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ON DONKIN’S TILTING MODULE CONJECTURE I:

LOWERING THE PRIME
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AND PAUL SOBAJE

In memory of James E. Humphreys

Abstract. In this paper the authors provide a complete answer to Donkin’s
Tilting Module Conjecture for all rank 2 semisimple algebraic groups and
SL4(k) where k is an algebraically closed field of characteristic p > 0. In
the process, new techniques are introduced involving the existence of (p, r)-
filtrations, Lusztig’s character formula, and the GrT-radical series for baby

Verma modules.

1. Introduction

1.1. In 1990, Donkin at an MSRI conference stated a series of conjectures about
reductive algebraic group representations in characteristic p > 0. One of the conjec-
tures known as the Tilting Module Conjecture (TMC) (see Conjecture 2.2.1) states
that a projective indecomposable module for the Frobenius kernel Gr of a semisim-
ple group G can be realized as the restriction of a specific tilting module for G.
A solution to this conjecture implies a positive answer to the Humphreys-Verma
Conjecture (cf. [Hum06, 10.4 Question]) that such a projective indecomposable
Gr-module admits a G-structure.

There have been numerous attempts over the past 30 years to prove the
Humphreys-Verma Conjecture and later the Tilting Module Conjecture. Ballard
[B78] first proved the Humphreys-Verma Conjecture for p ≥ 3h − 3 and Jantzen
[Jan80] lowered this bound to p ≥ 2h−2, where h is the Coxeter number associated
to the root system Φ for G. Jantzen’s general lower bound has long stood as the
sharpest known lower bound, even though it was suspected that the Tilting Module
Conjecture should hold for all primes. In an unexpected breakthrough in 2019, the
authors of this paper discovered the first counterexample to the TMC when the
group has root system Φ of type G2 and p = 2.

Many people have tried unsuccessfully to lower the bound on p and the only
other cases that the TMC was known to hold for all primes are when Φ = A1 or
A2. The goal of this paper is to introduce new ideas and techniques that enable us
to verify the TMC in many other cases. These ideas originate from the fundamental
work of Kildetoft-Nakano [KN15] and Sobaje [So18] that relates the TMC to the
existence of good (p, r)-filtrations. As a byproduct of our work, we provide a new
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proof of Jantzen’s lower bound. Furthermore, we provide a complete answer for all
rank 2 groups and Φ = A3 for all primes.

Theorem 1.1.1. Let G be a simple, simply connected algebraic group scheme de-
fined and split over Fp and Φ be its associated root system. The Tilting Module
Conjecture holds if

(a) Φ = An, n ≤ 3;
(b) Φ = B2;
(c) Φ = G2 as long as p �= 2.

The most difficult case to verify in Theorem 1.1.1 is when Φ = G2, p = 7. The
verification of the TMC in this case employs several deep results which include
the validity of Lusztig’s Conjecture and the description of the GrT -radical series
of baby Verma modules (provided in Appendix A) via the computation of inverse
Kazhdan-Lusztig polynomials.

The authors have recently constructed examples for Φ = B3 (p = 2) and Φ =
C3 (p = 3) where the TMC fails, so the case when G has rank 3 is much more
complicated. These counterexamples along with others will appear in a forthcoming
paper [BNPS21]. With new insights, techniques and examples, we aim to be able
to determine all primes for which the TMC holds.

The work in this paper also has application to character formulas for G-modules.
In [RW20], Riche and Williamson proved for all p that the characters of indecom-
posable tilting modules can be given via p-Kazhdan-Lusztig polynomials, extending
the results from [RW18] and [AMRW19]. In [So20], it was shown that one can al-
ways choose an r ≥ 1 large enough (depending on G) such that the characters of
the simple G-modules can be derived from the characters of the tilting modules
with highest weights in the set (pr − 1)ρ + X1, where ρ denotes the Weyl weight
and X1 denotes the set of p-restricted dominant weights. The bound on r is in
general not optimal, which is a drawback from a computational perspective given
that the complexity in finding tilting characters grows substantially as the highest
weight increases. The TMC is a key statement because the optimal bound of r = 1
is achieved precisely when Donkin’s Tilting Module Conjecture is valid.

1.2. The paper is organized as follows. In Section 2, we provide the notation that
will be used throughout the paper and formally state the Tilting Module Conjecture.
We then prove a result about the existence of good (p, r)-filtrations for induced
modules and how methods involving translation functors reduced our consideration
of the TMC to regular weights (when p ≥ h).

In the following section (Section 3), we start by presenting a general theorem
involving weight combinatorics and root pairings that can be employed to verify
the TMC. Later, in this section, it is shown how this theorem can be used to
recover Jantzen’s lower bound by proving the TMC for p ≥ 2h− 2. In general, the
conditions in the theorem break down for smaller primes, but due to some fortunate
circumstances, this approach can be later used to verify the TMC for Φ = B2 with
p = 3 and Φ = G2 with p = 5. At the end of the section, the case when p = 2h− 3
is analyzed and results are provided for when the TMC holds.

Section 4 is devoted to investigating the intriguing connection between splitting
of maps, the existence of good (p, r)-filtrations, and the validity of the TMC. This
analysis culminates in Theorem 4.4.1 which gives sufficient representation-theoretic
conditions on a finite set of modules for the TMC to hold. The main theorem of the
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paper (Theorem 1.1.1) is proved in Sections 5 through 8. It is important to note
that one single argument cannot handle all these cases and we appeal to a myriad
of old and new techniques to treat each case separately.

2. Filtrations and translation

2.1. Notation. The notation for the most part follows the standard conventions
in [Jan03].1 Let G be a connected semisimple algebraic group scheme defined and
split over Fp with Frobenius morphism F . The rth Frobenius kernel will be denoted
by Gr, and its graded version by GrT . Given a split maximal torus T , let X be
the set of weights for G, X+ be the dominant weights for G, and Xr be the pr-
restricted weights. For λ ∈ X+, there are four fundamental families of G-modules
(each having highest weight λ): L(λ) (simple), ∇(λ) (costandard/induced), Δ(λ)
(standard/Weyl), and T (λ) (indecomposable tilting).

Let τ : G → G be the Chevalley antiautomorphism of G that is the identity
morphism when restricted to T (see [Jan03, II.1.16]). Given a finite dimensional G-
module M (over a field k of characteristic p), the module τM is M∗ (the ordinary
k-linear dual of M) as a k-vector space, with action g.f(m) = f(τ (g).m). This
defines a functor from G-mod to G-mod that preserves the character of M . In
particular, it is the identity functor on all simple and tilting modules.

For each μ ∈ X and positive integer r, there is a baby Verma module:

Ẑ ′
r(μ) := indGrB

B μ.

Let ρ be the sum of the fundamental weights and Str = L((pr−1)ρ) be the rth Stein-
berg module. For λ ∈ Xr, let Qr(λ) denote the Gr-projective cover (equivalently,

injective hull) of L(λ) as a Gr-module. For λ ∈ X, if L̂r(λ) is the correspond-

ing simple GrT -module, let Q̂r(λ) denote the GrT -projective cover (equivalently,

injective hull) of L̂r(λ). If λ ∈ Xr, set

λ̂ = 2(pr − 1)ρ+ w0λ,

where w0 is the longest element in the Weyl group W . Let h denote the Coxeter
number for the root system associated to G.

We need to introduce another important class of modules. For λ ∈ X+ with
unique decomposition λ = λ0+prλ1 with λ0 ∈ Xr and λ1 ∈ X+, define ∇(p,r)(λ) =
L(λ0) ⊗ ∇(λ1)

(r) where (r) denotes the twisting of the module action by the rth
Frobenius morphism. A G-module M has a good filtration (resp. good (p, r)-
filtration) if and only if M has a filtration with factors of the form ∇(μ) (resp.
∇(p,r)(μ)) for suitable μ ∈ X+. In the case when r = 1, good (p, 1)-filtrations are
often referred to as good p-filtrations. The similar notion of a Weyl (p, r)-filtration
can be defined using the modules Δ(p,r)(λ) = L(λ0)⊗Δ(λ1)

(r).2

2.2. Donkin’s tilting module conjecture. Given the notation in the preceding
section, we can formally state Donkin’s Tilting Module Conjecture.

Conjecture 2.2.1. For all λ ∈ Xr, T (λ̂)|GrT
∼= Q̂r(λ).

1The notation for the induced and Weyl modules is provided via the costandard and standard
module conventions in the highest weight category literature.

2This notation is used in [KN15] to denote a different class of modules.
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Alternatively, a more symmetric statement of the conjecture is that

T ((pr − 1)ρ+ λ)|GrT
∼= Q̂r((p

r − 1)ρ+ w0λ)

for all λ ∈ Xr. We remark that the statement of Conjecture 2.2.1 can also be

formulated by replacing GrT by Gr, and Q̂r(λ) with Qr(λ). The tilting module

T (λ̂) has L(λ) appearing with multiplicity one in both its G-socle and Gr-socle
(and by duality, appears with multiplicity one in its semisimple quotients over G
and Gr respectively).

We now demonstrate that to verify the TMC holds for r ≥ 1, it suffices to show
that it holds for r = 1.

Proposition 2.2.2. The TMC holds for G1 if and only if it holds for Gr for all
r > 1.

Proof. Suppose that the TMC holds for G1. Let λ ∈ Xr, and write λ = λ0 + pλ1 +
· · ·+pr−1λr−1 with each λi ∈ X1. From [Jan03, II.11.15], one obtains by induction
that there is an isomorphism of G1T -modules

Q̂r(λ) ∼= Q̂1(λ0)⊗ Q̂1(λ1)
(1) ⊗ · · · ⊗ Q̂1(λr−1)

(r−1).

Since the TMC holds for G1, this module also carries the G-structure

T (λ̂0)⊗ T (λ̂1)
(1) ⊗ · · · ⊗ T (λ̂r−1)

(r−1),

which a repeated application of [Jan03, Lemma E.9] shows to be isomorphic to the
tilting module T (2(pr − 1)ρ+ w0λ). Since its highest weight is in (pr − 1)ρ+X+,

it is projective over Gr [Jan03, Lemma E.8], and thus is a lift to G of Q̂r(λ). This
proves that the TMC holds for Gr.

Conversely, if the TMC fails for G1, then there is a weight λ ∈ X1 such that

T (λ̂) is of larger dimension than Q1(λ) (which must split off as a G1-summand).
For any r > 1, the indecomposability of the tilting module Str−1 over Gr−1 implies
that

Str−1 ⊗T (λ̂)(r−1) ∼= T ((pr−1−1)ρ+(pr−1)λ̂) = T (2(pr−1)ρ+w0((p
(r−1)−1)ρ+λ)).

Over Gr−1T , we have an isomorphism

Q̂r((p
(r−1) − 1)ρ+ pr−1λ) ∼= Str−1⊗Q̂1(λ)

(r−1).

It now follows by a dimension argument that

T (2(pr − 1)ρ+ w0((p
(r−1) − 1)ρ+ λ)) �∼= Q̂r((p

(r−1) − 1)ρ+ pr−1λ).

Thus, the TMC fails for Gr when r > 1 as well. �

2.3. Induced modules and good (p, r)-filtrations. For a dominant weight μ,
a long-standing question asks when ∇(μ) admits a good (p, r)-filtration. We will
see later (Theorem 4.4.1) that an affirmative answer to this question can provide a
means of verifying the TMC.

One potential approach to the good (p, r)-filtration question is to make use of
the structure of baby Verma modules and the fact that

∇(μ) = indGB μ = indGGrB ◦ indGrB
B μ = indGGrB Ẑ ′

r(μ).
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For any μ ∈ X+, Ẑ
′
r(μ) admits a composition series with simple GrB-compositions

factors of the form L(σ0)⊗prσ1 for σ0 ∈ Xr and σ1 ∈ X. With any such composition
factor, note that (cf.[Jan03, II.9.13(2)])

indGGrB(L(σ0)⊗ prσ1) ∼= L(σ0)⊗ indGGrB(p
rσ1)

∼= L(σ0)⊗ [indGB σ1]
(r)

= L(σ0)⊗∇(σ1)
(r).

Theorem 2.3.1 (stated in a very general context) gives several different conditions
on the terms of such a composition series to show that ∇(μ) admits a good (p, r)-
filtration. The first of these conditions is certainly well-known and encompasses
the conditions given in [Jan03, Prop. II.9.14].

Theorem 2.3.1. Let M be a finite-dimensional B-module and let

0 = N0 ⊆ N1 ⊆ N2 ⊆ · · · ⊆ Nt = indGrB
B M

be a composition series as a GrB-module for indGrB
B M with Ni/Ni−1

∼= L(μi)⊗prσi

where μi ∈ Xr and σi ∈ X for i = 1, 2, . . . , t. Suppose that one of the following
conditions holds

(a) for all 1 ≤ j ≤ t, R1 indGB σj = 0;
(b) for all 1 ≤ j < i ≤ t with μi = μj,

HomG(∇(σi), R
1 indGB σj) = 0;

(c) both of the following hold:

(i) for all 1 ≤ i ≤ t, R2 indGB σi = 0, and
(ii) for all 1 ≤ j < i ≤ t with μi = μj, either

HomG(∇(σi), R
1 indGB σj) = 0

or any non-zero homomorphism ∇(σi) → R1 indGB σj is an isomor-
phism.

Then indGB M has a good (p, r)-filtration.

Proof. Recall the definition of ∇(p,r)(λ) from Section 2.1. We first make a general
observation: for any i, j,

HomG

(
∇(p,r)(μi + prσi), L(μj)⊗ [R1 indGB σj ]

(r)
)

= HomG

(
L(μi)⊗∇(σi)

(r), L(μj)⊗ [R1 indGB σj ]
(r)

)
∼= HomG/Gr

(
∇(σi)

(r),HomGr
(L(μi), L(μj))⊗ [R1 indGB σj ]

(r)
)
�= 0

(2.3.1)

implies that μi = μj (since μi, μj ∈ Xr) and HomG(∇(σi), R
1 indGB σj) �= 0. In

particular, the ith and jth composition factors must have the same isotypic com-
ponent.

If condition (a) holds, the long exact sequence in induction could be used to prove
the claim. However, since condition (a) immediately implies condition (b), we sim-
ply provide a proof of the claim under condition (b). To that end, assume condition
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(b) holds. We will first show that HomG(∇(p,r)(μi + prσi), R
1 indGGrB Nk) = 0 for

all i and k via induction on k. For k = 1, one has

R1 indGGrB N1
∼= R1 indGGrB (L(μ1)⊗ prσ1) ∼= L(μ1)⊗ [R1 indGB σ1]

(r),

so the claim follows by using the hypothesis and (2.3.1).

Now assume that HomG(∇(p,r)(μi + prσi), R
1 indGGrB Nk−1) = 0 for all i. Con-

sider the short exact sequence

0 → Nk−1 → Nk → Nk/Nk−1 → 0.

One has a long exact sequence

0 → indGGrB Nk−1 → indGGrB Nk → indGGrB Nk/Nk−1
φ→ R1 indGGrB Nk−1 → · · · .

By the induction hypothesis the map φ is zero, therefore, one has an exact sequence

0 → R1 indGGrB Nk−1 → R1 indGGrB Nk → R1 indGGrB Nk/Nk−1.

Now by the induction hypothesis, the hypothesis of the proposition, and (2.3.1),

HomG(∇(p,r)(μi + prσi), R
1 indGGrB Nk−1) = 0

and

HomG(∇(p,r)(μi + prσi), R
1 indGGrB Nk/Nk−1) = 0

for all i. Consequently,

HomG(∇(p,r)(μi + prσi), R
1 indGGrB Nk) = 0

for all i.
We will next show that indGGrB Nk has a good (p, r)-filtration for all k. In par-

ticular, this will show that indGB Nt = indGGrB ◦ indGr

B M = indGB M has a good
(p, r)-filtration. For k = 1, one has

indGGrB N1
∼= indGGrB (L(μ1)⊗ prσ1) ∼= L(μ1)⊗ [indGB σ1]

(r),

which verifies the claim.
Now assume that indGGrB Nk−1 has a good (p, r)-filtration and consider the short

exact sequence,

0 → Nk−1 → Nk → Nk/Nk−1 → 0.

One has a long exact sequence

0 → indGGrB Nk−1 → indGGrB Nk → indGGrB Nk/Nk−1
φ→ R1 indGGrB Nk−1 → · · · .

Recall that indGGrB Nk/Nk−1
∼= ∇(p,r)(μk+prσk). By the first part, HomG(∇(p,r)(μi

+ prσi), R
1 indGGrB Nk−1) = 0 for all i, so the map φ is zero. Hence, indGGrB Nk has

a good (p, r)-filtration.

Lastly, consider scenario (c). We first show by induction on k that R2 indGGrB Nk

= 0 for all 1 ≤ k ≤ t. This holds by assumption for k = 1. For arbitrary k, consider
the short exact sequence

0 → Nk−1 → Nk → Nk/Nk−1 → 0

and the associated long exact sequence

· · · → R2 indGGrB Nk−1 → R2 indGGrB Nk → R2 indGGrB Nk/Nk−1 → · · · .
Since the rightmost term is zero by assumption and the leftmost term is zero by
the inductive hypothesis, the middle term is also zero as claimed.
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We now proceed to show inductively on k that indGGrB Nk has a good (p, r)-

filtration for all k. To do so, we simultaneously show inductively that R1 indGGrB Nk

has a filtration with factors of the formR1 indGGrB Nj/Nj−1
∼= L(μj)⊗[R1 indGB σj ]

(r)

for 1 ≤ j ≤ k (not necessarily all j appearing). Both claims trivially hold for k = 1,
so we now proceed inductively. Consider again the short exact sequence

0 → Nk−1 → Nk → Nk/Nk−1 → 0

and the beginning of the associated long exact sequence

0 → indGGrB Nk−1 → indGGrB Nk → indGGrB Nk/Nk−1

φ→ R1 indGGrB Nk−1 → R1 indGGrB Nk → R1 indGGrB Nk/Nk−1 → 0,

where the culminating zero term is due to the vanishing of R2 shown above. By
induction, we may assume that indGGrB Nk−1 admits a good (p, r)-filtration and

R1 indGrB Nk−1 admits a filtration with factors of the form R1 indGGrB Nj/Nj−1
∼=

L(μj)⊗ [R1 indGB σj ]
(r) for some 1 ≤ j ≤ k − 1.

