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Abstract—A key takeaway from the COVID-19 crisis is the
need for scalable methods and systems for ingestion of big data
related to the disease, such as models of the virus, health surveys,
and social data, and the ability to integrate and analyze the
ingested data rapidly. One specific example is the use of the
Internet of Things and wearables (i.e., the Oura ring) to collect
large-scale individualized data (e.g., temperature and heart rate)
continuously and to create personalized baselines for detection of
disease symptoms. Individualized data, when collected, has great
potential to be linked with other datasets making it possible
to combine individual and societal scale models for further
understanding the disease. However, the volume and variability
of such data require novel big data approaches to be developed
as infrastructure for scalable use. This paper presents the data
pipeline and big data infrastructure for the TemPredict project,
which, to the best of our knowledge, is the largest public effort
to gather continuous physiological data for time-series analysis.
This effort unifies data ingestion with the development of a novel
end-to-end cyberinfrastructure to enable the curation, cleaning,
alignment, sketching, and passing of the data, in a secure manner,
by the researchers making use of the ingested data for their
COVID-19 detection algorithm development efforts. We present
the challenges, the closed-loop data pipelines, and the secure
infrastructure to support the development of time-sensitive algo-
rithms for alerting individuals based on physiological predictors
illness, enabling early intervention.

Index Terms—wearables, COVID-19, secure IoT, time series
data, big data workflows, big data system

I. INTRODUCTION

A general goal of Artificial Intelligence is to develop
automated techniques by which machines can perceive, interpret
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and respond to natural and human phenomena. Several subdis-
ciplines of Al, like Natural Language Processing, Image/Video
Understanding, and Speech Perception attempt to analyze
surface signals to construct semantic symbols and utilize the
context where the symbols occur to arrive at a semantic inter-
pretation that is actionable. The problem of actionable signal
interpretation is much harder in the domain of biomedicine,
where multiple physiological and behavioral signals must be
concurrently analyzed, and the context for analysis involves a
large number of measurable as well as latent factors (e.g. skin
temperature vs mood or endocrine dynamics). For example,
a high-amplitude rise in body temperature can be used to
detect fevers [1], which is a cardinal symptom for COVID-19
infection. However, to date, such approaches fail to generalize,
in part because of inter-personal differences in dynamics, and in
part because a rise in body temperature can be associated with
an individual’s immediate environment, prior state of activity,
and may also depend on hidden states such as her circadian
rhythm and menstrual cycle, as well as the general physiological
characteristics of this individual. In the absence of very large
data sets of continuous temperature measurements with all of
the appropriate labels for these and other potential confounds,
Als struggle to make clinically actionable insights across
heterogeneous populations. One approach to overcome the lack
of well-labeled, population-scale databases is to train Als within
individuals. For the TemPredict research effort aimed at using
wearable devices to develop and deploy COVID-19 detection
algorithms, we took a holistic approach, including across- and
within-individual comparisons, using daily symptom reports,
demographics surveys, and test/diagnosis results as labels. We
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enhanced our detection strategy by considering multiple real-
time signals including the heart rate, heart rate variability,
respiration, activity, and temperature, considered both for the
current time frame and over a longer time-period. With this
approach, we developed a personalized physiological model for
the individual. This model then serves as the context against
which the current physiological observations can be evaluated.
To make such models more useful on patients with limited data
histories, the personalized model must be complemented by
the development population models that would characterize the
physiological signatures of people who get the disease versus
those who do not, to assess an a priori estimate of vulnerability
for different population subgroups.

Joint construction of personalized as well as population
models with streaming physiological data is an “Al at scale”
problem that requires a machine learning system that operates
within a large-scale data acquisition and processing architecture.
To our knowledge, although the ability to perform continuous
risk assessment is a fundamental need of the hour for a raging
pandemic like COVID-19, there is no “big data”-style system
today that allows monitoring, analysis and interpretation of
multiple physiological signals to construct personalized and
population-based physiological profiles with a goal of improv-
ing real-world actionable advice generated by appropriate Als.

