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ABSTRACT

Science and engineering fields use computer simulation extensively.
These simulations are often run at multiple levels of sophistication
to balance accuracy and efficiency. Multi-fidelity surrogate model-
ing reduces the computational cost by fusing different simulation
outputs. Cheap data generated from low-fidelity simulators can be
combined with limited high-quality data generated by an expen-
sive high-fidelity simulator. Existing methods based on Gaussian
processes rely on strong assumptions of the kernel functions and
can hardly scale to high-dimensional settings. We propose Multi-
fidelity Hierarchical Neural Processes (MF-HNP), a unified neural
latent variable model for multi-fidelity surrogate modeling. MF-HNP
inherits the flexibility and scalability of Neural Processes. The latent
variables transform the correlations among different fidelity levels
from observations to latent space. The predictions across fidelities
are conditionally independent given the latent states. It helps al-
leviate the error propagation issue in existing methods. MF-HNP
is flexible enough to handle non-nested high dimensional data at
different fidelity levels with varying input and output dimensions.
We evaluate MF-HNP on epidemiology and climate modeling tasks,
achieving competitive performance in terms of accuracy and uncer-
tainty estimation. In contrast to deep Gaussian Processes [6] with
only low-dimensional (< 10) tasks, our method shows great promise
for speeding up high-dimensional complex simulations (over 7, 000
for epidemiology modeling and 45, 000 for climate modeling).
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1 INTRODUCTION

In scientific and engineering applications, a computational model,
often realized by simulation, characterizes the input-output relation-
ship of a physical system. The input describes the properties and
environmental conditions, and the output describes the quantities
of interest. For example, in epidemiology, computational models
have long been used to forecast the evolution of epidemic outbreaks
and to simulate the effects of public policy interventions on the epi-
demic trajectory [5, 13, 24]. In the case of COVID-19 [3, 8], model
inputs range across virus and disease characteristics (e.g. transmis-
sibility and severity), non-pharmaceutical interventions (e.g. travel
bans, school closures, business closures), and individual behavioral
responses (e.g. changes in mobility and contact rates); while the
output describes the evolution of the pandemic (e.g. the time series
of the prevalence and incidence of the virus in the population).

Computational models can be simulated at multiple levels of
sophistication. High-fidelity models produce accurate output at
a higher cost, whereas low-fidelity models generate less accurate
output at a cheaper cost. To balance the trade-off between compu-
tational efficiency and prediction accuracy, multi-fidelity modeling
[30] aims to learn a surrogate model that combines simulation out-
puts at multiple fidelity levels to accelerate learning. Therefore,
we can obtain predictions and uncertainty analysis at high fidelity
while leveraging cheap low-fidelity simulations for speedup.

Since the pioneering work of Kennedy and Hagan [17] on mod-
eling oil reservoir simulator, Gaussian processes (GPs) [36] have
become the predominant tools in multi-fidelity modeling. GPs effec-
tively serve as surrogate models to emulate the output distribution
of complex physical systems with uncertainty [21, 32, 43]. How-
ever, GPs often struggle with high-dimensional data and require
prior knowledge for kernel design. Multi-fidelity GPs also require
a nested data structure [31] and the same input dimension at each
fidelity level [6], which significantly hinders their applicability in
the real world. Therefore, efforts to combine deep learning and
GPs have undergone significant growth in the machine learning
community [7, 35, 37, 44]. One of the most scalable frameworks of
such combinations is Neural processes (NP) [10, 11, 19], which is a
neural latent variable model.

Unfortunately, existing NP models are mainly designed for single-
fidelity data and cannot handle multi-fidelity outputs. While we can
train multiple NPs separately, one for each fidelity, this approach
fails to exploit the relations among multi-fidelity models governed
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by the same physical process. Furthermore, models with more fi-
delity levels require more training data, which leads to higher com-
putational costs. An alternative is to learn the relationship between
low- and high-fidelity model outputs and model the correlation
function with NP [42]. But this approach always requires paired
data at the low- and high-fidelity level. Another limitation is high
dimensionality. The correlation function maps from the joint input-
output space of the low-fidelity model to the high-fidelity output,
which is prone to over-fitting.

In this work, we propose Multi-Fidelity Hierarchical Neural
Process (MF-HNP), the first unified framework for scalable multi-
fidelity modeling in neural processes family. Specifically, MF-HNP
inherits the properties of Bayesian neural latent variable model
while learning the joint distribution of multi-fidelity output. We
design a unified evidence lower bound (ELBO) for the joined dis-
tribution as a training loss. The code and data are available on
https://github.com/Rose-STL-Lab/Hierarchical-Neural-Processes.

In summary, our contributions include:

e A novel multi-fidelity surrogate model, Multi-fidelity Hier-
archical Neural Processes (MF-HNP). Its unified framework
makes it flexible to fuse data with varying input and output
dimensions at different fidelity levels.

e A novel Neural Process architecture with conditional inde-
pendence at each fidelity level. It fully utilizes the multi-
fidelity data, reduces the input dimension, and alleviates
error propagation in forecasting.

e Real-world large-scale multi-fidelity application on epidemi-
ology and climate modeling to show competitive accuracy
and uncertainty estimation performance.