If the map φ is zero, then exactness immediately gives the claims for indGGrB Nk

and R1 indGGrB Nk. Suppose now that φ is non-zero. Then indGGrB Nk/Nk−1
∼=

∇(p,r)(μk + prσk) is necessarily non-zero. By the inductive assumption on

R1 indGGrB Nk−1, the original assumption (ii), and (2.3.1), the map φ must be an

injection, from which it follows that indGGrB Nk
∼= indGGrB Nk−1 and, hence, ad-

mits a good (p, r)-filtration. Furthermore, φ must be an isomorphism onto one

of the R1 indGGrB Nj/Nj−1 factors. Thus exactness gives the claimed filtration on

R1 indGGrB Nk. �

In our applications of interest, it will suffice to consider the case r = 1. The
following gives a weight condition that can be used to verify that R1 indGB σ1 = 0
and potentially apply the preceding proposition. By α0 and α̃ we denote the highest
short root and the highest long root of the root system, respectively.

Proposition 2.3.2. Let μ, σ0 ∈ X1 and σ1 ∈ X. If L(σ0) ⊗ pσ1 is a G1B-

composition factor of Ẑ ′
1((p − 1)ρ + μ) and R1 indGB σ1 �= 0, then there exists a

simple root αi and a weight γ in the weight lattice of St1 such that

(2.3.2) 〈γ, α∨
i 〉 ≤ −2p− 〈σ0, α̃

∨〉 − 〈μ, α∨
i 〉 ≤ −2p.

Proof. If L1(σ0)⊗pσ1 is a composition factor of Ẑ ′
1((p−1)ρ+μ) with R1 indGB σ1 �= 0,

then there exists a simple root αi with 〈σ1, α
∨
i 〉 ≤ −2 (cf. [Jan03, Prop. II.5.4]).

Furthermore, any weight of the form wσ0 + pσ1, with w ∈ W , also appears in the

weight lattice of Ẑ ′
1((p− 1)ρ+ μ). We may choose w such that −w−1αi ∈ {α0, α̃}.

Then 〈wσ0, α
∨
i 〉 ≤ −〈σ0, α̃

∨〉. The weight lattice of Ẑ ′
1((p − 1)ρ + μ) is obtained

from the weight lattice of St1 by simply adding μ to each weight. There has to
exist a γ in the weight lattice of St1 such that γ = wσ0+pσ1−μ. Taking the inner
product with α∨

i yields the assertion. �

2.4. Translation and (p, r)-filtrations. Let T ν′

ν denote the translation functor
associated to weights ν, ν′ ∈ CZ (closure of the bottom alcove). In cases when
p ≥ h, we prove below that for a given G it is sufficient to prove the TMC when
r = 1 for regular restricted weights.
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Proposition 2.4.1. If p ≥ h, then it is sufficient to verify the TMC for r = 1 and
all λ ∈ X1 ∩Wp · 0.

Proof. Assume that p ≥ h and that T (λ̂)|G1T
∼= Q̂1(λ) for all λ ∈ X1 ∩ Wp · 0.

Given γ ∈ X1 there exist unique μ ∈ CZ and w ∈ Wp such that γ = w · μ and w · 0
is minimal among all wx · 0 with x ∈ StabWp

(μ). In addition, we denote by ŵ the
element of Wp defined via ŵ · 0 = 2(p− 1)ρ+ w0(w · 0) = p · 2ρ+ (w0w) · 0. Then
ŵ · μ = 2(p − 1)ρ + w0(w · μ) = 2(p − 1)ρ + w0γ = γ̂. Moreover, w0w.0 will be
maximal among all w0wx · 0 with x ∈ StabWp

(μ), as will be ŵ · 0 among all ŵx · 0.
By [And00, Proposition 5.2], T 0

μT (γ̂) = T 0
μT (ŵ·μ) = T (ŵ·0). Similarly, it follows

from [Jan03, II 11.10] that T 0
μQ̂1(γ) = T 0

μQ̂1(w·μ) = Q̂1(w·0). We know that Q̂1(γ)

is a G1T -summand of T (γ̂). Therefore, we can write T (γ̂)|G1T
∼= Q̂1(γ)⊕M , where

M is either zero or an injective G1T -module. But now M �= 0 implies T 0
μM �= 0.

This would contradict our assumption that T (ŵ ·0)|G1T
∼= Q̂1(w ·0). Hence, M = 0

and T (γ̂)|G1T
∼= Q̂1(γ). �

One of the main methods to verify the TMC is to show that (i) for each λ ∈
Xr, Str ⊗L(λ) has a good filtration and (ii) ∇(λ̂) has a good (p, r)-filtration (see
Theorem 4.4.1 and [So18, Theorem 1.2.1]).

Recall that good and Weyl filtrations behave well under translation (cf. [Jan03,
II.7.13]). For any ν, ν′ ∈ CZ, if M has a good or Weyl filtration, then so does

T ν′

ν (M). One would like this to be true for good (p, r)-filtrations or Weyl (p, r)-
filtrations in order to verify (ii). In the context of Weyl (p, r)-filtrations, it was
observed (without formal proof) in [PS15] that this holds in some cases. We provide
a proof of this statement here.

Proposition 2.4.2. Let M be a rational G-module and ν, ν′ ∈ CZ. Assume that
p ≥ h. If M has a good (p, r)-filtration (Weyl (p, r)-filtration) such that each factor

∇(p,r)(λ) (Δ(p,r)(λ), respectively) has λ being p-regular. Then T ν′

ν (M) admits a
good (p, r)-filtration (Weyl (p, r)-filtration, respectively).

Proof. As observed in [PS15, Section 5], for a p-regular weight λ, T ν′

ν (Δ(p,r)(λ)) is
either zero or another Δ(p,r)(μ) for some μ ∈ X+. We provide the details of the
equivalent claim in the dual case of ∇(p,r)(λ). To do so, we also need to work in the

category of GrB-modules, where we have the simple module L̂r(σ) = L(σ)|GrB for

a σ ∈ Xr and the GrB-translation functor T̂ ν′

ν . Write λ = λ0 + prλ1 for λ0 ∈ Xr.
Then we have

∇(p,r)(λ) = ∇(p,r)(λ0 + pλ1) = L(λ0)⊗∇(λ1)
(r) = L(λ0)⊗ [indGB λ1]

(r)

∼= indGGrB(L(λ0)|GrB ⊗ prλ1) ([Jan03, II.9.13(3)])

= indGGrB(L̂r(λ0)⊗ prλ1)

∼= indGGrB(L̂r(λ0 + prλ1)) ([Jan03, II.9.6(6)]).

From [CPS09, Lemma 3.1(b)], one has

T ν′

ν

(
∇(p,r)(λ)

)
= T ν′

ν

(
indGGrB

(
L̂r(λ0 + prλ1)

))

= indGGrB

(
T̂ ν′

ν

(
L̂r(λ0 + prλ1)

))
.
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Under the assumption that λ is p-regular, T̂ ν′

ν takes a simple to another simple
or zero (cf. [Jan03, II.9.22]. So, reversing the argument above, one obtains some
∇(p,r)(μ) or zero. Since translation functors are exact, the filtration claims follow.

�

3. New general techniques involving truncated categories

3.1. In this section we give a generalization of Jantzen’s classic result on lifting of
the G1-PIMs when p ≥ 2h − 2. This method of proof is different. It is what one
might call “weight-based,” in that it primarily relies upon weight combinatorics.
Such methods break down for smaller primes, as Jantzen notes. Nonetheless, in at
least one specific small prime case dealt with in this paper, this general method is
useful, and it also gives important information when dealing with higher Frobenius
kernels.

For a weight τ ∈ X+, we denote by Mod(τ ) the truncated subcategory of all
finite-dimensional rational G-modules whose highest weights are less than or equal
to τ .

Proposition 3.1.1. For r ≥ 1, let λ0, σ ∈ Xr and λ1 ∈ X+ with λ = λ0+prλ1 ≤ σ.
Suppose one of the following conditions holds.

(a) Assume that all weights η ∈ X+ satisfy

(3.1.1) If prη ≤ −w0σ + λ0, then Ext1G(L(−w0λ1), L(η)) = 0.

(b) Let d be the smallest integer such that 〈η, α∨
0 〉 = d and Ext1G(L(−w0λ1),

L(η)) �= 0 for η ∈ X+. Assume

pr · d > 〈−w0σ + λ0, α
∨
0 〉.

Then Str ⊗L(λ) is both injective and projective in Mod((pr − 1)ρ+ σ).

Proof. (a) Let μ ∈ X+ be such that μ ≤ (pr − 1)ρ+ σ. In order to prove the injec-
tivity, it suffices to show that Ext1G(L(μ), Str ⊗L(λ)) ∼= Ext1G(L(μ), Str ⊗L(λ0) ⊗
L(λ1)

(r)) vanishes. Note that

Ext1G(L(μ), Str ⊗L(λ0)⊗ L(λ1)
(r)) ∼= Ext1G(Str ⊗L(−w0λ1)

(r), L(μ)∗ ⊗ L(λ0))

by [Jan03, I.4.4] and the self-duality of Str. Applying [Jan03, II.10.4], the only
composition factors of L(μ)∗ ⊗ L(λ0) that can be extended by Str ⊗L(−w0λ1)

(r)

must have the form Str ⊗L(η)(r). Using the five term exact sequence in the Lyndon-
Hochschild-Serre spectral sequence, we have

Ext1G(Str ⊗L(−w0λ1)
(r), Str ⊗L(η)(r)) ∼= Ext1G/Gr

(L(−w0λ1)
(r), L(η)(r))

∼= Ext1G(L(−w0λ1), L(η)).

The simple module Str ⊗L(η)(r) is a composition factor of L(μ)∗ ⊗ L(λ0), thus
(pr − 1)ρ+ prη ≤ −w0μ+ λ0. Since μ ≤ (pr − 1)ρ+ σ, any such η must satisfy

(pr − 1)ρ+ prη ≤ (pr − 1)ρ− w0σ + λ0

which implies

prη ≤ −w0σ + λ0.
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Now Condition (3.1.1) guarantees vanishing of Ext1G(L(−w0λ1), L(η)) and hence
also of Ext1G(L(μ), Str ⊗L(λ)). Therefore, Str ⊗L(λ) is an injective object in
Mod((pr − 1)ρ+ λ). By the isomorphism

Ext1G(Str ⊗L(λ), L(μ)) ∼= Ext1G(L(μ), Str ⊗L(λ)) = 0,

it follows that Str ⊗L(λ) is also a projective object in Mod((pr − 1)ρ+ σ).
(b) Let d be the smallest integer such that 〈η, α∨

0 〉 = d and Ext1G(L(−w0λ1, L(η))
�= 0 for η ∈ X+. The assumption pr · d > 〈−w0σ+λ0, α

∨
0 〉 forces prη � −w0σ+λ0,

and the result follows from part (a). �

3.2. Observe that if Str ⊗L(λ) is both injective and projective in Mod((pr−1)ρ+λ),
then it is necessarily tilting. To see this, recall the general fact that, for a G-module
M , if Ext1G(Δ(μ),M) �= 0, then M must have a composition factor L(γ) with
γ > μ. Consider Ext1G(Δ(μ), Str ⊗L(λ)) for an arbitrary dominant weight μ. Since
the highest weight of Str ⊗L(λ) is (pr−1)ρ+λ, by the aforementioned observation,
this Ext-group can only be non-zero if Δ(μ) ∈ Mod((pr − 1)ρ + λ). However, in
that case, the Ext-group vanishes by the injectivity assumption. Hence, Str ⊗L(λ)
has a good filtration. By a dual argument with ∇(μ), one sees that it also admits a
Weyl filtration and hence is tilting. The next result shows that under certain injec-
tivity/projectivity conditions in the truncated category, one can explicitly identify
tilting modules restricted over GrT with specific projective indecomposable mod-
ules.

Proposition 3.2.1. For r ≥ 1, let λ0, σ ∈ Xr and λ1 ∈ X+ with λ = λ0+prλ1 ≤ σ.
If Str ⊗L(λ0) is injective and projective in Mod((pr − 1)ρ + λ0) and Str ⊗L(λ) is
injective and projective in Mod((pr − 1)ρ+ σ), then

T ((pr − 1)ρ+ λ) |GrT
∼= Q̂r((p

r − 1)ρ+ w0λ)⊗ L(λ1)
(r)

as a GrT -module.

Proof. Note that λ ≤ σ implies that Str ⊗L(λ) is also injective and projective in
Mod((pr−1)ρ+λ). We will first discuss the case λ1 = 0. Let I denote the injective
hull of L((pr − 1)ρ+w0λ) in the truncated category Mod((pr − 1)ρ+ λ). Observe
that

HomG(L((p
r − 1)ρ+ w0λ0), Str ⊗L(λ0))

∼= HomGr
(L((pr − 1)ρ+ w0λ), Str ⊗L(λ0))

∼= k.

Therefore, the injective I appears exactly once as an indecomposable G-summand
of Str ⊗L(λ0). If one views I as a Gr-module, it is a direct sum of some Qr(γ)s.
However, the G and Gr-socle of I are both simple. It follows that I ∼= Qr((p

r−1)ρ+
w0λ0). But, since Str ⊗L(λ0) is tilting, the injective hull I is also an indecomposable
tilting module. It contains the highest weight (pr−1)ρ+λ0. Hence, Qr((p

r−1)ρ+
w0λ0) ∼= I ∼= T ((pr − 1)ρ+ λ0).

If λ1 �= 0 one can write Str ⊗L(λ) ∼= Str ⊗L(λ0) ⊗ L(λ1)
(r). From the earlier

discussion, it follows that the tensor product has T ((pr − 1)ρ + λ0) ⊗ L(λ1)
(r) as

a G-summand. This module (being a summand of a tilting module) is tilting and
has simple G-socle L(λ). It is therefore isomorphic to I and as a GrT -module

isomorphic to Q̂r((p
r − 1)ρ+ w0λ)⊗ L(λ1)

(r). �
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3.3. TMC criterion and Jantzen’s result. Combining the propositions from
the preceding subsections, we obtain a criterion for the validity of the Tilting Mod-
ule Conjecture.

Theorem 3.3.1. Let G be a semisimple, simply connected algebraic group scheme
defined and split over Fp. Suppose that for every η ∈ X+ with Ext1G(k, L(η)) �= 0,
one has

p〈η, α∨
0 〉 > 2(p− 1)(h− 1).

Then

T ((p− 1)ρ+ λ)|G1T
∼= Q̂1((p− 1)ρ+ w0λ)

for all λ ∈ X1, and the TMC holds for G.

Proof. Given λ ∈ X1, apply Proposition 3.1.1(b) with λ1 = 0 and λ0 = σ ∈ X1.
The first claim then follows from Proposition 3.2.1, and hence the TMC holds for
r = 1. As observed in Proposition 2.2.2, if the TMC holds for r = 1, then it holds
for all r. �

With the preceding theorem, we can now recover Jantzen’s theorem that verifies
the TMC for p ≥ 2h− 2.

Corollary 3.3.2. If p ≥ 2h− 2, then the TMC holds for G.

Proof. Suppose η ∈ X+ with Ext1G(k, L(η)) �= 0. As shown in [KN15, Proposition
2.3.1(b)], one always has 〈η, α∨

0 〉 ≥ 2(p− h+ 1), so that

p〈η, α∨
0 〉 ≥ 2p(p− h+ 1) ≥ 2p(2h− 2− h+ 1) = 2p(h− 1) > 2(p− 1)(h− 1)

and the claim follows from Theorem 3.3.1. �

3.4. General observation for p = 2h − 3. For this section set r = 1. We start
out with two general observations for any group G having the property that 2h− 3
is a prime.

Lemma 3.4.1. Let p = 2h − 3. If 0 �= μ ∈ X+ ∩Wp · 0, then (h − 2)α0 ≤ μ and
2(h− 2) ≤ 〈μ, α∨

0 〉.

Proof. Any dominant non-zero weight μ in X+ ∩Wp · 0 satisfies

μ ≥ sα0,p · 0 = (p− (h− 1))α0 = (h− 2)α0.

The second statement follows by taking the inner product of both sides with α0. �

Lemma 3.4.2. Let p = 2h− 3, λ0, σ ∈ X1, and λ1 ∈ X+ with λ = λ0 + pλ1 ≤ σ.
If 〈λ+ σ, α∨

0 〉 < 2p(h− 2) then

(a) St1 ⊗L(λ) is projective and injective in Mod((p− 1)ρ+ σ).
(b) T ((p − 1)ρ + λ) ∼= T ((p − 1)ρ + λ0) ⊗ L(λ1)

(1) is the injective hull and
projective cover of L((p− 1)ρ+ w0λ0)⊗ L(λ1)

(1) in Mod((p− 1)ρ+ σ).

(c) T ((p− 1)ρ+ λ)|G1T
∼= Q̂1((p− 1)ρ+ w0λ)⊗ L(λ1)

(1) as a G1T -module.

Proof. We will first discuss the case λ1 = 0. We will make use of Proposition 3.1.1
and its notation, particularly the integer d. Lemma 3.4.1 implies that d = 2(h−2),
and we obtain

〈λ− w0σ, α
∨
0 〉 = 〈λ+ σ, α∨

0 〉 < 2p(h− 2) = p · d.
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It follows immediately from Proposition 3.1.1 and Proposition 3.2.1 that St1 ⊗L(λ)

is injective and projective in Mod((p − 1)ρ + σ) and T ((p − 1)ρ + λ) ∼= Q̂1((p −
1)ρ+ ω0λ) as a G1T -module.

