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Abstract—A key takeaway from the COVID-19 crisis is the
need for scalable methods and systems for ingestion of big data
related to the disease, such as models of the virus, health surveys,
and social data, and the ability to integrate and analyze the
ingested data rapidly. One specific example is the use of the
Internet of Things and wearables (i.e., the Oura ring) to collect
large-scale individualized data (e.g., temperature and heart rate)
continuously and to create personalized baselines for detection of
disease symptoms. Individualized data, when collected, has great
potential to be linked with other datasets making it possible
to combine individual and societal scale models for further
understanding the disease. However, the volume and variability
of such data require novel big data approaches to be developed
as infrastructure for scalable use. This paper presents the data
pipeline and big data infrastructure for the TemPredict project,
which, to the best of our knowledge, is the largest public effort
to gather continuous physiological data for time-series analysis.
This effort unifies data ingestion with the development of a novel
end-to-end cyberinfrastructure to enable the curation, cleaning,
alignment, sketching, and passing of the data, in a secure manner,
by the researchers making use of the ingested data for their
COVID-19 detection algorithm development efforts. We present
the challenges, the closed-loop data pipelines, and the secure
infrastructure to support the development of time-sensitive algo-
rithms for alerting individuals based on physiological predictors
illness, enabling early intervention.

Index Terms—wearables, COVID-19, secure IoT, time series
data, big data workflows, big data system

I. INTRODUCTION

A general goal of Artificial Intelligence is to develop

automated techniques by which machines can perceive, interpret

and respond to natural and human phenomena. Several subdis-

ciplines of AI, like Natural Language Processing, Image/Video

Understanding, and Speech Perception attempt to analyze

surface signals to construct semantic symbols and utilize the

context where the symbols occur to arrive at a semantic inter-

pretation that is actionable. The problem of actionable signal

interpretation is much harder in the domain of biomedicine,

where multiple physiological and behavioral signals must be

concurrently analyzed, and the context for analysis involves a

large number of measurable as well as latent factors (e.g. skin

temperature vs mood or endocrine dynamics). For example,

a high-amplitude rise in body temperature can be used to

detect fevers [1], which is a cardinal symptom for COVID-19

infection. However, to date, such approaches fail to generalize,

in part because of inter-personal differences in dynamics, and in

part because a rise in body temperature can be associated with

an individual’s immediate environment, prior state of activity,

and may also depend on hidden states such as her circadian

rhythm and menstrual cycle, as well as the general physiological

characteristics of this individual. In the absence of very large

data sets of continuous temperature measurements with all of

the appropriate labels for these and other potential confounds,

AIs struggle to make clinically actionable insights across

heterogeneous populations. One approach to overcome the lack

of well-labeled, population-scale databases is to train AIs within

individuals. For the TemPredict research effort aimed at using

wearable devices to develop and deploy COVID-19 detection

algorithms, we took a holistic approach, including across- and

within-individual comparisons, using daily symptom reports,

demographics surveys, and test/diagnosis results as labels. We
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enhanced our detection strategy by considering multiple real-

time signals including the heart rate, heart rate variability,

respiration, activity, and temperature, considered both for the

current time frame and over a longer time-period. With this

approach, we developed a personalized physiological model for

the individual. This model then serves as the context against

which the current physiological observations can be evaluated.

To make such models more useful on patients with limited data

histories, the personalized model must be complemented by

the development population models that would characterize the

physiological signatures of people who get the disease versus

those who do not, to assess an a priori estimate of vulnerability

for different population subgroups.

Joint construction of personalized as well as population

models with streaming physiological data is an “AI at scale”

problem that requires a machine learning system that operates

within a large-scale data acquisition and processing architecture.

To our knowledge, although the ability to perform continuous

risk assessment is a fundamental need of the hour for a raging

pandemic like COVID-19, there is no “big data”-style system

today that allows monitoring, analysis and interpretation of

multiple physiological signals to construct personalized and

population-based physiological profiles with a goal of improv-

ing real-world actionable advice generated by appropriate AIs.

The goal of this paper is to present the cyberinfrastructure

(CI) undergirding TemPredict (TPCI): an analytical platform

we are developing to fill this gap, and to show how even with

the initial version of the system, we have started enabling per-

sonalized model development and continuous risk assessment

for several thousand users.