2 RELATED WORK

Multi-fidelity Modeling. Multi-fidelity surrogate modeling is widely
used in science and engineering fields, from climate science [15, 39]
to aerospace systems [2]. The pioneering work of [17] uses GP to re-
late models at multiple fidelity levels with an autoregressive model.
[21] proposed recursive GP with a nested structure in the input
domain for fast inference. [32, 33] deals with high-dimensional GP
settings by taking the Fourier transformation of the kernel function.
[31] proposed multi-fidelity Gaussian processes (NARGP) but it
assumes a nested structure in the input domain to enable a sequen-
tial training process at each fidelity level. An extreme case that
we include in our experiment is when the data sets at low- and
high-fidelity levels are disjoint. None of the high-fidelity data could
be used for training, which is a failure case for NARGP. Addition-
ally, the prediction error of the low-fidelity model will propagate
to high-fidelity output and explode as the number of fidelity levels
increases. [43] proposed a Multi-Fidelity High-Order GP model
to speed up the physical simulation. They extended the classical
Linear Model of Coregionalization (LMC) to nonlinear case and
placed a matrix GP prior on the weight functions. Their method
is designed for high-dimensional outputs rather than both high-
dimensional inputs and outputs. Deep Gaussian processes (DGP)
[6] designs a single objective to optimize the kernel parameters
at each fidelity level jointly. However, the DGP architecture intro-
duces a constraint that requires the inputs at each fidelity level to
be defined by the same domain with the same dimension. Moreover,
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DGP is still based on GPs, which are not scalable for applications
with high-dimensional data. In contrast, NP is flexible and much
more scalable.

Deep learning has been applied to multi-fidelity modeling. For
example, [12] uses deep neural networks to combine parameter-
dependent output quantities. [27] propose a composite neural net-
work for multi-fidelity data from inverse PDE problems. [26] pro-
pose Bayesian neural nets for multi-fidelity modeling. [9] use trans-
fer learning to fine-tune the high-fidelity surrogate model with the
deep neural network trained with low-fidelity data. [6, 14] propose
deep Gaussian process to capture nonlinear correlations between
fidelities, but their method cannot handle the case where different
fidelities have data with different dimensions. Tangentially, multi-
fidelity methods have also recently been investigated in Bayesian
optimization, active learning, and bandit problems [16, 22, 23, 34].

Neural Processes. Neural Processes (NPs) [10, 18, 25, 38] provide
scalable and expressive alternatives to GPs for modeling stochastic
processes. However, none of the existing NP models can efficiently
incorporate multi-fidelity data. Earlier work by [35] combines multi-
fidelity GP with deep learning by placing a GP prior on the features
learned by deep neural networks. However, their model remains
closer to GPs. Quite recently, [42] proposed multi-fidelity neural
process with physics constraints (MFPC-Net). They use NP to learn
the correlation between multi-fidelity data by mapping both the
input and output of the low-fidelity model to the high-fidelity model
output. But their model requires paired data and cannot utilize the
remaining unpaired data at the low-fidelity level.

3 BACKGROUND
3.1 Muti-Fidelity Modeling

Formally, given input domain X C R% and output domain Y C
R, a model is a (stochastic) function f : X — Y. Evaluations
of f incur computational costs ¢ > 0. The computational costs
¢ are much higher at higher fidelity level. Therefore, we assume
that a limited amount of expensive high-fidelity data is available
for training. In multi-fidelity modeling, we have a set of functions
{fi,---, fx} that approximate f with increasing accuracy and com-
putational cost. We aim to learn a surrogate model fK that combines
information from low-fidelity models with a small amount of data
from high-fidelity models.

Given parameters xy. at fidelity level k, we query the simulator
to obtain data set from different scenarios Dy = {xy ;, [yk’i]le i,
where [yk’,-]f:1 are S samples generated by f (xy ;) for scenario
i. In epidemic modeling, for example, each scenario corresponds
to a different effective reproduction number of the virus, con-
tact rates between individuals, or the effects of policy interven-
tions. For each scenario, we simulate multiple epidemic trajec-
tories as samples from the stochastic function. We aim to learn
a deep surrogate model that approximates the data distribution
p(y%|xt DL D35, ..., Di) at the highest fidelity level K over the
target set y;(, given context sets at different fidelity levels O} ¢ Dy
and the corresponding xIt(.

For simplicity, we use two levels of fidelity, but our framework
can be generalized easily. Let us denote the low-fidelity data as D; =
{x1; [y1115_, }i and high-fidelity data as Dy, = {x,;, [yp,]5_, }i. If

s=1
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e

Figure 1: Graphical models for Single-Fidelity Neural Process (left), Multi-Fidelity Neural Process (middle), Multi-Fidelity
Hierarchical Neural Process (right). Shaded circles denote observed variables and hollow circle represent latent variables. The

directed edges represent conditional dependence.