Next assume that λ1 �= 0. First note that λ ≤ σ and 〈λ + σ, α∨
0 〉 < 2p(h − 2)

clearly implies that 〈2λ0, α
∨
0 〉 < 2p(h− 2). From the above case we may conclude

that St1 ⊗L(λ0) is injective and projective in Mod((p− 1)ρ+ λ0).
Now observe that λ = λ0 + pλ1 ≤ σ and 〈λ + σ, α∨

0 〉 < 2p(h − 2) implies
〈pλ1, α

∨
0 〉 ≤ 〈λ, α∨

0 〉 < p(h− 2). It follows that 〈λ1 + ρ, α∨
0 〉 < 2h − 3 = p. Hence,

the weight λ1 is contained in the lowest dominant alcove. Therefore, any dominant
weight η linked to λ1 is greater than or equal to sα0,p ·λ1. Observe that 〈λ1+sα0,p ·
λ1 + 2ρ, α∨

0 〉 = 2p, which implies

〈η, α∨
0 〉 ≥ 〈sα0,p · λ1, α

∨
0 〉 = 2p− 2(h− 1)− 〈λ1, α

∨
0 〉 = 2(h− 2)− 〈λ1, α

∨
0 〉.

However,

〈σ + λ0, α
∨
0 〉 = 〈σ + λ, α∨

0 〉 − p〈λ1, α
∨
0 〉 < 2p(h− 2)− p〈λ1, α

∨
0 〉.

Hence, p〈η, α∨
0 〉 > 〈σ+λ0, α

∨
0 〉, and so the claim follows from Proposition 3.1.1 and

Proposition 3.2.1. �

We can now state a result that shows that the TMC holds for most weights when
p = 2h− 3.

Theorem 3.4.3. Let p = 2h − 3. If μ ∈ X1 and μ is not contained in CZ (i.e.,

the closure of the lowest alcove) then T (2(p− 1)ρ+ w0μ)|G1T
∼= Q̂1(μ) (as a G1T -

module).

Proof. Note that any restricted weight μ that is not contained in the closure of the
lowest alcove satisfies 〈μ+ ρ, α∨

0 〉 > p = 2h− 3. Therefore, 〈μ, α∨
0 〉 > h− 2 and

〈(p− 1)ρ+ w0μ, α
∨
0 〉 < (p− 1)(h− 1)− (h− 2) = p(h− 2).

The assertion follows from the statements of Lemma 3.4.2 by setting λ = σ =
(p− 1)ρ+ w0μ. �

4. Splitting conditions that are equivalent to the TMC

In this section we prove new results about module splittings which are equivalent
to the TMC. This provides the primary tools to determine what happens in small
characteristic. We give a summary of related conditions that imply the Tilting
Module Conjecture in Theorem 4.4.1.

4.1. The main idea. Up to a non-zero scalar, there are unique G-module homo-
morphisms

L(λ) ↪→ T (λ̂), T (λ̂) � L(λ).

We may tensor each of these maps with Str, and it was shown in [So18] that the
truth of the TMC for a fixed r ≥ 1 is equivalent to knowing that the G-module
homomorphism

Str ⊗L(λ) ↪→ Str ⊗T (λ̂)

splits (in G-mod) for all λ ∈ Xr. Such a splitting is equivalent to saying that the
modules

Str ⊗L(λ) and Str ⊗
(
T (λ̂)/L(λ)

)
are both tilting modules.
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We now summarize the work in [So18] to clearly explain why the property that
these modules are tilting (stated in the Overarching Assumption (OA)) yields an
inductive argument proving the Tilting Module Conjecture.

Overarching assumption (OA). For each λ ∈ Xr, the modules

Str ⊗L(λ) and Str ⊗
(
T (λ̂)/L(λ)

)

are tilting.
We will now present the inductive argument, which works by decreasing induc-

tion on restricted weights. We recall that the standard partial order on weights can
be refined to the partial order ≤Q where λ ≤Q μ if μ− λ is a linear combination of
roots having non-negative rational coefficients.

Base case. If λ = (pr−1)ρ, then λ̂ = (pr−1)ρ, T (λ̂) |GrT= Str, and Q̂1(λ) = Str.

Hence, T (λ̂) |Gr
∼= Qr(λ).

Induction hypothesis. For λ ∈ Xr, if μ ∈ Xr and μ >Q λ, then T (μ̂) |GrT
∼=

Q̂r(μ).

Inductive step. The points that follow show that Gr-summands of T (λ̂) cor-

responding to the isotypic components of socGr
T (λ̂) can be realized as sum-

mands over G. Since T (λ̂) is indecomposable over G, it will then follow that

T (λ̂) |GrT
∼= Q̂r(λ).

(1) If λ �= μ ∈ Xr is such that HomGr
(L(μ), T (λ̂)) �= 0, then, by [So18, Prop.

4.1.3], μ >Q λ.

(2) By induction hypothesis, T (μ̂) |GrT
∼= Q̂r(μ).

(3) Since Str ⊗L(μ) is tilting (by OA), the module HomGr
(L(μ), T (λ̂))(−r) is

tilting [So18, Lemma 3.1.2].
(4) Since Str ⊗ (T (μ̂)/L(μ)) is tilting (by OA), the G-module injection

L(μ)⊗HomGr
(L(μ), T (λ̂)) ↪→ T (λ̂)

extends to a G-module homomorphism

T (μ̂)⊗HomGr
(L(μ), T (λ̂)) → T (λ̂),

as follows from the vanishing of the extension group

Ext1G((T (μ̂)/L(μ))⊗HomGr
(L(μ), T (λ̂)), T (λ̂)) = 0

(see proof of [So18, Theorem 5.1.1]).

(5) Since T (μ̂) |GrT
∼= Q̂r(μ), this extended homomorphism is also injective.

(6) Applying the τ -functor of Section 2.1, we get a G-module surjection

T (λ̂) � T (μ̂)⊗HomGr
(L(μ), T (λ̂)).

(7) The composite of the last two maps is an isomorphism over GrT , hence
also over G. This composition means that the indecomposable G-module

T (λ̂) splits over G, a contradiction.

(8) Conclusion is that if λ �= μ ∈ Xr, then HomGr
(L(μ), T (λ̂)) = 0, thus

T (λ̂) |GrT
∼= Q̂r(λ).
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4.2. Splitting conditions. We begin with an observation involving the evaluation

map ε : ∇(λ̂) → Ẑ ′
1(λ̂) for λ ∈ Xr that does not hold in general when λ̂ is replaced

by an arbitrary dominant weight.

Proposition 4.2.1. If λ ∈ Xr, then the evaluation map ε : ∇(λ̂) → Ẑ ′
r(λ̂) is

surjective.

Proof. The G-module T (λ̂) is projective upon restriction to GrT (cf. [Jan03,

Lemma II.E.8]) and hence over Br. So, by [Jan03, Prop. II.11.2], T (λ̂) has a

GrB-filtration by modules of the form Ẑ ′
r(μ). Furthermore, by [Jan03, II.11.2

Rem. (4)] there is some such filtration in which the final factor is Ẑ ′
r(λ̂), implying

the existence of a surjective GrB-homomorphism

T (λ̂) → Ẑ ′
r(λ̂).

Since ∇(λ̂) ∼= indGGrB Ẑ ′
r(λ̂), by [Jan03, Prop. I.3.4 (b)] this morphism factors as

T (λ̂) → ∇(λ̂)
ε−→ Ẑ ′

r(λ̂).

Since the composition of morphisms is surjective, it follows that ε is also. �
Let λ ∈ Xr. We have the following module inclusions as GrB-homomorphisms:

L(λ) ↪→ Ẑ ′
r(λ) ↪→ T (λ̂).

Similarly, we have a chain of surjective homomorphisms

T (λ̂) � ∇(λ̂) � Ẑ ′
r(λ̂) � L(λ).

Each inclusion map (resp. surjective map) is unique up to scalar multiple. We may
tensor the modules in these homomorphisms with Str (and extend to homomor-
phisms between these tensors in the obvious way). Focusing on the second series
of homomorphisms we get

Str ⊗T (λ̂) � Str ⊗∇(λ̂) � Str ⊗Ẑ ′
r(λ̂) � Str ⊗L(λ).

Set R(λ) to be the module defined by the short exact sequence

0 → R(λ) → ∇(λ̂) → L(λ) → 0.

One also obtains a short exact sequence

(4.2.1) 0 → Str ⊗R(λ) → Str ⊗∇(λ̂) → Str ⊗L(λ) → 0.

We can now relate the splitting of the surjective map in (4.2.1) to the existence of
good filtrations.

Proposition 4.2.2. Let λ ∈ Xr. The following are equivalent:

(a) The canonical surjection of G-modules Str ⊗∇(λ̂) � Str ⊗L(λ) splits.
(b) Str ⊗R(λ) has a good filtration.

Proof. We consider the short exact sequence (4.2.1). Since Str ⊗∇(λ̂) has a good
filtration, if the sequence splits, then each summand admits a good filtration. So
(a) implies (b). Conversely, if Str ⊗R(λ) has a good filtration, then, by [Jan03, Cor.
II.4.17], so does Str ⊗L(λ). The module Str ⊗L(λ) is invariant under the τ -functor,
which sends modules with good filtrations to those with Weyl filtrations (and vice
versa). Hence, Str ⊗L(λ) has a Weyl filtration, and therefore is tilting. As there
are no non-trivial extensions of a module with a Weyl filtration by one with a good
filtration, the sequence must split. �
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One way to establish statement (b), hence also obtaining the splitting in (a), is
to verify the stronger hypothesis of Proposition 4.2.3, which is a special case of a
more general result observed by Andersen [And01]. Namely, if Str ⊗L(μ) is tilting
for all μ ∈ Xr and M admits a good (p, r)-filtration, then Str ⊗M admits a good
filtration. As Andersen’s result was stated specifically for r = 1, we include a short
proof for general r.

Proposition 4.2.3. If R(λ) has a good (p, r)-filtration and Str ⊗L(μ) is tilting for
all μ ∈ Xr, then Str ⊗R(λ) has a good filtration.

Proof. If suffices to prove that Str ⊗(L(μ)⊗∇(μ′)(r)) has a good filtration for all
μ ∈ Xr and μ′ ∈ X+. We have that Str is a summand of Str ⊗(Str

∗ ⊗ Str), and
Str

∗ ∼= Str. Thus
Str ⊗(L(μ)⊗∇(μ′)(r))

can be realized as a summand of

N = Str ⊗(Str ⊗L(μ))⊗ (Str ⊗∇(μ′)(r)).

We have Str ⊗∇(μ′)(r) ∼= ∇((pr − 1)ρ+ prμ′), and by assumption Str ⊗L(μ) has a
good filtration, hence N has a good filtration. Each summand of N therefore has
a good filtration, proving the claim. �

Remark 4.2.4. The hypothesis that Str ⊗L(μ) is tilting for all restricted weights μ
is known to hold in a number of cases (cf. [BNPS19]).

4.3. Proposition 4.3.1 shows that the splitting for the map given in Proposition
4.2.2(a) is equivalent to splitting for analogous maps with tilting and baby Verma
modules.

Proposition 4.3.1. Let λ ∈ Xr. The following are equivalent:

(a) The canonical surjection of G-modules Str ⊗T (λ̂) � Str ⊗L(λ) splits.

(b) The canonical surjection of G-modules Str ⊗∇(λ̂) � Str ⊗L(λ) splits.

(c) The canonical surjection of GrB-modules Str ⊗Ẑ ′
r(λ̂) � Str ⊗L(λ) splits.

Proof. The surjection in (a) factors through the map in (b) which factors through
the map in (c), so we get from this that (a) ⇒ (b) ⇒ (c). If (c) holds, then we

obtain (b) by applying the functor indGGrB(−) to the split sequence ofGrB-modules,
yielding the desired split sequence of G-modules.

Suppose that (b) holds. Then Str ⊗L(λ) has a good filtration, and by τ -duality
is tilting. Applying Proposition 4.2.2, we also have that Str ⊗R(λ) has a good

filtration. Let N be the kernel of the surjective map T (λ̂) → L(λ). Since ∇(λ̂) is

the final good filtration factor in T (λ̂), the fact that Str ⊗R(λ) has a good filtration,

as does Str ⊗∇(μ) for all other good filtration factors ∇(μ) of T (λ̂), implies that
Str ⊗N has a good filtration. Since Str ⊗L(λ) is tilting, this then implies that the
sequence

0 → Str ⊗N → Str ⊗T (λ̂) → Str ⊗L(λ) → 0

splits, proving (a). �

In [BNPS20, Section 2.2], the authors described the interrelationships and hi-
erarchies between the Donkin’s Tilting Module and (p, r)-Filtration Conjectures.
We are now ready to demonstrate how the validity of these conjectures implies the
splitting of the maps given in Proposition 4.3.1.
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Theorem 4.3.2. Let λ ∈ Xr. Suppose that

(a) Str ⊗L(σ) is tilting for all σ ∈ Xr;

(b) T (λ̂) |GrT
∼= Q̂r(λ); and

(c) either ∇(λ̂) or T (λ̂) has a good (p, r)-filtration.

Then the canonical surjection of G-modules Str ⊗T (λ̂) � Str ⊗L(λ) splits.

Proof. If T (λ̂) |GrT
∼= Q̂r(λ), then the Gr-head of T (λ̂) and of ∇(λ̂) are both simple,

isomorphic to L(λ). Suppose that ∇(λ̂) has a good (p, r)-filtration. Then the final
factor of this filtration must be L(λ), hence R(λ) has a good (p, r)-filtration. The
splitting then follows from Propositions 4.2.3, 4.2.2, and 4.3.1.

If T (λ̂) has a good (p, r)-filtration, then in a similar way it follows that its Gr-
radical must have a good (p, r)-filtration. Analogous arguments as those used in
the aforementioned propositions just cited yield the proof here. �
4.4. Theorem 4.4.1 provides key conditions that may be used to verify the Tilting
Module Conjecture. A key aspect of this theorem (distinguishing it from [So18,
Theorem 1.2.1]) is that it allows one to potentially verify different conditions for
different pr-restricted weights.

Theorem 4.4.1. Let G be a semisimple, simply connected algebraic group scheme
defined and split over Fp, and suppose it holds that Str ⊗L(μ) is a tilting module
for every μ ∈ Xr. The Tilting Module Conjecture holds for G and for a fixed r ≥ 1
if for each μ ∈ Xr, at least one of the following conditions is also true (some of
these are equivalent):

(a) Str ⊗T (μ̂) → Str ⊗L(μ) splits.
(b) Str ⊗∇(μ̂) → Str ⊗L(μ) splits.
(c) ∇(μ̂) has a good (p, r)-filtration.
(d) T (μ̂) has a good (p, r)-filtration.

Proof. The inductive step outlined in Section 4.1 says that for λ ∈ Xr, we have

T (λ̂) |GrT
∼= Q̂r(λ) if for every pr-restricted μ >Q λ we have both that T (μ̂) |GrT

∼=
Q̂1(μ) and that the canonical map Str ⊗T (μ̂) → Str ⊗L(μ) splits. By Proposition
4.3.1, conditions (a) and (b) are equivalent, and by Theorem 4.3.2, if T (μ̂) |GrT

∼=
Q̂1(μ), then (c) and (d) imply (a). Thus if the hypothesis of this theorem is true

and T (μ̂) |GrT
∼= Q̂r(μ), we immediately have that Str ⊗T (μ̂) → Str ⊗L(μ) splits.

This guarantees that the inductive step always holds, so that T (λ̂) |GrT
∼= Q̂r(λ)

for all λ ∈ Xr. �
It should be mentioned that one gets two weights “for free” when checking these

conditions.

Proposition 4.4.2. For all p, we have that

Str ⊗T (λ̂) → Str ⊗L(λ)

splits for λ = 0, (pr − 1)ρ.

Proof. If λ = (pr − 1)ρ, then λ̂ = (p − 1)ρ. So L(λ) ∼= Str ∼= T (λ̂), and it is
immediate that Str ⊗ Str → Str ⊗ Str splits. Parts (c) and (d) of Theorem 4.4.1
are also immediately evident.

On the other hand, 0̂ = 2(pr − 1)ρ and the question is whether Str ⊗T (0̂) →
Str ⊗k ∼= Str splits. The canonical map Str ⊗ Str ⊗ Str → Str splits. Since the
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unique trivial submodule of Str ⊗ Str is contained in T (0̂), this surjection factors
through

Str ⊗ Str ⊗ Str → Str ⊗T (0̂) → Str,

proving the claim. �

5. Type An, n ≤ 3

5.1. Recall from Proposition 2.2.2 that to verify the Tilting Module Conjecture, it
suffices to consider the case r = 1. In subsequent sections this fact will be used
when we verify the TMC for other low rank cases. For Φ = An, n ≤ 3, by [KN15]
or [BNPS19], it is known that St1 ⊗L(μ) admits a good filtration for all μ ∈ X1.
Therefore, by Theorem 4.4.1, in order to verify the TMC in these cases it suffices

to prove that ∇(λ̂) has a good p-filtration for all λ ∈ X1.

5.2. Types A1 and A2. The TMC was verified earlier by others and is known to
hold for all primes. In the first case, as h = 2, this follows from using the general
p ≥ 2h− 2 bound. In the latter case, h = 3, so the TMC holds for p > 3 using the
aforementioned bound. A proof is given for p = 2, 3 in [Jan03, II.11.16]. Moreover,
Donkin [Don17] showed that the G-liftings on the G1 projective indecomposable
modules are unique.