The goal of this paper is to present the cyberinfrastructure
(CI) undergirding TemPredict (TPCI): an analytical platform
we are developing to fill this gap, and to show how even with
the initial version of the system, we have started enabling per-
sonalized model development and continuous risk assessment
for several thousand users.

A. The TPCI System

The TPCI originated from the observation that pre-symptom
changes in physiological data obtained from wearable devices
could be used to detect some COVID-positive cases. [1]
demonstrated that it is possible to algorithmically detect and
predict fever from continuous temperature data generated
by wearable devices, and was on average detectable before
symptom onset was reported by participants. Over the year
2020, TemPredict grew into an international collaboration with
<65,000 participants sharing survey and wearable data to feed
algorithm development and test deployment. Here we describe
the TPCI that was established to enable this initial COVID-19
algorithm effort. Knowing the barriers to generalizable health
algorithms, we developed TPCI to support multiple parallel Al
development schemes so that these and other data sets could
fuel the future model developments and refinements necessary
for TemPredict and related efforts to become productive tools
serving Smart Public Health efforts.

The TPCI is based on the following research desiderata.

1) The system should enable the development of explicable
“dynamic” models of physiological characteristics of
human subjects. The models must adapt to temporal
variations in human physiology and lead towards deeper
understanding of the physiology of COVID-19.
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2) Critical to a physiological model development is the
exploration phase that surfaces data properties and con-
straints which can be exploited for predictive modeling.
This phase informs the selection of model algorithms
based on its mathematical characteristics to learn from
data. The system must make the exploration step easier.

3) Multiple physiological signals required for constructing
these models come from IoT devices and are subject
to unreliability and disruption. The model development
process must be robust to signal noise.

4) For scaling in a resource efficient manner, the system
should support frugal selection of a minimal feature set
that matches latency constraints and accurately generates
daily updatable personalized predictions.

5) The system should support contextually aware modeling
that accounts for both medical history (e.g., the existence
of hypertension) and periodically updated contextual
signals such as the COVID-19 test results.

Thus, we view TPCI as a large-scale Al-based model develop-
ment platform that will enable a holistic understanding of the
COVID-19 physiology, and not just as a system that implements
a machine learning technique.

B. Related Work

Most research papers covering Al techniques for COVID-19
research fall in the “Early Detection and Diagnosis” focus
area [2], and formulate their specific task as a classification
problem. Typically, the classification task is binary — whether
a subject is or is not COVID positive. For example, [3],
analyzes the HRV (heart rate variability) to determine the
relationship between changes in HRV and the presence or
development of COVID-19-related symptoms and to evaluate
how HRV changed throughout the infection and symptom
period. However, this study limited itself to a small number of
subjects. Among research groups [4]-[6] that have considered
large-scale data, [4] considered the resting heart rate and sleep
duration of 200,000 subjects to develop a prediction model for
influenza-like symptoms. However, their log linear model is
not personalized but developed as an aggregate for the state.

Researchers have demonstrated how wearable sensors play a
significant role in collecting real-time multi-sensor physiolog-
ical signals for developing models [7], [8]. Three primary
data source categories include: (i) continuous monitoring
data from platforms (e.g. Fitbit, Google Fit, Oura rings,
Applewatch) [9], [10], (ii) self-reported symptoms [S], and (iif)
physical/demographic parameters (e.g, gender, age, ethnicity,
BMI). The continuously acquired data go through the steps
of segmentation into time intervals, denoising, and feature
extraction. There is a wide variability in the features used,
including statistical properties like mean and standard deviation
[11], [12], wavelet transforms [1] and spectral analysis [13].
These features are combined with symptoms and demographic
information to create full a feature set for classification.

While all of these research attempts make valuable contri-
butions, the research reported by these groups do not take
an Al-systems approach to design their analysis architecture.
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Consequently, processes for data acquisition, data integrity,
support for large-scale computation, feature extraction and
storage, and model computation, storage, refinement and reuse,
and how these processes impact the implementation, accuracy,
and efficiency of the Al research are not deeply investigated.

C. Contributions

The primary intent of this paper is not in designing an Al-
method for COVID-19 prediction, but in developing an end-to-
end platform for Al research on COVID-19 physiology, starting
from data collection and the development of individual and
community models of COVID-19 physiology, to the delivery
of results to clinical users.