Dy, € Dy, the data domain has the nested structure. If D), = Dy,
we say the low- and high-fidelity data sets are paired. Low-fidelity
data can be split into context sets Z)IC = {xlcn, [ylcn]f:l}i:gl and

target sets D] = {x] [ylt’m]le}fn/f’: |- Similarly, high-fidelity data

Lm’
P C — [,C c 1S N
can be split into context sets D) = {xh’n, [yh’n]szl}n:1 and target

t— (ot t 1S \Mp
sets Z)h = {xh’m, [yh’m]szl}mzl,

3.2 Neural Processes

Neural processes (NPs) [11] are the family of conditional latent
variable models for implicit stochastic processes (SPs) [41]. NPs
are in between GPs and neural networks (NNs). Like GPs, NPs
can represent distributions over functions and estimate the un-
certainty of the predictions. But they are more scalable in high
dimensions and can easily adapt to new observations. According
to Kolmogorov Extension Theorem [29], NPs meet exchangeability
and consistency conditions to define SPs. Formally, NP includes
local latent variables z € R% and global latent variables 6 and
is trained by the context set D¢ = {x§, [yf,]f:1 }Jr:[=1 and target
sets D = {x!,, [y,tn]le}?n'le. Learning the posterior of z and 6 is
equivalent to maximizing the following posterior likelihood:

v

p(yg,I:M|xi:M’ Dc’ 0) =

s=1

M
[1 [ pde.0 [ ] platmlzs b 00,
s=1 m=1

We omit the sample index s in what follows.

Approximate Inference. Since marginalizing over the local
latent variables z is intractable, the NP family [11, 19] introduces
approximate inference on latent variables and derives the corre-
sponding evidence lower bound (ELBO) for the training process.

v

logp(yi:MLx{:M’ DC’ 9) 2

q¢ (2| D°)

M
t t
Eqy(z|Dcunt) | Z log p(yy, |2, X7, 0) + log W]

m=1

Note that this variational approach approximates the intractable
true posterior p(z| D, ) with the approximate posterior g4 (z| D)
. This approach is also an amortized inference method as the global

parameters ¢ are shared by all context data points. It is efficient
during the test time (no per-data-point optimization) [40].

NPs use NNs to represent q¢(z|2)c), and p(y!, |z xt,, 0). q4 () is
referred as the encoder network (Enc, determined by the parameters
@). p(.|0) is referred as the decoder network (Dec, determined by
parameters 0). These two networks assume that the latent variable
z and the outputs y follow the factorized Gaussian distribution
determined by mean and variance.

94 (21D°) = N (zlpz, diag(a?))
pz = Enc,_4(D°), ol = Enco,g,d)(Z)c)
PUnlz x4, 0) = N (yhy |1y, diag(a?))

2
Hy = Dec#y,g(z, xL), oy = Decaip@(z, xL)

Context Aggregation. Context aggregation aggregates all con-
text points D€ to infer latent variables z. To meet the exchange-
ability condition, the context information acquired by NPs should
be invariant to the order of the data points. Garnelo et al. [10,
11], Kim et al. [18] use mean aggregation (MA). They map the
data pair(x5, y5) to a latent representation r, = Encr,qg(xﬁ, ys) €
R then apply the mean operation to the entire set {rn}nN=1 to
obtain the aggregated latent representation 7. 7 can be mapped
to s, and 62 to represent the posterior q4(z|D€) with an addi-
tional neural network encoder. MA uses two encoder networks.
Enc, ¢ (x5, y5) € RY% maps the data pair(x5, ys) to rp for context
aggregation. Enc, o (F) € R4 maps 7 to i, and o for latent param-
eter inference.

Volpp et al. [40] proposed Bayesian aggregation (BA), which
merges these two steps. They define a probabilistic observation
model p(r|z) for r depended on z, and update p(z) posterior using
the Bayes rule p(z|rn) = p(ralz)p(2)|p(rn) given latent observa-
tion r, = Enc, 4 (x5, y5;). The corresponding factorized Gaussian
for the inference step:

P(rnlz) = N(rnlz, diag(afn))
rn = Ency ¢ (x;, yp)
o7, =Encg (x5 y5)

They use a factorized Gaussian prior po(z) = N (z|pz,0, diag(ag o)
to derive the parameters of posterior g (z|D°):
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N
2 2 2 ©
of = [(0230)e +Z(0rn e)] ,
n=1
N
Hz = Hz,0 + 0'3 © Z(rn — Jiz0) @ (O'fn)
n=1
Compared with MA, which treats every context sample equally,
BA uses observation variance an to weigh the importance of each

latent representation r,,. BA also represents a permutation-invariant
operation on DF.