We observe that our methods provide a quick alternate proof for the type A2, p =

2, 3 cases. In order to apply Theorem 4.4.1, we verify that ∇(λ̂) admits a good p-

filtration for each λ ∈ X1. To that end, identifying ∇(λ̂) = indGB λ̂ = indGG1B Ẑ ′
1(λ̂),

it suffices to show that one of the conditions in Theorem 2.3.1 holds. Let L(σ0)⊗pσ1

be a G1B-composition factor of Ẑ ′
1(λ̂). We claim that R1 indGB σ1 = 0 (which would

complete this argument). On the contrary, if R1 indGB σ1 �= 0, by Proposition 2.3.2,
there is a weight γ of St1 with 〈γ, α∨

i 〉 ≤ −2p. However, since 〈ρ, α∨
0 〉 = 2, one has

−2(p− 1) ≤ 〈γ, α∨
i 〉 ≤ 2(p− 1), thus giving a contradiction.

5.3. Type A3. In the case when Φ = A3, one has h = 4. Therefore, the TMC
holds for p ≥ 2h − 2 = 6 by Corollary 3.3.2. It remains to verify the TMC for
p = 2, 3 and 5.

5.4. Type A3, p = 2. We use the same argument as in the type A2 case to show

that all ∇(λ̂), λ ∈ X1, have a good p-filtration. Since 〈ρ, α∨
0 〉 = 3, one concludes

that all weights γ of St1 satisfy −2p = −4 < −3 ≤ 〈γ, α∨
i 〉 for any simple root

αi. It follows that no weight of St1 satisfies the inequality (2.3.2), and the claim
follows.

5.5. Type A3, p = 3. Again we show that ∇(λ̂) has a good p-filtration for all λ ∈
X1. Since 〈ρ, α∨

0 〉 = 3, one concludes that all weights γ of St1 satisfy −2p = −6 ≤
〈γ, α∨

i 〉 for any simple root αi. Assume now that L(σ0)⊗pσ1 is a G1B-composition

factor of Ẑ ′
1((p − 1)ρ + μ) and R1 indGB σ1 �= 0. Equation (2.3.2) immediately

implies that there exists an αi with 〈γ, α∨
i 〉 = −6 and 〈μ, α∨

i 〉 = 0. Moreover,
σ0 = 0. The following table contains all the weights γ in the weight lattice of St1
with 〈γ, α∨

i 〉 = −6 (each appears with multiplicity one), the unique weight μ ∈ X1

such that γ+μ = pσ1 ∈ pX, the weight σ1, and the highest weight λ̂ = (p−1)ρ+μ

of ∇(λ̂).
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γ μ σ1 sαi
· σ1 (p− 1)ρ+ μ

(-6,2,2) (0,1,1) (-2,1,1) (0,0,1) (2,3,3)
(2,2,-6) (1,1,0) (1,1,-2) (1,0,0) (3,3,2)
(4,-6,4) (2,0,2) (2,-2,2) (1,0,1) (4,2,4)
(-6,4,-2) (0,2,2) (-2,2,0) (0,1,0) (2,4,4)
(-2,4,-6) (2,2,0) (0,2,-2) (0,1,0) (4,4,2)
(2,-6,2) (1,0,1) (1,-2,1) (0,0,0) (3,2,3)

(0,3,-6) (0,0,0) (0,1,-2) (0,0,0) (2,2,2)
(-6,3,0) (0,0,0) (-2,1,0) (0,0,0) (2,2,2)
(3,-6,3) (0,0,0) (1,-2,1) (0,0,0) (2,2,2)

The last three entries are not of interest because ∇(2, 2, 2) is just the Steinberg
module, which, being simple, admits a good p-filtration. Consider Theorem 2.3.1.
The only situation of concern is if there appears another composition factor L(0)⊗
pη with (p − 1)ρ + μ ≥ pη > psαi

· σ1 such that there is a non-zero and non-

isomorphic map from ∇(η) to R1 indGB σ1 = ∇(sαi
· σ1). Note that in each case of

the table ∇(sαi
· σ1) ∼= L(sαi

· σ1). Furthermore, η is potentially problematic only
if ∇(η) �∼= L(η). From linkage information, one can see that this fails in all but the
first two (symmetric) cases. Note that ∇(1, 1, 0)/L(1, 1, 0) ∼= L(0, 0, 1) and that
(3, 3, 0) < (2, 3, 3). By symmetry, it remains to show that ∇(2, 3, 3) has a good
p-filtration. We will prove the equivalent statement that Δ(2, 3, 3) has a p-Weyl
filtration.

The formal characters of all simple modules with restricted highest weight were
first determined in [Jan74]. They can also be obtained via the tables of [L]. The
highest weights of the G-composition factors of Δ(2, 3, 3) can therefore be cal-
culated. They are (2, 3, 3), (3, 1, 4), (2, 4, 1), (1, 2, 4), (4, 0, 3), (3, 3, 0), (1, 4, 0),
(4, 1, 1), (0, 2, 3), (0, 3, 1), (3, 0, 2), (5, 0, 0), (1, 1, 2), (0, 0, 3), (0, 1, 1), and (1, 0, 0).
All appear with multiplicity one, except for (5, 0, 0), (0, 3, 1), (0, 0, 3) and (1, 0, 0),
which appear with multiplicities 2, 2, 3 and 2, respectively.

We want to directly show that a p-Weyl filtration can be constructed. Consider
a composition factor L(μ0) ⊗ L(μ1)

(1) of Δ(2, 3, 3). If L(μ1) = Δ(μ1) for all μ1,
then the composition series would immediately give a p-Weyl filtration. However,
there are exactly two composition factors with L(μ1) �= Δ(μ1). These have highest
weights (2, 3, 3) and (3, 3, 0), respectively. In the following, we construct a non-zero
homomorphism φ : Δ(3, 3, 0) → Δ(2, 3, 3). It is then shown that the image of φ,
denoted by S, and the cokernel of φ, denoted by Q, have p-Weyl filtrations, thus
producing the desired filtration for Δ(2, 3, 3).

Observe that in the above list of highest weights for the composition factors of
Δ(2, 3, 3) only (2, 3, 3), (3, 1, 4) and (2, 4, 1) are strictly greater than (3, 3, 0). To
verify the existence of φ we make use of the Jantzen filtration for the Weyl module
Δ(2, 3, 3). Given

Δ(2, 3, 3) = V 0 ⊇ V 1 ⊇ V 2 ⊇ · · · ,

with V i as defined in [Jan03, II.8.19], set SF =
∑

i>0 ch V i. A straightforward
calculation shows that the characters of L(3, 1, 4) and L(2, 4, 1) appear exactly
once in SF while ch L(3, 3, 0) appears twice. Note that L(3, 3, 0) is a composition
factor of both Δ(3, 1, 4) and Δ(2, 4, 1) whose characters appear once in the sum
formula SF . Since the multiplicity of L(3, 3, 0) in Δ(2, 3, 3) is one, we conclude that
L(3, 3, 0) appears in V 2 while L(3, 1, 4) and L(2, 4, 1) do not. Therefore, (3, 3, 0)



DONKIN’S TILTING MODULE CONJECTURE I 473

is a maximal weight of V 2 and one obtains the desired non-trivial homomorphism
φ : Δ(3, 3, 0) → V 2 ↪→ Δ(2, 3, 3).

Next we show that S has a p-Weyl filtration. The composition factors of Δ(3, 3, 0)
have highest weights

(5.5.1) (3, 3, 0), (1, 4, 0), (4, 1, 1), (0, 3, 1), (3, 0, 2), (1, 1, 2), (0, 0, 3), (1, 0, 0).

As discussed above, only the weight (3, 3, 0) is potentially problematic. We show
that there exists a short exact sequence

(5.5.2) 0 → S1 → S → S2 → 0,

where S2
∼= Δ(1, 1, 0)(1) and S1 (is zero or) has composition factors whose highest

weights come from (5.5.1), except (3, 3, 0). Hence, both S1 (if non-zero) and S2

would admit p-Weyl filtrations. To this end, first note that there is a projection of
Δ(3, 3, 0) onto Δ(1, 1, 0)(1) and the radical of Δ(1, 1, 0) is just L(0, 0, 1). This yields
a G-extension between L(3, 3, 0) and L(0, 0, 3). We claim that the only composition
factor L(μ) of Δ(3, 3, 0) with Ext1G(L(3, 3, 0), L(μ)) �= 0 is L(0, 0, 3). Consider the
Lyndon-Hochschild-Serre spectral sequence:

Ei,j
2 = ExtiG/G1

(L(3, 3, 0),ExtjG1
(k, L(μ))) ⇒ Exti+j

G (L(3, 3, 0), L(μ)).

For μ �= (0, 0, 3), we have

Ext1G(L(3, 3, 0), L(μ))
∼= HomG/G1

(
L(3, 3, 0),Ext1G1

(k, L(μ0)⊗ L(μ1)
(1))

)
∼= HomG(L(1, 1, 0),Ext

1
G1

(k, L(μ0))
(−1) ⊗ L(μ1)).

The following table lists all restricted weights μ0 with Ext1G1
(k, L(μ0)) �= 0 (cf.

[Jan74,Jan91]). Note that the first entry is the only non-trivial G-extension with a
restricted weight. The other extensions arise via Ext1G1

(k,∇(pωi − αi)), where ωi

denotes a fundamental weight and αi the associated simple root.

μ0 (0, 2, 0) (1, 1, 0) (0, 1, 1) (1, 1, 1)

Ext1G1
(k, L(μ0))

(−1) k L(1, 0, 0) L(0, 0, 1) L(0, 1, 0)

From the table we conclude that we only have to rule out the weights (1, 4, 0)
and (4, 1, 1) from (5.5.1). Note that

Ext1G(L(3, 3, 0), L(1, 4, 0))
∼= HomG

(
L(1, 1, 0),ExtG1

(k, L(1, 1, 0))(−1) ⊗ L(0, 1, 0)
)

∼= HomG(L(1, 1, 0), L(1, 0, 0)⊗ L(0, 1, 0)).

But L(1, 0, 0)⊗L(0, 1, 0) is the indecomposable tilting module with highest weight
(1, 1, 0) and simple socle L(0, 0, 1). Therefore, the Ext-group vanishes. Similarly,

Ext1G(L(3, 3, 0), L(4, 1, 1))
∼= HomG

(
L(1, 1, 0),ExtG1

(k, L(1, 1, 1))(−1) ⊗ L(1, 0, 0)
)

∼= HomG(L(1, 1, 0), L(0, 1, 0)⊗ L(1, 0, 0)) = 0.

We conclude that the second radical layer of Δ(3, 3, 0) is simple and isomorphic to
L(0, 0, 3). This implies that the short exact sequence (5.5.2) indeed exists, unless
S = L(3, 3, 0). However,

HomG(L(3, 3, 0),Δ(2, 3, 3)) ↪→ HomG

(
L(1, 1, 0)(1), St1 ⊗L(0, 1, 1)

)
∼= HomG(St1 ⊗L(1, 1, 0)(1), L(0, 1, 1))

∼= HomG(L(5, 5, 2), L(0, 1, 1)) = 0.

Therefore, since S1 (if non-zero) and S2 have p-Weyl filtrations, so does S.
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Finally, observe also that the weight (5, 0, 0) does not appear in (5.5.1). There-
fore, L(5, 0, 0) is not a composition factor of S. Recall that Δ(0, 1, 1) has two
composition factors: L(0, 1, 1) and L(1, 0, 0). Therefore, the surjection of Δ(2, 3, 3)
onto L(2, 0, 0) ⊗ Δ(0, 1, 1)(1) yields a surjection of the cokernel Q = Δ(2, 3, 3)/S
onto L(2, 0, 0)⊗Δ(0, 1, 1)(1). We obtain a short exact sequence

0 → Q1 → Q → L(2, 0, 0)⊗Δ(0, 1, 1)(1) → 0.

The highest weights of the composition factors of Q1 include neither (3, 3, 0) nor
(2, 3, 3). This implies that Q1 and Q also afford p-Weyl filtrations. Hence, Δ(2, 3, 3)
has a p-Weyl filtration and the assertion follows.

5.6. Type A3, p = 5. Since p = 2h − 3, it follows from Theorem 3.4.3 that the
verification of the TMC has been reduced to weights in the closure of the lowest
alcove. Note that the highest root α0 = (1, 0, 1) lies on the alcove wall separating
the lowest alcove from the second lowest alcove. Our first goal is to verify the TMC
for the weight 2(p− 1)ρ+w0α0 = 2(p− 1)ρ−α0. We begin with a weight estimate
that will be used later in this section.

Lemma 5.6.1. Let G be of type A3 with p = 5. If λ ∈ X+ with λ �= (p− 1)ρ− α0

and (p− 1)ρ+ λ ↑ 2(p− 1)ρ− α0, then 〈λ, α∨
0 〉 < p(h− 2).

Proof. If λ �= (p − 1)ρ − α0 and (p − 1)ρ + λ ↑ 2(p − 1)ρ − α0 then there exists a
positive integer m, a sequence of reflections s1, s2, . . . , sm ∈ Wp, and weights μ1,
μ2, . . . , μm−1 ∈ X+ with

2(p− 1)ρ− α0 > s1 · (2(p− 1)ρ− α0) = μ1 > s2 · μ1

= μ2 > · · · > sm · μm−1

= (p− 1)ρ+ λ.

Assume that 〈λ, α∨
0 〉 = 〈(p− 1)ρ− α0, α

∨
0 〉 = p(h− 2). Then

〈2(p− 1)ρ− a0, α
∨
0 〉 = 〈μi, α

∨
0 〉 = 〈(p− 1)ρ+ λ, α∨

0 〉, for all 1 ≤ i ≤ m− 1.

Note that the only positive root perpendicular to α0 is α2. Therefore, all si would
have to be of the form sα2,kp, for some integer k [Jan03, II.6.1]. Moreover, for s1,
we have k ≤ 1. It follows that

s1 · (2(p− 1)ρ−α0) = 2(p− 1)ρ−α0− (2p−kp− 1)α2 ≤ 2(p− 1)ρ−α0− (p− 1)α2.

One concludes that (p−1)ρ+λ is equal to 2(p−1)ρ−α0−nα2 for some n ≥ p−1.
However, no weight of this form is contained in (p− 1)ρ+X+, a contradiction. �

We can now show that the TMC holds for T (2(p− 1)ρ− α0).

Proposition 5.6.2. Let G be of type A3 with p = 5. Then T (2(p−1)ρ−α0) |G1T
∼=

Q̂1(α0) as a G1T -module.

Proof. Set T = T (2(p − 1)ρ − α0). Note that T is projective and injective as a
G1-module but not necessarily as a G-module in Mod(2(p− 1)ρ− α0).

It suffices to show that T has a simple G-socle, namely L(α0). Assume that
there exist weights λ0 ∈ X1 and λ1 ∈ X+ such that (p−1)ρ+w0λ0+pλ1 �= α0 and

L((p−1)ρ+w0λ0+pλ1) appears in the socle of T . Then Q̂1((p−1)ρ+w0λ0)⊗L(λ1)
(1)

has to appear as a G1T -summand of T . We set λ = λ0 + pλ1. The highest weight

of Q̂1((p− 1)ρ+ w0λ0)⊗ L(λ1)
(1)is (p− 1)ρ+ λ. This weight is strongly linked to

2(p− 1)ρ− α0 and strictly less than 2(p− 1)ρ− α0.
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Now Lemma 3.4.2 (with σ = (p− 1)ρ−α0) and Lemma 5.6.1 imply that T ((p−
1)ρ+λ0)⊗L(λ1)

(1) is the injective hull and projective cover of L((p−1)ρ+w0λ0+
pλ1) in Mod(2(p−1)ρ−α0). Given the G-injections i : L((p−1)ρ+w0λ0+pλ1) → T
and j : L((p− 1)ρ+w0λ0 + pλ1) → T ((p− 1)ρ+ λ), there exists a G-map φ : T →
T ((p− 1)ρ + λ) and a G1T -map ψ : T ((p− 1)ρ + λ) → T such that i = φ ◦ j and
j = ψ ◦ i. Hence, i = φ ◦ ψ ◦ i. Since T ((p − 1)ρ + λ) has a simple G-socle, the
G-map φ has to be a surjection. But now the projectivity of T ((p − 1)ρ + λ) in
Mod(2(p− 1)ρ− α0) makes it a G-summand, a contradiction. �

It follows from Theorem 3.4.3 that the TMC holds for all Q1(μ) as long as μ is
restricted and not contained in the closure of the lowest alcove. If μ is in the upper
wall of the lowest alcove, the claim follows from Proposition 5.6.2 by using the
translation principle (cf. [Jan03, II.11.10, II.E.11]) for other weights in the same
facet as α0. The translation principle also implies that

T 0
α0
[T (2(p− 1)ρ− α0)] ∼= T 0

α0
[Q1(α0)] = Q1(0),

as G1T -modules, which forces T (2(p − 1)ρ) |G1T
∼= Q1(0). Translation within the

alcove takes care of the remaining weights in the interior of the lowest alcove.
Consequently, the TMC holds for type A3 and p = 5.

6. Type B2

6.1. In the case when Φ = B2, one has h = 4. As the TMC is known to hold for
p ≥ 2h−2, the only open cases are the primes p = 2, 3, 5. By [KN15], we know that
St1 ⊗L(μ) has a good filtration for all μ ∈ X1, and so to verify the TMC we can
apply Theorem 4.4.1. Andersen [And19, Example 2 (3)] verified that ∇(σ) has a
good p-filtration for all σ ∈ X+ (with lengthy calculations), and one can appeal to
this result to finish off the B2-case. For the reader’s convenience and to make this
paper self-contained, we present short arguments to handle the Φ = B2, p = 2, 3, 5
cases.

6.2. Type B2, p = 2. Since 〈ρ, α∨
0 〉 = 3. We may make use of Proposition 2.3.2.

The same argument as in the type A3 and p = 2 case works here.

6.3. Type B2, p = 3. Using either the tables in [L] or by applying the Jantzen
filtration, one can see that any η ∈ X+ with Ext1G(k, L(η)) �= 0 satisfies 6 ≤ 〈η, α∨

0 〉,
with equality holding for η = (1, 4). Therefore, p〈η, α∨

0 〉 ≥ 6p > 6(p − 1) =
2(p− 1)(h− 1), and so the claim follows immediately from Theorem 3.3.1.

