, are the sources of the irreducible modules for large
classes of finite groups, and these endopermutation modules are built from the
endotrivial modules.

Let G be a finite group and let k be a field of prime characteristic £ that divides the
order of G. A finitely generated kG-module M is endotrivial if its k-endomorphism
ring Homy (M, M) is the direct sum of a trivial module and a projective module. The
isomorphism classes in the stable category of such modules form an abelian group
T (G) under the tensor product ®;, where M ®; N is equipped with the diagonal
G-action. The group has identity [k] and the inverse to a class [M] is the class
[M*], where M* is the k-dual of M. As T'(G) is finitely generated it is isomorphic
to the direct sum of its torsion subgroup 77 (G), and a finitely generated torsion
free group TF(G) = T(G)/TT(G). We define the torsion free rank of T(G) to
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be the rank of TF(G) as a Z-module. In [Grodal 2022], the second author used
homotopy theory to describe T T (G), tying the structure of 7T (G) to that of G
itself, and in doing so, he also proved a conjecture by Carlson and Thévenaz [2015].
In a forthcoming article [Carlson et al. > 2022], we will provide a description of
the torsion subgroup 7T (G) for G a finite group of Lie type for all primes, using
homotopy theoretic methods. For more information on the history and applications
of endotrivial modules, see the survey papers [Carlson 2017; Thévenaz 2007], and
the book by the third author [Mazza 2019].

We recall that, for any finite group G, there is a distinguished element in 7(G),
namely the class of the shift of the trivial module, defined to be the kernel of the map
from a projective cover of k to k. It is easily verified to be endotrivial. Moreover,
by elementary homological algebra, the class of this element has infinite order in
TF(G) if and only if G contains a subgroup isomorphic to Z/¢ x Z/£.

Our main theorem of this paper determines the rank of 7F(G) for G any finite
group of Lie type of characteristic p. We show that it is generated by the class
of the shift of the trivial module, except in a few low-rank cases that we describe
explicitly. Before stating the precise version of the main theorem, we need to make
clear what we mean by a finite group of Lie type.

Definition 1.1 (Finite group of Lie type). By a finite group of Lie type in character-
istic p we mean a group G = G for G a connected reductive algebraic group over
an algebraically closed field of characteristic p, and F a Steinberg endomorphism,
i.e., an endomorphism of G such that F* is a standard Frobenius map F,, for g = p”
and some s, r > 1.

This definition is a bit more general than that of [Malle and Testerman 2011,
Definition 21.6] in that we only assume G to be reductive instead of semisimple.
For example, this includes the classical group GL, (g). We now present our main
theorem:

Theorem A. Let G be a finite group of Lie type in characteristic p as in
Definition 1.1. The group TF (G) of torsion free endotrivial modules over a field of
characteristic £, with £ dividing |G|, is zero or infinite cyclic generated by the class
of the shift of the trivial module, except when G is on the following list:

(1) £ # pand G = H x K, where £ {|K |, and H is either
(a) PGLy(q) with €| q — 1,
(b) PGU,(q) with £ | q+1, or
(¢) 3D4(q) with £ = 3.
(2) £ = p and G/ Z(G) is either PSUs(p) for p >3 and 3 | p + 1, PSL3(p) for

p = 2, PGL3(p) for p > 2, PSpins(p) for p = 5, SOs(p) for p = 5, or G2(p)
for p=>1.
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In case (1), TF(G) => TF (H) has rank 3 if H =PGL;(q) or PGU,(q) and £ > 2,
and rank 2 if H = 3D4(q) or £ = 2; see Theorems 3.1 and 6.1. In case (2), the ranks
are listed in the tables in Section 7; see Theorem 7.1.

The quotient groups G/Z(G), occurring in (2) above as the classical groups
PSL3(p) = SL3(p)/C3, PSU3(p) = SU3(p)/C3, and PSpins(p) = Spins(p)/Ca,
are in fact not themselves finite groups of Lie type; see Remark 2.5 and Section 5 for
more about this subtlety. Section 5 also contains analogous results for all groups of
the form G/ Z(G"), for simply connected simple G, i.e., the finite simple groups
associated to finite groups of Lie type. Special cases of the above results can be
found in [Carlson et al. 2006; 2014; 2016]. Note that the rank of TF (G) depends
on the characteristic £ of k, but not on the finer structure of k.

An elementary abelian £-subgroup of G is a subgroup isomorphic to an [F-vector
space. Its £-rank is its [F,-vector space dimension. The £-rank of G, denoted 1k, (G),
is the maximum of the £-ranks of elementary abelian £-subgroups of G. The groups
in (a) and (b) of Theorem A have £-rank £ — 1 when £ is odd, while all other groups
listed in (1) and (2) have ¢-rank 2.

By a well-known correspondence, recalled in Theorem 1.2 below, our main result
translates into a purely local group theoretic statement, Theorem B, which is in fact
what we prove. Let AfZ(G) denote the poset of noncyclic elementary abelian £-
subgroups of G, ordered by subgroup inclusion. We say that an elementary abelian
£-subgroup of G is maximal if it is maximal in AKEZ(G), i.e., if it is not properly
contained in any other elementary abelian subgroup of G. The poset AKEZ(G) has a
G-action by conjugation, and we can also consider the orbit space Aezz(G) /G. For
any poset X, we can define its set of connected components 7o(X), as equivalence
classes of elements generated by the order relation, and note that, for a G-poset, we
have 7y(X)/G => mo(X/G). The following theorem states the correspondence.

Theorem 1.2 [Alperin 2001, Theorem 4; Carlson et al. 2006, Theorem 3.1]. For
any finite group G and prime € dividing the order of G, the rank of the group TF (G)
is equal to the number of connected components of the orbit space A[ZZ(G) /G. This
number is 0 if tke(G) = 1; it is equal to the number of conjugacy classes of maximal
elementary abelian £-subgroups in G if tky(G) = 2; and it is equal to 1 more than
the number of conjugacy classes of maximal elementary abelian £-subgroups of

rank 2, if tk, (G) > 2.

The theorem above is Alperin’s [2001] original calculation of the torsion free
rank of 7' (G) in the case that G is a finite £-group. The proof for arbitrary finite
groups is given in [Carlson et al. 2006] and uses very different methods. With this
dictionary in place, we can state a local group theoretic version of our main result:

Theorem B. Let G be a finite group of Lie type in characteristic p (Definition 1.1)
and ¢ an arbitrary prime.
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(1) Iftke(G) > 2, then G does not have a maximal elementary abelian €-subgroup
of rank 2, unless £ > 3, £ # p, and G has the form given in Theorem A (a) or
(b) (where tke(G) =€ —1).

2) If tke(G) = 2, then all elementary abelian £-subgroups of G of rank 2 are
conjugate unless G has the form given in Theorem A (2), in Theorem A (c), or
in Theorem A (a) (b), £ < 3.

To provide additional context to Theorem B, recall that G can only have a maximal
elementary abelian £-subgroup of rank 2 when rk,(G) < £ for £ odd, and rk, (G) <4
when £ = 2, by theorems of Glauberman—Mazza [2010] and MacWilliams [1970]
(restated as Theorem 2.3). Theorem B pins down exactly the cases where this
does in fact occur for finite groups of Lie type. The study of elementary abelian
¢-subgroups of G and G has a long history, with close relationship to cohomology
and representation theory; see e.g., [Borel 1961; Borel et al. 2002; Quillen 1971a;
1971b; 1978; Steinberg 1975]. When ¢ # p, conjugacy classes of elementary
abelian £-subgroups of G identify with those of the corresponding complex reductive
algebraic group, or compact Lie group [Andersen et al. 2008, Section 8]. In fact,
they only depend on the £-local structure as encoded in the £-compact group (BG);
obtained by £-completing the classifying space BG in the sense of homotopy theory
[Grodal 2010]. Similarly, the elementary abelian £-subgroups of G are determined
by BGy, an £-local finite group [Broto et al. 2003] describable from the action of
F on BGy; see, e.g., [Grodal and Lahtinen 2020, Appendix C] for a summary. The
question of existence of maximal rank 2 elementary abelian £-subgroups can thus
be asked more generally in the context of homotopy finite groups of Lie type, i.e.,
homotopy fixed-points of Steinberg endomorphisms on connected £-compact groups
[Broto and Mgller 2007; Grodal and Lahtinen 2020]. In fact we expect Theorem B
to generalize to this setting, with the same conclusion, as simple £-compact groups
not coming from a compact connected Lie group are centerless and have a unique
maximal elementary abelian ¢-subgroup; see [Andersen et al. 2008, Theorems 1.2
and 1.8] and [Andersen and Grodal 2009, Theorem 1.1]. We do not pursue the
details here, but see Remark 3.4.

One may similarly wonder if 7F (G) of Theorem A only depends on the £-local
structure in the stronger sense that if H — G induces an isomorphism of £-fusion
systems, is the map TF(G) — TF (H) an isomorphism? That question, however,
has a negative answer in general, and we need to replace ¢-fusion by a stronger
£-local invariant [Barthel et al. > 2022].

Structure of the paper. Section 2 collects background results needed later, including
the aforementioned general Theorem 2.3 that gives conditions on 1k, (G) ensuring
no maximal elementary abelian £-subgroups of rank 2.
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In Sections 37, we determine TF(G) when G = G, and G is simple. The cases
when 3 < ¢ = p are handled in Sections 3 and 4. In many cases it is known that the
orbit space .A;Z(G) /G is connected [Gorenstein et al. 1994, Section 4.10]. This
allows us to reduce to examining some groups of small Lie rank, in Proposition 3.3,
and these are then analyzed in Section 4. In Section 5, we extend the results of the
previous sections to also compute TF (G), for G a group closely associated to a
group of Lie type such as PSL, (g) or PSp, (¢), in the case that £ > 3.

The case where 2 = £ # p is handled in Section 6. Section 7 investigates the
final case when ¢ = p, extending work in [Carlson et al. 2006]. In the case that
£ = 2 the associated groups are included in the analysis of Section 6.

Finally, in Section 8, we prove Theorems A and B in the general case where G
is a connected reductive algebraic group.

2. Preliminaries

Throughout the paper G is a finite group (maybe subject to more assumptions, speci-
fied locally) and k is a field of some positive characteristic £, dividing the order of G.
In this section we provide some background material used throughout this paper.

Definition 2.1. A finitely generated kG-module M is endotrivial if Homy (M, M) =
k @ P where P is a projective kG-module and k is the trivial kG-module. Thus,
Homy (M, M) = k in the stable category of kG-modules modulo projectives. The
set T (G) of stable isomorphism classes of endotrivial kG-modules forms a group
under — ®; —, called the group of endotrivial kG-modules.

Recall that in this context, Homy (M, M) = M* ®; M as kG-modules, and
therefore the endotrivial modules are the invertible objects under tensor product in
the stable module category of kG-modules modulo projectives.