Specifically, this paper makes the following contributions.

1) We present a reference architecture for disease-specific
physiology understanding platform, and apply it toward
COVID-19 research. An important feature of this architec-
ture is a large-scale data processing processing pipeline
that feeds multiple intelligent inference modules.

2) Most Al systems expect “clean” data. We develop a
data cleaning/feature extraction framework based on
a combination of integrity constraints, sampling and
“alignment” for multi-temporal data.

3) We demonstrate the utility of a polystore for storing
heterogeneous data and computed features. The polystore
adopts a temporal data model that natively supports
temporal operations that is intrinsic to all physiological
and evolving health-state data.

4) We present several cases of Al-centric research that is
supported by our generic architecture.

II. SYSTEM DESIGN
A. Architecture

The TPCI, shown in Figure 1 consists of 6 modules.

1) The data collection module gathers multi-device real-
time physiological signals, one-time demographic infor-
mation and slow-moving health-state data with privacy
constraints. Currently, the physiological data comes from
Oura rings, multi-sensor wearable devices developed
by Oura Health Inc. under a research agreement with
participants who donate their data. The data from the
participants’ devices are gathered at the device provider’s
server via the Internet. The provider uploads the data
periodically (daily) to a Cloud Storage Service (Amazon
S3). The data, available from January 2020 including
nightly heart rate, heart rate variability, respiration rate,
and sleep staging, as well as 24h continuous skin temper-
ature and activity, was pushed from Oura’s data store to
the secure S3 in the TPCI. In addition, the system collects
participant responses from an “on-boarding” survey,
including information about demographics and medical
history. The health signals are gathered by monthly
surveys assessing conditions such as stress or temporary
medical conditions. Additionally, Oura smartphone app
delivers daily questions to cover symptoms, tests, and
diagnoses related to illness, with especial focus on
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Fig. 1: A High-Level Diagram of the TPCI Architecture

2)

3)

4)

COVID-19 related symptoms. As of this writing, the
system contains around 3.3 million survey responses.
The secure data management module transforms the raw
data into polystore records [14], performs anonymiza-
tion and deanonymization (for specific tasks described
later in the paper), and sends secure alerts to clinical
researchers for at-risk subjects. The module is situated
inside Sherlock (sherlock.sdsc.edu), a FISMA-compliant
secure information environment that implements strict
protocols for monitoring the ingress, access and egress of
all information flowing through the system. This poses a
system design challenge for the TemPredict architecture —
while information security is important for personal data
and is guaranteed by Sherlock, Sherlock is, by design,
decoupled from the high-performance computing and
robust big-data computing resources required for the rest
of the data processing, model training and processes.
To address this problem, we replicate a portion of the
polystore inside Sherlock as well as outside it, and create
a bridge to push anonymized data from the secure side
to the public side of the architecture. Data transport
in the reverse direction is performed by executing a
pull operation from Sherlock to access model execution
results into the information dissemination module, thus
ensuring that a non-secure component of the architecture
has no control over the data handshake.

The feature management module is populated with
anonymized data and applies a series of processes to
compute features. The features (i.e., derived data) are
stored back into the polystore for next steps of the
analysis. The module is discussed in more detail in
Section III.

The high-performance computation module is used when
feature computation routines are too expensive to run
locally. In this case, the computation is performed on
a parallel, GPU-enabled platform whose performance
justifies the data transport cost between the two modules.
Section III-A presents an example of this feature.
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5) The inference management module is responsible for
training and testing AI models, storing the trained models
and executing the models on new data. Both individual-
based and population-based models are managed by
this module. Section IV presents various inference
management processes enabled by TPCI.

Finally, the information dissemination module transmits
the results of the inference to the secure data management
module, where the results are deanonymized and then
then sent out securely to approved recipients. The results
of the inference are passed back to the information
dissemination module, which, as mentioned previously,
resides within the secure component of the system.
The information dissemination module uses the subject
identifiers associated with the prediction results to recover
personal information which is then used to securely notify
the appropriate clinical personnel to perform requisite
medical tests on the subject.