A. The TPCI System

The TPCI originated from the observation that pre-symptom

changes in physiological data obtained from wearable devices

could be used to detect some COVID-positive cases. [1]

demonstrated that it is possible to algorithmically detect and

predict fever from continuous temperature data generated

by wearable devices, and was on average detectable before
symptom onset was reported by participants. Over the year

2020, TemPredict grew into an international collaboration with

<65,000 participants sharing survey and wearable data to feed

algorithm development and test deployment. Here we describe

the TPCI that was established to enable this initial COVID-19

algorithm effort. Knowing the barriers to generalizable health

algorithms, we developed TPCI to support multiple parallel AI

development schemes so that these and other data sets could

fuel the future model developments and refinements necessary

for TemPredict and related efforts to become productive tools

serving Smart Public Health efforts.

The TPCI is based on the following research desiderata.

1) The system should enable the development of explicable

“dynamic” models of physiological characteristics of

human subjects. The models must adapt to temporal

variations in human physiology and lead towards deeper

understanding of the physiology of COVID-19.

2) Critical to a physiological model development is the

exploration phase that surfaces data properties and con-

straints which can be exploited for predictive modeling.

This phase informs the selection of model algorithms

based on its mathematical characteristics to learn from

data. The system must make the exploration step easier.

3) Multiple physiological signals required for constructing

these models come from IoT devices and are subject

to unreliability and disruption. The model development

process must be robust to signal noise.

4) For scaling in a resource efficient manner, the system

should support frugal selection of a minimal feature set

that matches latency constraints and accurately generates

daily updatable personalized predictions.

5) The system should support contextually aware modeling

that accounts for both medical history (e.g., the existence

of hypertension) and periodically updated contextual

signals such as the COVID-19 test results.

Thus, we view TPCI as a large-scale AI-based model develop-

ment platform that will enable a holistic understanding of the

COVID-19 physiology, and not just as a system that implements

a machine learning technique.

B. Related Work

Most research papers covering AI techniques for COVID-19

research fall in the “Early Detection and Diagnosis” focus

area [2], and formulate their specific task as a classification

problem. Typically, the classification task is binary – whether

a subject is or is not COVID positive. For example, [3],

analyzes the HRV (heart rate variability) to determine the

relationship between changes in HRV and the presence or

development of COVID-19–related symptoms and to evaluate

how HRV changed throughout the infection and symptom

period. However, this study limited itself to a small number of

subjects. Among research groups [4]–[6] that have considered

large-scale data, [4] considered the resting heart rate and sleep

duration of 200,000 subjects to develop a prediction model for

influenza-like symptoms. However, their log linear model is

not personalized but developed as an aggregate for the state.

Researchers have demonstrated how wearable sensors play a

significant role in collecting real-time multi-sensor physiolog-

ical signals for developing models [7], [8]. Three primary

data source categories include: (i) continuous monitoring

data from platforms (e.g. Fitbit, Google Fit, Oura rings,

Applewatch) [9], [10], (ii) self-reported symptoms [5], and (iii)
physical/demographic parameters (e.g, gender, age, ethnicity,

BMI). The continuously acquired data go through the steps

of segmentation into time intervals, denoising, and feature

extraction. There is a wide variability in the features used,

including statistical properties like mean and standard deviation

[11], [12], wavelet transforms [1] and spectral analysis [13].

These features are combined with symptoms and demographic

information to create full a feature set for classification.

While all of these research attempts make valuable contri-

butions, the research reported by these groups do not take

an AI-systems approach to design their analysis architecture.
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Consequently, processes for data acquisition, data integrity,

support for large-scale computation, feature extraction and

storage, and model computation, storage, refinement and reuse,

and how these processes impact the implementation, accuracy,

and efficiency of the AI research are not deeply investigated.

C. Contributions

The primary intent of this paper is not in designing an AI-

method for COVID-19 prediction, but in developing an end-to-

end platform for AI research on COVID-19 physiology, starting

from data collection and the development of individual and

community models of COVID-19 physiology, to the delivery

of results to clinical users.