The group T(G) is a finitely generated abelian group [Carlson et al. 2006,
Corollary 2.5] hence T(G) =TT (G) ®TF(G), for TT(G) the torsion subgroup of
T (G), afinite group, and TF(G) =T (G)/TT(G), a finitely generated free abelian
group. In Theorem 1.2, the rank of TF (G) is stated to be equal to the number of
conjugacy classes of maximal elementary abelian £-subgroups of G of rank 2 if
rke(G) = 2, or that number plus 1 in case rky(G) > 2.

We start with a few elementary but useful observations.

Lemma 2.2. Let P be a finite £-group.

(a) If P has a normal elementary abelian £-subgroup H of £-rank £ 4+ 1 or more,
then P has no maximal elementary abelian subgroups of rank 2.

(b) If P has C-rank 2 and the center of P is not cyclic, then P has exactly one
maximal elementary abelian subgroup with £-rank 2.
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(c) If P has L-rank at least 3 and the center of P is not cyclic, then P has no
maximal elementary abelian subgroups of £-rank 2.

Proof. The proofs of parts (b) and (c) are straightforward. For (a), let x be a
noncentral element of P of order £. If x € H, then Cp(x) > H has £-rank at least 3
by assumption, and the statement holds. If x ¢ H, then the conjugation action of x
on H can be regarded as a linear action on an [F,-vector space of dimension at least
£+ 1, and therefore must have at least two linearly independent eigenvectors for the
eigenvalue 1. That is, conjugation by x fixes two nontrivial distinct generators of
H in some suitable generating set, and since x ¢ H, we conclude that the subgroup
of P generated by x and these two elements is elementary abelian of rank 3. So
x is not contained in a maximal elementary abelian subgroup of P of rank 2, and
part (a) follows. U

For our analysis, we employ results of Glauberman—Mazza and MacWilliams
that guarantee, under suitable conditions on the £-rank of the finite group G, that
the group has no maximal elementary abelian £-subgroups of rank 2. The sectional
£-rank of a group G is the maximal £-rank of any section of G. A section of G is
the quotient of a subgroup of G by a normal subgroup of that subgroup.

Theorem 2.3. Let G be a finite group and let £ be a prime.

(a) [Glauberman and Mazza 2010, Theorem A] If £ > 3 and tk¢(G) > £+ 1, then
G has no maximal elementary abelian £-subgroups of rank 2.

(b) [MacWilliams 1970, Four Generator Theorem] Suppose that G has sectional
2-rank at least 5. Then a Sylow 2-subgroup of G has a normal elementary
abelian subgroup with 2-rank 3. In such a case G has no maximal elementary
abelian 2-subgroup of rank 2.

Part (b) in Theorem 2.3 is a reformulation, which better suits our analysis, of
[MacWilliams 1970, Four Generator Theorem]. The theorem (which was part of the
program to classify finite simple groups) asserts that, in a finite 2-group G with no
normal elementary abelian subgroup of rank 3, every subgroup can be generated by
at most four elements. Thus, if the sectional 2-rank of a 2-group G is 5 or more, then
some Frattini quotient P/®(P), for P a subgroup of G, has 2-rank 5 or more. By
the theorem, G has a normal elementary abelian subgroup with 2-rank 3, implying
that G has no maximal elementary abelian subgroup of rank 2, by Lemma 2.2. Our
interpretation follows because, for any ¢, the sectional £-rank of a finite group is
equal to that of its Sylow £-subgroups.

We also record the following result, which is used to relate the torsion free ranks
of groups of endotrivial modules of finite groups of Lie type arising from isogenous
algebraic groups.
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Proposition 2.4. Let
l1-7Z—-H—->G—>K-—1

be an exact sequence of finite groups where Z and K have order prime to £, and
Z central in H. Then the induced map AEZZ(H)/H —» .AZZZ(G)/G is a surjection,
which is an isomorphism of posets if the image of H in G controls {-fusion in G. In
particular TF (H) = Z implies TF (G) = Z, with the converse also true if the image
of H in G controls U-fusionin G (e.g., if K = 1).

Proof. Since K and Z have orders that are prime to ¢, the map H — G induces a
bijection of £-subgroups. Furthermore, conjugacy in H implies conjugacy in G,
with the converse also being true if the image of H in G controls £-fusion in G.
Note that the image of H in G is isomorphic to H/Z. The statement about torsion
free ranks follows using the standard translation by Theorem 1.2. ]

We conclude this section with a discussion of our conventions for finite groups
of Lie type.

Remark 2.5 (Finite groups of Lie type). As stated in Definition 1.1 we take a finite
group of Lie type to mean a group of the form G = G, for G a connected reductive
algebraic group over an algebraically closed field of positive characteristic p, and
F a Steinberg endomorphism. We refer to [Malle and Testerman 2011], or the
original [Steinberg 1968], for a thorough description of properties of such groups,
but quickly go through a few key points to aid the reader. A connected reductive
algebraic group G over an algebraically closed field is classified by its root datum
D (which is field independent). The action of F on G (up to inner automorphisms)
is also determined by its effect on D (up to Weyl group conjugation) allowing for a
“combinatorial” classification of finite groups of Lie type G’ It is most explicit
when G is further assumed simple; see [Malle and Testerman 2011, Table 22.1].
In this case G is “close” to being simple, in the following sense: a formula of

Steinberg [1968, Corollary 12.6(b)] says that G/Op/(G) =5 711(G)F, the coin-
variants of the action of F' on the fundamental group 7(G). (As usual 0”/(—)
denotes the smallest normal subgroup of p’ index, and O,/ (—) denotes the largest
normal subgroup of p’ order.) Thus, subgroups H with O? (G) < H < G can be
parametrized by “Lie theoretic” data consisting of G, F', and a subgroup of 771 (G) r.
They are hence “close” to finite groups of Lie type, though, e.g., the order formula
[Malle and Testerman 2011, Corollary 24.6] does not hold — some books dealing
with finite simple groups, e.g., [Gorenstein et al. 1994, Definition 2.2.1], instead refer
to groups of the form 0" (G") as finite groups of Lie type. Dual to p’-quotients
we have that

(2-1) Z(G) = 0,(G) = Z(G)*
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[Malle and Testerman 2011, Lemma 24.12]. Normal p’-subgroups and quotients
are related, as

(2-2) GE/Z(GE) = 07 ((G/2(G)T),

c

for Gy, the simply connected cover of G [loc. cit., Proposition 24.21]. With a few
small exceptions [loc. cit., Theorem 24.17], this is a finite simple group, if G is
simple. For example PSL, (g) = or (PGL, (g)) is simple unless (n, g) is (2, 2) or
(2, 3). We determine TF (H) for such groups H in Section 5.

3. When G is simple, 3 < £ # p: generic case

In this section G is a finite group of Lie type as in Definition 1.1, where we
furthermore assume that the ambient algebraic group G is simple (and hence
determined by an irreducible root system and an isogeny type). The aim of Sections 3
and 4 is to prove the following.

Theorem 3.1. Let G = G be a finite group of Lie type where G is a simple
algebraic group. Assume that 3 < { # p and that tk¢(G) > 2. Then TF(G) =Z
except in the following cases:

(a) £>3and G is isomorphic to either PGL,(q) with £ dividing g — 1 or PGU,(q)
with € dividing q + 1. In these cases, TF(G) =Z®Z 7.

(b) £ =3 and G is isomorphic to *D4(q). In this case, TF(G) =7 & 7.

The proof of Theorem 3.1 entails a reduction, accomplished in this section, to
some cases of small rank and specific types. The analysis of the small rank cases is
done in Section 4.

The following is taken from [Gorenstein et al. 1994, Theorem 4.10.3].

Theorem 3.2. Let G = G* be a finite group of Lie type arising from a simple
algebraic group G with a Steinberg endomorphism F, and £ # p, and write G =
Gy /Z for a finite central subgroup Z. Assume that:

(i) The prime € does not divide the order of Z* . This is true if ¢ 112 (Gse) T

(ii) The prime £ is odd and good for G (meaning that £ > 3 if the type of G is Eg,
Eq, Fy or Gy, £ > 5 if the type of G is Eg).

Then any elementary abelian £-subgroup A of G is contained in an elementary
abelian £-subgroup of maximal rank. Also, any two elementary abelian £-subgroups
of maximal rank are conjugate except possibly if £ =3 and G = 3D4(q).

Proof. Assume first that G is simply connected, i.e., Z is trivial. Under condition
(i), [Gorenstein et al. 1994, Theorem 4.10.3(e)] says that every elementary abelian
£-subgroup of G is contained in an elementary abelian £-subgroup of maximal
rank. Finally [Gorenstein et al. 1994, Theorem 4.10.3(f)] implies that all maximal
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elementary abelian £-subgroups of G are conjugate, unless G = 3Dy(g), again
using (ii). This proves the theorem in the simply connected case.

Because |ZF'| is assumed prime to £, the conclusion for G follows from that of
G, by applying Proposition 2.4 to the exact sequence

(3-1) 172 > G4e > G- Zp— 1,

of [Malle and Testerman 2011, Lemma 24.20], where |Z¥| = | ZF¢| and |G| = |G|
by [loc. cit., Corollary 24.6]. O

The next proposition builds on Theorem 3.2 and handles many of the cases in
Theorem 3.1, with the rest being postponed to the next section. In the proof we
employ the nonstandard notation, where e.g., B»(p) without subscript “sc” or “ad”,
denotes any group arising from a simple algebraic group G over an algebraically
closed field of characteristic p with root system B, and F' = F), is the standard
Frobenius given by raising to the p-th power.

Proposition 3.3. Let £ be an odd prime, { # p. Suppose that G = G is a
finite group of Lie type where G is a simple algebraic group and F is a Steinberg
endomorphism. Assume that the {-rank of G is at least 2, and G does not have one
of the forms: A,_1(q) with £ dividing both g — 1 and n, *A,_1(q) with £ dividing
both g + 1 and n, or *D4(q) with £ = 3. Then TF(G) = Z.

Proof. Let Z = Z(Gy.), whose order is given in [loc. cit., Table 9.2] (the order of
“A(®)”). The order of ZF = Z(Gy,) is given in [loc. cit., Table 24.2]. It follows
from Theorem 3.2 that TF(G) = Z if £ is odd and good for G, £ ¢ |ZF|, and G is
not isomorphic to *D4(q). Consequently, it remains to discuss the cases that either
(i) ¢ divides | Z¥|, (ii) £ = 3 and G has exceptional type or (iii) £ = 5 and G has type
Eg. We show, by explicit arguments, that in those cases there are also no maximal
elementary abelian £-subgroups of rank 2, unless the £-rank of the group is 2, in
which case there is a unique one. This shows that TF(G) = Z by Theorem 1.2.

First note that case (i) is basically ruled out by the hypotheses. That is, if G has
type B,, C,, or D,, then |Z| is a power of 2 and hence is not divisible by £. If G
has type A,_; then the only cases where ¢ divides |Z”| are exactly the ones we
exclude in our formulation of the proposition. Finally, if G is of exceptional type
and ¢ divides | Z|, then the only possibility is G having type E¢ and £ = 3, which is
covered under (ii) below.