0)

B. Design Decisions

The steps from acquisition of physiological data to the
computation of features require several design decisions. One
set of design decisions centers on 4 consistency problems
related to data ingestion from the raw data to the creation of
database records from the observations.

1) Inter-batch Inconsistency. The physiological data is
delivered in batches where each batch covers a subset of
subjects and a time-interval of observations. Inter-batch
inconsistency refers to a situation where two batches have
different schemas and/or different value domains. The
schema inconsistency can be caused by multiple factors.
Very often a part of the data attributes are encoded in the
fully qualified file path in the Cloud Storage. Different
encoding for two batches effectively lead to a schema
inconsistency. A value-domain inconsistency occurs when
two batches have different representation of the same
attribute leading to downstream processing errors. For
example, if time is represented with different formats, it
is a value-domain inconsistency.

Bitemporal Discrepancy. The physiological data is bitem-
poral because the valid (capture) time and the transaction
time (when it is a record at the data collection site) are
different. Both times are available for a data record. The
primary source of physiological data is an individual
device which transmits data to a participant-side data
accumulator that pushes the data to the provider. However,
due to several issues like the lack of internet connectivity,
not all data of each attribute of each person are pushed at
the same time, making the data batches partially complete
for any one individual, that may not get completed till
several more batches have been processed, possibly after
days of unavailability. This compromises the subjects for
whom the discrepancy exists.

Survey-Physiology Inconsistency. Ideally, the physiologi-
cal data and the survey will be in perfect synchrony, i.e.,
at any time, the latest survey record for every subject is

2)

3)
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Algorithm 1: The “Checkpointing” logic

Input: s.in, tmaz, tn, WS
Output: res[][] is the output array, which store the
sketch count for each time point
Result: Resketch recommendation at any time point
for each v in res do
if res[i] < s, then
| remove reslil;
else
for each i in t,, do
if i not in res then
| resi][j] « count(t,[i],ws)
else
a « res[i][j];
if o < 1,4, then
| res[i][j] «+ count(t,[i],ws)
else
| return O
end
end

end

end
end

available before the physiological signals of the subjects
are collected to ensure that the two can be joined in
the prediction algorithm, failing which the prediction
accuracy may be compromised.

Differences in Time Granularity and Data Volume. The
sampling rates for different physiological signals differ
significantly from 60 Hz to 5 minute intervals, producing
a large volume of personally identifiable temporal data.
While the data does come into our secure server, the
secure server does not have the capability of performing
the requisite computations needed for the predictive
analysis. This requirement has a significant impact on
our system architecture.

4)

The ingestion architecture applies a set of data transformers,
which read data files from the cloud storage and convert the
data to the standard schema implemented in the Secure AWE-
SOME [14], [15] system that internally uses the TimeScaleDB
(www.timescale.com) due to its native support of temporal
operations including operations for time-series analysis. A trans-
former is designed to operate with a specific configuration of the
input defined by its folder structure and the data definition used
in the Apache Parquet (parquet.apache.org) files at S3. There is
a family of transformers for every timestamped physiological
attribute. The inter-batch discrepancy is managed through a
logging procedure managed by the secure AWESOME system.
When a specific batch fails to load, an error signal engaged
a human data administrator to resolve the issue by creating a
new transformer, such that all future batches that present the
erstwhile-erroneous configuration can be processed.

As data gets ingested, the system maintains a monitoring
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mechanism to manage the two forms of temporal discrepancy.

We view this problem as a conceptual analog of the transaction
management and checkpointing logic Algorithm 1 applied in
a database platform. The purpose of the checkpoint algorithm
is to help to avoid unnecessary sketch computing. The inputs
are as follows, s,,;, is the minimum acceptable number of
samples for a time bucket, t,,,, is the upper bound of the
time, t¢,, is the array of time buckets, and ws is the working
set. Using a data structure to record the number of data points
per time window, and during each execution, the algorithm
verifies the total number of records per sketch window. Too old
or duplicate data due to re-transmission are ignored. Sketch
computation algorithm uses the data structure to efficiently
execute the sketch per data point.