4 METHODOLOGY

In this section, we introduce our proposed Multi-fidelity Hierar-
chical Neural Processes (MF-HNP) model in three subsections. The
first section discusses the unique architecture of hierarchical neu-
ral processes for the multi-fidelity problem. Then, we develop the
corresponding approximate inference method with a unified ELBO.
Finally, we introduce 3 ELBO variants for scalable training.

4.1 Multi-fidelity Hierarchical Neural
Processes

Our high-level goal is to train a deep surrogate model to mimic the
behavior of a complex stochastic simulator at the highest level of
fidelity. MF-HNP inherits the properties of Bayesian neural latent
variable model while learning the joint distribution of multi-fidelity
output. It adopts a single objective function for multi-fidelity train-
ing. It reduces the input dimension and alleviates error propagation
by introducing the hierarchical structure in the dependency graph.

Figure 1 compares the graphical model of MF-HNP with Multi-
fidelity Neural Process (MF-NP) [42] and Single-Fidelity Neural
Process (SF-NP). SF-NP assumes that the high-fidelity data is inde-
pendent of the low-fidelity data and reduces the model to vanilla
NP setting. Details of SF-NP and MF-NP are shown in Appendix A.
MF-HNP assignes latent variables z; and z, at each fidelity level. The
prior of zj, is conditioned on z;, parameterized by a neural network.
We use Monte Carlo (MC) sampling method to approximate the
posterior of z; and zj, to calculate the ELBO.

One key feature of MF-HNP is that the model outputs at each
fidelity level are conditionally independent given the correspond-
ing latent state. This design transforms the correlations between
fidelity levels from the input and output space to the latent space.
Specifically, compared with MF-NP where 3, depends on (xp, y;)
input pairs given z, §j, only depends on input xj, given zj, in MF-HNP.
It helps MF-HNP to significantly reduce the high-fidelity input di-
mension. In addition, local latent variables at each level of fidelity
enable MF-HNP to perform both inference and generative modeling
separately at each fidelity level. It means MF-HNPcan fully utilize the
low-fidelity data and is applicable to arbitrary multi-fidelity data
sets. As MF-HNPcan reduce the input dimension and fully utilize the
training data, its prediction performance is significantly improved
with limited training data.

Note that in two fidelity setup, MF-HNP is related to Doubly Sto-
chastic Variational Neural Process (DSVNP) model proposed by
Wang and Van Hoof [41] which introduces local latent variables
together with the global latent variables. Different from DSVNP,
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MF-HNP gives latent variables with separable representations. z;, z,
represent the low- and high-fidelity functional, respectively.

4.2 Unified ELBO

We design a unified ELBO as the objective for MF-HNP. Unlike vanilla
NPs, we need to infer the latent variables z; and zj, at each fidelity
level instead of the global z. For the two-fidelity level setup, we
use two encoders gy, (zl|Z)lc), 94, (znlz1, Z)Z), and two decoders
p(ylt|zl, xlt, 0p), p(y’tl|zh, x;l, 0r). These four networks approximate
the distributions of the latent variables z;, z;, and outputs y; and yp,.
Assuming a factorized Gaussian distribution, we can parameterize
the distributions by their mean and variance.

a4, (211 Df) = N (zp1z,, diag(c?,))

g, (znlz1, Df) = N(zp iz, diag(a2,))

P} 121X s 61) = Ny} |1,y ding ()

PWp 2 X 1 O8) = N (Yl t,mo diag(07,))
where

Mz = Encllz,,@(ch)’ 031 = Encagl,(/,l(fl)lc)

2
fiz, = Ency, g, (21, D), o3, = Encdﬁh,tﬁh (21, D)
— t 2 _ t
Hy, = Dec#y,ﬂz(zl’xl,m)’ oy = Deca_f,l,éz(zl’xl,m)
— t 2 _ t
Hy, = Dec,uyhﬂh (zp, xh,m), oy, = Deca_;h,@h (zp, xh,m)
We derive the unified ELBO containing these four terms:
t ottt
1°gp(yp Y; |xlaxhs ch) D;Cp 0)
tot t ot
2 By, (a1, D500t DUt [ 108 () Y121 200 X x4, 0)
a¢(z1, 20| D}, Dy)

+10g c t c t ]
94 (21. 24| O] U D}, Dy U D)

=Egy, (znlz1.D5UD!) gy, (2 | DEUDY) [ log p(y} |2k, x}, On)
¢y, (znlz1, Dy)
ag, (znl2!, D5 U D})

+ logp(yﬂzl,xlt, 0;) +log

a6, 212 o
a4, (21105 L D))

The derivation is based on the conditional independence of
MF-HNParchitecture shown in Figure 1.

4.3 Scalable Training

To calculate the ELBO in Equation 1 for the proposed MF-HNP model,
we use Monte Carlo (MC) sampling to optimize the following ob-
jective function:

K S

1 1 k

Luc= 1 314D ourohic )oY
k=1 s=1

~KL[q(zlz{"), D, D)) Ip(zplz ), D]

K
1
+ 2 3 logp(yf et =) KL [g(z1Df, D (21105
k=1
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Table 1: Comparison of different NP models at high-fidelity level.