Specifically, this paper makes the following contributions.

1) We present a reference architecture for disease-specific

physiology understanding platform, and apply it toward

COVID-19 research. An important feature of this architec-

ture is a large-scale data processing processing pipeline

that feeds multiple intelligent inference modules.

2) Most AI systems expect “clean” data. We develop a

data cleaning/feature extraction framework based on

a combination of integrity constraints, sampling and

“alignment” for multi-temporal data.

3) We demonstrate the utility of a polystore for storing

heterogeneous data and computed features. The polystore

adopts a temporal data model that natively supports

temporal operations that is intrinsic to all physiological

and evolving health-state data.

4) We present several cases of AI-centric research that is

supported by our generic architecture.

II. SYSTEM DESIGN

A. Architecture

The TPCI, shown in Figure 1 consists of 6 modules.

1) The data collection module gathers multi-device real-

time physiological signals, one-time demographic infor-

mation and slow-moving health-state data with privacy

constraints. Currently, the physiological data comes from

Oura rings, multi-sensor wearable devices developed

by Oura Health Inc. under a research agreement with

participants who donate their data. The data from the

participants’ devices are gathered at the device provider’s

server via the Internet. The provider uploads the data

periodically (daily) to a Cloud Storage Service (Amazon

S3). The data, available from January 2020 including

nightly heart rate, heart rate variability, respiration rate,

and sleep staging, as well as 24h continuous skin temper-

ature and activity, was pushed from Oura’s data store to

the secure S3 in the TPCI. In addition, the system collects

participant responses from an “on-boarding” survey,

including information about demographics and medical

history. The health signals are gathered by monthly

surveys assessing conditions such as stress or temporary

medical conditions. Additionally, Oura smartphone app

delivers daily questions to cover symptoms, tests, and

diagnoses related to illness, with especial focus on

Fig. 1: A High-Level Diagram of the TPCI Architecture

COVID-19 related symptoms. As of this writing, the

system contains around 3.3 million survey responses.

2) The secure data management module transforms the raw

data into polystore records [14], performs anonymiza-

tion and deanonymization (for specific tasks described

later in the paper), and sends secure alerts to clinical

researchers for at-risk subjects. The module is situated

inside Sherlock (sherlock.sdsc.edu), a FISMA-compliant

secure information environment that implements strict

protocols for monitoring the ingress, access and egress of

all information flowing through the system. This poses a

system design challenge for the TemPredict architecture –

while information security is important for personal data

and is guaranteed by Sherlock, Sherlock is, by design,

decoupled from the high-performance computing and

robust big-data computing resources required for the rest

of the data processing, model training and processes.

To address this problem, we replicate a portion of the

polystore inside Sherlock as well as outside it, and create

a bridge to push anonymized data from the secure side

to the public side of the architecture. Data transport

in the reverse direction is performed by executing a

pull operation from Sherlock to access model execution

results into the information dissemination module, thus

ensuring that a non-secure component of the architecture

has no control over the data handshake.

3) The feature management module is populated with

anonymized data and applies a series of processes to

compute features. The features (i.e., derived data) are

stored back into the polystore for next steps of the

analysis. The module is discussed in more detail in

Section III.

4) The high-performance computation module is used when

feature computation routines are too expensive to run

locally. In this case, the computation is performed on

a parallel, GPU-enabled platform whose performance

justifies the data transport cost between the two modules.

Section III-A presents an example of this feature.

3
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5) The inference management module is responsible for

training and testing AI models, storing the trained models

and executing the models on new data. Both individual-

based and population-based models are managed by

this module. Section IV presents various inference

management processes enabled by TPCI.

6) Finally, the information dissemination module transmits

the results of the inference to the secure data management

module, where the results are deanonymized and then

then sent out securely to approved recipients. The results

of the inference are passed back to the information

dissemination module, which, as mentioned previously,

resides within the secure component of the system.

The information dissemination module uses the subject

identifiers associated with the prediction results to recover

personal information which is then used to securely notify

the appropriate clinical personnel to perform requisite

medical tests on the subject.

B. Design Decisions

The steps from acquisition of physiological data to the

computation of features require several design decisions. One

set of design decisions centers on 4 consistency problems

related to data ingestion from the raw data to the creation of

database records from the observations.

