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Toward Robust Stress Prediction in the Age of Wearables:
Modeling Perceived Stress in a Longitudinal Study with

Information Workers
Brandon M. Booth, Hana Vrzakova, Stephen M. Mattingly,
Gonzalo J. Martinez, Louis Faust, and Sidney K. D’Mello

Abstract—Given the widespread adverse outcomes of stress – exacerbated by the current pandemic – wearable sensing provides
unique opportunities for automated stress tracking to inform well-being interventions. However, its success in the wild and at scale
depends on the robustness and validity of automated stress inference, which is limited in current systems. In this work, we enumerate
the properties of robustness and validity necessary for achieving viable automated stress inference using wearable sensors, and we
underscore present challenges to constructing and evaluating these systems. Using these criteria as guiding principles, we present
automated stress inference results from a large (N=606) in situ longitudinal wearable and contextual sensing study of information
workers. Using a multimodal approach encompassing a wearable sensor, relative location tracking, smartphone usage, and
environmental sensing, we trained regression models to predict daily self-reported perceived stress in a participant-independent
fashion. Our models significantly outperformed baseline variants with shuffled stress scores and were consistent with
small-to-moderate effects. Our findings highlight the performance disparity between robust and valid approaches to automated
perceived stress inference and current approaches and suggest that further performance gains might require additional sensing
modalities and enhanced contextual awareness than existing approaches.

Index Terms—Daily stress, wearable sensors, in-situ studies, phone agents, machine learning

F

1 INTRODUCTION

S TRESS in the 21st century is rapidly becoming one of the
largest contributors to health decline, depression, and men-

tal diseases [1], [2], [3]. The growing inter-connectedness of
the world’s workforce, global-scale competitiveness for jobs,
increasing prevalence of night-shift work, and job automation
efforts, are examples of trends which are both directly and in-
directly negatively impacting workforce stress [4], [5]. Current
rates of global economic market expansion are exerting more
time pressures on workers, and stress related to job security and
performance in the information workforce (e.g., accountants,
managers, scientists, engineers) is projected to increase [6].
Though moderate amounts of stress may have beneficial effects
on overall well-being [7], persistent daily stress erodes health
(e.g. [8]), contributing to many negative physical and mental
health outcomes, including heart disease, diabetes, depression,
anxiety and insomnia [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18].

Stress-reduction interventions, meditation, and routine ther-
apy have proven effective tools for managing work stress
and mitigating its long-term effects [19], but individuals in
westernized cultures may find it difficult to seek professional

The research is based upon work supported by the Office of the Director
of National Intelligence (ODNI), Intelligence Advanced Research Projects
Activity (IARPA), via IARPA Contract No 2017-17042800005. The views
and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the ODNI, IARPA, or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation thereon.

• B. Booth and S. D’Mello are with the Institute of Cognitive Science,
University of Colorado Boulder, Boulder, CO, 80309.

• H. Vrzakova is with the University of Eastern Finland.
• S. Mattingly, G. Martinez are with the University of Notre Dame, Notre

Dame, IN 46556.
• L. Faust is with Mayo Clinic.

Corresponding E-mail: brandon.m.booth@gmail.com

help. In a 2006 poll of American employees, approximately 40%
of workers experiencing high levels of stress felt comfortable
mentioning it to their employers, and among those that did,
only 4 in 10 were offered professional help when reporting
stress [20]. If the stress levels of individuals in the workforce
could be efficiently monitored in real time, interventions could
be (anonymously) deployed to help people manage stress in
the moment or to seek help at a future time. This level of track-
ing would demand careful consideration of ethical and social
control concerns, and its deployment to the general population
would need to be conditioned on strict and enforceable security
and privacy regulations.

Nevertheless, wearable commercial physiological sensors
represent a rapidly growing industry that offers a unique
opportunity for real-time stress tracking. Current wearable
devices, in conjunction with smartphones and companion apps,
offer real-time passive monitoring of certain physiological and
behavioral signals known to be indicative of stress levels in
laboratory studies, for example heart rate, heart rate variability,
step count, and sleep quality [21], [22]. These sensors thereby
provide a lens through which an individual’s health status,
well-being, and stress can be tracked on a daily basis [23],
[24], [25]. Wearable devices have been widely adopted amongst
consumers, with around 1 in 4 Americans reporting the use of
wearable accessories, and their use is projected to increase [26].
However, understanding the link between the non-medical-
grade data these pervasive devices collect and stress is still
under vigorous investigation (e.g., [27]).