6.4. Type B2, p = 5. We will apply Theorem 4.4.1 and show that all∇((p−1)ρ+μ)
with μ ∈ X1 have a good p-filtration. Proposition 2.4.2 implies that it is sufficient
to show this for all (p− 1)ρ+ μ in the principal block. Therefore, we only have to
consider μ ∈ {(1, 2), (2, 2), (2, 4), (4, 4)}. We wish to apply Theorem 2.3.1.

Consider a G1B-composition factor L(σ0)⊗pσ1 of Ẑ ′
1((p− 1)ρ+μ). Any weight

γ in the weight lattice of St1 satisfies 〈γ, α∨
1 〉 ≥ −6 and 〈γ, α∨

2 〉 ≥ −12. Applying
Proposition 2.3.2 to the weights μ from the above list, one immediately observes
that R1 indGB σ1 �= 0 only if αi = α2, 〈γ, α∨

2 〉 = −12, μ = (1, 2) or μ = (2, 2), and
σ0 = 0. Moreover, we need γ + μ ∈ pX+. The only pairs (γ, μ) satisfying these
conditions are ((4,−12), (1, 2)), ((3,−12), (2, 2)) and ((8,−12), (2, 2)).

In the first two cases γ+μ = psα2
· (0, 0) and in the last case γ+μ = psα2

· (1, 0).
As in the type A3 with p = 3 discussion, one observes that the only situation of
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concern is the existence of a second composition factor L(0)⊗pσ in Ẑ ′
1((p−1)ρ+μ)

such that ∇(σ) has L(0, 0) or L(1, 0) as a composition factor. However, the smallest
dominant weight that is linked to (0, 0) is (2, 0) and the smallest dominant weight
that is linked to (1, 0) is (1, 4). But, for our choices of μ, neither p(2, 0) nor p(1, 4)
are less than (p− 1)ρ+μ. Cancellation cannot happen and ∇((p− 1)ρ+μ) has the
desired p-filtration.

7. Type G2, p �= 7

7.1. For Φ = G2, h = 6. As the TMC is known for p ≥ 2h− 2, this leaves the cases
when p = 2, 3, 5 and 7. We will handle the first three cases in this section, and
undertake the more detailed p = 7 case in the next section.

7.2. Type G2, p = 2. For p = 2, in [BNPS20], the authors have shown that the
Tilting Module Conjecture in fact fails in type G2.

7.3. Type G2, p = 3. This case provides a very interesting subexample of the
lifting problem. Here, there is a strict endomorphism σ : G → G with σ2 = F
(the Frobenius morphism). Following the notation in [BNPPSS15], let G1/2 denote
the scheme-theoretic kernel of σ. This is a normal subgroup scheme of the first
Frobenius kernel G1 of G. We will prove that the projective indecomposable G1/2-
modules lift to tilting modules for G, which will prove that all of those for the
Frobenius kernel G1 do as well (cf. Proposition 2.2.2).

We briefly review some key concepts related to σ and G1/2. For more details,
we refer the reader to [BNPPSS15, Section 2.2] and [Hum06, Sections 5.3 and
5.4]. Following Bourbaki, α1 will denote the short simple root and α2 will denote
the long simple root. The Lie algebra of G1/2 is associated to the ideal of short
roots within the Lie algebra of G (a root system of type A2). Given a G-module
M , let M (1/2) denote the module M with action composed with σ. Note that
(M (1/2))(1/2) ∼= M (1). In particular, consider the fundamental simple modules,
L(1, 0)(1/2) ∼= L(0, 1) and

(7.3.1) L(0, 1)(1/2) ∼= L(3, 0) ∼= L(1, 0)(1).

More generally, Steinberg’s Tensor Product Theorem in this context (for non-
negative integers a, b) is

(7.3.2) L(a, b) ∼= L(a, 0)⊗ L(0, b) ∼= L(a, 0)⊗ L(b, 0)(1/2).

Note that the weights X1/2 = {(a, 0) | 0 ≤ a ≤ 2} are the σ-restricted dominant
weights, and these index the irreducible G1/2-modules, which arise by restriction
of L(a, 0).

For a weight λ, analogous to the definitions of Q̂1(λ) and Q1(λ) (or Qr more

generally), one can define Q̂1/2(λ) to be the injective hull (equivalently projective
cover) of L(λ) as a G1/2T -module and Q1/2(λ) as the injective hull over G1/2 (which

will be the restriction of Q̂1/2(λ) to G1/2). As with the ordinary Frobenius kernels,

we may identify G1/G1/2
∼= G

(1/2)
1/2 , and we have various Lyndon-Hochschild-Serre

spectral sequences (e.g., forG1/2�G1). The argument as in [Jan03, Lemma II.11.15]
yields the following result.

Proposition 7.3.1. For 0 ≤ a, b ≤ 2, there is an isomorphism of G1/2T -modules

Q̂1(a, b) ∼= Q̂1/2(a, 0)⊗ Q̂1/2(b, 0)
(1/2).
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In particular Q̂1(2, 2) ∼= St1 ∼= L(2, 0)⊗L(2, 0)(1/2) ∼= Q̂1/2(2, 0)⊗Q̂1/2(2, 0)
(1/2).

We will denote Q̂1/2(2, 0) by St1/2. It plays the role of the Steinberg module forG1/2

and can be regarded as restriction of the G-module L(2, 0) to G1/2T . Proposition
7.3.2 demonstrates how to construct injective/projective modules in the truncated
category Mod((4, 0)).

Proposition 7.3.2. For λ ∈ X1/2, St1/2 ⊗L(λ) is injective and projective in
Mod((4, 0)).

Proof. Let η be a dominant weight. By considering the weight multiplicity tables
in [L], one can see that if Ext1G(k, L(η)) �= 0, then 〈η, α∨

0 〉 ≥ 5. This arises from the
fact that η = (1, 1) is the smallest weight where there is a non-trivial extension.
Clearly, p · 5 = 15 > 8 ≥ 〈λ + (2, 0), α∨

0 〉. We can now apply the argument in the
proof of Proposition 3.1.1, with St1/2 instead of St1 and use part (b) of the same
proposition to obtain the claim. �

Next we adapt the argument in Proposition 3.2.1, again with St1/2 in place of
St1, to conclude:

Proposition 7.3.3. For λ ∈ X1/2, T ((2, 0) + λ) |G1/2T
∼= Q̂1/2((2, 0) − λ), as

G1/2T -modules.

Having seen, for 0 ≤ a ≤ 2, that each Q̂1/2(a, 0) lifts to G (indeed to T (4−a, 0))
we obtain the following stronger version of Proposition 7.3.1, which is an analogue
of [Jan03, Proposition II.11.16(b)].

For 0 ≤ a, b ≤ 2, and as G1T -modules,

Q̂1(a, b) ∼= Q̂1/2(a, 0)⊗ Q̂1/2(b, 0)
(1/2)

∼= T (4− a, 0)⊗ T (4− b, 0)(1/2).

Note that T (4 − a, 0) ⊗ T (4 − b, 0)(1/2) is indecomposable as a G1T -module and
therefore also as a G-module.

The characters of the L(λ) were computed by Springer [Sp68]. In particular,
L(λ) ∼= ∇(λ) ∼= T (λ) for all λ ∈ X1/2. Observe that T (4− a, 0)⊗ T (4− b, 0)(1/2) is
the unique indecomposable G-summand containing the highest weight (4−a, 4− b)
of

(St1/2 ⊗T (2− a, 0))⊗ (St1/2 ⊗T (2− b, 0))(1/2)

∼= (St1/2 ⊗L(2− a, 0))⊗ (St1/2 ⊗L(2− b, 0))(1/2)

∼= St1/2 ⊗ St
(1/2)
1/2 ⊗L(2− a, 0)⊗ L(2− b, 0)(1/2)

∼= St1 ⊗L(2− a, 2− b)

which is a tilting module by [KN15, 8.5.3].
We conclude that

Q̂1(a, b) ∼= T (4− a, 0)⊗ T (4− b, 0)(1/2) ∼= T (4− a, 4− b) |G1T

as G1T -modules. Hence, the TMC holds in this case.

7.4. Type G2, p = 5. The verification that the TMC holds follows from Theo-
rem 3.3.1 using the fact that any η ∈ X+ with Ext1G(k, L(η)) �= 0 satisfies 〈η, α∨

0 〉 ≥
15 according to [Hag83]. This implies that p〈η, α∨

0 〉 ≥ 75 > 40 = 2(p− 1)(h− 1).
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8. Type G2, p = 7

8.1. Since St1 ⊗L(μ) is known to be tilting for restricted weights μ ∈ X1 and all
primes ([KN15] and [BNPS19]), we may apply Theorem 4.4.1. From Proposition

2.4.2, it suffices to show that ∇(λ̂) admits a good p-filtration for each p-regular

weight λ ∈ X1. As with previous cases, we use the fact that ∇(λ̂) = indGB λ̂ =

indGG1B Ẑ ′
1(λ̂) and attempt to apply Theorem 2.3.1. However, simply knowing the

G1B-composition factors of Ẑ ′
1(λ̂) is not sufficient to obtain the desired conclusion.

We must make a deeper analysis using the G1T -radical filtration of Ẑ ′
1(λ̂).

8.2. Computing the G1T -radical filtration. Let μ be a p-regular dominant

weight. To compute the G1T -radical filtration of Ẑ ′
1(μ), we make use of a result

of Andersen and Kaneda [AK89, 6.3 Theorem] (see Theorem 8.2.1) which relates
the radical filtration to inverse Kazhdan-Lusztig polynomials introduced by Lusztig
[Lus80].

To state the theorem, we need some notation involving alcove geometry. Observe
that in this setting each p-alcove contains a unique p-regular weight, so there is
a one-to-one correspondence between alcoves and p-regular weights. Given two
alcoves A,C, let QA,C denote the associated inverse Kazhdan-Lusztig polynomial
and d(A,C) denote the distance function (an integer determined by the hyperplane
reflections needed to reflect from alcove A to alcove C). We will provide one example
of these values in Section 8.3 and refer the reader to [Lus80] for details. A weight
ν ∈ X is called special if ν + ρ ∈ pX (e.g., the base example is ν = −ρ). Each
special point ν determines a “box” in Euclidean space

Πν := {e ∈ E | 〈ν, α∨〉 < 〈e, α∨〉 < 〈ν, α∨〉+ p for all α ∈ Δ}.
The closures of the boxes (for all possible ν) tessellate the Euclidean space and,
in this case, each box contains 12 alcoves. Let Wν be the subgroup (isomorphic
to the Weyl group) of the affine Weyl group of elements that stabilize ν under the
dot action, and let wν denote the longest word in Wν . For example, when ν = −ρ,
wν = w0. For λ ∈ Πν , wν · λ = −λ+ 2ν.

Given a finite-dimensional G1T -module M , consider the radical filtration

0 = radn M ⊆ radn−1 M ⊆ · · · ⊆ rad1 M ⊆ rad0 M = M.

For 0 ≤ j ≤ n, set radj M := radj M/ radj+1 M , the jth radical layer.
We now restate Theorem 6.3 of [AK89] with our conventions:

Theorem 8.2.1 (Andersen-Kaneda). Let A be an alcove with p-regular weight μ,
ν be a special point, and C be an alcove in Πν with p-regular weight λ. Then

QA,C =
∑
j

q
1
2 (d(A,C)−j)[radj Ẑ

′
1(μ) : L̂1(wν · λ)].

Remark 8.2.2. The theorem holds for p > h under the assumption that the G1T -
version of the Lusztig Conjecture holds. See the discussion in Sections 5.1 and
5.2 of [AK89] as well as the discussion in [Jan03, II.D.13]. In [Jan03], Jantzen

works under an assumption (D̂) on the semisimplicity of certain G1T -modules (cf.
[Jan03, II.C.14, II.D.4]). We refer the reader to [Jan03, II.C.17] for equivalent
conditions. Note that for all rank 2 groups the modules ∇(λ) with p-regular highest
weight λ ∈ X1 have multiplicity free composition series. This immediately implies

(D̂). In short, the theorem is known to be valid for rank 2 groups and p > h.
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8.3. An example: Ẑ ′
1(0, 0). Consider the module Ẑ ′

1(0, 0). We give a partial
demonstration of how to apply Theorem 8.2.1 to obtain the G1T -radical layers. Let
alcove A be the alcove containing (0,0). Take as the special point ν = −ρ. We may
apply the theorem to each alcove C in Π−ρ. Using the values of QA,C from [Lus80]
and computing the values of d(A,C) by hand, one can identify the allowable values
of j and the corresponding composition multiplicity. The results are summarized in
the following table, where the alcoves are numbered following [Hum06, 18.2 Figure
1], λ is the p-regular weight in C, and w−ρ · λ = σ0 − 7ρ = σ0 + 7(−ρ) for σ0 ∈ X1

(noting that L̂1(w−ρ · λ) ∼= L̂1(σ0)⊗ 7(−ρ) ∼= L(σ0)⊗ 7(−ρ)):

C λ w−ρ · λ σ0 QA,C d(A,C) j [radj Ẑ
′
1(0, 0) : L̂1(w−ρ · λ)]

1 (0,0) (-2,-2) (5,5) 1 0 0 1
2 (2,0) (-4,-2) (3,5) 1 1 1 1
3 (1,1) (-3,-3) (4,4) 1 2 2 1
4 (1,2) (-3,-4) (4,3) 1 3 3 1
5 (2,2) (-4,-4) (3,3) q 4 2 1
6 (0,4) (-2,-6) (5,1) q 5 3 1
7 (5,1) (-7,-3) (0,4) q2 5 1 1
8 (3,3) (-5,-5) (2,2) q + q2 6 2 1

4 1
11 (4,3) (-6,-5) (1,2) 2q2 + q3 7 1 1

3 2
13 (4,4) (-6,-6) (1,1) 3q3 8 2 3
15 (3,5) (-5,-7) (2,0) 3q4 9 1 3
16 (5,5) (-7,-7) (0,0) q3 + 3q4 10 2 3

4 1

In a similar manner, we consider all possible special points ν for which there is an
alcove C lying in the box Πν with QA,C �= 0 and make computations as above. In
total there are 16 relevant special points (including −ρ). We may write ν = −ρ+7ν̃
for some weight ν̃. Then, if λ′ is a p-regular weight in Πν , λ

′ = λ+ 7ν̃ for λ ∈ Π−ρ

as above. Furthermore,

wν · λ′ = −λ′ + 2ν = −λ− 2ρ+ 7ν̃ = w−ρ · λ+ 7ν̃ = σ0 + 7(−ρ+ ν̃),

with σ0 ∈ X1 as above. So L̂1(wν ·λ′) ∼= L̂1(σ0)⊗7(−ρ+ν̃) ∼= L(σ0)⊗7σ1, by setting
σ1 := −ρ + ν̃. In particular, the above table contains all σ0 that appear, that is,

gives all the isotypic components L(σ0) that will appear within Ẑ ′
1(0, 0). Moreover,

the σ1-portion is easily obtained from ν̃. Putting all of these cases together, we get
the results in the table labelled “Alcove 1” in Appendix A.

From the general fact that Ẑ ′
1(μ0 + pμ1) ∼= Ẑ ′

1(μ0)⊗ pμ1 as a G1B-module, the

filtration for Ẑ ′
1(0, 0) also gives us the filtration for Ẑ ′

1(7, 7) = Ẑ ′
1(0, 0) ⊗ 7(1, 1),

which is one of the modules of interest for us. The aforementioned table lists the
values of σ1 for this module as well, which are obtained by simply adding (1, 1) to
the previous ones.

Tables for the other 11 alcoves are also given in Appendix A.

8.4. Composition factor analysis. Let μ = λ̂ with λ ∈ X1 being p-regular and
consider Theorem 2.3.1. For ∇(μ) to fail to have a good p-filtration, we must have
composition factors L(σ0)⊗ pσ1 and L(σ0)⊗ pσ̃1 (same isotypic component) with

a non-zero and non-isomorphic G-map ∇(σ1) → R1 indGB σ̃1. Next, observe that



480 CHRISTOPHER P. BENDEL ET AL.

if ∇(σ1) ∼= L(σ1) for all such σ1, then any non-zero map would necessarily be an
isomorphism. Reviewing the table of composition factors in Appendix A, we see
that there are only two cases where ∇(σ1) �= L(σ1): σ1 = (2, 0), (1, 1). Precisely,
we have two short exact sequences of G-modules:

0 → L(2, 0) → ∇(2, 0) → k → 0

and

0 → L(1, 1) → ∇(1, 1) → L(2, 0) → 0.

8.5. Composition factors: Non-vanishing R1. Considering again the collection
of all σ1 that appear in the tables of Appendix A, we are interested in those σ1

where R1 indGB σ1 �= 0. For this to occur, we must have (cf. [Jan03, Prop. II.5.4])
〈σ1, α

∨〉 ≤ −2 for a simple root α. The set of such weights that appear are as
follows:

(−2, 1), (−2, 2), (−2, 3), (3,−2), (−3, 1), (−3, 2),

(−3, 3), (−4, 2), (−4, 3), (4,−2), (5,−2).

Using [Jan03, II.5.4(d)], one can determine the structure of R1 indGB σ1 for each
such σ1. Note that the simple roots are α1 = (2,−1) and α2 = (−3, 2).