This leaves (ii) and (iii), i.e., the exceptional types with £ =3 and Eg with £ = 5.
That is, by the classification of Steinberg endomorphisms [loc. cit., Theorem 22.5],
the groups we need to consider are G»(q), F4(q), ’F4(q), E¢(q), *Es(q), E7(g) and
Es(q) at £ =3 and Eg(q) at £ = 5. (Note that 2F4(g) only exists in characteristic 2
and 2G,(q) does not appear on the list as we assume g # 3.) We handle these
groups on a case-by-case basis.
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F4(q), Es(q), 2E6(q), E7(q), and Eg(q) with £ = 3: We claim that in all these
cases, there is an elementary abelian 3-subgroup of rank at least 4, in fact inside a
maximal torus, which then shows TF(G) = Z by Theorem 2.3(a). When ¢ 1 |Z Flit
is enough to see that the multiplicity of the cyclotomic polynomials ®; and &, in
the order polynomial of the complete root datum ¢ is (at least) 4, by [Gorenstein
et al. 1994, Theorem 4.10.3(b)]. Recall that a complete root datum 4D consists
of a root datum D together with the twisting “d’’; see [Malle and Testerman 2011,
Definition 22.10] and [Gorenstein et al. 1994, Definition 2.2.4]. This follows by
inspecting [Gorenstein and Lyons 1983, Part I, Table 10:2]. The only cases where
we can have £ dividing | Z”| are (again by [Malle and Testerman 2011, Table 24.2])
either Eg(g) with ¢ = 1 (mod 3) or %E¢(g) with ¢ = —1 (mod 3). But as the
multiplicity of @, respectively ®,, in the order polynomial of the complete root
datum FEg, respectively 2Es, is 6, we have that the £-rank of G, is (at least) 6 for
these groups (again by [Gorenstein et al. 1994, Theorem 4.10.3(b)]), and hence the
£-rank of G is at least 5.

Gy (q) with £ =3: We give a direct argument that all elementary abelian 3-subgroups
of rank 2 are conjugate. By [Azad 1979, Lemma 4], the commutator subgroup of
the centralizer of the center of a Sylow 3-subgroup of G is isomorphic to SL3(g) if
g =1 (mod 3), respectively to SUz(g) if ¢ = —1 (mod 3). In either case, any two
elementary abelian 3-subgroups of rank 2 are conjugate by Theorem 3.2.

2F4 224+ with € = 3: Tt follows from [Gorenstein and Lyons 1983, Proofs of
(10-1) and (10-2), p. 118] that 2F4(2**!) contains SU3(22**!) of index prime
to 3. All rank 2 elementary abelian 3-subgroups are conjugate in SU3(2%*!) by
Theorem 3.2, and hence this holds for 2F;(22¢11) as well.

Eg(q) with £ =5: From [Gorenstein and Lyons 1983, Proofs of (10-1) and (10-2),
p. 118] we see that Eg(g) contains SUs(g?) as a subgroup of index prime to 5
(the coefficients are in F,4+). Hence, every elementary abelian 5-subgroup of G is
contained in one of rank 4 by Theorem 3.2. Consequently, there are no maximal
elementary abelian 5-subgroups of rank 2. U

Remark 3.4. For the interested reader, we briefly sketch how Proposition 3.3 (and
Theorem 3.2) could alternatively be obtained via homotopy theory. If £ does not
divide the order of the fundamental group of a connected ¢£-compact group BG,
then every elementary abelian £-subgroup of rank at most 2 is conjugate into a
torus by [Andersen et al. 2008, Theorem 1.8], generalizing Borel and Steinberg’s
classical theorem [Steinberg 1975, Theorem 2.27]. The homotopical Lang square
of Friedlander—Quillen [Broto and Mgller 2007, (1)] now relates elementary abelian
¢-subgroups in BG to those in the homotopical finite group of Lie type BG"F.
When F is the standard Frobenius with ¢ congruent to 1 modulo € this shows that
the centralizer of every element of order £ in BG"! has £-rank at least the Lie rank
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of the £-compact group BG. For general F one first uses untwisting [Grodal and
Lahtinen 2020, Theorem C.8] to reduce to the previous case, now inside another
£-compact group. Note that untwisting assumes that the order of the twisting is
prime to £, which explains why 3D4(g), when £ = 3, needs to be treated separately.
Indeed the conclusion that TF (G) has rank 2 in this case shows that this is not only
a technical limitation.

4. When G is simple, 3 < £ # p: specific cases

In this section, we examine the cases not covered by Proposition 3.3, thereby
completing the proof of Theorem 3.1. The analysis is case by case, and we assume
¢ # p throughout.

Proof of Theorem 3.1. First consider G = *Dy4(q), with £ = 3} g. By [Goren-
stein and Lyons 1983, Part I, 10-1(4)], a Sylow 3-subgroup S of G has the form
(Csa+1 X C3a) 1 C3, where 3¢ = |q2 — 1|3. From [Diaz et al. 2007, Theorem 5.10],
we also know that S = B(3, 2(a + 1); 0, 0, 0) is a 3-group of maximal nilpotency
class of 3-rank 2 and order 3°“*2. Let A be the maximal subgroup of S of the form
Cia+1 X C3q, let B be the subgroup of A formed by the elements of order 3, and let
V1 be any nonnormal maximal elementary abelian subgroup of S (necessarily of
rank 2). The subgroups B and V) are those denoted likewise in [Diaz et al. 2007]. In
[Diaz et al. 2007, Theorem 5.10], the authors prove that all the nonnormal maximal
elementary abelian subgroups of S are G-conjugate. They also show that Vj is the
Sylow 3-subgroup of Cg(V1), and from the description of §, it is clear that B is
not a Sylow 3-subgroup of C(B). Therefore, B and V| cannot be G-conjugate,
and it follows that TF(G) = Z & 7.

For the remainder of the proof assume that G has type either A,_;(q) with
¢>3and | g—1or?A,_i(g) with £ >3 and £ | g + 1. We assume also that ¢
divides the order of Zf" and thus n is a multiple of £. If n > ¢, then TF(G) =Z
by Theorem 2.3(a). Thus, we are reduced to consider the cases G = A,—_(g) with
g=1 (mod¥),and G = 2A0_; (g) with g = —1 (mod ¢). Because ¢ is prime there
are exactly two distinct isogeny types. If G is simply connected, the asserted result
follows by Theorem 3.2. We are left with the cases G =PGL,(g) and G =PGU,(q)
with the appropriate congruences of ¢ modulo £. Because the £-local structures of
the two groups are almost identical, we consider only G = PGL;(g).

Let G = GL, (¢) with £ dividing ¢ — 1. We choose a Sylow ¢-subgroup of
G tobea subgroup of the normalizer of a maximal torus of diagonal matrices
(see Theorem 3.2). The normalizer of the torus is a wreath product, of the form
N = GL(g)** x &, where &, is the symmetric group on £ letters. That is, it
is the subgroup of diagonal matrices with an action by the group of permutation
matrices. Let ¢ be a primitive £-th root of unity in [,. Let y be a generator for the
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Sylow £-subgroup of GL;(g), so that ¢ = )/ZS_1 for some s and y* = 1. Let x be
the £ x £ permutation matrix

[010 -+ 0]
001---0
x=1:: o0,
000 ---1
[ 100 --- 0]
let y be the diagonal matrix (of size £) with diagonal entries v, 1,...,1, and let

z = y I be the scalar matrix. A Sylow ¢- subgroup Sof G is generated by x and

. Then a Sylow £-subgroup of G is S = S /{z). The subgroup S has a maximal
subgroup T =y, xyx_l, R xz_lyxl_i), which is abelian.

Let ¢ : S — S be the quotient map. We note that two subgroups E and F in
S are conjugate in G if and only if their inverse images ¢ ~!(E) and ¢! (F) are
conjugate in G. Consequently, to find the maximal elementary abelian subgroups
of rank 2 in S, it suffices to look for the subgroups E of order £**2 in S that contain
z and have the property that E/(z) is elementary abelian. For the sake of this proof,
call such a group Q2-elementary.

For our analysis, we identify three subgroups. Let a = y‘ZH and let b be the
diagonal matrix with diagonal entries 1,¢,¢2, ..., ¢!, Notice we have that
xbx b= 1=z"" Let

E| = (a, xax~ ', x T lax! e z), E,={x,b,z), and E3={ax,b,z).
We claim that every Q2-elementary subgroup of S is either conjugate to one of
E> or E5 or is conjugate to a subgroup of E;. Note that E| is abelian whereas the
other two are not. Also, every element of order £ in E, has determinant 1, but this
is not true of E3. Hence, E; and E3 are not conjugate, and neither is conjugate to a
subgroup of E|.

Note first that any Q2-elementary subgroup of 7 must be contained in E; as
E| is a direct product of £ cyclic subgroups of order £ and (z) is a direct factor. In
particular, E;/(z) contains all elements of order £ in 7//(z). Suppose that H is a
Q2-elementary subgroup that is not in 7. Then H contains an element of the form
tx for some t € T. By a direct calculation, we notice that the centralizer in 7'/(z) of
the class of x is a direct factor of 7 /(z) that is cyclic of order £°. It is generated by
the image in 7'/(z) of diagonal matrix u with entries 1, y, ... . ye !, The subgroup
of elements of order ¢ in this group is generated by b =’ . So we can assume
that H = (tx, b, z).

It remains to find the conjugacy classes. Suppose that w € T is diagonal with
entries wy, . .., wy. Then wxw ™' = vx where v is the diagonal matrix with entries
wlwz_l, w2w3_1, e, wgwl_l. In other words, x is conjugate in S to vx for v any
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diagonal matrix with entries vy, ..., v, satisfying the condition that the product
vy - - - vg = 1. It follows that any possible conjugacy class of Q2-elementary sub-
groups not in 7" has a representative of the form H = (a'x,b,z)fori=1,...,05—1.
Now, (a'x)t = z!. If i = m¢ for some m > 1, then v = a’xz ™™ has the property
that v* = 1. In this case v = tx where ¢ € T has the property that the product of
its (diagonal) entries is 1. Thus, v is conjugate to x by an element in 7', and H is
conjugate to (x, b, z).

So we are down to the situation that H = (a’x, b, z), fori =0, 1,...,¢—1. But
now notice that x is conjugate to x/ for j =1, ..., £ — 1 by a permutation matrix,
an {-cycle, that centralizes a and normalizes (b, z). It follows that if i # 0, then
a'x is conjugate to a’x " and H = (a‘x, b, z) is conjugate to E3. This proves the
claim.

Recall that £ /(z) has £-rank £ > 3. It follows that E| /{(z), E»/{z) and E3/(z) are
in three distinct connected components of the orbit poset A[zz(G) /G of noncyclic
elementary abelian £-subgroups and that there are no other components containing
subgroups of rank 2. In other words, TF (G) has rank 3. ([

We now establish the rank of 7F (G) in some specific cases that are useful in
Section 5.

Proposition 4.1. Suppose that £ > 3, and either G = PSL;(gq) withg =1 (mod ¢),
or G ZPSUy(q) with g = —1 (mod £). Assume that if £ =3, then ¢ = 1 (mod 9)
in the first case and g = —1 (mod 9) in the second. Then TF (G) has rank £ + 1.