A number of recent studies have investigated the daily
stress detection capabilities of certain physiological and contex-
tual signals captured from consumer-grade sensors (e.g. wear-
ables, cell phone apps) to make inferences about future stress
states [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38].
The bases for these approaches are established on the successes
of controlled laboratory experiments where some signals (e.g.
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heart rate, heart rate variability, sleep) captured using medical-
grade sensors are shown to be predictive of stress induced by
manipulation (e.g. the cold pressor task [39], [40] or the Trier
social stress test [41], [42]), which have limited ecological valid-
ity. The transition of these successful lab experiments to studies
conducted in natural settings report mixed results [34], [35],
[38], especially when comparing physiological and behavioral
data against self-reported stress (e.g. [43], for review see [44]).
Some studies demonstrate that contextual awareness of the
activities of individuals (e.g., at work, socializing, exercising)
can substantially improve the accuracy of stress prediction in
natural settings [34], [35].

Though these works vary in their approaches to capturing
physiological signals and assessing stress, they are united in
their efforts to build a practical real-time stress inference sys-
tem. Progress towards this goal appears imminently promising
when considering the reported successes of these works in
aggregate (see Section 2.4 for details). However, as we discuss
below, many of these reported successes address simplified
versions of the stress inference problem and are not robust
reflections of the predictability of stress levels for general
workforce populations at scale and in the wild.

In this work we aim to study the link between physiology,
context, and stress in a robust and generalizable fashion. In
particular, the contributions in this work are:
1) We enumerate the properties of robust and valid perceived
stress inference intended for use in natural settings
2) We examine several recent works on wearable stress in the
wild through the lens of robustness and validity
3) We analyze a large data set (N=606) of daily stress levels
among information workers within five cohorts across the US
4) We present daily stress prediction results for this data set
from robustly constructed machine learning models

2 BACKGROUND AND RELATED WORK

2.1 Detecting and Measuring Stress
2.1.1 What is Stress?
Stress is a complex physiological phenomenon and the term
was first employed by Hans Selye [45] to describe the bodily
reactions of mice to non-specific nocuous agents (e.g. cold
exposure, acute injury, excessive exercise, drugs). The short-
term effects first noted by Selye are physiological in nature
(e.g., fat tissue decrease, enlarged adrenal glands) and theorized
to encompass the “general alarm reactions” of an organism
to help it adapt and respond to threatening situations. The
long-term health implications of prolonged stress include heart
and liver disease [12], [46], diabetes [47], depression [10], [13],
[15], [16], anxiety [9], insomnia [14], and other symptoms [11],
[17], [18], [46]. Since then, our understanding of stress and its
impacts has broadened. Stress can be acute or chronic, physical
or psychological, and each type results in different impacts on
the body depending on an individual’s stress sensitivity.

2.1.2 Perceived Stress vs. Physiological Stress
Though physiological stress itself induces long-term biological
maleffects, it is often linked with one’s awareness and sub-
jective perception of being stressed [48], [49]. Research has
demonstrated a small-to-medium effect size between subjec-
tive self-reports of perceived stress and objective measures of
physiological stress based on linear models and correlation
analysis (see Section 2.1.3 for more details) [50], [51]. Perceived
stress plays a unique role in the long-term impact of stress,
and its relationship to physiological stress is not fully under-
stood. Ven Eck et al. have noted that negative affect mediates

the relationship between perception of stress during stressful
events and physiological stress [52]. The converse has also been
observed where high levels of perceived stress combined with
a situational threat to one’s coping ability may elicit negative
affect [53]. Similarly, perceived stress has been observed to
mediate the relationship between mindfulness and negative
affect [54]. Furthermore, one laboratory study suggests that
physiological stress is associated with subjective stress only if it
is assessed during a stressor; physiological responses before or
after a stressor are not associated with self-reported stress [55].
Thus, perceived stress seems to be both caused by and a cause
for physiological stress, and it may provide a more holistic (i.e.
aggregate) view of physiological stress over time.

2.1.3 How Can Stress be Measured
Regardless of whether stress is induced physically or mentally,
it results in physiological changes which can be measured in a
variety of ways. Biochemical markers such as cortisol, salivary
α-amylase, plasma or urinary norepinephrine and its spillover
rate, and interleukins each serve a role in the measurement
of different types of acute or chronic stress [56], [57]. Stress
also results in changes to the sympathetic nervous system
(SNS) and parasympathetic nervous system (PNS), which can
be detected using physiological sensing. Heart rate variability
(HRV), for example, is known to differentiate between PNS and
SNS activity [49], [56], [58], [59]. Other measurable physiolog-
ical indicators include: electrodermal activity [60], heart rate
and complexity [61], blood pressure [62], pupil size [63], and
sympathetic nerve activity [64].