• R1 indGB(−2, 1) = R1 indGB(sα1
· (0, 0)) ∼= ∇(0, 0) = k

• R1 indGB(−2, 2) = R1 indGB(sα1
· (0, 1)) ∼= ∇(0, 1) = L(0, 1)

• R1 indGB(−2, 3) = R1 indGB(sα1
· (0, 2)) ∼= ∇(0, 2) = L(0, 2)

• R1 indGB(3,−2) = R1 indGB(sα2
· (0, 0)) ∼= ∇(0, 0) = k

• R1 indGB(−3, 1) = R1 indGB(sα1
· (1,−1)) ∼= ∇(1,−1) = 0

• R1 indGB(−3, 2) = R1 indGB(sα1
· (1, 0)) ∼= ∇(1, 0) = L(1, 0)

• R1 indGB(−3, 3) = R1 indGB(sα1
· (1, 1)) ∼= ∇(1, 1), with socle L(1, 1)

• R1 indGB(−4, 2) = R1 indGB(sα1
· (2,−1)) ∼= ∇(2,−1) = 0

• R1 indGB(−4, 3) = R1 indGB(sα1
· (2, 0)) ∼= ∇(2, 0), with socle L(2, 0)

• R1 indGB(4,−2) = R1 indGB(sα2
· (1, 0)) ∼= ∇(1, 0) = L(1, 0)

• R1 indGB(5,−2) = R1 indGB(sα2
· (2, 0)) ∼= ∇(2, 0), with socle L(2, 0)

From the discussion above, one can also see from [Jan03, Prop. II.5.4] that

R2 indGB σ1 = 0 for all σ1 that appear; a condition needed to apply part (c) of
Theorem 2.3.1.

8.6. Composition factors: Comparison. Using the previous two sections, we
see that there are only four potentially bad scenarios, where the following pairs (σ1,
σ̃1) arise (with a common σ0):

Case 1. σ1 = (2, 0) and σ̃1 = (3,−2), with σ0 = (0, 0).

Case 2. σ1 = (2, 0) and σ̃1 = (−2, 1), with various σ0: (0, 0), (2, 0), (1, 1), (1, 2),
(2, 2).

Case 3. σ1 = (1, 1) and σ̃1 = (−4, 3), with σ0 = (0, 0).

Case 4. σ1 = (1, 1) and σ̃1 = (5,−2), with σ0 = (0, 0).

For λ ∈ X1, the numbering of the alcoves in Appendix A corresponds to that of

λ̂ as in the following table.
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Alcove 1 2 3 4 5 6
λ (5,5) (3,5) (4,4) (4,3) (3,3) (4,1)

λ̂ (7,7) (9,7) (8,8) (8,9) (9,9) (7,11)

Alcove 7 8 11 13 15 16
λ (0,4) (2,2) (1,2) (1,1) (2,0) (0,0)

λ̂ (12,8) (10,10) (11,10) (11,11) (10,12) (12,12)

Considering all the composition factors in the tables of Appendix A, we find that
Case 1 arises in Alcoves 1 and 2. Case 2 arises in Alcoves 1 through 8, but not 11
through 16. Case 3 occurs only in Alcove 4. Lastly, Case 4 occurs only in Alcove

11. Therefore, ∇(λ̂) has a good p-filtration for Alcoves 13, 15, and 16. In the Case
1 scenarios, when the weight (3,−2) appears in the same isotypic component as the
weight (2, 0), it always appears in a strictly higher level G1T -radical layer. Hence,
that would also be the case for the G1B-radical layers. As such no cancellation
can occur (cf. condition (b) of Theorem 2.3.1), and this case is resolved. In the
Case 2 scenarios, the weight (-2,1) appears in the same or higher level G1T -radical
layer. In particular, for Alcoves 5 and 6, the weights only occur in different G1T -
radical layers (with the weight (-2,1) above the weight (2,0)). As above, since this
relationship would also hold for the G1B-radical filtration, then we would see that
no cancellation will occur. In the remaining alcoves, we have only to consider those
cases where the weights (-2,1) and (2,0) lie in the same G1T -radical layer. We note
that in occurrences of Case 3 and Case 4, the weights of concern also arise in the
same G1T -radical layer.

8.7. Case 2. Consider the case when Ẑ ′
1(μ) contains composition factors of the

form L(σ0) ⊗ 7(2, 0) and L(σ0) ⊗ 7(−2, 1) for some σ0. As noted above, this is of
concern only if they lie in the same G1T -radical layer. For cancellation to occur,
there must be a non-trivial extension ExtiB((2, 0), (−2, 1)) and an associated B-
module N (i.e., with (2,0) in the head and (-2,1) in the socle) such that L(σ0) ⊗
N (1) appears as a G1B-subquotient of Ẑ ′

1(μ). Since (length one) extensions of B-
modules differ by pnα for a simple root α, within N , the weight (module) lying
immediately above (−2, 1) = −α1 must be −α1 + pnα for α ∈ {α1, α2}. A check
of all composition factors shows that n = 0 and that only −α1 + α1 = 0 occurs. In
particular, −α1 + α2 = (−5, 3) does not occur. That is, we must be in a situation
where we have a non-split (or cancellation could not occur) short exact sequence of
B-modules:

0 → −α1 → S → k → 0

and
0 → S → N → N/S → 0.

Consider the long exact sequence in induction associated to the first sequence:

0→ indGB(−α1)→ indGB S→ indGB k→R1 indGB(−α1)→R1 indGB S→R1 indGB k→· · · .
By basic facts as above, this becomes

0 → 0 → indGB S → k
φ→ k → R1 indGB S → 0 → · · · .

Moreover, the map φ is necessarily non-zero (and hence an isomorphism) since the
original extension was non-split. We are using here the identification

HomG(k,R
1 indGB(−α1)) ∼= Ext1B(k,−α1).

Exactness now implies that indGB S = 0 and R1 indGB S = 0.
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Consider now the long exact sequence associated to the second short exact se-
quence above:

0 → indGB S → indGB N → indGB N/S → R1 indGB S · · · .

Using the preceding conclusions, we see that indGB N ∼= indGB N/S. Repeating this
argument as needed, any weights of the form (−2, 1) can be removed from consid-

eration and will not lead to any cancellation. Thus, ∇(λ̂) admits a good p-filtration
for all alcoves except possibly 4 and 11.

8.8. Case 3. Consider the case when Ẑ ′
1(μ) contains composition factors of the

form L(σ0)⊗ 7(1, 1) and L(σ0)⊗ 7(−4, 3) for some σ0. As noted above, this occurs
only in Alcove 4 within a common G1T -radical layer (and with σ0 = 0). For
cancellation to occur, there must be a non-trivial extension ExtiB((1, 1), (−4, 3))
and an associated B-module N (i.e., with (1,1) in the head and (-4,3) in the socle)

such that L(σ0)⊗N (1) appears as a G1B-subquotient of Ẑ ′
1(μ). As above, within N ,

the weight (module) lying immediately above (−4, 3) is either (−4, 3)+α1 = (−2, 2)
or (−4, 3) + α2 = (−7, 5). A check of all composition factors shows that the latter
case does not occur. Continuing in this manner, above the weight (-2,2) must lie
either (0,1) or (-5,4), but again the latter does not occur, and above (0,1) must lie
either (2,0) or (-3,3), but once again, the latter does not occur. So we may assume
that we have a series of non-split short exact sequences of B-modules:

0 → S1 → N → N/S1 → 0,

0 → S2 → S1 → (2, 0) → 0,

0 → (−4, 3) → S2 → S3 → 0,

and

0 → (−2, 2) → S3 → (0, 1) → 0.

Arguing as before with the associated long exact sequences, starting from the bot-
tom, we find that indGB S3 = 0 = R1 indGB S3. Then we get indGB S2 = 0 and

R1 indGB S2
∼= R1 indGB(−4, 3) ∼= ∇(2, 0). This gives indGB S1 = 0 = R1 indGB S1, from

which we get as before that indGB N ∼= indGB N/S1. Hence, the weight (−4, 3) is
removed and cannot cancel out the head of ∇(1, 1).

8.9. Case 4. Consider the case when Ẑ ′
1(μ) contains composition factors of the

form L(σ0)⊗ 7(1, 1) and L(σ0)⊗ 7(5,−2) for some σ0. As noted above, this occurs
only in Alcove 11 within a common G1T -radical layer (and again with σ0 = 0). The
situation may be resolved in a manner similar to Case 2. As in that case, suppose we
have a non-trivial extension ExtiB((1, 1), (5,−2)) with associated moduleN . Within
N , lying directly above (5,−2) must be (5,−2) + α1 = (7,−3) or (5,−2) + α2 =
(2, 0). The former case does not occur. So N contains a submodule S with structure
given by a non-split extension

0 → (5,−2) → S → (2, 0) → 0.

Consider again the associated long exact sequence:

0 → indGB(5,−2) → indGB S → indGB(2, 0) → R1 indGB(5,−2) → R1 indGB S →
→ R1 indGB(2, 0) → · · · ,
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which reduces to

0 → 0 → indGB S → ∇(2, 0)
φ→ ∇(2, 0) → R1 indGB S → 0 → · · · ,

where once again the map φ must be an isomorphism (the only option for a non-
trivial map based on the structure of ∇(2, 0)). And so the argument proceeds as
above.

8.10. Additional remarks. In Appendix A, as an added bonus, we provide com-
plete information about the G1T -radical series for the baby Verma modules for
Φ = G2 when p = 7. We should also add that our proof in this section shows that
if one considers a layer of the G1B-radical series for the baby Verma modules and
applies indGG1B(−) then the resulting G-module has a good p-filtration.

One can also use the data in those tables to compute the Ext-groups
Ext1G1

(L(λ), L(μ)) for p-regular dominant weights λ, μ in these alcoves, verifying
the results in [Lin91, Section 4.2, Figure 3] for all primes greater than or equal to
7.

Appendix A. G1T -radical series of baby Verma modules

The following tables give the G1T -composition factors (necessarily also G1B-

composition factors) of the radical layers of Ẑ ′
1(μ) and Ẑ ′

1(μ + 7ρ) ∼= Ẑ ′
1(μ) ⊗ 7ρ

for each 7-regular μ ∈ X1. Here, a composition factor is L(σ0) ⊗ 7σ1, with j

denoting the layer radj Ẑ
′
1(μ) := radj Ẑ ′

1(μ)/ rad
j+1 Ẑ ′

1(μ). We refer the reader to
Section 8.3 for an outline for the calculations for Alcove 1. The remaining alcoves
(cf. [Hum06, 18.2 Figure 1]) in the restricted region are treated analogously.
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Alcove 1

σ0 j σ1 for Ẑ ′
1(0, 0) σ1 for Ẑ ′

1(7, 7)
(5,5) 0 (-1,-1) (0,0)
(3,5) 1 (-1,-1) (0,0)

5 (0,-1) (1,0)
(4,4) 2 (-1,-1) (0,0)

4 (0,-1), (-2,0) (1,0), (-1,1)
(4,3) 3 (-1,-1), (0,-1), (1,-2), (-2,0) (0,0), (1,0), (2,-1), (-1,1)
(3,3) 2 (-1,-1),(0,-1), (1,-2), (-2,0), (-3,0) (0,0), (1,0), (2,-1), (-1,1), (-2,1)
(5,1) 3 (-1,-1),(0,-1), (1,-2), (-2,0), (-3,0) (0,0), (1,0), (2,-1), (-1,1), (-2,1)

5 (-1,0) (0,1)
(0,4) 1 (-1,-1), (0,-1), (0,-2), (1,-2), (-2,0), (0,0), (1,0), (1,-1), (2,-1), (-1,1),

(-3,0) (-2,1)
(2,2) 2 (-1,-1), (0,-1), (0,-2), (1,-2), (-2,0), (0,0), (1,0), (1,-1), (2,-1), (-1,1),

(-3,0) (-2,1)
4 (-1,-1), (0,-1), (-1,0), (1,-2), (-2,0), (0,0), (1,0), (0,1), (2,-1), (-1,1),

(2,-2) (3,-1)
(1,2) 1 (-1,-1), (0,-1), (0,-2), (1,-2), (-2,0), (0,0), (1,0), (1,-1), (2,-1), (-1,1),

(-2,-1), (-3,0) (-1,0), (-2,1)
3 (-1,-1)⊕2, (0,-1)⊕2, (-1,0), (1,-2), (0,0)⊕2, (1,0)⊕2, (0,1), (2,-1),

(-2,0)⊕2, (2,-2), (-3,0), (-4,1) (-1,1)⊕2, (3,-1), (-2,1), (-3,2)
(1,1) 2 (-1,-1)⊕3, (0,-1)⊕2, (-1,0), (0,-2), (0,0)⊕3, (1,0)⊕2, (0,1), (1,-1),

(1,-2)⊕2, (-2,0)⊕2, (-2,-1), (2,-2), (2,-1)⊕2, (-1,1)⊕2, (-1,0), (3,-1),
(-3,0), (2,-3), (-4,1) (-2,1), (3,-2), (-3,2)

4 (0,-1) (1,0)
(2,0) 1 (-1,-1)⊕3, (0,-1), (-1,0), (0,-2), (0,0)⊕3, (1,0), (0,1), (1,-1),

(1,-2), (-2,0), (-2,-1), (2,-2), (2,-1), (-1,1), (-1,0), (3,-1)
(-3,0), (2,-3), (-4,0), (-4,1) (-2,1), (3,-2), (-3,1), (-3,2)

3 (0,-1), (-2,0) (1,0), (-1,1)
(0,0) 2 (-1,-1)⊕3, (0,-1), (-1,0), (0,-2), (0,0)⊕3, (1,0), (0,1), (1,-1),

(1,-2), (-2,0), (-2,-1), (2,-2), (2,-1), (-1,1), (-1,0), (3,-1),
(-3,0), (2,-3), (-4,0), (-4,1) (-2,1), (3,-2), (-3,1), (-3,2)

4 (-1,-1), (0,-1)⊕3, (-1,0), (1,-1), (0,0), (1,0)⊕3, (0,1), (2,0),
(0,-2), (1,-2), (-2,0)⊕2, (2,-2), (1,-1), (2,-1), (-1,1)⊕2, (3,-1),

(-3,0), (-3,1), (3,-3) (-2,1), (-2,2), (4,-2)
6 (0,0) (1,1)
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Alcove 2

σ0 j σ1 for Ẑ ′
1(2, 0) σ1 for Ẑ ′

1(9, 7)
(5,5) 5 (0,-1) (1,0)
(3,5) 0 (-1,-1) (0,0)

4 (0,-1) (1,0)
(4,4) 1 (-1,-1) (0,0)

3 (0,-1), (-2,0) (1,0), (-1,1)
(4,3) 2 (-1,-1), (0,-1), (1,-2), (-2,0) (0,0), (1,0), (2,-1), (-1,1)
(3,3) 3 (-1,-1), (0,-1), (1,-2), (-2,0) (0,0), (1,0), (2,-1), (-1,1)

5 (-1,0) (0,1)
(5,1) 2 (-1,-1), (0,-1), (1,-2), (-2,0), (-3,0) (0,0), (1,0), (2,-1), (-1,1), (-2,1)

4 (-1,0) (0,1)
(0,4) 4 (-1,-1), (0,-1), (-1,0), (1,-2), (-2,0), (0,0), (1,0), (0,1), (2,-1), (-1,1),

(2,-2) (3,-1)
(2,2) 1 (-1,-1), (0,-1), (0,-2), (1,-2), (-2,0), (0,0), (1,0), (1,-1), (2,-1), (-1,1),

(-3,0) (-2,1)
3 (-1,-1), (0,-1), (-1,0), (1,-2), (-2,0), (0,0), (1,0), (0,1), (2,-1), (-1,1),

(2,-2) (3,-1)
(1,2) 2 (-1,-1)⊕2, (0,-1), (0,-2), (1,-2), (0,0)⊕2, (1,0), (1,-1), (2,-1),

(-2,0), (-3,0) (-1,1), (-2,1)
4 (-1,-1), (0,-1)⊕2, (-1,0)⊕2, (1,-1), (0,0), (1,0)⊕2, (0,1)⊕2, (2,0),

(1,-2), (-2,0)⊕2, (2,-2), (-3,1) (2,-1), (-1,1)⊕2, (3,-1), (-2,2)
(1,1) 1 (-1,-1) (0,0)

3 (-1,-1)⊕2, (0,-1)⊕3, (-1,0), (1,-1), (0,0)⊕2, (1,0)⊕3, (0,1), (2,0)
(0,-2), (1,-2)⊕2, (-2,0)⊕2, (2,-2), (1,-1), (2,-1)⊕2, (-1,1)⊕2, (3,-1),

(-3,0), (-3,1), (3,-3) (-2,1), (-2,2), (4,-2)
(2,0) 2 (-1,-1) (0,0)

4 (-1,-1), (0,-1)⊕3, (-1,0), (1,-1), (0,0), (1,0)⊕3, (0,1), (2,0),
(0,-2), (1,-2), (-2,0)⊕2, (2,-2), (1,-1), (2,-1), (-1,1)⊕2, (3,-1)

(-3,0), (-3,1), (3,-3) (-2,1), (-2,2), (4,-2)
6 (0,0) (1,1)

(0,0) 1 (-1,-1)⊕3, (0,-1), (-1,0), (0,-2), (0,0)⊕3, (1,0), (0,1), (1,-1),
(1,-2), (-2,0), (-2,-1), (2,-2), (2,-1), (-1,1), (-1,0), (3,-1),
(-3,0), (2,-3), (-4,0), (-4,1) (-2,1), (3,-2), (-3,1), (-3,2)

3 (-1,-1), (0,-1)⊕3, (-1,0), (1,-1), (0,0), (1,0)⊕3, (0,1), (2,0),
(0,-2), (1,-2), (-2,0)⊕2, (2,-2), (1,-1), (2,-1), (-1,1)⊕2, (3,-1),

(-3,0), (-3,1), (3,-3) (-2,1), (-2,2), (4,-2)
5 (0,0) (1,1)
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Alcove 3

σ0 j σ1 for Ẑ ′
1(1, 1) σ1 for Ẑ ′

1(8, 8)
(5,5) 4 (0,-1) (1,0)
(3,5) 3 (0,-1), (-2,0) (1,0), (-1,1)
(4,4) 0 (-1,-1) (0,0)

2 (0,-1), (-2,0) (1,0), (-1,1)
(4,3) 1 (-1,-1) (0,0)

3 (0,-1), (-2,0) (1,0), (-1,1)
5 (-1,0) (0,1)