Proof. The £-local structures of PSL,(q) with £ dividing g — 1 and PSU,(g) with £
dividing g 41 are very similar. We give the proof only in the case that G =PSL,(q).
The proof in the case of PSU,(g) follows by the same line of reasoning. We include
a complete analysis, though much of the information in the proof is in the more
general paper [Craven et al. 2017].

We continue mostly with the notation introduced in the proof of Theorem 3.1 for
G = Ay—1(q), except that we let H = SL¢(¢q) and G = PSL;(g) = H/(z) where
z = ¢ I generates the center of H (not the same z as in the previous proof). A Sylow
£-subgroup of H has the form S =T x (x), where T is the collection of diagonal
£-elements having determinant 1. Any element of S that is not in 7" is a power of
an element of the form ax for some a € T. We note that the diagonal element y as
above, with entries ¢, 1, ..., 1, is not in H. The subgroup § is generated by x and
w = x~'y~!xy which is diagonal with entries y, y "', 1,..., 1, and T is generated
by the conjugates of w by powers of x.

A (Q2-elementary subgroup, if it is not contained in 7, must have the form
J, = {ax, b, z) for some a in T. That is, these are the nonabelian subgroups J
such that J/(z) is elementary abelian of rank 2. Note that J, = J if and only if
a'a”! € (b, z). So there are |T|/¢? such subgroups. A direct calculation shows
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that Ng(J,) has order |S|/¢*. Thus, there are exactly £ S-conjugacy classes of
such subgroups. Let E; = (wix,b,z),fori =0,...,¢—1. All of these subgroups
are conjugate in G =GL, (g) by some power of the element y. Our purpose is to
show, however, that no two of them are conjugate in H. The theorem then follows,
because our observation implies that the classes E;/(z) for 0 <i < £ are distinct
conjugacy classes of maximal elementary abelian £-subgroups of PSL,(g) of rank 2.
The subgroup 7'/{z) also has a maximal elementary abelian subgroup E/(z), and
none of the E;’s is conjugate to a subgroup of E since the latter is abelian.

Consider the subgroup N = Ny (Ep), the normalizer in SLy(q) of Eg = (x, b, z).
The subgroup Ej is an extraspecial group of order £3 and exponent £. Its outer
automorphism group is isomorphic to GL;(¢) (see the discussion in [Winter 1972]).
Because the centralizer of Ey in H is the center of H, N is an extension

l1-Ey—> N—->U—1

where U is isomorphic to a subgroup of SL;(€) since it must also centralize (z).

Observe that E| is a proper subgroup of Ns(Ey). In particular, there is an element
u of T whose class generates the center of S/ (b, z) that is in Ns(Ey). Hence, U
has an element of order £. Moreover, Ny (T)/T is isomorphic to the symmetric
group on ¢ letters. This group has an £ — 1 cycle that normalizes the subgroup
generated by the class of the element x. It must also normalize (b, z) and (u, b, z).
Consequently, U contains the subgroup B of upper triangular matrices in SL; ().
Because B is a maximal subgroup of SL;(£), we need only show that U has at least
one element that is not in B to conclude that U = SL,(£).

Let v be the Vandermonde matrix

11 1 1 £0---00
I SR S 00---0¢
v=|1 ;2 §4 42(671) sothatv2=100--- 20
1 ¢t g2 é—((—l)z ()g 06

Note that the columns (and also the rows) are eigenvectors for the matrix x with
corresponding eigenvalues 1, ¢, {2, R §£—1. Thus, we have that xv = vb. The
computation of the matrix v? is straightforward as each row is orthogonal (under
the usual dot product) to all but one of the columns.

Next we note that the determinant of v? is e£¢ = (£)* where ¢ = 1, the sign
depending on the parity of (¢ — 1)/2. Because the group F is cyclic and £ is
prime to 2, the determinant of v is also an £-th power. That is, there is some u
in [F; such that Det(v) = u! and u? = ef. Let h be the product of v with the scalar
matrix ' I. Then Det(h) = 1, h € H and xh = hb. In addition, h? has the same

form as v? except that the nonzero entries that are equal to £ in v? are replaced by &
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in 2. That is, h> = (1/e£)v?. So we find that #>xh~% = x~! by direct calculation.
Also, we have that A 'xh =b and h~'bh = x~'. So h isin N and its class in U,
identified in a subgroup of SL;(¢), is the matrix

o)

This element is not in the subgroup B, and hence we have shown that U = SL,(£).
Because Ny (Ey)/Ey is the outer automorphism group of Ey we have that
Ng(Ep) = Ny (Eo)z, where Z denotes the center of G = GL/(g). The same
holds if we replace Ep by E; since they are conjugate in G. Thus, we have that if
g € Ng(E;), then the determinant of g is an £-th power of some element in I]:;.
Finally, suppose that there is an element g in H such that gE;g~! = E jfori<j.
We know also that y/ ' E;y'~/ = E;. Therefore, '~/ g € Ng(E;). However, this
is not possible. The reason is that y is a generator of the Sylow £-subgroup of the
multiplicative group F and 0 < i — j < ¢, the determinant of y'~/ g, which is equal
to y'7/, is not an ¢-th power. Hence, if i # j, then E; is not H-conjugate to E;
and then E;/(z) is not G-conjugate to E;/(z). This proves the proposition. O

5. Groups associated to finite groups of Lie type for £ > 3

In this section we are interested in some of the groups associated to finite groups
of Lie type. Suppose that Gy = Gy, is a finite group of Lie type arising from
a simply connected simple algebraic group G. If Gg = SL,(¢) or SU,(g), let
G| =GL,(g), or GU, (g), respectively. If G is symplectic or orthogonal, take G
to be the conformal group of that type (see [Malle and Testerman 2011, pages 7—
8] and [Gorenstein et al. 1994, Section 2.7]). For example, if Gy = Sp,,(q),
then G| = CSp,,(¢), the group of all 2n x 2n-matrices X with the property that
XfX" = af for some a € F,, where f it the matrix of the symplectic form. If
Go= Spin;n (¢), then G is the conformal group CSpin;rn ().

We see below that if Gy, the fixed points of a simply connected algebraic group
under a Steinberg endomorphism, has trivial center, then we may assume that
Gy = G and any associated group is a direct product of Gy with some abelian
group. For that reason we concentrate on the classical groups. For the groups of
type Es, 2Eg and E;, we have the following. This applies also in the case that £ = 2.

Proposition 5.1. Suppose that G is the simple finite group of type Eg, *E¢ or E7.
Then for any prime £ we have that TF (G) = Z provided G has C-rank at least 2.

Proof. In the case that the group has type Eg or 2Eg, the center of Gy, coming from
the simply connected algebraic group of the same type, has order 1 or 3. If £ #£ 3,
then any inflation of an endotrivial kG-module to G, is also endotrivial, and the
proposition follows from known results. If £ = 3, then the 3-rank of G is greater
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than 4 and we are done by Theorem 2.3. The center of the group G, of type E
has order 1 or 2. The same argument as above works in this case. U

For the remainder of the section, assume that Gy = G, is a classical group, thus
having one of the types A,, 2A,,, By, Cy, D, or 2D,,. We see from Tits’ Theorem
[Malle and Testerman 2011, Theorem 24.17] that G is a perfect group, unless G
is isomorphic to one of SL1(2), SL2(3), SU3(2) or Sp,(2). Moreover, except in
those cases, |G1/Go| = |Z(G1)|, and because G/ Gy is abelian, Gy =[G, G1].

By an associated group of Go, we mean a group G = H/J, where Go < H <G
and J < Z(H) < Z(G), such that G contains the group Go/Z(Gy) as a section.
For example, in type A,_1, an associated group is a quotient G = H/J where
SL,(q) < H <GL,(¢) and J < Z(H) < Z(GL,(g)). The simple group PSL,,(¢)
is an example. In any type, a diagram for such groups has the form

where the associated group is G = H/J for J some subgroup of Z(H). Note that
J may or may not contain Z(Gy).

Our analysis will entail understanding the structure of G, and will benefit sub-
stantially from knowing when G is isomorphic to a product of groups.

Lemma 5.2. In addition to the above notation, assume that Gy = [G1, G1] is a
perfect group. Let w be the set of primes that divide the order of Z(Gg). Let
G = H/J be a section of G| as above so that Gy < H and J < Z(G) N H. Then
there exist subgroups H < H, J' < Z(H) and V < Z(H/J) such that

G=H/J=GxV
where G = H'/J', Z(G) and G /|G, G are m-groups and V is a 7'-group.
group group
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Proof. Write G1/Go = U; x Vi and Z(G1) = Uy x Vy where U; is a w-group and
Vi isam'-group fori =0, 1. Let ¢ : G| — V] be the quotient by G composed with
the projection onto V;. Let X denote the kernel of ¢. Note that Go N Vy = {1} since
Z(Gy) is a w-group. Moreover, since |G1/Go| =|Z(G1)|, we have that |Vy| = |Vy].
Consequently, the restriction of ¢ to Vj gives an isomorphism from Vj to Vi, and
G1 =X x Vo.

The subgroup H contains G, and hence it is the inverse image under the quotient
map G| — G/Gy of asubgroup U; x V| for U < Uy, V{ < Vi. Thus, H = H'x V
where H' is the inverse image under ¢ of U; and V;j = V| is the inverse image
of V| under the restriction of ¢ to V;. It follows that Z(H) = Z(H') x V;; where
Z(H') < Z(X)is am-group. Thus, J = J'x V{ for J' < Z(H') and Vj < V. The
lemma follows by letting V = V;/ V{/'. O

The main aim of the section is to prove the following theorem.

Theorem 5.3. Let Go = G* be a finite group of Lie type, where G is a classical,
simple and simply connected algebraic group. Let G be one of the associated finite
groups of Go. Assume that £ > 3 does not divide p and that the £-rank of G is at
least 2. Then TF (G) = Z except in the following cases.

(@) If G =PSL,(q) withg =1 (mod ) if ¢ > 3, and withq =1 (mod 9) if £ =3,
then TF (G) has rank £ + 1.

(b) If G =PSUy(q) with g = —1 (mod £) if £ > 3, and with g = —1 (mod 9) if
£ =3, then TF(G) has rank £ + 1.

(¢) If€ =3 and G =3Dy4(q), then TF (G) has rank 2.

Proof. The last case (c) was treated in Section 4 (see also Theorem 3.1).

Assume that the group has the form G = H/J as in the previous notation of
the section. We prove the theorem for groups of Lie type B, C,, D, and D, by
noticing that Gg = G, has center that has order either 2 or 4 [Malle and Testerman
2011, Table 24.2]. Consequently, if £ divides the order of Z(G) = Z(H)/J then
G has a direct factor that is a cyclic £-group. In such a case the center of a Sylow
£-subgroup of G has £-rank at least 2 and we are done. On the other hand, if ¢
does not divide the order of Z(G), then by Lemma 5.2, a Sylow £-subgroup of G
is isomorphic to that of Gg. These cases have already been considered.