A subject’s data record is in a temporally consistent state
at time 7 if all physiological and survey variables of the
subject is in the database at 7. Further, the data of a subject is
quantitatively consistent at T' if the number of data items
received between the previous checkpoint time 7 and T

is consistent with the expected data rate for each variable.

The ingestion system implements a monitoring procedure to
periodically check for both forms of consistency for a random
sample of subjects. If a subject’s data passes the check, the
checkpoint is advanced from Tj to 7'. If it fails either test, the
subject’s ID is placed on a watch list, until it is removed upon
a later update, and all pending feature computations on the
subject are executed. Subjects staying long on the watch list
are, per policy, reported back to the data provider.

III. FEATURE ENGINEERING

The ultimate goal of the TPCI is to analyze and report
within a guaranteed time-bound, (measured in hours) for a
target population of 65,000 subjects. At this point, we have not
reached this capability. However, our system design is primarily

geared toward achieving a time-bounded execution guarantee.

We take a two-pronged approach to achieve this goal. First, we
compute coarse sketches, features that (i) perform a coarsen
operation to reduce the time granularity, (ii) replace that actual
data with a statistical representation. Secondly, we develop a
parallel computational pipeline that (i) computes higher-order
sketches, sketches that contextualize a subject’s coarse-sketches
over an observation period by using the subject’s historical data

and survey results, and (ii) performs a prediction computation.

These features include the sample size per time interval, the
total number of samples, the minimum and the maximum
signal values and basic signal statistics — the mean and the first
four moments of the frequency distribution of signal values
for each physiological variable, as well as the 20, 40, 60 and

80 percentile values of the cumulative frequency distribution.

One target of the pre-prediction data pipeline is to strike a
balance between prediction accuracy and reduction of the data
processing cost. Our strategy is informed by a number of
data-centric and domain-specific considerations.

1) As in the case of most IoT data, the quality of data
must be validated before performing any operation. In

441§

2)

3)

4)

our case the validation is expressed as constraints of the
following form:

valid(val(a;, T)) if (61 < val(a;z;, T") < 62)
A (05 < val(ak¢i7k¢j,T’) <04)...

where val(a;, T') represents the value of the i-th attribute
(i.e., signal) at time interval T, 0y represents the upper
and lower bounds and interval 77 = T'+e. In other words,
the validity of the value of a specific attribute during
a time interval depends on the range of other signals
during an e-window around time interval 7". For example,
the metabolic rate captures a person’s accelerometry or
movement when they are wearing the ring (and during
sleep). This property can be used for validating other
variables like temperature. All the temperature values
are dropped when the same time point’s corresponding
metabolism is less than the thresholds and the person is
considered not wearing the ring that time.

This is the only step in the data processing where a tem-
poral join operation is computed across multiple signals,
following which the attributes are treated completely
independently and in parallel.

The data features to be used for predictive analytics
must capture the signal variability within and across
observation windows. However, choosing a very narrow
time-interval for windowing does not guarantee suffi-
cient independence across consecutive observations. This
precludes the use of point sampling (which would have
lowered cost) and implies a lower bound on A,, the
duration of the observation interval. If a sliding window
is applied, shift size §; must also been determined. Based
on an empirical study to monitor the impact of the interval
parameters on prediction accuracy, it was determined
that setting A, = 1800s and §, = Os (i.e., a tumbling
window) produces reasonably accurate results.

The features to represent signal variation capture the
value statistics within the observation interval. The
feature set consists of the maximum and minimum values,
the first four moments, and k-th percentile statistics
(practically, mod(k — 20) = 0), and the number of
samples, which can vary between observation windows.
We exploit TimeScaleDB’s functions for this computa-
tion. TimeScaleDB performs this operation by efficient
constructing a single statistical aggregate from which all
our metrics are derived.