Changes to one’s surroundings (e.g., one’s social life, home
environment, workplace conditions) can result in acute stress
which is moderated by the context surrounding these changes.
An individual’s stress sensitivity will dictate how strongly these
changes influence physiological stress, but it may influence
perceived stress differently. Self-reports of stress obtained, for
example, using the Perceived Stress Scale (PSS) [65] provide
a subjective measure of perceived stress, which may contain
information about both physical and mental stressors. Further-
more, other indirect measures of changes to one’s surroundings
or context have been used to gain insight into the relationship
between perceived stress and physiological stress, for example
social isolation [66], job-specific stressors [67], and location [68].

2.1.4 Stress Measurement in the Wild
Measuring stress in the wild, where a study’s ecological va-
lidity can greatly improve the generalizability of its results, is
challenging. Minimizing the burden of participation on study
subjects is an essential concern when designing these types
of in situ studies because it can directly influence compliance,
attrition rates, and data quality [69]. Under these constraints,
a continuous and passively collected measurement of stress is
highly desirable.

Among the more common means of objectively measuring
physiological stress is the cortisol test. Cortisol is produced
when the ANS issues a fight-or-flight response to either acute or
chronic stressors and serves as a reliable proxy for physiological
stress in laboratory studies. However, these tests take anywhere
from 1-5 minutes to perform and face a host of other chal-
lenges [70], so obtaining frequent measurements may threaten
ecological validity. Other biochemical tests produce a similar
participant burden, requiring brief and frequent interruptions
in order to successfully capture stress dynamics throughout the
day, which may also affect the validity.

Physiological measures of stress can be gathered contin-
uously and have been proven effective for stress assessment
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in the lab, especially HRV. Specific measures of HRV (e.g.,
standard deviation of cardiac cycle intervals, band-limited spec-
tral power) collected from medical-grade devices have been
useful in identifying different stress responses of the nervous
system. Consumer-grade electrocardiogram sensors capable of
obtaining these HRV measures are available but may be cost-
prohibitive or uncomfortable for participants in longitudinal
studies [69]. An increasing variety of other wearable consumer
sensing technologies offer a promising avenue for continuously
capturing stress measures and are increasingly being utilized in
research studies (e.g., [27], [68], [71]). Some of these wearables
incorporate multiple sensor capabilities such as photoplethys-
mography for detecting heart rate and peak-to-peak HRV or
skin conductance sensors which capture galvanic skin response
measures [33], [72], [73]. These devices are not as sophisticated
as medical-grade sensors and thus do not offer the same
amounts, types, or qualities of data as would be desirable, but
they have still proven useful for capturing certain types of stress
both in and out of the lab [31], [72].

As beneficial as physiological measures can be for stress
assessment in the lab, studies have shown that they do not
tell us the whole story [74], [75]. Some studies report that
contextual awareness of an individual’s activities can help
boost stress prediction in the wild [34], [35], [36], [38]. One
possible explanation is that physiological indicators cannot
distinguish between different states of arousal, for example
stress and excitement, therefore more contextual information
is necessary to distinguish stress states. Since perceived stress
is judged subjectively, it serves as a noisy filter admitting acute
and chronic stressors and rejecting other states and forms of
physiological arousal. Other potentially discerning information
can be gleaned by capturing as much physical, cognitive,
contextual, and behavioral information about individuals as
possible. Modern portable and mobile sensing technologies
can facilitate continuous collection of this range of information
passively without interfering with participants during in situ
data collection [69] and offer considerable promise.

2.2 Requirements for Robust and Valid Stress Detection at
Scale in the Wild
Two highly desirable qualities in a daily stress prediction sys-
tem are robustness and validity. A robust model has predictable
outputs for a variety of inputs and is tolerant of data errors.
Valid stress inference systems output accurate stress predictions
for a large portion of the population. Facets of these qualities
are discussed in detail below.

2.2.1 Robustness
Reliability: The accuracy of a model’s stress prediction on
unseen data (e.g. future data samples) should be similar for
each new set of samples. Estimates of a model’s reliability
can be gathered, for instance, by measuring the variance of
the distribution of accuracies on new data or during cross-
validation, or by computing test-retest reliability metrics [76].
Missing Data: Data gathered in the wild is unavoidably faulty.
Motion artifacts often plague the quality of data collected from
wearables while separately, individuals may forget to wear
devices, forget to clean them properly, allow the batteries to
die, or accidentally break the devices. Therefore, missing, low
quality, and corrupted data are inevitable. Ideally, a robust
system would only make stress assessments with confidence
after observing sufficient data, but in practice, this is not always
possible due to the frequency of low quality and missing data.
A practical robust system must make a best-guess estimation
based on whatever information is or was previously available.