A similar thing happens in types A, and ?A,,. That is, if £ does not divide the
order of Z(Gy), then regardless of whether £ divides |Z(G)|, we are done by the
same arguments as above. Consequently, we can assume that £ divides the order of
Z(Gy), requiring that £ divides both n 4+ 1 and ¢ — 1 in type A,,, and that £ divides
both n+1 and ¢ + 1 in type ?4,,.

For the untwisted type A,, we need to consider the case when ¢ divides both n+1
and g — 1. However, by Theorem 2.3, if n 4 1 > ¢, then the ¢-rank of G is greater
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than £, and therefore G cannot have any maximal elementary abelian £-subgroup of
rank 2. So it remains to consider the case { =n+1 withg =1 (mod £¢). Similarly, in
the twisted case A,,, we may assume that £ =n-+1 withg = —1 (mod £). In addition,
by Lemma 5.2, we may assume that the orders of J and H/G are powers of .

If J = {1}, then G < GL¢(q) or G < GUy(g). In either case, an eigenvalue
argument tells us that any element of order £ is conjugate to an element of the
diagonal torus. Hence, we are done in this case, and we may assume that J # {1}.

If J # Z(H), then there exists an element x in Z(H) such that x ¢ J but xtel.
Also, because J is not trivial, there exists an element of order £ in the diagonal torus
in H whose class in H/J is central in a Sylow £-subgroup. Thus, in such a case, the
center of a Sylow £-subgroup of H/J has £-rank 2 and we are done by Lemma 2.2.
So assume that J = Z(H). Thus, G is a subgroup of PGL;(q) or PGU,(q).

In the untwisted situation, we are down to two possibilities. First if H/Gg is a
Sylow £-subgroup of G1/Gy then J is a Sylow £-subgroup of Z(G1). In such a
case G = H/J = PGLy(q). This case has been treated in Section 4. In the other
case, that J < Z(G), we have that G = PSL,(¢g) and £ divides ¢ — 1. Similarly, in
the twisted case we are down to the situation that G = PSU,(¢) and £ divides g + 1.

Observe that if £ = 3, with 3 dividing ¢ — 1 and 9 not dividing g — 1, then a
Sylow 3-subgroup of PSL3(q) is elementary abelian of order 9. The same holds for
PSUs(gq) if 3 divides g 4+ 1 and 9 does not divide ¢ 4+ 1. Hence, TF (G) has rank
1 in both of these cases. Thus, it remains to calculate the ranks of TF (G) in the
cases (a) and (b) of the theorem. These cases are covered by Proposition 4.1. [

6. When G is simple,2 =¢ # p

The goal of this section is to establish Theorems 6.1 and 6.2. Some results of this
section will also be used in Section 8.

Theorem 6.1. Let G be a finite group of Lie type (see Definition 1.1) with the
ambient group G a simple algebraic group. Suppose { =2 # p and that TF (G)
has rank greater than 1. Then G has nonabelian dihedral Sylow 2-subgroups,
G =PGL;,(q) =PGU;,(q) forq odd, and TF(G) =7 ® Z

We also calculate the ranks of 7F (G) when G is one of the associated groups in
the case that £ = 2 is not the defining characteristic of the group. The notion of an
associated group was introduced in Section 5. We adopt the notation used at the
beginning of Section 5. In particular, G is one of the general linear or conformal
groups such as GL,(q), GU,(q) or CSp, (¢) and Go = G,.. The group G=H/J
is a section of G| such that Go < H <G and J < Z(H).

The groups of endotrivial modules for the associated groups of type A, are
determined in the paper [Carlson et al. 2016]. Our aim in this section is to take a
more conceptual and less technical approach. For this reason some arguments from
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[Carlson et al. 2016] are included here. In particular, exceptional cases occur when
Gy = SL;(g), and some additional explanation is provided.
Our main theorem to address the associated groups is the following.

Theorem 6.2. Let G = H/J be an associated group of a finite group of Lie type as
defined above with q odd, and let £ = 2. Then TF(G) = Z is cyclic except in the
following cases:
(@) G =SLa(g) =SUz(g).
(b) G =PSLy(g) x C =PSUx(g) x C withg = +1 (mod 8) and C a cyclic group
of odd order (see Lemma 5.2).
(¢) G =PGL,(g) x C =PGU,(q) x C, where C is a cyclic group of odd order.

In case (a), a Sylow 2-subgroup of G is quaternion and TF (G) = {0}. In cases (b)
and (c), Z(H)/J has odd order, a Sylow 2-subgroup of G is (nonabelian) dihedral
and TF(G)=EZ 7.

In the proof, we first show that the theorem holds for groups of large Lie rank.
The groups of small Lie rank are considered on a case by case inspection. The main
reduction theorem is taken from [Gorenstein and Harada 1974].

Theorem 6.3. Let G =GF bea finite group of Lie type in odd characteristic, with G
simple and simply connected, and set £ =2. Then TF (G) = Z, for G any associated
group to G, as defined above, provided that G is not one of the following types:

(@) A1(q), A2(q), *A2(q).

(b) As(g) forgq # 1 (mod 8).

(c) A4(q) for g =—1 (mod 4).

(d) *As(q) for g #7 (mod 8).

() 2A4(q) for g =1 (mod 4).

() Ba(g).

(2) *Da(q).

(h) G2(g), or *Ga(q).
Proof. Recall that by Tits’ theorem [Malle and Testerman 2011, Theorem 24.17]
G/Z(G) is simple, except in a few cases which are among the cases excluded
above. In [Gorenstein and Harada 1974, Main Theorem], all finite simple groups
having sectional 2-rank at most 4 are listed. If the finite simple group associated to
G is not on the above list, then G has sectional 2-rank greater than 4. See [Conway
et al. 1985, Section 3.5] or [Gorenstein et al. 1994, Theorem 2.2.10] for a list of

isomorphisms between finite groups of Lie type. So G has no maximal elementary
abelian 2-subgroups of rank 2, by Theorem 2.3(b) as desired. (]
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We may now complete the proofs of the main theorems of this section. For the
proof, recall that if G = A x B, with B of order prime to ¢, then TF(G) = TF (A),
by Proposition 2.4.

Proof of Theorems 6.1 and 6.2. By Theorem 6.3, we need only deal with the
groups listed. The Sylow 2-subgroups of finite groups of Lie type are known to be
cyclic only when G is associated to a finite group of Lie type A;(2). The groups
SL»(g) = SU»(g) have quaternion Sylow 2-subgroups, and hence TF(G) = {0} in
those cases.

Recall that for any finite group G with (nonabelian) dihedral Sylow 2-subgroup
we have TF(G) = Z & Z as it is not possible for the two S-conjugacy classes of
elementary abelian subgroups of order 4 in § to fuse in G [Mazza 2019, Section 3.7].
The Sylow 2-subgroups of the groups in Theorem 6.2(b) are nonabelian dihedral.
Note that if g =£3 (mod 8) then the Sylow 2-subgroups of PSL,(g) are elementary
abelian of order 4, and TF (PSL,(q)) = Z. It is easily verified that the Sylow 2-
subgroups of PGL,(g) = PGU;(g) are dihedral and not abelian. So TF(G) =7 &7
in this case.

An eigenvalue argument tells us that any involution in H is conjugate to a
diagonal matrix for either SL,(q) < H < GLy(g) or SUs(g) < H < GU3(g). In
the unitary case, note that the eigenspaces of an involution are orthogonal to each
other, so that we can construct a change of basis matrix that is unitary. Hence,
TF(G) = Z if J has odd order. Therefore, for the proof for groups of type A, we
need only consider quotients G = H/J where J has even order.

Note that GL,(g) is not isomorphic to GU,(q). However, arguments for these
cases are almost identical. That is, we can find ¢’ with ¢’ = —¢ (mod 4) such
that SL;(g") or GL;(g") have isomorphic Sylow 2-subgroups to those of SU>(g)
or GU,(gq), respectively [Carter and Fong 1964, Section 1]. So we prove only the
linear case.

If g = 3 (mod4), then 4 does not divide the order of Z(GL,(q)). By our
assumptions, Z(H)/J has odd order, and hence, by Lemma 5.2, Z(H)/J is a
direct factor of H/J and we are done. So we may assume that g = 1 (mod 4) and
that Z(H)/J has even order. Then there is an element z in Z(H) that represents a
nontrivial involution in H/J. In addition, the diagonal matrix with entries 1 and —1
is an involution whose image in H/J is central in a Sylow 2-subgroup and distinct
from the image of z. Thus, the center of a Sylow 2-subgroup of H/J has 2-rank
equalto 2 and TF(H/J) = Z by Lemma 2.2.

Types A,, As, A and 2A4. The proofs that TF(G) = Z for groups of type A,
and A4 are given in [Carlson et al. 2016, Sections 6 and 9]. The structure of the
Sylow 2-subgroups are very similar for the twisted and untwisted cases [Carter and
Fong 1964]. Hence, we leave the proofs of the twisted cases, 2A, and A4, to the



TORSION FREE ENDOTRIVIAL MODULES FOR FINITE GROUPS OF LIE TYPE 259

reader. We note that centers for all finite groups G of these types have odd order.
Consequently, by Lemma 5.2, the Sylow 2-subgroup of Z(H)/J of these types is a
direct factor, which can be assumed to be trivial for the purposes of the proof.

Types A3, 2A3 and B,. We prove the results only for groups of type A3 and B,
because the proofs for groups of type A3 are very similar to those of type A3 (in
the %A case, we take the matrix of the hermitian form to be the identity matrix).
Following the notation introduced at the beginning of Section 6, let Gy be SL4(g)
or Sp,(q) = Spins(g) in type Az or By, respectively. Let G; = GL4(g) in the first
case and G| = CSp,(q) in the second. Here, CSp,(q) is the group of 4 x 4 matrices
X with entries in F, having the property that X" fX = af for some a € F*, f
being the matrix of the symplectic form. For the purposes of this proof assume that
the symplectic form is given as

0

0
1 0
f= 0

S O O =
o - O O

0
0 —1

Let G = H/J be a group associated to Gg. Thatis, Go < H <G and J < Z(H).
Then a Sylow 2-subgroup § = S¢ of G is a section of a Sylow 2-subgroup Sg, of
G 1. Indeed, a Sylow 2-subgroup Sy of H is subgroup of a Sylow 2-subgroup R of
GL4(q). The group R is isomorphic to a wreath product R = (U; x U,) x C, where
Uy, U, are Sylow 2-subgroups of GL;(g) [Carter and Fong 1964]. In particular, we
use the following notation:

s(A, B) = |:13 g] , t(A,B)= [3 g:| =ws(A, B),

where these are matrices of 2 x 2 blocks, A and B are elements of GL,(g) and
w =1t(I,I). Then R is generated by all s(A, B) for A and B in Sg1,(,) and the
element # (1, I) where [ is the 2 x 2 identity matrix. Note that an element of J must
be a scalar matrix s(¢ 1, ¢ I) for some J. Because of the choices of the form, there
are Sylow 2-subgroups of CSp,(q) that respect this structure.

Note that there exist subgroups D; and My of [ that determine J and H. That
is, J is the set of all scalar matrices with diagonal entry in D;. In type A3z, H is
the subgroup of all elements in GL4(g) with determinant in My. In type By, H is
the subgroup of all X with X" fX = af for some a € My.