(3,3) 2 (-1,-1), (0,-1), (1,-2), (-2,0) (0,0), (1,0), (2,-1), (-1,1)
4 (-1,0) (0,1)

(5,1) 1 (-1,-1), (0,-1), (1,-2), (-2,0), (-3,0) (0,0), (1,0), (2,-1), (-1,1), (-2,1)
3 (-1,0) (0,1)

(0,4) 3 (-1,-1), (0,-1), (1,-2), (-2,0), (0,0), (1,0), (2,-1), (-1,1),
5 (1,-1), (-1,0) (2,0), (0,1)

(2,2) 2 (-1,-1)⊕2, (0,-1), (1,-2), (-2,0), (0,0)⊕2, (1,0), (2,-1), (-1,1),
(-3,0) (-2,1)

4 (0,-1), (-1,0)⊕2, (1,-1), (-2,0), (1,0), (0,1)⊕2, (2,0), (-1,1),
(-3,1) (-2,2)

(1,2) 1 (-1,-1)⊕2, (0,-1), (0,-2), (1,-2), (0,0)⊕2, (1,0), (1,-1), (2,-1),
(-2,0), (-3,0) (-1,1), (-2,1)

3 (-1,-1), (0,-1)⊕2, (-1,0)⊕2, (1,-1), (1,-2), (0,0), (1,0)⊕2, (0,1)⊕2, (2,0), (2,-1),
(-2,0)⊕2, (2,-2), (-3,1) (-1,1)⊕2, (3,-1), (-2,2)

(1,1) 2 (-1,-1)⊕2, (0,-1), (0,-2), (1,-2) (0,0)⊕2, (1,0), (1,-1), (2,-1)
(-2,0), (-3,0) (-1,1), (-2,1)

4 (0,-1)⊕2, (1,-1), (-1,0)⊕2, (-2,0)⊕2, (1,0)⊕2, (2,0), (0,1)⊕2, (-1,1)⊕2,
(2,-2), (-3,1) (3,-1), (-2,2)

6 (0,0) (1,1)
(2,0) 1 (-1,-1) (0,0)

3 (-1,-1), (0,-1)⊕3, (-1,0), (1,-1), (0,0), (1,0)⊕3, (0,1), (2,0),
(0,-2), (1,-2), (-2,0)⊕2, (2,-2), (1,-1), (2,-1), (-1,1)⊕2, (3,-1)

(-3,0), (-3,1), (3,-3) (-2,1), (-2,2), (4,-2)
5 (0,0) (1,1)

(0,0) 2 (-1,-1)⊕3, (0,-1)⊕3, (-1,0), (1,-1), (0,0)⊕3, (1,0)⊕3, (0,1), (2,0),
(0,-2), (1,-2)⊕2, (-2,0)⊕3, (-2,-1), (1,-1), (2,-1)⊕2, (-1,1)⊕3, (-1,0),
(2,-2), (-3,0)⊕2, (-3,1), (3,-3), (3,-1), (-2,1)⊕2, (-2,2), (4,-2),

(-4,1), (-5,1) (-3,2), (-4,2)
4 (0,0), (0,-1), (-1,0), (1,-1), (1,1), (1,0), (0,1), (2,0)

(-2,0), (-2,1), (-3,1) (-1,1), (-1,2), (-2,2)
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Alcove 4

σ0 j σ1 for Ẑ ′
1(1, 2) σ1 for Ẑ ′

1(8, 9)
(5,5) 3 (0,-1) (1,0)
(3,5) 2 (0,-1), (-2,0) (1,0), (-1,1)
(4,4) 3 (0,-1), (-2,0) (1,0), (-1,1)

5 (-1,0) (0,1)
(4,3) 0 (-1,-1) (0,0)

2 (0,-1), (-2,0) (1,0), (-1,1)
4 (-1,0) (0,1)

(3,3) 1 (-1,-1) (0,0)
3 (0,-1), (-2,0) (1,0), (-1,1)
5 (-1,0), (1,-1) (0,1), (2,0)

(5,1) 2 (-1,-1) (0,0)
4 (0,-1), (-1,0), (1,-1), (-2,0), (-3,1) (1,0), (0,1), (2,0), (-1,1), (-2,2)

(0,4) 2 (0,-1), (-1,-1), (1,-2), (-2,0), (1,0), (0,0), (2,-1), (-1,1),
4 (-1,0), (1,-1) (0,1), (2,0)

(2,2) 1 (0,-1), (-1,-1)⊕2, (1,-2), (-2,0), (-3,0) (1,0), (0,0)⊕2, (2,-1), (-1,1) (-2,1),
3 (0,-1), (-1,0)⊕2, (1,-1), (-2,0), (-3,1) (1,0), (0,1)⊕2, (2,0), (-1,1) (-2,2),

(1,2) 2 (0,-1), (-1,-1)⊕2, (1,-2), (-2,0), (-3,0) (1,0), (0,0)⊕2, (2,-1), (-1,1) (-2,1),
4 (0,-1)⊕2, (-1,0)⊕3, (1,-1)⊕2, (1,0)⊕2, (0,1)⊕3, (2,0)⊕2,

(-2,0)⊕2, (2,-2), (-3,1) (-1,1)⊕2, (3,-1), (-2,2),
6 (0,0) (1,1)

(1,1) 1 (0,-1), (-1,-1)⊕2, (0,-2), (1,0), (0,0)⊕2, (1,-1),
(1,-2), (-2,0), (-3,0) (2,-1), (-1,1) (-2,1)

3 (0,-1)⊕2, (-1,0)⊕2, (1,-1), (1,0)⊕2, (0,1)⊕2, (2,0),
(-2,0)⊕2, (2,-2), (-3,1) (-1,1)⊕2, (3,-1), (-2,2),

5 (0,0) (1,1)
(2,0) 2 (0,-1), (-1,-1), (0,-2), (1,0), (0,0), (1,-1),

(1,-2), (-2,0), (-3,0) (2,-1), (-1,1) (-2,1)
4 (0,0), (0,-1)⊕2, (-1,0)⊕2, (1,-1), (1,1), (1,0)⊕2, (0,1)⊕2, (2,0),

(-2,0), (2,-2), (-3,1), (3,-2) (-1,1), (3,-1), (-2,2), (4,-1)
(0,0) 1 (0,-1), (-1,-1), (0,-2), (-2,-1) (1,0), (0,0), (1,-1), (-1,0)

(1,-2), (-2,0), (-3,0) (2,-1), (-1,1) (-2,1)
3 (0,0), (-1,-1), (0,-1)⊕3, (-1,0)⊕3, (1,1), (0,0), (1,0)⊕3, (0,1)⊕3,

(1,-1)⊕2, (1,-2), (-2,0)⊕3, (2,0)⊕2, (2,-1), (-1,1)⊕3,
(2,-2), (-2,1), (3,-2), (-3,0), (3,-1), (-1,2), (4,-1), (-2,1),

(-3,1)⊕2, (-4,1), (-5,2) (-2,2)⊕2, (-3,2), (-4,3)
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Alcove 5

σ0 j σ1 for Ẑ ′
1(2, 2) σ1 for Ẑ ′

1(9, 9)
(5,5) 2 (0,-1) (1,0)
(3,5) 3 (0,-1) (1,0)

5 (-1,0) (0,1)
(4,4) 2 (0,-1), (-2,0) (1,0), (-1,1)

4 (-1,0) (0,1)
(4,3) 3 (0,-1), (-2,0) (1,0), (-1,1)

5 (-1,0), (1,-1) (0,1), (2,0)
(3,3) 0 (-1,-1) (0,0)

2 (0,-1), (-2,0) (1,0), (-1,1)
4 (-1,0), (1,-1) (0,1), (2,0)

(5,1) 1 (-1,-1) (0,0)
3 (0,-1), (-1,0), (1,-1), (-2,0), (-3,1) (1,0), (0,1), (2,0), (-1,1), (-2,2)

(0,4) 1 (-1,-1) (0,0)
3 (0,-1), (-1,0), (1,-1), (-2,0), (2,-2) (1,0), (0,1), (2,0), (-1,1), (3,-1)

(2,2) 2 (-1,-1) (0,0)
4 (0,-1)⊕2, (-1,0)⊕2, (1,-1)⊕2, (1,0)⊕2, (0,1)⊕2, (2,0)⊕2,

(-2,0)⊕2, (2,-2), (-3,1) (-1,1)⊕2, (3,-1), (-2,2)
6 (0,0) (1,1)

(1,2) 1 (0,-1), (-1,-1)⊕2, (1,-2), (-2,0), (-3,0) (1,0), (0,0)⊕2, (2,-1), (-1,1) (-2,1),
3 (0,-1)⊕2, (-1,0)⊕3, (1,-1)⊕2, (1,0)⊕2, (0,1)⊕3, (2,0)⊕2,

(-2,0)⊕2, (2,-2), (-3,1) (-1,1)⊕2, (3,-1), (-2,2),
5 (0,0) (1,1)

(1,1) 2 (0,-1), (-1,-1), (1,-2), (-2,0), (-3,0) (1,0), (0,0), (2,-1), (-1,1), (-2,1)
4 (0,0), (0,-1)⊕2, (-1,0)⊕3, (1,-1)⊕2, (1,1), (1,0)⊕2, (0,1)⊕3, (2,0)⊕2,

(-2,0), (2,-2), (3,-2), (-3,1) (-1,1), (3,-1), (4,-1), (-2,2),
(2,0) 1 (0,-1), (-1,-1), (0,-2), (1,0), (0,0), (1,-1),

(1,-2), (-2,0), (-3,0) (2,-1), (-1,1) (-2,1)
3 (0,0), (0,-1)⊕2, (-1,0)⊕2, (1,-1), (1,1), (1,0)⊕2, (0,1)⊕2, (2,0),

(-2,0), (2,-2), (3,-2), (-3,1) (-1,1), (3,-1), (4,-1), (-2,2)
(0,0) 2 (0,-1), (-1,-1), (0,-2), (1,0), (0,0), (1,-1),

(1,-2), (-2,0), (-3,0) (2,-1), (-1,1) (-2,1)
4 (0,0)⊕2, (-1,-1), (0,-1)⊕3, (-1,0)⊕4, (1,1)⊕2, (0,0), (1,0)⊕3, (0,1)⊕4,

(1,-1)⊕2, (2,-1), (-2,0)⊕2, (2,0)⊕2, (3,0), (-1,1)⊕2,
(2,-2)⊕2, (-2,1), (3,-2) (3,-1)⊕2, (-1,2), (4,-1)
(-3,1)⊕2, (-4,1), (-4,2) (-2,2)⊕2, (-3,2), (-3,3)
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Alcove 6

σ0 j σ1 for Ẑ ′
1(0, 4) σ1 for Ẑ ′

1(7, 11)
(5,5) 5 (-1,0) (0,1)
(3,5) 2 (0,-1) (1,0)

4 (-1,0) (0,1)
(4,4) 1 (0,-1), (-2,0) (1,0), (-1,1)

3 (-1,0) (0,1)
(4,3) 2 (0,-1), (-2,0) (1,0), (-1,1)

4 (-1,0), (1,-1) (0,1), (2,0)
(3,3) 3 (0,-1), (-1,0), (1,-1), (-2,0), (-3,1) (1,0), (0,1), (2,0), (-1,1), (-2,2)
(5,1) 0 (-1,-1) (0,0)

2 (0,-1), (-1,0), (1,-1), (-2,0), (-3,1) (1,0), (0,1), (2,0), (-1,1), (-2,2)
(0,4) 4 (0,-1), (-1,0), (1,-1), (-2,0), (-3,1) (1,0), (0,1), (2,0), (-1,1), (-2,2)

6 (0,0) (1,1)
(2,2) 1 (-1,-1) (0,0)

3 (0,-1)⊕2, (-1,0)⊕2, (1,-1)⊕2, (1,0)⊕2, (0,1)⊕2, (2,0)⊕2,
(-2,0)⊕2, (2,-2), (-3,1) (-1,1)⊕2, (3,-1), (-2,2)

5 (0,0) (1,1)
(1,2) 2 (0,-1)⊕2, (-1,-1), (-1,0)⊕2, (1,-1), (1,0)⊕2, (0,0), (0,1)⊕2, (2,0),

(-2,0)⊕2, (2,-2), (-3,1), (-4,1) (-1,1)⊕2, (3,-1), (-2,2), (-3,2)
4 (0,0), (0,-1), (-1,0), (1,-1), (1,1), (1,0), (0,1), (2,0)

(-2,0), (-2,1), (-3,1) (-1,1), (-1,2), (-2,2)
(1,1) 3 (0,-1)⊕3, (-1,-1), (-1,0)⊕2, (1,-1) (1,0)⊕3, (0,0), (0,1)⊕2, (2,0)

(-2,0)⊕2, (2,-2), (-3,1), (-4,1) (-1,1)⊕2, (3,-1), (-2,2), (-3,2)
5 (0,0), (-1,0), (1,-1), (2,-1), (-2,1) (1,1), (0,1), (2,0), (3,0), (-1,2)

(2,0) 2 (0,-1), (-2,0) (1,0), (-1,1)
4 (0,0), (0,-1), (-1,-1), (-1,0)⊕3, (1,1), (1,0), (0,0), (0,1)⊕3

(1,-1), (2,-1), (-2,0), (2,-2), (2,0), (3,0), (-1,1), (3,-1)
(-2,1), (-3,1), (-4,1), (-4,2) (-1,2), (-2,2), (-3,2), (-3,3)

(0,0) 1 (0,-1), (-1,-1), (0,-2), (1,0), (0,0), (1,-1),
(1,-2), (-2,0), (-3,0) (2,-1), (-1,1) (-2,1)

3 (0,0)⊕2, (-1,-1), (0,-1)⊕3, (-1,0)⊕4, (1,1)⊕2, (0,0), (1,0)⊕3, (0,1)⊕4,
(1,-1)⊕2, (2,-1), (-2,0)⊕2, (2,0)⊕2, (3,0), (-1,1)⊕2,
(2,-2)⊕2, (-2,1), (3,-2) (3,-1)⊕2, (-1,2), (4,-1)
(-3,1)⊕2, (-4,1), (-4,2) (-2,2)⊕2, (-3,2), (-3,3)
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Alcove 7

σ0 j σ1 for Ẑ ′
1(5, 1) σ1 for Ẑ ′

1(12, 8)
(5,5) 1 (0,-1) (1,0)
(3,5) 2 (0,-1) (1,0)

4 (-1,0) (0,1)
(4,4) 3 (0,-1) (1,0)

5 (-1,0), (1,-1) (0,1), (2,0)
(4,3) 2 (0,-1), (-2,0) (1,0), (-1,1)

4 (-1,0), (1,-1) (0,1), (2,0)
(3,3) 3 (0,-1), (-1,0), (1,-1), (-2,0), (2,-2) (1,0), (0,1), (2,0), (-1,1), (3,-1)
(5,1) 4 (0,-1), (-1,0), (1,-1), (-2,0), (2,-2) (1,0), (0,1), (2,0), (-1,1), (3,-1)

6 (0,0) (1,1)
(0,4) 0 (-1,-1) (0,0)

2 (0,-1), (-1,0), (1,-1), (-2,0), (2,-2) (1,0), (0,1), (2,0), (-1,1), (3,-1)
(2,2) 1 (-1,-1) (0,0)

3 (0,-1)⊕2, (-1,0)⊕2, (1,-1)⊕2, (1,0)⊕2, (0,1)⊕2, (2,0)⊕2,
(-2,0)⊕2, (2,-2), (-3,1) (-1,1)⊕2, (3,-1), (-2,2)

5 (0,0) (1,1)
(1,2) 2 (0,-1), (-1,0), (-1,-1), (1,-1), (1,0), (0,1), (0,0), (2,0)

(1,-2), (-2,0), (2,-2) (2,-1), (-1,1), (3,-1)
4 (0,0), (0,-1)⊕2, (-1,0)⊕2, (1,-1)⊕2, (1,1), (1,0)⊕2, (0,1)⊕2, (2,0)⊕2,

(-2,0), (2,-2), (3,-2), (-3,1) (-1,1), (3,-1), (4,-1), (-2,2)
(1,1) 1 (0,-1), (-1,-1), (1,-2), (-2,0), (-3,0) (1,0), (0,0), (2,-1), (-1,1), (-2,1)

3 (0,0), (0,-1)⊕2, (-1,0)⊕3, (1,-1)⊕2 (1,1), (1,0)⊕2, (0,1)⊕3, (2,0)⊕2

(-2,0), (2,-2), (3,-2), (-3,1) (-1,1), (3,-1), (4,-1), (-2,2)
(2,0) 2 (0,0), (0,-1)⊕3, (-1,-1), (-1,0) (1,1), (1,0)⊕3, (0,0), (0,1)

(1,-1), (-2,0), (1,-2), (2,-2), (2,0), (-1,1), (2,-1), (3,-1)
(3,-2), (3,-3), (-3,0), (-3,1) (4,-1), (4,-2), (-2,1), (-2,2)

4 (-1,0), (1,-1) (0,1), (2,0)
(0,0) 3 (0,0), (-1,-1)⊕2, (0,-1)⊕4, (-1,0)⊕3, (1,1), (0,0)⊕2, (1,0)⊕4, (0,1)⊕3,

(1,-1)⊕2, (1,-2), (-2,0)⊕2, (2,0)⊕2, (2,-1), (-1,1)⊕2,
(2,-2)⊕2, (3,-2), (3,-3), (3,-1)⊕2, (4,-1), (4,-2),
(-3,0), (-3,1)⊕2, (-4,1) (-2,1), (-2,2)⊕2, (-3,2)

5 (0,0), (-1,0), (1,-1) (1,1), (0,1), (2,0)
(-1,1), (2,-1), (-2,1) (0,2), (3,0), (-1,2)
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Alcove 8