The data from the devices are timestamped but they
are not programmed to be emitted at fixed intervals —
hence the signals are not periodic. However, the precise
time of the data is not materially significant for sketch
computation. Therefore, for each signal, the data is
time-aligned to the nearest ¢-th minute (t < A,). If
n samples are collected within a span of ¢ minutes, they
are averaged and mapped to the ¢-th minute, leading
to the first data reduction opportunity. Since the time
alignment effectively creates % independent time slices,
the alignment operation can be executed in parallel.
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As the size and processing of the observation intervals
are determined by the above considerations, we now need
to compute sketches for N subjects for I(= 48) intervals.
With enough resources, the sketch computation, implemented
as relational views (with functions) on the observation can be
computed in an embarrassingly parallel manner. However, since
the sketches are computed on a large volume of nearly-raw time-
aligned data, the data cannot be moved to a high-performance
parallel computing platform, because the data transmission cost
overshadows the benefit of parallelization. Since the higher-
order sketch computation and the prediction algorithm must
have the sketches of all intervals of a single individual over a
24-hour period, we can only parallelize the sketch computation
over the set of subjects because all intervals of an individual
must be computed. Our current solution is to partition the
subject pool into batches and perform the sketch computation
of the members of a batch in parallel.

A. Higher Level Features and AI Model Preparation

In this part, we dive deeper into the infrastructure that
exploits computational and data parallelism to allow quickest
execution of higher order features computation and Machine
Learning algorithms. Two mission critical aspects of our
solution to COVID-19 are (a) prediction accuracy, and (b)
speed and efficiency of execution.

Once data had been sketched within single observation
intervals, a sketch normalization step is executed over the
sketches for every individual subject to compute what we call
the higher-order sketches. This “normalization” is to ensure
that the computed sketch values are biologically informative
for use in the biological time-series applications of illness
detection. For example, physiological dynamics and ranges
within variables are dynamic within individuals, with important
differences across individuals. For this reason, the historical
sketch data each individual must be used for his/her own
baseline of comparison, and when needed, informed by survey
data. Thus, a few weeks (or months, in the case of ovarian-
cycling women, and years in the case of seasonal changes)
of each individual’s pre-illness data is used to generate
normalizations along daily ranges and other comparisons as
appropriate. A more detailed rationale and procedure for
normalization can be found in some of the observations about
fever detection in the initial TemPredict paper [1]. Note that,
while this requires additional DB access, this normalization is
still parallelizable over subjects and variables and there is no
“join” operation between the three data categories. Further, the
survey data for an individual is queried only once during the
normalization process. An outcome of the higher order sketch
computation is based on frequency of exceptional time windows
within a wider timeframe using the history of sketches of the
same person, allowing comparisons over time. The normalized
sketch is fed to the prediction algorithm to determine subjects
who may have a potential onset of illness. Details of the
prediction algorithm is out the scope of this paper.

Our integrated big data infrastructure has three major charac-
teristics: (1) A simple interface for users with different domain
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expertise to capitalize advanced compute and data resources;
(2) An automated back end that accelerates the end-to-end
process of scientific discovery from the exploration-to-scalable
deployment of Al algorithms without human involvement/
intervention; and (3) A collaborative environment for Team
Science [16]. Fig.2 presents the TPCI Big Data System for Al
Model Development and Scalable Deployment for COVID-19.
The Scalable Data Analysis System consist of the following key
components: (i) Exploratory Workflow Development Interface,
and (ii) Auto-deployment and auto-scale of AI Models.

(i) Exploratory AI Development Workflow User Interface:

The first component a user interacts with is the JupyerHub,
which provides a Python notebook-based exploratory workflow
development interface (https://tempredict.sdsc.edu/jupyterhub).
TPCI allows authorized users to leverage this tool on scalable
hardware transparently while supporting efficient data access
from a variety of data systems. Users can use their existing
identity providers, such as University, Google, or Github
credentials to login to TPCI. Upon login, using a Spawner
Options form, users can submit their resource requests such as
number of CPUs, number of GPUs, Memory in GB, Container
Image, and Persistent Storage. The workflow involves a domain
expert getting resources on Jupyterhub via the Kubernetes-based
(kubernetes.io) Nautilus portal at UCSD (nautilus.optiputer.net),
opening their Jupyter notebook by spawning an instance, and
establishing database connectivity. The user can mount a
persistent storage system of 400TB capacity which provides
a shared storage environment per group. The project lead
manages access control to shared persistent storage. A project
can have more than one shared persistent volumes for different
groups. The shared persistent storage gives an opportunity for
collaboration among authorized group members. Behind the
scene, the TPCI platform leverages advancements in Kubernetes
without exposing scientists to the complexities of coding for
creating deployments of pods, volumes, services, and API
triggers. The TPCI platform exposes a Jupyter Notebook
interface for exploration and development of algorithms so users
can leverage advanced data science and Al libraries without
needing to do repetitive software stack installations. Further,
TPCI exposes simple APIs that researchers can run from their
Jupyter notebooks to access data efficiently from a variety of
data systems, such as remote database servers and cloud storage
such as Amazon S3, Swift Object Storage, and Next Cloud.
Users can configure their personal individual storage systems
as well. Once the algorithm has been established, users execute
their algorithms in a parallelized manner. The APIs provide a
path to submit to code repositories such as Github. From Github,
the TPCI system auto-deploys and auto-scales algorithms on
GPU and CPU clusters managed by Kubernetes. The entire
system is designed and built to empower users to develop and
test their algorithms through an agile development methodology.
A data scientist may develop their algorithm for one unit of
data (in our case for a subject with a PID) without worrying
about scalability in Jupyter Notebook. Using the TPCI APIs,
users can then push their algorithms or Jupyter Notebooks to
Github or other code repositories. Next, we discuss how TPCI
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scales these algorithms using different parallelism techniques. apply appropriate parallelism and scaling based on the

(ii) Auto-deployment and Auto-scale of Al Models: algorithm itself, input, and system constraints such as

First analyzed are the algorithm, input load, and associated data transfer to data systems. Task parallelism is applied
constraints. Parallel computing techniques are applied such as when multiple tasks can concurrently execute on the same
task parallelism and data parallelism to utilize all the CPU data, i.e., when one function is applied to many pieces
cores optimally. Once the algorithm is optimized for the number of data independently such as loops. For example, the
of CPU cores on a single node, it is deployed as a Kubeless platform provides a concurrent mapping capability to
(kubeless.io) function on Kubernetes to further parallelize using parallelize sequential for loops on multiple cores and
Kubernetes auto-scale capability on multiple nodes. reduce execution time.

o Kubeless Function Depl t: TPCI ides API
o Single Node Parallel Computing: TPCI APIs will ubeless Function Deploymen CI provides s
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to execute code in Serverless Kubernetes Frameworks
using Kubeless based infrastructure. Once the algorithm
is optimized for a single node, TPCI APIs were used
to deploy it on the Kubernetes cluster as a Kubeless
function and create the required service API and ingress
deployments in the backend as shown in the Fig. 3. This
serverless mechanism facilitates rapid deployment and
the service API gives a handle to invoke the Al Models
programmatically for the automated live pipeline.

The service API triggers the function execution over
HTTP protocol. We can configure the APIs to conveniently
trigger the execution of functions upon the occurrence of
certain critical events, such as, when first order sketches
are available. Based on an event or a cron trigger, the
users can initiate a parallelized execution of their algorithm
remotely from anywhere on any device. This gives users
the capability to quickly execute and test functions based
on source code developed by their team members. Further,
autoscale rules can be applied on Kubeless functions to
scale up and down.

o Kubernetes Autoscale: Kubeless autoscale functionality
is used to scale Kubeless pod horizontally based on metric
targets such as CPU utilization, number of requests, and
others. The function execution will have the ability to
auto-scale up and down without intervention based on
computing needs and input data size.

IV. PROGRESS TOWARD Al RESEARCH

The complexity of human physiology and pathology are, at
least for the time being, literally beyond description. As such,
health problems can benefit from Al support when those Als
have been developed at the intersection of specific populations
and conditions. Additionally, Als can be developed to help
map approximations of the hyper-complex health space, as in
identifying similar patients or latent physiological indications.
For example, in developing algorithms for the early detection
of COVID-19 from wearable device data, the following (non-
exhaustive) gaps in knowledge presented barriers: lack of basic
description of illness progression, and how this manifests in
and perturbs normal physiological dynamics; absence of normal
physiological dynamics models, let alone how these dynamics
change by age, sex, ethnicity, condition, and circumstance to
create dynamic baselines; lack of models for physiological
dynamic baselines, and how to optimize anomaly detection
in such models; lack of ability to detect (confirm) positive
COVID-19 infection (across 2020, tests were developed to fill
this gap, though not it real-time), and how to confirm infection
onset (still missing) and recovery (still missing).