Suppose that J has odd order. Then, by an eigenvalue argument [Carlson et al.
2014, Lemma 3.3], any involution in H is conjugate to a diagonal matrix. Note that
in type B, (and 2A3), the eigenspaces V; and V_; corresponding to the eigenvalues
1 and —1 of an involution u are orthogonal to each other. Consequently, there
exists a change of basis matrix that conjugates u into a diagonal matrix and also



260  JON F. CARLSON, JESPER GRODAL, NADIA MAZZA AND DANIEL K. NAKANO

preserves the form, and it is an element of H. It follows that every elementary
abelian 2-subgroup in G is conjugate to a subgroup of the image modulo J of the
group of diagonal elements of order 2 in H. Hence, in this case we are finished.
For the rest of the proof assume that J has even order.

Next suppose that S; # Szu). That is, suppose that there is an element of the
center of H whose order is a power of 2, and that is not in J. In particular there
exists a scalar element of H whose square is in J. In addition, because the order of
J is even, the element s(/, —1) is central in S = S;. Thus, Z(S) has 2-rank 2 and
we are done by Lemma 2.2.

We have reduced the proof to the situation in which S; = Sz¢g). Our aim is to
show that the centralizer of every involution in § has 2-rank at least 3. This will
complete the proof in the cases of types Az and B; (and 2A3).

First consider involutions represented modulo J by a matrix of the form s(A, B)
in the case that ¢ = 1 (mod 4) and the type is A3 or B,. (The argument in the case
of type A3 with ¢ =3 (mod 4) is very similar.) In this case, a Sylow 2-subgroup
of GL,(q) is generated by the elements

01 0 —1 ¢ 0
W:[IO]’ Y=|:1 0i| and X;:[O 1i|

for £ a generator of the Sylow 2-subgroup of F 7. Let T be the subgroup of Sgr, ()
generated by the scalar matrices of the form W X n W X for any m. If the class of
u=s(A, B) € H is an involution in H/J, then A?> = B?> = 11 for some p € [Fj;. The
quotient Sgr, )/ T is a dihedral group generated by the classes of W and X;. An
involution in this group must be represented by either W or X for some m. Then if
the class of u =s(A, B) is an involution in H/J, it has either the form s (Xym, X¢m)
or s(A, B) with A and B in the subgroup V = (X_;, W). Now notice that the
subgroup generated by w and all s(A, B) with A, B € V is elementary abelian
of 2-rank at least 3. If u = s(Xm, X¢m) is in H, then so also is w and s(I, —1I),
and the classes of these elements generate a subgroup of H/J having 2-rank 3. So
we are done in this case.

Next suppose that the class of s(A, B) is an involution in H/J, in the case that
g = 3 (mod 4) and the type is A3 or B;. (The same argument works when the
type is 2A3 with ¢ = 1 (mod 4).) In this case J = Z(GL4(g)) has order 2 and
is generated by —1I4, where I is the 4 x 4 identity matrix. A Sylow 2-subgroup
SGL,(¢) 18 semidihedral. In this case one of two things can happen. The first is
that A and B are actual involutions. If A is a noncentral involution, the subgroup
generated by the classes of w, s(A, A) and s(/, —I) has 2-rank 3 in H/J. The
other possibility is that A and B have order 4 and commute modulo J. The only
possibility here is that A and B are contained in a quaternionic subgroup of order 8
in SGL,(¢)- If A is not contained in the subgroup generated by B then the classes



TORSION FREE ENDOTRIVIAL MODULES FOR FINITE GROUPS OF LIE TYPE 261

of w, s(A, B), and s(B, A) generate an elementary abelian subgroup in H/J of
order 8. Otherwise, let X be another generator of the quaternionic subgroup. Then
the classes of w, s(A, B) and s(X, X) generate an elementary abelian subgroup of
order 8. So we are done in this case.

Finally, suppose that the class of u = (A, B) = ws(A, B) is an involution
in H/J. It must be that AB = BA = pul for some u € F. Thatis, B = wA~L
In the case that the type is A3, then s(A, D7, ul)s(A, 1) =t(A, B). So every
such involution is conjugate to one of the form y, = (I, u/). In turn, any y,
commutes with any involution s (A, A) for A not central in Sgr,(4). Thus, in type As,
the centralizer of u has 2-rank at least 3, and we are done.

So suppose the type is B,. We have that ufu'” = puf implying that AYA” =Y,
as expected. A set of representatives of the generators of Sgr,(4) can be chosen so
that their product with their transpose is a scalar matrix (see the descriptions above
in addition to [Carter and Fong 1964]).

The implication is that v = #(y, y) commutes with u. Thus, the centralizer of u
has 2-rank at least 3, as it contains the image in H/J of (u, j, t(—1, I)).

To summarize, we have proved that the centralizers of the involutions in a group
associated to a finite group of Lie type A3, ?A3 and B, have 2-rank at least 3, and
so there are no maximal elementary abelian 2-subgroups of rank 2.

Types 3D4, G, and 2Gs. Fong and Milgram [1998] studied in great detail the
2-local structure of G in the case that G has type *D4 or G,, and described the
structure of the centralizers of the Klein four groups in a fixed Sylow 2-subgroup of
G. They proved that these split into two conjugacy classes and that their centralizers
both have 2-rank 3. While they assumed that g =1 (mod 4), the Sylow 2-subgroups
are isomorphic to those in the case where ¢ =3 (mod 4). So the same conclusion
is reached. A detailed description in the general case is in the paper by Fong and
Wong [1969]. Note that G,(g) embeds in 3D4(q) as a subgroup of odd index, and
hence their Sylow 2-subgroups are isomorphic (see also [Fong and Wong 1969,
Theorem]). We are left with the case of the groups >G,(3*"*!). By [Gorenstein
et al. 1994, Theorem 4.10.2(e)] (see also [Ree 1961, Theorem 8.5]), a Sylow
2-subgroup of 2G,(3%'*!) is elementary abelian of order 8, and so there are no
maximal elementary abelian 2-subgroups of rank 2.

This completes the proof of Theorems 6.1 and 6.2. (]

7. When G is simple, £ = p

When £ = p, the structure of a Sylow £-subgroup of G does not depend on the
isogeny type. However, TF (G) can and does depend on the isogeny type because
of the fusion of £-subgroups. The following theorem summarizes the calculation of
TF(G) in the defining characteristic.
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Theorem 7.1. Let G be a finite group of Lie type, as in Definition 1.1. Assume that
the ambient algebraic group G is simple, and £ = p. Then TF (G) = Z, provided G
is not one of the following types:

(@) Ai(p).
(b) “Az(p).
(©) 2B>(2%*Y) (fora = 1).
(d) 2G2(3*H) (for a = 0).
(e) Ax(p).
() B2(p).

(&) Gap).
In these exceptions, TF (G) is given in Tables 1 and 2.

We proceed to justify this result. For the simple algebraic group G fix an F-stable
maximal split torus T. Let & be the root system associated to (G, T). The positive
and negative roots are ®* and ®~, respectively, and A is a base consisting of
simple roots.

Let B be an F-stable Borel subgroup containing T corresponding to the positive
roots, and U be the unipotent radical of B. Then B =U x T with B and U being
F-stable. Set B =B" and U = U*.

There are three kinds of finite groups of Lie type G according to the type of F:
(1) the untwisted groups, (ii) the twisted (Steinberg) groups and (iii) the very twisted
groups [Carlson et al. 2006, Section 4; Gorenstein et al. 1994, Section 2.3]. In case
(i1), F involves a nontrivial graph automorphism 7 of order d of the underlying
Dynkin diagram, as well as the Frobenius map. The automorphism 7 induces a
map from @ to the twisted root system ® of G. Furthermore, we can define an
equivalence relation on ) by identifying positive colinear roots, and let @ be the set
of equivalence classes. Therefore, we have mappmgs ® — & — . Let A be the
image of A under this composition of maps and A be the i image of A under & — P.
There are root subgroups of G and these are indexed by the elements of ®. In
the case that G is untwisted then ® = & = &. In case G is a Steinberg group but
not 24,,, (g) we have =9 (see [Gorenstein et al. 1994, Section 2.3] for more
details).

As stated in the proof of [Malle and Testerman 2011, Proposition 24.21], there
is a short exact sequence of groups

12 >G> G—> Zp— 1.

In the case that £ = p, U is a Sylow p-subgroup of G. From [Malle and Testerman
2011, Table 24.2], p does not divide |Z7|. Therefore, the Sylow p-subgroups of
G and of G are isomorphic for any isogeny type, and so TF (Us.) = TF (U).
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G rank TF (G)
AZ(p)sc p= 2 2
A2(p)se | =3, p#1 (mod 3) 3
A2(P)se | p=3,p=1 (mod3) 5
A2(p)ad p=2 2
A2(P)ad p>3 3
Bx(p) p=23 1
By(p) p=5 2
Ga(p) p=2,3,5 1
Ga(p) p>17 2

Given a finite group of Lie type G where the underlying algebraic group is
simple when ¢ = p, one can make reductions to analyzing TF (G) in specific cases
as follows. First, TF (G) = Z when |K| > 3 by [Carlson et al. 2006, Theorems 7.3
and 7.5]. Note that the proofs of these results depend only on the structure of the
Sylow £-subgroups. In the case when IA|=2, by [Carlson et al. 2006, Theorems 7.3
and 7.5], TF(G) = Z unless G is Ay(p), Bx(p) or G2(p). (Recall that we use
the nonstandard notation that e.g., B>(p) without any subscript denotes any group
in this isogeny class.) The computation for TF(G) for these groups is given in
Table 1.

Finally, in the case that |K| =1, the Sylow £-subgroups are trivial intersection sub-
groups. The groups G with |A| = 1 are A1(q), 242(q), 2B>(2% 1), and 2G,(3%1).
If G = A(q) or A2(q) with g > p, the Sylow p-subgroups of G have a noncyclic
center, and therefore TF (G) = Z by Theorem 1.2. The remaining cases of TF (G)
when |/A\| =1, are in Table 2 and [Carlson et al. 2006, Section 5].

There is still some explanation needed to justify the data in the tables. We rely
on some of the computations in [Carlson et al. 2006], in cases where there is one
isogeny type. The results in [loc. cit.] were only stated for the finite groups of Lie
type arising from groups of adjoint isogeny type. Our new result, Theorem 7.1,
extends to all finite groups of Lie type. We now proceed to dissect the cases when
there is more than one isogeny type.

For A;(p) a Sylow p-subgroup is cyclic of order p, and so TF(G) does not
depend on the isogeny type. For By(p) = C»(p), we can use the calculations in
[loc. cit., Section 8] which handle B,(p),. and B2(p)aa.