σ0 j σ1 for Ẑ ′
1(3, 3) σ1 for Ẑ ′

1(10, 10)
(5,5) 4 (-1,0) (0,1)
(3,5) 1 (0,-1) (1,0)

3 (-1,0) (0,1)
(4,4) 2 (0,-1) (1,0)

4 (-1,0), (1,-1) (0,1), (2,0)
(4,3) 1 (0,-1), (-2,0) (1,0), (-1,1)

3 (-1,0), (1,-1) (0,1), (2,0)
(3,3) 2 (0,-1), (-2,0) (1,0), (-1,1)

4 (-1,0), (1,-1) (0,1), (2,0)
6 (0,0) (1,1)

(5,1) 3 (0,-1), (-1,0), (1,-1), (-2,0), (2,-2) (1,0), (0,1), (2,0), (-1,1), (3,-1)
5 (0,0) (1,1)

(0,4) 3 (0,-1), (-1,0), (1,-1), (-2,0), (-3,1) (1,0), (0,1), (2,0), (-1,1), (-2,2)
5 (0,0) (1,1)

(2,2) 0 (-1,-1) (0,0)
2 (0,-1)⊕2, (-1,0)⊕2, (1,-1)⊕2, (1,0)⊕2, (0,1)⊕2, (2,0)⊕2,

(-2,0)⊕2, (2,-2), (-3,1) (-1,1)⊕2, (3,-1), (-2,2)
4 (0,0) (1,1)

(1,2) 1 (-1,-1) (0,0)
3 (0,-1)⊕3, (-1,0)⊕2, (1,-1)⊕2, (1,0)⊕3, (0,1)⊕2, (2,0)⊕2,

(-2,0)⊕2, (2,-2), (-3,1) (-1,1)⊕2, (3,-1), (-2,2)
5 (0,0)⊕2, (-1,0), (1,-1), (2,-1), (-2,1) (1,1)⊕2, (0,1), (2,0), (3,0), (-1,2)

(1,1) 2 (0,-1)⊕3, (-1,-1), (-1,0)⊕2, (1,-1) (1,0)⊕3, (0,0), (0,1)⊕2, (2,0)
(-2,0)⊕2, (2,-2), (-3,1), (-4,1) (-1,1)⊕2, (3,-1), (-2,2), (-3,2)

4 (0,0), (-1,0), (1,-1), (2,-1), (-2,1) (1,1), (0,1), (2,0), (3,0), (-1,2)
(2,0) 3 (0,-1)⊕2, (-1,-1), (-1,0)⊕2, (1,-1) (1,0)⊕2, (0,0), (0,1)⊕2, (2,0)

(-2,0), (2,-2), (-3,1), (-4,1) (-1,1), (3,-1), (-2,2), (-3,2)
5 (0,0), (-1,0), (1,-1), (-1,1) (1,1), (0,1), (2,0), (0,2)

(2,-1), (-2,1) (3,0), (-1,2)
(0,0) 2 (0,0), (-1,-1)⊕2, (0,-1)⊕4, (-1,0)⊕3, (1,1), (0,0)⊕2, (1,0)⊕4, (0,1)⊕3,

(1,-1)⊕2, (1,-2), (-2,0)⊕2, (2,0)⊕2, (2,-1), (-1,1)⊕2,
(2,-2)⊕2, (3,-2), (3,-3), (3,-1)⊕2, (4,-1), (4,-2),
(-3,0), (-3,1)⊕2, (-4,1) (-2,1), (-2,2)⊕2, (-3,2)

4 (0,0), (-1,0), (1,-1), (1,1), (0,1), (2,0)
(-1,1), (2,-1), (-2,1) (0,2), (3,0), (-1,2)
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Alcove 11

σ0 j σ1 for Ẑ ′
1(4, 3) σ1 for Ẑ ′

1(11, 10)
(5,5) 3 (-1,0) (0,1)
(3,5) 4 (-1,0), (1,-1) (0,1), (2,0)
(4,4) 1 (0,-1) (1,0)

3 (-1,0), (1,-1) (0,1), (2,0)
(4,3) 2 (0,-1) (1,0)

4 (-1,0), (1,-1) (0,1), (2,0)
6 (0,0) (1,1)

(3,3) 1 (0,-1), (-2,0) (1,0), (-1,1)
3 (-1,0), (1,-1) (0,1), (2,0)
5 (0,0) (1,1)

(5,1) 2 (0,-1), (-1,0), (1,-1), (-2,0), (2,-2) (1,0), (0,1), (2,0), (-1,1), (3,-1)
4 (0,0) (1,1)

(0,4) 2 (0,-1), (-2,0) (1,0), (-1,1)
4 (0,0), (-1,0), (1,-1), (-2,1) (1,1), (0,1), (2,0), (-1,2)

(2,2) 3 (0,-1)⊕2, (-1,0), (1,-1), (-2,0), (2,-2) (1,0)⊕2, (0,1), (2,0), (-1,1), (3,-1)
5 (0,0)⊕2, (-1,0), (1,-1), (2,-1), (-2,1) (1,1)⊕2, (0,1), (2,0), (3,0), (-1,2)

(1,2) 0 (-1,-1) (0,0)
2 (0,-1)⊕3, (-1,0)⊕2, (1,-1)⊕2, (1,0)⊕3, (0,1)⊕2, (2,0)⊕2,

(-2,0)⊕2, (2,-2), (-3,1) (-1,1)⊕2, (3,-1), (-2,2)
4 (0,0)⊕2, (-1,0), (1,-1), (2,-1), (-2,1) (1,1)⊕2, (0,1), (2,0), (3,0), (-1,2)

(1,1) 1 (-1,-1) (0,0)
3 (0,-1)⊕2, (-1,0)⊕2, (1,-1)⊕2 (1,0)⊕2, (0,1)⊕2, (2,0)⊕2

(-2,0), (2,-2), (-3,1) (-1,1), (3,-1), (-2,2)
5 (0,0)⊕2, (-1,0), (1,-1), (-1,1), (1,1)⊕2, (0,1), (2,0), (0,2)

(2,-1), (-2,1) (3,0), (-1,2)
(2,0) 2 (0,-1)⊕2, (-1,-1), (-1,0)⊕2, (1,-1) (1,0)⊕2, (0,0), (0,1)⊕2, (2,0)

(-2,0), (2,-2), (-3,1), (-4,1) (-1,1), (3,-1), (-2,2), (-3,2)
4 (0,0), (-1,0), (1,-1), (-1,1) (1,1), (0,1), (2,0), (0,2)

(2,-1), (-2,1) (3,0), (-1,2)
(0,0) 3 (0,0), (-1,-1), (0,-1)⊕3, (-1,0)⊕3, (1,1), (0,0), (1,0)⊕3, (0,1)⊕3,

(1,-1)⊕3, (2,-1), (1,-2), (-2,0)⊕2, (2,0)⊕3, (3,0), (2,-1), (-1,1)⊕2,
(2,-2)⊕2, (-2,1), (3,-2), (3,-1)⊕2, (-1,2), (4,-1),
(4,-3), (-3,1), (-4,1) (5,-2), (-2,2), (-3,2)

5 (1,0), (0,0), (-1,0), (1,-1), (2,1), (1,1), (0,1), (2,0)
(-1,1), (2,-1), (-2,1) (0,2), (3,0), (-1,2)
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Alcove 13

σ0 j σ1 for Ẑ ′
1(4, 4) σ1 for Ẑ ′

1(11, 11)
(5,5) 2 (-1,0) (0,1)
(3,5) 3 (-1,0), (1,-1) (0,1), (2,0)
(4,4) 4 (-1,0), (1,-1) (0,1), (2,0)

6 (0,0) (1,1)
(4,3) 1 (0,-1) (1,0)

3 (-1,0), (1,-1) (0,1), (2,0)
5 (0,0) (1,1)

(3,3) 2 (0,-1) (1,0)
4 (0,0), (-1,0), (1,-1), (-2,1) (1,1), (0,1), (2,0), (-1,2)

(5,1) 3 (0,-1) (1,0)
5 (0,0), (-1,0), (1,-1), (2,-1), (-2,1) (1,1), (0,1), (2,0), (3,0), (-1,2)

(0,4) 1 (0,-1), (-2,0) (1,0), (-1,1)
3 (0,0), (-1,0), (1,-1), (-2,1) (1,1), (0,1), (2,0), (-1,2)

(2,2) 2 (0,-1)⊕2, (-1,0), (1,-1), (-2,0), (2,-2) (1,0)⊕2, (0,1), (2,0), (-1,1), (3,-1)
4 (0,0)⊕2, (-1,0), (1,-1), (2,-1), (-2,1) (1,1)⊕2, (0,1), (2,0), (3,0), (-1,2)

(1,2) 3 (0,0), (0,-1)⊕2, (-1,0)⊕2, (1,-1)⊕2, (1,1), (1,0)⊕2, (0,1)⊕2, (2,0)⊕2,
(-2,0), (-2,1), (2,-2), (-3,1) (-1,1), (-1,2), (3,-1), (-2,2)

5 (0,0)⊕2, (-1,0), (1,-1), (-1,1), (1,1)⊕2, (0,1), (2,0), (0,2)
(2,-1), (-2,1) (3,0), (-1,2)

(1,1) 0 (-1,-1) (0,0)
2 (0,-1)⊕2, (-1,0)⊕2, (1,-1)⊕2 (1,0)⊕2, (0,1)⊕2, (2,0)⊕2

(-2,0), (2,-2), (-3,1) (-1,1), (3,-1), (-2,2)
4 (0,0)⊕2, (-1,0), (1,-1), (-1,1), (1,1)⊕2, (0,1), (2,0), (0,2)

(2,-1), (-2,1) (3,0), (-1,2)
(2,0) 1 (-1,-1) (0,0)

3 (0,0), (0,-1), (-1,0)⊕3, (1,-1)⊕2, (1,1), (1,0), (0,1)⊕3, (2,0)⊕2,
(-1,1), (2,-1), (-2,0), (2,-2), (0,2), (3,0), (-1,1), (3,-1),

(-2,1), (-3,1), (-4,2) (-1,2), (-2,2), (-3,3)
5 (0,0) (1,1)

(0,0) 2 (-1,-1), (0,-1), (-1,0), (1,-1), (0,0), (1,0), (0,1), (2,0)
(1,-2), (2,-2), (-2,0) (2,-1), (3,-1), (-1,1)

4 (1,0), (0,0)⊕3, (-1,1), (0,-1), (2,1), (1,1)⊕3, (0,2), (1,0),
(-1,0)⊕3, (1,-1)⊕3, (2,-1)⊕2, (-2,0), (0,1)⊕3, (2,0)⊕3, (3,0)⊕2, (-1,1),

(2,-2), (-2,1)⊕2, (3,-2), (3,-1), (-1,2)⊕2, (4,-1),
(4,-2), (-3,1), (-4,2) (5,-1), (-2,2), (-3,3)
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Alcove 15

σ0 j σ1 for Ẑ ′
1(3, 5) σ1 for Ẑ ′

1(10, 12)
(5,5) 1 (-1,0) (0,1)
(3,5) 2 (-1,0) (0,1)

6 (0,0) (1,1)
(4,4) 3 (-1,0), (1,-1) (0,1), (2,0)

5 (0,0) (1,1)
(4,3) 4 (0,0), (-1,0), (1,-1), (-2,1) (1,1), (0,1), (2,0), (-1,2)
(3,3) 1 (0,-1) (1,0)

3 (0,0), (-1,0), (1,-1), (-2,1) (1,1), (0,1), (2,0), (-1,2)
(5,1) 2 (0,-1) (1,0)

4 (0,0), (-1,0), (1,-1), (2,-1), (-2,1) (1,1), (0,1), (2,0), (3,0), (-1,2)
(0,4) 2 (0,0), (0,-1), (-1,0), (1,-1), (1,1), (1,0), (0,1), (2,0),

(-2,1), (-3,1) (-1,2), (-2,2)
(2,2) 3 (0,0), (0,-1), (-1,0), (1,-1), (1,1), (1,0), (0,1), (2,0),

(-2,1), (-3,1) (-1,2), (-2,2)
5 (0,0), (-1,0), (1,-1), (-1,1), (1,1), (0,1), (2,0), (0,2)

(2,-1), (-2,1) (3,0), (-1,2)
(1,2) 2 (0,0), (0,-1)⊕2, (-1,0)⊕2, (1,-1)⊕2, (1,1), (1,0)⊕2, (0,1)⊕2, (2,0)⊕2,

(-2,0), (-2,1), (2,-2), (-3,1) (-1,1), (-1,2), (3,-1), (-2,2)
4 (0,0)⊕2, (-1,0), (1,-1), (-1,1), (1,1)⊕2, (0,1), (2,0), (0,2)

(2,-1), (-2,1) (3,0), (-1,2)
(1,1) 3 (0,0)⊕2, (0,-1), (-1,0)⊕3, (1,-1)⊕2, (1,1)⊕2, (1,0), (0,1)⊕3, (2,0)⊕2

(-1,1), (2,-1), (-2,0), (2,-2), (0,2), (3,0), (-1,1), (3,-1)
(-2,1)⊕2, (-3,1), (-4,2) (-1,2)⊕2, (-2,2), (-3,3)

5 (0,0) (1,1)
(2,0) 0 (-1,-1) (0,0)

2 (0,0), (0,-1), (-1,0)⊕3, (1,-1)⊕2, (1,1), (1,0), (0,1)⊕3, (2,0)⊕2,
(-1,1), (2,-1), (-2,0), (2,-2), (0,2), (3,0), (-1,1), (3,-1),

(-2,1), (-3,1), (-4,2) (-1,2), (-2,2), (-3,3)
4 (0,0) (1,1)

(0,0) 1 (-1,-1) (0,0)
3 (0,0), (0,-1), (-1,0)⊕3, (1,-1)⊕2, (1,1), (1,0), (0,1)⊕3, (2,0)⊕2,

(-1,1), (2,-1), (2,-2), (-2,0) (0,2), (3,0), (3,-1), (-1,1)
(-2,1), (-3,1), (-4,2) (-1,2), (-2,2), (-3,3)

5 (1,0), (0,0)⊕3, (-1,1), (0,-1), (2,1), (1,1)⊕3, (0,2), (1,0),
(-1,0), (1,-1), (2,-1), (3,-1) (0,1), (2,0), (3,0), (4,0)
(-2,1), (3,-2), (-3,1), (-3,2) (-1,2), (4,-1), (-2,2), (-2,3)
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Alcove 16

σ0 j σ1 for Ẑ ′
1(5, 5) σ1 for Ẑ ′

1(12, 12)
(5,5) 6 (0,0) (1,1)
(3,5) 1 (-1,0) (0,1)

5 (0,0) (1,1)
(4,4) 2 (-1,0), (1,-1) (0,1), (2,0)

4 (0,0) (1,1)
(4,3) 3 (0,0), (-1,0), (1,-1), (-2,1) (1,1), (0,1), (2,0), (-1,2)
(3,3) 4 (0,0), (-1,0), (1,-1), (2,-1), (-2,1) (1,1), (0,1), (2,0), (3,0), (-1,2)
(5,1) 1 (0,-1) (1,0)

3 (0,0), (-1,0), (1,-1), (2,-1), (-2,1) (1,1), (0,1), (2,0), (3,0), (-1,2)
(0,4) 5 (0,0), (-1,0), (1,-1), (-1,1) (1,1), (0,1), (2,0), (0,2)

(2,-1), (-2,1) (3,0), (-1,2)
(2,2) 2 (0,0), (0,-1), (-1,0), (1,-1), (1,1), (1,0), (0,1), (2,0),

(-2,1), (-3,1) (-1,2), (-2,2)
4 (0,0), (-1,0), (1,-1), (-1,1), (1,1), (0,1), (2,0), (0,2)

(2,-1), (-2,1) (3,0), (-1,2)
(1,2) 3 (0,0)⊕2, (0,-1), (-1,0)⊕2, (1,-1)⊕2, (1,1)⊕2, (1,0), (0,1)⊕2, (2,0)⊕2,

(2,-1), (-2,1), (3,-2), (-3,1) (3,0), (-1,2), (4,-1), (-2,2)
5 (1,0), (0,0), (-1,0), (1,-1), (2,1), (1,1), (0,1), (2,0),

(-1,1), (2,-1), (-2,1) (0,2), (3,0), (-1,2)
(1,1) 2 (-1,0) (0,1)

4 (1,0), (0,0)⊕3, (0,-1), (-1,0)⊕2, (2,1), (1,1)⊕3, (1,0), (0,1)⊕2,
(1,-1)⊕2, (-1,1), (2,-1), (3,-2), (2,0)⊕2, (0,2), (3,0), (4,-1)

(-2,1)⊕2, (-3,1), (-3,2) (-1,2)⊕2, (-2,2), (-2,3)
(2,0) 3 (-1,0), (1,-1) (0,1), (2,0)

5 (1,0), (0,0)⊕3, (0,-1), (-1,0), (2,1), (1,1)⊕3, (1,0), (0,1),
(1,-1), (-1,1), (2,-1), (3,-1), (2,0), (0,2), (3,0), (4,0),
(3,-2), (-2,1), (-3,1), (-3,2) (4,-1), (-1,2), (-2,2), (-2,3)

(0,0) 0 (-1,-1) (0,0)
2 (0,0), (0,-1), (-1,0)⊕3, (1,-1)⊕2, (1,1), (1,0), (0,1)⊕3, (2,0)⊕2,

(-1,1), (2,-1), (2,-2), (-2,0) (0,2), (3,0), (3,-1), (-1,1)
(-2,1), (-3,1), (-4,2) (-1,2), (-2,2), (-3,3)

4 (1,0), (0,0)⊕3, (-1,1), (0,-1), (2,1), (1,1)⊕3, (0,2), (1,0),
(-1,0), (1,-1), (2,-1), (3,-1), (0,1), (2,0), (3,0), (4,0),
(-2,1), (3,-2), (-3,1), (-3,2) (-1,2), (4,-1), (-2,2), (-2,3)
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