1) Inter-batch Inconsistency. The physiological data is

delivered in batches where each batch covers a subset of

subjects and a time-interval of observations. Inter-batch

inconsistency refers to a situation where two batches have

different schemas and/or different value domains. The

schema inconsistency can be caused by multiple factors.

Very often a part of the data attributes are encoded in the

fully qualified file path in the Cloud Storage. Different

encoding for two batches effectively lead to a schema

inconsistency. A value-domain inconsistency occurs when

two batches have different representation of the same

attribute leading to downstream processing errors. For

example, if time is represented with different formats, it

is a value-domain inconsistency.

2) Bitemporal Discrepancy. The physiological data is bitem-

poral because the valid (capture) time and the transaction

time (when it is a record at the data collection site) are

different. Both times are available for a data record. The

primary source of physiological data is an individual

device which transmits data to a participant-side data

accumulator that pushes the data to the provider. However,

due to several issues like the lack of internet connectivity,

not all data of each attribute of each person are pushed at

the same time, making the data batches partially complete

for any one individual, that may not get completed till

several more batches have been processed, possibly after

days of unavailability. This compromises the subjects for

whom the discrepancy exists.

3) Survey-Physiology Inconsistency. Ideally, the physiologi-

cal data and the survey will be in perfect synchrony, i.e.,

at any time, the latest survey record for every subject is

Algorithm 1: The “Checkpointing” logic

Input: smin, tmax, tn, ws
Output: res[][] is the output array, which store the

sketch count for each time point

Result: Resketch recommendation at any time point

for each i in res do
if res[i] < smin then

remove res[i];
else

for each i in tn do
if i not in res then

res[i][j] ← count(tn[i], ws)
else

α ← res[i][j];
if α < tmax then

res[i][j] ← count(tn[i], ws)
else

return 0

end
end

end
end

end

available before the physiological signals of the subjects

are collected to ensure that the two can be joined in

the prediction algorithm, failing which the prediction

accuracy may be compromised.

4) Differences in Time Granularity and Data Volume. The

sampling rates for different physiological signals differ

significantly from 60 Hz to 5 minute intervals, producing

a large volume of personally identifiable temporal data.

While the data does come into our secure server, the

secure server does not have the capability of performing

the requisite computations needed for the predictive

analysis. This requirement has a significant impact on

our system architecture.

The ingestion architecture applies a set of data transformers,

which read data files from the cloud storage and convert the

data to the standard schema implemented in the Secure AWE-

SOME [14], [15] system that internally uses the TimeScaleDB

(www.timescale.com) due to its native support of temporal

operations including operations for time-series analysis. A trans-

former is designed to operate with a specific configuration of the

input defined by its folder structure and the data definition used

in the Apache Parquet (parquet.apache.org) files at S3. There is

a family of transformers for every timestamped physiological

attribute. The inter-batch discrepancy is managed through a

logging procedure managed by the secure AWESOME system.

When a specific batch fails to load, an error signal engaged

a human data administrator to resolve the issue by creating a

new transformer, such that all future batches that present the

erstwhile-erroneous configuration can be processed.

As data gets ingested, the system maintains a monitoring

4
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mechanism to manage the two forms of temporal discrepancy.

We view this problem as a conceptual analog of the transaction

management and checkpointing logic Algorithm 1 applied in

a database platform. The purpose of the checkpoint algorithm

is to help to avoid unnecessary sketch computing. The inputs

are as follows, smin is the minimum acceptable number of

samples for a time bucket, tmax is the upper bound of the

time, tn is the array of time buckets, and ws is the working

set. Using a data structure to record the number of data points

per time window, and during each execution, the algorithm

verifies the total number of records per sketch window. Too old

or duplicate data due to re-transmission are ignored. Sketch

computation algorithm uses the data structure to efficiently

execute the sketch per data point.

A subject’s data record is in a temporally consistent state

at time T if all physiological and survey variables of the

subject is in the database at T . Further, the data of a subject is

quantitatively consistent at T if the number of data items

received between the previous checkpoint time T0 and T
is consistent with the expected data rate for each variable.