Next we consider the case of A>(p) where there are two isogeny types. Let
U = U, = U,y denote a Sylow p-subgroup in either type. The Sylow p-subgroup
U of G is an extraspecial p-group of order p* and exponent p, if p > 2. Moreover,
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G rank TF (G)
A1(p) p>2 0
ZAZ(p)sc p=2 0
245(p)se | p=3, p#—1 (mod 3) 1
2A2(p)sc p= 3, p= —1 (mOd 3) 3
A2(P)aa p=2 0
?A2(P)ad p>3 1
’B>(2) 0
232(22a+]) a>0 1
2G2(32a+1) a> 0 1

Table 2. |A| = 1.

if p =2 then SL3(2) = PSL,(7) so U is a dihedral group of order 8, and has two
maximal elementary abelian 2-subgroups which are not conjugate in U or in G.
Consequently, TF(G) =7 ® Z.

If p > 2 when G is of type A2(p), then all the elements of U have order p, and
the maximal elementary abelian p-subgroups have rank 2. Set

100 o 100
Xa4p=10 10/, x&xé= i 10
101 01

The maximal elementary abelian p-subgroups of B all contain the central subgroup
generated by x4, and one can choose as the other generator an element of the
form xéxé (i.e., elements in the Frattini quotient of U, U/®(U)).

Since B = U x T stabilizes the central subgroup of U, it follows that the B-
conjugacy classes of maximal elementary abelian p-subgroups are in one to one
correspondence with the T-conjugacy classes on X = U/ D (U).

Consider the action by conjugation of the group T = {t, 5. | a, b, c € [F;} where
t4.b.c 18 the 3 x 3 diagonal matrix with entries a, b, c. Let |X/T| be the number of
T -conjugacy classes on X. Then, by a well-known lemma stated by Burnside (due
to Frobenius),

1
|X/T|:mZ|X’|.

teT
where X’ = {x € X | t.x = x}. In this case, a direct computation shows that

0, a#bandb #c,
(7-1) | X<|=3p>—1, a=b=c,
p—1, [a=bandb#c]orla#bandb=c].
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By keeping track of the number of elements that occurs in each case of (7-1), it
follows that

| X/T|= [(p = D(P> =D +2(p - D(p-2(p—D]=3.

1
(p—1)°
Consequently, for G = GL3(p), TF(B) = 7Z%3. The argument can be easily adapted
to show for G =PGL3(p), and for SL3(p) when p =1 (mod 3), one has | X/T| =3,
and TF(B) = 793.

Now, set T = {#,.5. | abc = 1} and consider SL3(p) for p =1 (mod 3). Then
(7-1) yields

1X/T| = Bp*—D+2(p—4(p—-D]=5.

1
(p—1)?
Consequently, TF(B) = 7Z%3. Finally, for all the cases when G = A(p) one has
TF(G) = TF(B) by using the Bruhat decomposition.

Next we consider the case of A5(p). When p =2, U is a quaternion group and
the 2-rank of U is 1. Therefore, in this case TF(G) = {0}.

Now assume that p > 3. The case where G = SU3(p) was done in [Carlson et al.
2006, Section 5]. This corresponds to 2A5( P)sc (not 2A5( P)aa Which is incorrectly
stated in [Carlson et al. 2006, Section 5]).

Now consider G = PGU3(p) for p > 3. We will use explicit matrices in GU3z(p)
and the conventions in [Carlson et al. 2006, Section 5]. As in the untwisted case we
consider D ={t,p.|a,b,ce [F;z}, and D NGU3(p). The relations we obtain by
intersecting are ac? = 1, b”*! =1, and ca” = 1. In U there are p + 1 elementary
abelian p-subgroups of p-rank 2 given by E; = (x;,z), 1 <i <p+1. Lett be a
generator for [F;z. The elements x; and z are defined by

1 00
xi= |t 1 0| withd; +b =¢'P+D,
(7-2) _bi 11
100
z=]1010 whereu € F 2 satisfiesu + u? = 0.
u 01

For any j, we can find a € [F;2 and b, ¢ such that a='b = t/ satisfying the
aforementioned relations as follows. Seta =¢tP~D=J p=¢P~land c =¢((P—D=Dp,
Then

1 0 0 1 0 O
(73)  tapexityy . =|a o’ 1 0|=| Ft 1 0
aleb; b ler’P 1 aleb; titDP
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One can verify that a~!cb; satisfies the equation in (7-2) with i replaced with i + j.
This shows that under conjugation by elements in D N GUj3(p), there is a single
conjugacy class among {E; | 1 <i < p+ 1}. Hence, for G = PGU;3(p) with p > 3,
TF(G)=7Z.

8. Extending the results from simple to reductive groups

Let G = G be a finite group of Lie type arising from a connected reductive
algebraic group G and a Steinberg endomorphism F of G. In this section, we show
that the torsion free rank of the group of endotrivial modules of G can be obtained
by considering the components of the decomposition of G as a product of simple
algebraic groups. Our detailed analysis completes the proofs of Theorems A and B.

From [Carter 1985, 1.8], we have that G = [G, G] - S where the derived sub-
group [G, G] is semisimple and S = Z(G)? is the connected center of G. The
intersection of these groups Z =[G, G] NS is a finite group. Therefore, we have
an exact sequence

(8-1) 1->7Z—->[G,G6]lxS—>G—1.

Set G = G* and G, =[G, G]F . Upon taking fixed points, one obtains an exact
sequence [Malle and Testerman 2011, Lemma 24.20]

(8-2) 15 2F 5 Gy xSFH 6 Zp - 1

with Zp denoting coinvariants. Here, ¥ is injective on restriction to both G
and ST

Since [G, G] is semisimple one can express [G, G] = H; - - - Hy where each H;
is a central product of n; isomorphic simple algebraic groups I; where F preserves
H; and l]-l]f = Kf " [Gorenstein et al. 1994, Proposition 2.2.11], the fixed points of
K; under F"™. So there is an exact sequence

(8-3) l>A—->H; x---xH; - [G,G] > 1

for a finite abelian group A of order prime to p. Once again, we apply [Malle and
Testerman 2011, Lemma 24.20] to get the exact sequence

(8-4) 1—>AF—>[H]f><~--><[H]f—>GSS—>AF—>1.

For each i, set H; = I]-I]Z.F < Ggs. In addition, we have the following statements.
(i) |Zp|=1Z"| and |Af| = |AT].
(i1) Suppose that x is an element in G that is not in G. For any i, conjugation by
x preserves H;. Moreover, if H; is isomorphic to SL,(g), SU,(g) or Sp, (¢),

then x induces on H; an automorphism that coincides with conjugation by an
element in (respectively) GL,(g), GU,(q) or CSp,(q).
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The equalities in (i) follow from the fact that the order of a finite group of
Lie type is independent of the isogeny type, which is a consequence of the order
formula [Malle and Testerman 2011, Corollary 24.6]. For (ii), let x € G with
x ¢ Gg. From (8-1), x = gz where g € [G, G] and z € S with 7 # 1. Here
F(x) = x, so that g~ F(g) = zF(z~!). Moreover, from (8-3), g = h1hy - - - hy
with h; € Hj for j =1,2,...,s. Because z is central and H; -- - H; is a central
product, action of conjugation by x on H; is the same as conjugation by ;. Thus,
h; is an element of H; that normalizes H;. As explained in [Gorenstein et al. 1994,
Proposition 2.5.9(b)], this means that 4; lies in the preimage of (H;/ Z)F in H;,
with Z a central subgroup of H;. Now, if H; is SL,(g), SU,(q) or Sp,(q), then
we can without restriction assume that [; is either SL,, or Sp,,. Let K; be GL, and
CSp,, respectively, and let H; be the corresponding central product, constructed
as for H;. Note that H; < Hj, that the central subgroup Z of H; is connected, and
that (H;/Z)F = (I]-I] /Z)F The preimage of (I]-I] /Z)F in H; equals I]-I]FZ as Z is
connected, so h; € I]-I]F Z. Hence, h;, and therefore x, induce the same conjugation
on H; as an element in I]-I]F which is what we claimed in (ii). The main theorem of
this section is the followmg.

Theorem 8.1. Suppose that G is a finite group of Lie type with G = G* for
G a connected reductive algebraic group over an algebraically closed field of
characteristic p, and F a Steinberg endomorphism. Assume that TF (G) has rank
greater than 1.

If ¢ # p then G = U x V where V has order prime to £ and TF (G) = TF (U).
Moreover,

(a) if2 < £ # p then U is one of the groups listed in Theorem 3.1, and
(b) if £ =2 p then U is one of the groups listed in Theorem 6.1 and V is abelian.

In the event that £ = p, then G/Z(G) = H/Z(H), where H is one of the groups in
Tables 1 and 2.

The proof is divided into three cases. First we deal with £ = p, and then with
£ # p, which is again divided into two steps depending on whether £ is odd or even.
Throughout the proof we employ the conventions introduced prior to the theorem.

Observe first that if G = U x V, and £ does not divide |V |, then the restriction
map provides an isomorphism TF(G) =-> TF(U). This is because, in this case,
any endotrivial kU-module becomes an endotrivial kG-module on inflation, so the
restriction map 7(G) — T (U) is surjective; and it has finite kernel, again because
the index of U in G is prime to £.

Proof of Theorem 8.1 when £ = p. In this case the groups Z and Z have order
relatively prime to £. Hence, v induces an isomorphism on Sylow £-subgroups.
Note that, as we are in the defining characteristic, £ divides the order of each H;.



268 JON F. CARLSON, JESPER GRODAL, NADIA MAZZA AND DANIEL K. NAKANO

However, then s = 1 in (8-4), as otherwise a Sylow £-subgroup S of G would split
as a nontrivial direct product implying TF (G) = Z by Lemma 2.2. This also means
that A =1, and G, = H;. We have a central extension ] > S —> G — G/S — 1
producing on fixed-points another central extension 1 — S¥ — G — (G/S)f — 1
where (G/S)F = IKF"' for some simple algebraic group I by [Gorenstein et al.
1994, Proposition 2.2.11]. Now set H = KF"' so that G/Z(G)=H/Z(H). Observe
that TF(G) => T F(H) by Proposition 2.4. Hence, Theorem 7.1 says that H is
one of the groups listed in Tables 1 and 2. ]

Proof of Theorem 8.1 when 3 < { # p. Assume that TF (G) is not cyclic.

Step 1: We prove first that the prime ¢ does not divide | H;| for more than one i.
Assume that TF (G) is not cyclic and that there is more than one H; whose order is
divisible by ¢. Note that £ has to divide |Z(H;)| every time it divides | H;|, since
otherwise a Sylow £-subgroup S of G splits as a nontrivial direct factor implying
that Z(S) has ¢-rank at least 2. This means that we are done by Lemma 2.2.
The tables of centers of the finite groups of Lie type [Malle and Testerman 2011,
Table 24.2] show that if ¢ divides | Z(H;)|, then H; has one of the types: A,_1(q)
for £ | (n,q — 1), 2A,_1(q) for £ | (n,q + 1), E¢(q) with £ = 3, or 2E¢(q) with
£ = 3. Hence, we can assume that H; is one of these types when £ divides |Z (H;)|.
The last two cases, involving the groups of type E, can furthermore be eliminated,
using Theorem 2.3, as the 3-ranks of Eg(g) and “E¢(q) are 6.