NEURAL PROCESSES FAMILY PRIOR DISTRIBUTION POSTERIOR DISTRIBUTION GENERATIVE MODEL

SF-NP [11] q(zp|Dy) p(z| Dy, D? P(yh|xh,l)
MF-NP [42] q(thZ) ) p(ZIDC, plyplxj, ,yl,Z)
MF-HNP(as) (zh|z( s) .Dp) (zh|z(s) Z)C Z)t p(yt|xt, zp)
MF-HNP(rzan) AN A A A [
MF-HNP(MEAN,STD) q(zplz;, 02, Z);) Pp(zplpz;s 02y, Z)h, Z);;) p(yy |xp. z1)

(s)

where the latent variables Zl( and z,

are sampled by g4, (z/| D)) alyr

ﬁ?J*
A4yrs J 8

( Socio-Demographic Features)

and g, (zh|zl(k),2)’cl) respectively. Thls standard MC sampling
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= Census data (+ 5%)

method requires nested sampling. For data sets with multiple fi- M@t s %g = Comsan § i
delity levels, it is computationally challenging. ﬁ& ﬁ’[’ﬁ » o .

An alternative way is to use ancestral sampling [41] (denoted by s SGHp EE I £ 5
MF-HNP(AS)) for scalable training and write the estimation as: Vﬁt# ° | =

S
1 tit (9 L)
Las=5 ), [logpuhl 2”57

s=1

~ KL[q(z4lz\" . D, DE)lIp(znlz*, DL

K
1 k)
*Eg_lbgp(yl'xv 1) =KLlq(z|Df. D Ip(z1D5)]

)]

We also design two different techniques to infer z, using either

low-level mean of latent variables ji,, (denoted by MF-HNP(MEAN))

or both low-level mean and standard deviation (yi;, Ufl )(denoted
by MF-HNP(MEAN,STD)). The corresponding ELBOs are:

Zlogp(yh|xh, ) )

= KL[q(zp |z, Dy, D) Ip(zp bz, O]

K
1
+ 2 2 logp(flxf.5) ~KL[g(z|Df, DDIp(z11 D)) ()
k=1

Lyo = Z IOgP(yhlxha

s=1
- KL[q(zplpz;, 025 Dh’

51121’0-21)
h))'lp(zhlyZp Ozp» D}cl]

K
! (k)
+ = 2 logp(yflxf. z) ~ KL[a(z/|Df, D lp(z1| D)

k=1
©
We include Equation 2, Equation 3, and Equation 4 as the training
loss functions for ablation study. The comparison of different NP
models including SF-NP, MF-NP, MF-HNP variants for high-fidelity
level inference and output generation is shown in Table 1.

5 EXPERIMENTS

We benchmark the performance of different methods on two multi-
fidelity modeling tasks: stochastic epidemiology modeling and cli-
mate forecasting. Epidemiology modeling is age-stratified and cli-
mate (temperature) modeling is on a regular grid.

1234567809101

Number of household members Age

High Fidelity Low Fidelity
Contact Matrix Contact Matrix
Aggregation
in 18 age
brackets

i
: 2

Age-stratified High Fidelity Age-stratified Low Fidelity
SIR Epidemic Model SIR Epidemic Model
Big= ZﬂM,. ,,—sh, = —iBMl,iil’—'fSl,,

Ing —ZﬁMh]—sh —vlns ZﬁM,N’s, =l

=1

Ryi= 'YIh. Rii =Dy

Figure 2: AS-SIR Modeling Framework: First, high-fidelity
population-level contact matrices are generated using
macro (census) and micro (survey) data [28]. Second, low-
fidelity contact matrices are obtained by grouping individu-
als in fewer age brackets. Distinct age-stratified SIR models
are used to simulate the epidemic at the two fidelity levels.

5.1 Experiment Setup.

For all experiments, we compare our proposed MF-HNP model with
both the GP and NP baselines.

e GP baselines include the nonlinear autoregressive multi-
fidelity GP regression model (NARGP) [31] and single-fidelity
Gaussian Processes (SF-GP) which assumes that the data are
independent at each fidelity level.

e NP baselines include single-fidelity Neural Processes (SF-NP)
and multi-fidelity Neural Processes (MF-NP) [42].

0 10 20 30 40 50 60 70 80 90100
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e For our proposed MF-HNP model, we provide 3 variants to
approximate inference for ablation study, including inference
by low-level mean of latent variables (MF-HNP(MEAN)),
low-level mean and standard deviation of latent variables
(MF-HNP(MEAN,STD)), and ancestral sampling method (MF-
HNP(AS)). Details have been discussed in Section 4.3.