The ingestion system implements a monitoring procedure to

periodically check for both forms of consistency for a random

sample of subjects. If a subject’s data passes the check, the

checkpoint is advanced from T0 to T . If it fails either test, the

subject’s ID is placed on a watch list, until it is removed upon

a later update, and all pending feature computations on the

subject are executed. Subjects staying long on the watch list

are, per policy, reported back to the data provider.

III. FEATURE ENGINEERING

The ultimate goal of the TPCI is to analyze and report

within a guaranteed time-bound, (measured in hours) for a

target population of 65,000 subjects. At this point, we have not

reached this capability. However, our system design is primarily

geared toward achieving a time-bounded execution guarantee.

We take a two-pronged approach to achieve this goal. First, we

compute coarse sketches, features that (i) perform a coarsen
operation to reduce the time granularity, (ii) replace that actual

data with a statistical representation. Secondly, we develop a

parallel computational pipeline that (i) computes higher-order
sketches, sketches that contextualize a subject’s coarse-sketches

over an observation period by using the subject’s historical data

and survey results, and (ii) performs a prediction computation.

These features include the sample size per time interval, the

total number of samples, the minimum and the maximum

signal values and basic signal statistics – the mean and the first

four moments of the frequency distribution of signal values

for each physiological variable, as well as the 20, 40, 60 and

80 percentile values of the cumulative frequency distribution.

One target of the pre-prediction data pipeline is to strike a

balance between prediction accuracy and reduction of the data

processing cost. Our strategy is informed by a number of

data-centric and domain-specific considerations.

1) As in the case of most IoT data, the quality of data

must be validated before performing any operation. In

our case the validation is expressed as constraints of the

following form:

valid(val(ai, T )) if (θ1 ≤ val(aj �=i, T
′) ≤ θ2)

∧ (θ3 ≤ val(ak �=i,k �=j , T
′) ≤ θ4) . . .

where val(ai, T ) represents the value of the i-th attribute

(i.e., signal) at time interval T , θk represents the upper

and lower bounds and interval T ′ = T±ε. In other words,

the validity of the value of a specific attribute during

a time interval depends on the range of other signals

during an ε-window around time interval T . For example,

the metabolic rate captures a person’s accelerometry or

movement when they are wearing the ring (and during

sleep). This property can be used for validating other

variables like temperature. All the temperature values

are dropped when the same time point’s corresponding

metabolism is less than the thresholds and the person is

considered not wearing the ring that time.

This is the only step in the data processing where a tem-

poral join operation is computed across multiple signals,

following which the attributes are treated completely

independently and in parallel.

2) The data features to be used for predictive analytics

must capture the signal variability within and across

observation windows. However, choosing a very narrow

time-interval for windowing does not guarantee suffi-

cient independence across consecutive observations. This

precludes the use of point sampling (which would have

lowered cost) and implies a lower bound on Δo, the

duration of the observation interval. If a sliding window

is applied, shift size δs must also been determined. Based

on an empirical study to monitor the impact of the interval

parameters on prediction accuracy, it was determined

that setting Δo = 1800s and δs = 0s (i.e., a tumbling

window) produces reasonably accurate results.

3) The features to represent signal variation capture the

value statistics within the observation interval. The

feature set consists of the maximum and minimum values,

the first four moments, and k-th percentile statistics

(practically, mod(k − 20) = 0), and the number of

samples, which can vary between observation windows.

We exploit TimeScaleDB’s functions for this computa-

tion. TimeScaleDB performs this operation by efficient

constructing a single statistical aggregate from which all

our metrics are derived.

4) The data from the devices are timestamped but they

are not programmed to be emitted at fixed intervals –

hence the signals are not periodic. However, the precise

time of the data is not materially significant for sketch

computation. Therefore, for each signal, the data is

time-aligned to the nearest t-th minute (t < Δo). If

n samples are collected within a span of t minutes, they

are averaged and mapped to the t-th minute, leading

to the first data reduction opportunity. Since the time

alignment effectively creates Δo

t independent time slices,

the alignment operation can be executed in parallel.

5
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As the size and processing of the observation intervals

are determined by the above considerations, we now need

to compute sketches for N subjects for I(= 48) intervals.