We now deal with the groups of type A. Because ¢ divides n, the £-ranks of
these groups are at least £ — 1. Therefore, if we have more than one H; of order
divisible by £, and none of the groups splits off as a direct factor, the £-rank of the
resulting group will be at least (£ — 1) + (£ — 1) — 1 = 2¢ — 3. This number has to
be at most £ by Theorem 2.3. So we conclude that the only possibility is that £ =3
and n = 2, assuming that ¢ divides the order of the center of H;.

Note that if there is an H; whose order is not divisible by 3, then H; is a Suzuki
group (Lie type 2B,), and these groups have trivial centers. So for the purposes
of our argument, we may assume that there are exactly two components H; and
H, both having order divisible by 3. Moreover, because Z(H;) and Z(H,) are not
trivial, we have that these groups must be the finite groups arising from the simply
connected algebraic groups, H; = SL3(g;) where 3 divides ¢; — 1, or H; = SU3(g;)
with 3 dividing ¢; + 1. Let 3" be the highest power of 3 dividing ¢; — 1 in the first
case and dividing ¢; + 1 in the second.

In the exact sequence (8-4), the image of the group A is central in H; x H,
and hence it must have order either 1 or 3. Similarly in sequence (8-2), the image
of Z¥ in H H, = G, is central and its order is either 1 or 3. We claim first that
if AF = {1}, then we are done. The reason is that then G, = H; x H, which
has 3-rank 4. The map ¥ is injective on Gy, so that G also has 3-rank 4, and we
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are finished by Theorem 2.3(a). Hence, G;; = H| H> is the central product of H;
and H, over a central subgroup of order 3.

Let S; be a Sylow 3-subgroup of H; and S a Sylow 3-subgroup of G. Each
S; can be chosen to have a maximal toral subgroup 7; = C3; x Cs; of diagonal
matrices with an element of order 3 in the form of a permutation matrix acting on
it. Thus, its center has order 3% .

Suppose that | ZF| = 1. In the event that both #; and #, are greater than 1, there are
elements y; € Z(Sy) and y; € Z(S$>) having order 9 such that y? =z and yé’ =2
are the central elements in H; and H, that are identified when A¥ is factored out.
Thus, the classes of y;y, "and z, modulo A” are in the center of S and the center
of S has 3-rank equal to 2. Consequently, we are done in this case and we may
assume that t; = 1.

Still assuming that | Z'| = 1, we are down to the situation that S; is an extraspecial
group of order 27 and exponent 3. If the class of (x, y) € S| x S, modulo A" has
order 3, then (x, y)3 =(1, y3) € AF and y has order 3. Thus, the class of (x, y)
modulo AF commutes with those of (x, 1) and (1, y). In this way we see that the
centralizer of every element of order 3 in S has 3-rank at least 3, and we are done
with this case.

We conclude that |Z¥| = 3 and we can assume that S is an extension

188 —>8S—>Zr—>1

where ZF is cyclic of order 3. From the above arguments, we know that the
centralizers of elements of order 3 in S5, have 3-rank 3. For the purposes of
this proof, assume that H; = SL3(g;). Let x € S be an element of order 3 that is
not in S78>. Then x must act on S; as conjugation by an element x of GL3(q1).
So x is conjugate (by an element SL3(g1)) to an element of the diagonal torus.
Therefore, its centralizer K in H; = SL3(g) has 3-rank 2. The same happens for
the centralizer K, of its action on H,. By a similar argument, the same condition
holds when H; or H, is isomorphic to SU3z(g). It follows that the subgroup of G
generated by x, K1 and K, has 3-rank at least 4. Hence, G has 3-rank at least 4
and we are done by Theorem 2.3(a). This completes the first step.

Step 2: In this step we complete the proof, assuming that £ divides | H;| and does
not divide | H;| for i > 1. Assume that 7F (G) has rank greater than 1. We wish to
show that G has the form U x V, where V has order prime to £ and U is one of
the groups listed in Theorem 3.1.

If £1]Z(H))|, then a Sylow £-subgroup of H; is a direct factor in some Sylow
£-subgroup of G. As the £-part of the center of a Sylow £-subgroup of G is cyclic
if the rank of TF(G) is greater than one, we conclude that |S”| is prime to £.
Hence, G has the same ¢-local structure as H;. Theorem 3.1 now shows that H is



270  JON F. CARLSON, JESPER GRODAL, NADIA MAZZA AND DANIEL K. NAKANO

isomorphic to one of the groups listed in that theorem. In particular Z(H;) =1, so
G = H; x V for some £'-group V, as asserted.

Next suppose that £ divides |Z(H;)|. Our aim is to prove that there are no groups
with TF (G) having rank greater than 1 that can occur, thus finishing the proof in
the case that £ > 3. First note that, with our assumptions, G has the same ¢-local
structure as (G/(H; - - - Hy)) ¥, and that the £-part of S* is cyclic, as the ¢-part of
Z(G) is. The rank argument from Step 1 shows that H; must have Lie type A.
More precisely, we must have H; = SL;(g) with £ | (¢ — 1) or H; = SUy(gq), with
£|(g+1). The sequence (8-2) shows that the £-local structure of G must agree with
that of a central product (Hy, ¢)A where ¢ is an element with determinant of order
¢ inside GL;(g) or GUy(g), A is cyclic of order ¢, for some ¢, and (Hy, £) N A
has order £. However, such a group has the same poset of conjugacy classes of
elementary abelian £-subgroup as (H, {), which is an associated group as defined
in Section 5. Hence, the torsion free rank of the group of endotrivial modules
cannot be larger than 1, as the group does not appear in Theorem 5.3. ([

Proof of Theorem 8.1 when 2 = £ # p. Assume first that s > 1 and that TF(G)
has rank greater than 1. We want to show that this case cannot occur. Observe first
that every factor H;, being a nonabelian finite group of Lie type, has even order, as
does H;/Z(H;). In addition, the order of the center of any factor must be even, as
otherwise a Sylow 2-subgroup of H; is a direct factor of some Sylow 2-subgroup
of G and hence its center has 2-rank greater than 1. As a result we can assume that
every H; has type A, for n odd, B,, C,, D, or E7 by the table of orders of centers
in [Malle and Testerman 2011, Table 24.2].

Recall that by Theorem 2.3, the sectional 2-rank of G can not be 5 or more.
The group G contains the direct product H,/Z(H;) x - - - x Hy/Z(Hy) as a section.
From the proof of Theorem 6.2, we know that the sectional 2-rank of a group of
type Aj or %A; is 2, while the sectional 2-rank of a group of type A, or ?A,, for
n > 3 is at least 3. In addition, the sectional 2-ranks for groups of types B, Cp,, D,
and E7 are at least 3. As a result, the only possible situation with sectional 2-rank
less than 5 occurs when there are exactly two components H; and H; both of type
Aj or 2A;. We henceforth assume that this is the situation.

Because ¥ is injective on restriction to S¥, it must be that Z* is either trivial
or has order 2. In addition, the image W of the inclusion of Z Finto G4 x ST
followed by the projection onto S must be the Sylow 2-subgroup of S¥. The
reason is that otherwise, the quotient group G /Z(Gys) x S¥'/W, which is a
section of G, has sectional 2-rank 5 and by Theorem 2.3(b), TF(G) = Z. If ZF is
trivial, then so is Zr and a Sylow 2-subgroup S of G is either a direct product or a
central product of quaternion groups. In the first case, Z(S) has 2-rank 2 and we
are done by Lemma 2.2. A direct calculation shows that all maximal elementary
abelian 2-subgroups of a central product of quaternion groups have 2-rank 3.
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Hence, we may assume that Z¥" has order 2 and that S is an extension (cf. the
exact sequence (8-2))
1—)5152—)S—>C2—>1

where Si, S, are normal quaternion subgroups and S;5; is a central product. We
have noted already that the centralizer of any involution in S; S, has 2-rank 3. We
need only show the same for any involution x not in S;S,. The involution x must
act on each §; as an element of GL;(g), which means that it must normalize, but
not centralize, some (necessarily cyclic, since S; are quaternion) subgroup (y;)
of order 4 in S| and another (y;) in S;. But then yl2 = y% is the nontrivial central
element in S5, and hence y;y; is a noncentral involution in the centralizer of
x. So we have shown Cg(x) has 2-rank at least 3. Therefore, we have reduced
ourselves to situation where s = 1.

Now assume that s = 1. We follow the pattern of Step 2 of the proof in the case
that p # £ > 3. As shown in that proof, we may assume that £ = 2 divides the
order of Z(H,), as otherwise G = H; x V where H, is one of the listed groups. In
addition we may assume that H; has sectional 2-rank at most 4. The combination
of the conditions that 2 divides | Z(H;)| and that the sectional rank be less than 5,
means that H; must have one of the types Ay, A1, As, %A5 or B; (see Theorem 6.3
and [Malle and Testerman 2011, Table 24.2]). Then, as in Step 2 of the odd
characteristic case, the 2-local structure of Hj is that of a central product. Note that
in the case that H has type B, and H; = Sp,(g), then the element ¢ has order 2
in CSp,(q). We note also that if H; has type A3, and ¢ = 1 modulo 4, then a
Sylow 2-subgroup of Hj has a rank 3 torus that is a characteristic subgroup. It
follows that TF(G) = Z, as we have seen before. The same happens if H; has
type A3 and ¢ = 3 (mod 4). Hence, the only possibilities are that H; is one of
SLy(g) = SUjy(q), SL4(g) with g = 3 (mod 4), SUy(g) with g = 1 (mod 4) or
Sp4(q). As before we conclude that the group G has the same poset of conjugacy
classes of elementary abelian 2-subgroups as an associated group to H; as defined
in Section 5. In the case that £ = 2 these groups were treated in Section 6. In
particular, Theorem 6.2 is sufficient to finish the proof. U

This finishes the proof of Theorem 8.1. We now verify that this indeed proves
the main theorems.

Proof of Theorems A and B. First recall that Theorem B is equivalent to Theorem A
by Theorem 1.2, where in Theorem B we have sorted the list by £-rank instead of
by prime. To verify Theorem A, suppose that TF(G) has rank greater than 1.

If £ # p and £ > 2, then Theorem 8.1(a) says that G = H x K where £1|K| and
H is listed in Theorem 3.1, which is the list in Theorem A(1) with £ # 2.

If £ # p and ¢ =2 then Theorem 8.1(b) tells us that G = H x K with £ 1 |K|
and H = PGL;(g) = PGU;(g), which is the list in Theorem A(1) with £ = 2.
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Now suppose that £ = p. Then, the last part of Theorem 8.1 demonstrates that
G/Z(G)= H/Z(H), where H is one of the groups in Theorem 7.1 with the rank
of TF(H) greater than 1. An inspection of Tables 1 and 2 now shows that H is
either 2A2(p)sc with 3 | p+ 1, A2(p)se, A2(Plad> B2(p)se With p > 5, Ba(p)aa
with p > 5, or G>(p) with p > 7. This produces the list for G/Z(G) = H/Z(H)
given in Theorem A(2), by translating into classical group notation.

The theorems and tables quoted in Theorem A give the indicated ranks, finishing
the proof of that theorem. ([l
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