For NP models, we also consider two different context aggre-
gation methods discussed in Section 3.2, including mean context
aggregation and Bayesian context aggregation. Both are applied
to generate latent variables z at each fidelity level. For the NARGP
and MF-NP baseline, they only work for the data with nested data
structure based on their model architecture and assumption [31].
For MF-NP, it requires both low-fidelity simulation output yl and
high-fidelity input x" as model input. Therefore, we assume that yl
is known for the validation and test set for MF-NP, which means
MF-NP requires more data compared with MF-HNPand other base-
lines.

We report the mean absolute error (MAE) for accuracy esti-
mation. For uncertainty estimation, we use mean negative log-
likelihood (NLL). For age-stratified Susceptible-Infectious-Recovered
(AS-SIR) experiment, we perform a log transformation on the num-
ber of infections in the output space to deal with the long-tailed
distribution. NLL for AS-SIR experiment is calculated in the log
space, while MAE is calculated in the original space. For climate
modeling experiment, both NLL and MAE are measured in the orig-
inal space. We calculate the NLL based on the Gaussian distribution
determined by model outputs of mean and standard deviation, and
MAE between the mean predictions and the truth.

5.2 Age-Stratified SIR Compartmental Model

We use an age-stratified Susceptible-Infectious-Recovered (AS-SIR)
epidemic model:

Si==AiSi, Ii=ASi—yl, Ri=ylk

where S;, I;, and R; denote the number of susceptible, infected, and
recovered individuals of age i, respectively. The age-specific force
of infection is defined by A; and it is equal to:

I.
Ai:ﬂZMi,j#,
i J
J

where f denotes the transmissibility rate of the infection, N;
is the total number of individuals of age j, and M; j is the overall
age-stratified contact matrices describing the average number of
contacts with individuals of age j for an individual of age i.

This model assumes heterogeneous mixing between age groups,
where the population-level contact matrices M are generated using
highly detailed macro (census) and micro (survey) data on key socio-
demographic features [28] to realistically capture the social mixing
differences that exist between different countries/regions of the
world and that will affect the spread of the virus.

Dataset. We include overall 109 scenarios at different locations
in China, U.S., Europe. The data in China is at the province level. The
data in the U.S. is at state level. The data in Europe is at the country
level. For each scenario, we generate 30 samples for 100 day’s new
infection prediction at low- and high-fidelity levels based on the
corresponding initial conditions, Ry, age-stratified population, and
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the overall age-stratified contact matrices. The high-fidelity data, as
shown in Figure 2, has 85 age groups. The size of the age-stratified
contact matrices My, ;; is 85X 85. For low-fidelity data, we aggregate
the data and obtain 18 age groups, resulting in a contact matrix
My ;; of size 18 X 18.

We randomly split 31 scenarios for training candidate set, 26
scenarios for the validation set and 52 scenarios for test set at both
fidelity levels. In the nested data set case, we first randomly select
26 scenarios from the training candidate set as the training set at
low-fidelity level, then randomly select 5 scenarios from them as
the training set at high-fidelity level. In the non-nested data set case,
we randomly split 26 scenarios as the training set at low-fidelity
level and 5 scenarios as the training set at high-fidelity level. The
validation and test set are both at high-fidelity level.

Performance Analysis. Table 2 compares the prediction per-
formance for 2 GP methods and 10 NP methods for 100 day ahead
infection forecasting. The performance is reported in MAE and
NLL over 100 days. MF-HNP(MEAN)-BA has the best prediction per-
formance in terms of MAE for both the scenario with nested data
structure and non-nested data structure. GP baselines SF-GP and
NARGP have similar worst MAE, which means the low-fidelity
data does not help NARGP learn useful information. Because in
high-dimensions, the strict assumption of no observation noise at
low-fidelity level does not hold for NARGP.

For NP baselines, MF-NP-(MA/BA) baselines have worse accu-
racy performance compared with the SF-NP-(MA/BA) baselines.
This is due to the limited number of paired training data that MF-
NP can utilize. The small number of training data plus the high-
dimensional input and output space makes it difficult for MF-NP to
learn the correct pattern for model predictions. For all NP models,
we find Bayesian aggregation improves the performance. With re-
spect to different hierarchical inference methods of MF-HNP. Table 2
shows MF-HNP(AS) and MF-HNP(MEAN) have superior performance
compared to MF-HNP(MEAN,STD) in terms of both NLL and MAE.

Figure 3 visualizes the prediction results of two randomly se-
lected scenarios in the nested dataset. It shows the truth, our MF-HNP
prediction together with two other baselines representing the best
GP baseline and the best NP baseline in four age groups (10,30,50,70).
In this experiment, the best GP is NARGP and the best NP is SF-NP.
One interesting finding is that although SF-GP has the best NLL
score, the visualization shows its prediction is very conservative by
generating a large confidence interval, which is not informative. On
the contrary, MF-HNPprediction is able to generate a narrower con-
fidence interval while covering the truth at the same time (shown
in Figure 3).

When switching to non-nest data set, the MF-HNP model is still
reliable for this much harder task. In fact, the MAE performance of
MF-HNP(MEAN)-BA is even better.