With enough resources, the sketch computation, implemented

as relational views (with functions) on the observation can be

computed in an embarrassingly parallel manner. However, since

the sketches are computed on a large volume of nearly-raw time-

aligned data, the data cannot be moved to a high-performance

parallel computing platform, because the data transmission cost

overshadows the benefit of parallelization. Since the higher-

order sketch computation and the prediction algorithm must

have the sketches of all intervals of a single individual over a

24-hour period, we can only parallelize the sketch computation

over the set of subjects because all intervals of an individual

must be computed. Our current solution is to partition the

subject pool into batches and perform the sketch computation

of the members of a batch in parallel.

A. Higher Level Features and AI Model Preparation

In this part, we dive deeper into the infrastructure that

exploits computational and data parallelism to allow quickest

execution of higher order features computation and Machine

Learning algorithms. Two mission critical aspects of our

solution to COVID-19 are (a) prediction accuracy, and (b)

speed and efficiency of execution.

Once data had been sketched within single observation

intervals, a sketch normalization step is executed over the

sketches for every individual subject to compute what we call

the higher-order sketches. This “normalization” is to ensure

that the computed sketch values are biologically informative

for use in the biological time-series applications of illness

detection. For example, physiological dynamics and ranges

within variables are dynamic within individuals, with important

differences across individuals. For this reason, the historical

sketch data each individual must be used for his/her own
baseline of comparison, and when needed, informed by survey

data. Thus, a few weeks (or months, in the case of ovarian-

cycling women, and years in the case of seasonal changes)

of each individual’s pre-illness data is used to generate

normalizations along daily ranges and other comparisons as

appropriate. A more detailed rationale and procedure for

normalization can be found in some of the observations about

fever detection in the initial TemPredict paper [1]. Note that,

while this requires additional DB access, this normalization is

still parallelizable over subjects and variables and there is no

“join” operation between the three data categories. Further, the

survey data for an individual is queried only once during the

normalization process. An outcome of the higher order sketch

computation is based on frequency of exceptional time windows

within a wider timeframe using the history of sketches of the

same person, allowing comparisons over time. The normalized

sketch is fed to the prediction algorithm to determine subjects

who may have a potential onset of illness. Details of the

prediction algorithm is out the scope of this paper.

Our integrated big data infrastructure has three major charac-

teristics: (1) A simple interface for users with different domain

expertise to capitalize advanced compute and data resources;

(2) An automated back end that accelerates the end-to-end

process of scientific discovery from the exploration-to-scalable

deployment of AI algorithms without human involvement/

intervention; and (3) A collaborative environment for Team

Science [16]. Fig.2 presents the TPCI Big Data System for AI

Model Development and Scalable Deployment for COVID-19.

The Scalable Data Analysis System consist of the following key

components: (i) Exploratory Workflow Development Interface,

and (ii) Auto-deployment and auto-scale of AI Models.

(i) Exploratory AI Development Workflow User Interface:

The first component a user interacts with is the JupyerHub,

which provides a Python notebook-based exploratory workflow

development interface (https://tempredict.sdsc.edu/jupyterhub).

TPCI allows authorized users to leverage this tool on scalable

hardware transparently while supporting efficient data access

from a variety of data systems. Users can use their existing

identity providers, such as University, Google, or Github

credentials to login to TPCI. Upon login, using a Spawner

Options form, users can submit their resource requests such as

number of CPUs, number of GPUs, Memory in GB, Container
Image, and Persistent Storage. The workflow involves a domain

expert getting resources on Jupyterhub via the Kubernetes-based

(kubernetes.io) Nautilus portal at UCSD (nautilus.optiputer.net),

opening their Jupyter notebook by spawning an instance, and

establishing database connectivity. The user can mount a

persistent storage system of 400TB capacity which provides

a shared storage environment per group. The project lead

manages access control to shared persistent storage. A project

can have more than one shared persistent volumes for different

groups. The shared persistent storage gives an opportunity for

collaboration among authorized group members. Behind the

scene, the TPCI platform leverages advancements in Kubernetes

without exposing scientists to the complexities of coding for

creating deployments of pods, volumes, services, and API

triggers. The TPCI platform exposes a Jupyter Notebook

interface for exploration and development of algorithms so users

can leverage advanced data science and AI libraries without

needing to do repetitive software stack installations. Further,

TPCI exposes simple APIs that researchers can run from their

Jupyter notebooks to access data efficiently from a variety of

data systems, such as remote database servers and cloud storage

such as Amazon S3, Swift Object Storage, and Next Cloud.