To address these issues with sufficient speed to be of
service during the COVID-19 pandemic, UCSF launched
TemPredict in March 2020, in collaboration with UC San
Diego. TemPredict, initially sponsored by OuraRing, Inc.,
was subsequently funded by the DoD and was supported by
MIT Lincoln Lab collaborators. Here, we present additional
inference management processes enabled by TPCI. A full
description of recruitment, data gathering, and subsequent
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algorithm development appears in another manuscript, currently
in production.

(i) Random Forest-Based Prediction of At-Risk Subjects: In
this method, researchers are collecting health sensing data
from wearable devices from confirmed COVID-19 patients and
define baseline measurements of physiological dynamics to
ultimately capture anomalies and fluctuations associated with
COVID-19 infections. The platform enables this team to create
features using rolling windows, perform normalization and train
a Random Forest model across the physiological variables.

(i1) Bayesian Networks-Based Prediction of Reported Health
Status: This supported scenario is leveraging Bayesian Net-
works to make probabilistic estimations from an individual’s
symptom profile states. The Bayesian approach gives insights
about the dependencies among the symptoms, however incom-
plete data poses a critical challenge. The TPCI enabled temporal
analysis by mapping disease progression to probabilities.

(iii) Autoencoder-Based Classification of Physiological Sig-
nals: TPCI enables rapid exploration of Deep Learning Models
that can infer outcomes from time-series signals. Researchers
are using the TPCI to map time-series physiological signals
to low dimensional embeddings using auto-encoders (varia-
tional, sparse, and temporal). This compressed embeddings
enable rapid exploration of Recurrent Neural Network (RNN)
architectures to arrive at optimal health prediction algorithms.

(iv) Exploratory Analysis of Paired Survey Response and
Physiological Data: In this experiment, researchers leveraged
features such as variations in skin surface temperature and
duration of elevated temperature to develop and compare
Hidden Markov Models against baseline Logistic Regression
Classifiers. The simplicity of this feature and usability of the
TPCI allowed rapid implementation and comparison.

V. RESULTS AND FUTURE WORK

The fundamental design idea behind the TemPredict system
is simplicity coupled with computational scalability. TPCI
provides users with a simplified user interface to develop
predictive algorithms and decouples the responsibility of scaling
a given algorithm for a large number of subjects. This section
illustrates the performance of the TPCI system by means of
the sketch computation and the higher-order feature extraction
steps for 200 candidate users, and a data time window of the
last twenty-four hours. As a part of the live study, the system
collected, ingested, and processed users’ data incrementally
with time in near real-time.

A mid-size server for computing the sketches was used.
The execution time, CPU usages, and memory utilization are
reported in Fig. 4, in which the graph represents the users’
batch size (x-axis), and the measurement (y-axis). The sketch
computation is a CPU-bound process, so a python parallel
thread was used to compute the batches. The execution time
linearly increases with the number of batches, and the CPU and
memory utilization is almost stable for the different batches.
Fig. 5 shows Runtime, CPU Usage, Memory Usage (y-axis) for
higher order features computation with the number of cores(x-
axis) for different batch sizes. The original algorithm calculated
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high order features for each subject (PID) in a sequential way
on a laptop, taking 20 mins to complete higher-order sketches
for nearly 200 subjects (batch size). The application of data
parallelism across 16 cores to concurrently run the algorithm
on each subject (PID) improved the execution speed by 32
times, reducing the execution time to ~37sec.

As part of future work, we plan to focus on the team
science for Al functionality of TPCI, allowing multiple users to
collaborate on parts of the analysis through a chain of Python
notebooks. Initial framework was developed to chain together
notebooks with constraints on metrics of performance and
accuracy, but left out of the scope of this paper. In addition,
future work will be on deployment of various studies and
metadata capabilities to ensure utilization of the insight gained
from analysis of the data within new science questions related
to the disease onset and development.
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