5.3 Climate Model for Temperature.

We further test our method on the multi-fidelity climate dataset
provided by Hosking [15]. The dataset includes low-fidelity and
high-fidelity climate model temperature simulations over a region
in Peru. The left part of Figure 4 shows the region of interest.
Dataset. The low-fidelity data is generated by low-fidelity Global
Climate Model with spatial resolution 14 X 14 [20]. The high-fidelity
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Figure 3: 100 days ahead infectious incidence compartment forecasting of randomly selected scenario at each row, analyzed

in 4 age groups. Natural log scale for y axis.

Table 2: Prediction performance comparison on Age-Stratified SIR data sets.

Data | METHOD | MAE (NESTED) | | NLL (NESTED) | | MAE (NON-NESTED) | | NLL (NON-NESTED) |
SF-GP 342.99 £ 0.04 1.71 +£ 0.06 342.99 £ 0.04 1.71 £ 0.06
NARGP 342.72 £ 0.13 1.78 £ 0.1 X X
SF-NP-MA 333.41 + 100.73 6.14 £ 4.11 333.41 + 100.73 6.14 £ 4.11
MF-NP-MA 341.08 £ 0.18 6.5+ 0.58 X X
MF-HNP(MEAN)-MA 257.39 £ 24.17 11.09 £ 11.93 249.5 + 25.82 10.58 £ 11.33
NESTED MF-HNP(MEAN,STD)-MA 257.0 £ 23.13 9.26 £9.38 254.04 £ 18.0 13.04 + 14.84
MF-HNP(as)-MA 266.17 £ 16.13 10.59 £ 11.06 262.61 £ 10.68 11.66 £ 12.71
SF-NP-BA 294.3 + 75.81 36.35 + 46.5 294.3 + 75.81 36.35 + 46.5
MF-NP-BA 340.22 + 1.51 4.34 +£2.23 X X
MF-HNP(MEAN)-BA 201.56 £ 61.15 1.97 +£ 0.44 199.75 + 64.51 1.95+0.5
MF-HNP(MEAN,STD)-BA 229.09 £ 77.44 8.24 +£ 9.54 203.05 + 65.84 6.66 +£7.19
MF-HNP(as)-BA 205.26 + 49.1 2.69 £ 1.0 205.43 £+ 43.79 3.24 £ 1.59

data is generated by high-fidelity Regional Climate Model [1] with
spatial resolution 87 x 87. The example is shown in Figure 4. Both in-
clude monthly data from 1980 to 2018 over the same region (latitude
range: (—7.5,—10.7), longitude range: (280.5, 283.7)).

The task is to use 6 month data as input to generate the next
6 month predictions as output. We randomly split 119 scenarios
for training candidate set, 50 scenarios for validation set, and 50
scenarios for the test set at both fidelity level. In the nested data
set case, we first randomly select 87 scenarios from the training
candidate set as the training set at low-fidelity level, then randomly
select 32 scenarios from them as the training set at high-fidelity level.
In the non-nested data set case, we randomly split 87 scenarios as
the training set at low-fidelity level and 32 scenarios as the training
set at high-fidelity level. The validation and test set are both at
high-fidelity level.

Performance Analysis. Table 3 compares the prediction per-
formance for 2 GP methods and 10 NP methods to predict the next
6 months temperature based on the past 6 months temperature data.
The performance is reported in MAE and NLL. The results of this
task are consistent with what we found in AS-SIR infection predic-
tion task. MF-HNP has significantly better performance compared
with either GP or NP baselines. But this time MF-HNP(MC)-BA is the
most accurate one with or without a nested data structure. Consider-
ing both MAE and NLL, we still recommend using MF-HNP(MC)-BA
and MF-HNP(MEAN)-BA.

Low Fidelity 10

High Fidelity

Figure 4: Left: Region of interest [4]. Upper Right: sample
from low-fidelity temperature model. Lower Right: sample
from high-fidelity temperature model.

Figure 5 is the visualization of predictions among the best MF-HNP
variant, GP and NP baselines on a randomly selected scenario in the
test set. To highlight the performance difference, we visualize the
residual between the predictions and the truth from 1 to 6 months
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Figure 5: MF-HNP vs. SF-NP vs. NARGP for 6 month ahead temperature prediction residual.

Table 3: Prediction performance comparison on climate data sets.