Users can configure their personal individual storage systems

as well. Once the algorithm has been established, users execute

their algorithms in a parallelized manner. The APIs provide a

path to submit to code repositories such as Github. From Github,

the TPCI system auto-deploys and auto-scales algorithms on

GPU and CPU clusters managed by Kubernetes. The entire

system is designed and built to empower users to develop and

test their algorithms through an agile development methodology.

A data scientist may develop their algorithm for one unit of

data (in our case for a subject with a PID) without worrying

about scalability in Jupyter Notebook. Using the TPCI APIs,

users can then push their algorithms or Jupyter Notebooks to

Github or other code repositories. Next, we discuss how TPCI
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Fig. 2: AI Model Development and Scalable CI Deployment

Fig. 3: Production Deployment and Auto-scaling Environment

scales these algorithms using different parallelism techniques.

(ii) Auto-deployment and Auto-scale of AI Models:

First analyzed are the algorithm, input load, and associated

constraints. Parallel computing techniques are applied such as

task parallelism and data parallelism to utilize all the CPU

cores optimally. Once the algorithm is optimized for the number

of CPU cores on a single node, it is deployed as a Kubeless

(kubeless.io) function on Kubernetes to further parallelize using

Kubernetes auto-scale capability on multiple nodes.

• Single Node Parallel Computing: TPCI APIs will

apply appropriate parallelism and scaling based on the

algorithm itself, input, and system constraints such as

data transfer to data systems. Task parallelism is applied

when multiple tasks can concurrently execute on the same

data, i.e., when one function is applied to many pieces

of data independently such as loops. For example, the

platform provides a concurrent mapping capability to

parallelize sequential for loops on multiple cores and

reduce execution time.

• Kubeless Function Deployment: TPCI provides APIs
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to execute code in Serverless Kubernetes Frameworks

using Kubeless based infrastructure. Once the algorithm

is optimized for a single node, TPCI APIs were used

to deploy it on the Kubernetes cluster as a Kubeless

function and create the required service API and ingress

deployments in the backend as shown in the Fig. 3. This

serverless mechanism facilitates rapid deployment and

the service API gives a handle to invoke the AI Models

programmatically for the automated live pipeline.

The service API triggers the function execution over

HTTP protocol. We can configure the APIs to conveniently

trigger the execution of functions upon the occurrence of

certain critical events, such as, when first order sketches

are available. Based on an event or a cron trigger, the

users can initiate a parallelized execution of their algorithm

remotely from anywhere on any device. This gives users

the capability to quickly execute and test functions based

on source code developed by their team members. Further,

autoscale rules can be applied on Kubeless functions to

scale up and down.

• Kubernetes Autoscale: Kubeless autoscale functionality

is used to scale Kubeless pod horizontally based on metric

targets such as CPU utilization, number of requests, and

others. The function execution will have the ability to

auto-scale up and down without intervention based on

computing needs and input data size.

IV. PROGRESS TOWARD AI RESEARCH

The complexity of human physiology and pathology are, at

least for the time being, literally beyond description. As such,

health problems can benefit from AI support when those AIs

have been developed at the intersection of specific populations

and conditions. Additionally, AIs can be developed to help

map approximations of the hyper-complex health space, as in

identifying similar patients or latent physiological indications.

For example, in developing algorithms for the early detection

of COVID-19 from wearable device data, the following (non-

exhaustive) gaps in knowledge presented barriers: lack of basic

description of illness progression, and how this manifests in

and perturbs normal physiological dynamics; absence of normal

physiological dynamics models, let alone how these dynamics

change by age, sex, ethnicity, condition, and circumstance to

create dynamic baselines; lack of models for physiological

dynamic baselines, and how to optimize anomaly detection

in such models; lack of ability to detect (confirm) positive

COVID-19 infection (across 2020, tests were developed to fill

this gap, though not it real-time), and how to confirm infection

onset (still missing) and recovery (still missing).

To address these issues with sufficient speed to be of

service during the COVID-19 pandemic, UCSF launched

TemPredict in March 2020, in collaboration with UC San

Diego. TemPredict, initially sponsored by OuraRing, Inc.,

was subsequently funded by the DoD and was supported by

MIT Lincoln Lab collaborators. Here, we present additional

inference management processes enabled by TPCI. A full

description of recruitment, data gathering, and subsequent

algorithm development appears in another manuscript, currently

in production.

(i) Random Forest-Based Prediction of At-Risk Subjects: In

this method, researchers are collecting health sensing data

from wearable devices from confirmed COVID-19 patients and

define baseline measurements of physiological dynamics to

ultimately capture anomalies and fluctuations associated with

COVID-19 infections. The platform enables this team to create

features using rolling windows, perform normalization and train

a Random Forest model across the physiological variables.

(ii) Bayesian Networks-Based Prediction of Reported Health
Status: This supported scenario is leveraging Bayesian Net-

works to make probabilistic estimations from an individual’s

symptom profile states. The Bayesian approach gives insights

about the dependencies among the symptoms, however incom-

plete data poses a critical challenge. The TPCI enabled temporal

analysis by mapping disease progression to probabilities.

(iii) Autoencoder-Based Classification of Physiological Sig-
nals: TPCI enables rapid exploration of Deep Learning Models

that can infer outcomes from time-series signals. Researchers

are using the TPCI to map time-series physiological signals

to low dimensional embeddings using auto-encoders (varia-

tional, sparse, and temporal). This compressed embeddings

enable rapid exploration of Recurrent Neural Network (RNN)

architectures to arrive at optimal health prediction algorithms.

(iv) Exploratory Analysis of Paired Survey Response and
Physiological Data: In this experiment, researchers leveraged

features such as variations in skin surface temperature and

duration of elevated temperature to develop and compare

Hidden Markov Models against baseline Logistic Regression

Classifiers. The simplicity of this feature and usability of the

TPCI allowed rapid implementation and comparison.

V. RESULTS AND FUTURE WORK

The fundamental design idea behind the TemPredict system

is simplicity coupled with computational scalability. TPCI

provides users with a simplified user interface to develop

predictive algorithms and decouples the responsibility of scaling

a given algorithm for a large number of subjects. This section

illustrates the performance of the TPCI system by means of

the sketch computation and the higher-order feature extraction

steps for 200 candidate users, and a data time window of the

last twenty-four hours. As a part of the live study, the system

collected, ingested, and processed users’ data incrementally

with time in near real-time.

A mid-size server for computing the sketches was used.

The execution time, CPU usages, and memory utilization are

reported in Fig. 4, in which the graph represents the users’

batch size (x-axis), and the measurement (y-axis). The sketch

computation is a CPU-bound process, so a python parallel

thread was used to compute the batches. The execution time

linearly increases with the number of batches, and the CPU and

memory utilization is almost stable for the different batches.

Fig. 5 shows Runtime, CPU Usage, Memory Usage (y-axis) for

higher order features computation with the number of cores(x-

axis) for different batch sizes. The original algorithm calculated
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Fig. 4: Runtime, CPU, Memory usages for Sketch computation batch sizes.

Fig. 5: Runtime, CPU, Memory usages for Higher Order Feature Extraction Step.

high order features for each subject (PID) in a sequential way

on a laptop, taking 20 mins to complete higher-order sketches

for nearly 200 subjects (batch size). The application of data

parallelism across 16 cores to concurrently run the algorithm

on each subject (PID) improved the execution speed by 32

times, reducing the execution time to ∼37sec.

As part of future work, we plan to focus on the team

science for AI functionality of TPCI, allowing multiple users to

collaborate on parts of the analysis through a chain of Python

notebooks. Initial framework was developed to chain together

notebooks with constraints on metrics of performance and

accuracy, but left out of the scope of this paper. In addition,

future work will be on deployment of various studies and

metadata capabilities to ensure utilization of the insight gained

from analysis of the data within new science questions related

to the disease onset and development.
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