METHOD | MAE (NEsTED) | | NLL (NESTED) | | MAE (NON-NESTED) | | NLL (NON-NESTED) |
SF-GP 0.91 £ 0.365 2.288 + 0.004 0.91 £ 0.365 2.288 + 0.004
NARGP 0.91 £ 0.365 2.3 £0.006 X X
SF-NP-MA 0.778 £ 0.01 1.489 + 0.026 0.778 £ 0.01 1.489 + 0.026
MF-NP-MA 0.902 + 0.005 1.889 £ 0.012 X X
MF-HNP(MEAN)-MA 0.765 + 0.004 1.535 £ 0.059 0.788 + 0.029 1.666 + 0.174
MF-HNP(MEAN,STD)-MA 0.773 £ 0.011 1.592 + 0.057 0.768 + 0.027 1.607 £ 0.089
MF-HNP(as)-MA 0.758 + 0.024 1.578 £ 0.079 0.769 + 0.02 1.594 + 0.098
SF-NP-BA 0.751 £ 0.052 1.546 £ 0.133 0.751 £ 0.052 1.546 £ 0.133
MF-NP-BA 0.954 + 0.019 1.909 + 0.028 X X
MF-HNP(MEAN)-BA 0.706 + 0.049 1.549 £ 0.164 0.714 £ 0.027 1.58 + 0.061
MF-HNP(MEAN,STD)-BA 0.717 £ 0.045 1.606 £ 0.106 0.695 + 0.03 1.548 £ 0.068
MF-HNP(as)-BA 0.678 £ 0.026 1.506 + 0.027 0.68 + 0.009 1.58 +£0.012

ahead predictions. Higher value means lower accuracy. It can be
found that MF-HNP outperforms all the baselines for the predictions
for each month.

6 CONCLUSION & LIMITATION

We propose Multi-Fidelity Hierarchical Neural Process (MF-HNP),
the first unified framework for scalable multi-fidelity surrogate
modeling in the neural processes family. Our model is more flexible
and scalable compared with existing multi-fidelity modeling ap-
proaches. Specifically, it no longer requires a nested data structure
for training and supports varying input and output dimensions at
different fidelity levels. Moreover, the latent variables introduce
conditional independence for different fidelity levels, which alle-
viates the error propagation issue and improves the accuracy and
uncertainty estimation performance. We demonstrate the superi-
ority of our method on two real-world large-scale multi-fidelity

applications: age-stratified epidemiology modeling and temperature
outputs from different climate models.

Regarding future work, it is natural to extend our multi-fidelity
Hierarchical Neural Process to active learning setup. Instead of
passively training the neural processes, we can proactively query
the simulator, gather training data, and incrementally improve the
surrogate model performance.
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Table 4: Hyperparameters for NP baselines and our pro-
posed MF-HNP model, including learning rate, batch size, and
patience.

| LEARNING RATE | BATCH SIZE | PATIENCE

AS-SIR 1e73 128 1000
CLIMATE 5¢73 32 250

A NEURAL PROCESSS BASELINES

A.1 Single-Fidelity Neural Processes (SF-NP).

A simple way to apply NP to the multi-fidelity problem is to train
NP only using the data at high-fidelity level only assuming it is
not correlated with the data at the low-fidelity level. We name it
as Single-Fidelity Neural Processes baseline (SF-NP). During the
training process, the high-level training data can be randomly split
into context set D¢ and target set D!. We use the corresponding
evidence lower bound (ELBO) as the training loss function:

logp(yil,lebC;L,l:M’ D}CL’ 9) 2

M c
q94(z1D})
t t
Eqy(z1DeuD)) [ Z log p(yy, 12 X, e 0) + log—q D% U Z)t)]
m=1 ¢ h h

where p(0) is a decoder in a neural network and g indicates a
encoder to infer the latent variable z.

A.2 Multi-Fidelity Neural Processes (MF-NP).

Multi-Fidelity Neural Processes (MF-NP) [42] assume a compre-
hensive correlation between multi-fidelity models yj, and y; can be
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represented as:

Y (x) = G(y(x)) + 6(x),
where G is a nonlinear function mapping the low-fidelity data to
high-fidelity data, and §(x) is space dependent bias between fi-
delity levels. To train MF-NP model, we take data pairs (x, y;(x))

as the input to predict the corresponding y, (x). The correspond-
ing context sets Z)IC = {xfl w ylcn, yfl n}f:z

() o Yl oo Y n}ﬁ\n/llzl. The ELBO for the training process is:

; and target sets Z)It =

logp(yll;,l:Mlxitl,l:M’ yil:M’ Z)}CI’ 9) 2

M
Eq¢(Z\Df,UD},) [ Z logp(y}tl’m|z, xitz,m’ ylt,m’ 9)+
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0g————————
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Since this method requires (x, y;(x), y,(x)) for input and output,
it can not fully utilize the training data at low-fidelity level which
yp(x) is unknown. Furthermore, MF-NP requires a nested data
structure, which means the training inputs of high-fidelity level
need to be a subset of the training inputs of low-fidelity level. On
the contrary, if the training inputs at the different fidelity level are
disjoint, no data set can be used for training.

B EXPERIMENT DETAILS

For GP baselines, we use RBF kernels. The optimal learning rate
is 5¢72 for both AS-SIR and climate modeling tasks. We train 2000
epochs with patience equal to 100 to ensure convergence. For NP
baselines and our proposed MF-HNP model, the hyperparameters
can be found in Table 4.