2.2.2 Validity
Generalizability: Data samples collected and used for model
training need to be representative of the population(s) of inter-
est so that the model is unlikely to be asked to make predictions
on future novel samples. This implies that all of the usable
data needs to be utilized during model training to ensure the
model is exposed to a wider variety of sample data. Further-
more, it is imperative that the learning model is trained in a
manner that does not perpetuate or create biases that lead to
unfair stress predictions for certain subgroups of the population
(e.g., based on gender or age). Nested participant-independent
cross-validation is an indispensable tool for constructing and
validating a generalizable model. A full discussion of methods
for mitigating bias and preserving fairness in machine learning
is outside the scope of this paper (see [77] for a review), but
some example techniques include group blindness estimation,
predictive group parity, and post-hoc adjustments.
Sufficient Accuracy: A robust daily stress prediction model
for use in the wild should be capable of making predictions
which are more accurate than a suitable baseline algorithm. For
continuous-valued stress scores (e.g., from the Perceived Stress
Scale [65]), a trained model should output better predictions
than, for instance, a baseline model outputting the mean stress
level across all subjects in the training data. The choice of base-
line models should represent apples-to-apples comparisons. So,
if a daily stress prediction model is personalized to individuals,
then a sensible and fair baseline for comparison might be
one which outputs each subject’s expected mean stress level
individually.
Convergent Validity: A model’s stress predictions should cor-
relate with ground truth stress so that the predictions can be
used in their place. Stress scores obtained from psychometri-
cally validated surveys, such as the PSS, have been tested for
construct validity and can serve as appropriate ground-truth
measures. Models which are designed to output predictions
of these scores and which are also accurate should achieve
convergence with these measures. Problems concerning this
type of validity can arise when stress scores are transformed
(e.g., via binarization) prior to model training, which can reduce
the correspondence of the stress predictions to the original
measured stress levels.

2.3 Prior Studies and Stress Prediction in the Wild
Recent daily stress modeling research conducted in natural en-
vironments spans a variety of populations, including students
[33], [68], [71], [78], [79], information workers [30], [80], [81],
and patients in hospital settings (e.g., pre-operative patients
[82], pregnant mothers [83], elderly [84]). As with any study
involving subjective human data, these studies face challenges
unique to their respective populations and contexts in addi-
tion to common and typical challenges such as sample size,
study duration, signal quality, and analytical methods [72]. We
provide a summary table in the supplementary materials (see
Table S1) categorizing recent in situ stress assessment research
efforts according to their contexts, stress measurement tools
and ground truth methods, number of subjects, study duration,
signals and sensors, analytical techniques, and reported model
performances.

Recent automated stress prediction efforts are united in their
aims to infer daily stress from physiological, behavioral, and/or
contextual information, but each one has its own unique com-
bination of approaches, protocols, and analytical techniques.
These differences make it difficult to directly compare the
studies, but it does give us a greater sense of the range of
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applications and potential impact of this line of research. A few
general observations about these works in aggregate stand out.
First, the link between measured stress and the signals from
wearables and phone agents is fairly weak, as reported by prior
statistical stress analyses [30], [80], [84], [88], [89]. This seems to
contradict the high stress prediction accuracies achieved using
ML methods (e.g., [22], [27], [33], [68], [78], [79], [82], [83],
[85], [86], [87]). Second, this dichotomy may be explained by
the other major difference between these two types of works,
which is how stress is categorized prior to analysis. The papers
focused on statistical analyses tend to preserve the stress values
obtained from scoring their respective stress surveys (e.g., PSS)
while the stress prediction studies typically discretize the stress
values into a small number of categories. It appears that the best
reported performances tend to arise from works using fewer
stress classes (e.g., using binarization instead of trinarization),
which suggests that this type of problem manipulation inclines
towards over-simplification.

2.4 Analytical Challenges for Daily Stress Prediction in
Natural Settings

Table 1 presents a list of challenges derived from our survey
(Table S1) of in situ daily stress prediction research using wear-
able sensing technologies. This table focuses on methodological
and AI-related challenges rather than data collection and exper-
imental challenges (e.g., reducing participant attrition, increas-
ing daily count of stress labels). Each row represents a unique
challenge and contains a brief description of the challenge itself
and the reason why it complicates stress research in natural
settings. Some example references of this type of research are
also provided for each row which illustrate the challenge. The
stress prediction challenges are grouped by criteria according
to Section 2.2 and categorized as being primary concerns for
either robustness (rows 1-3) or validity (rows 4-9).

The challenges in the top portion of the table pertaining to
model robustness (rows 1-3) are related to the lack of standard
analytical procedures for research in this domain. Stress is
person- and context-dependent, so the availability and quality
of wearable sensor data in any particular study may strongly
dictate the analytical process. Ideally, each analytical decision
involving data processing and model training would have
a standard and prescriptive set of best-practices appropriate
for the application domain. However, for decisions involving
data quantization (row 1), partitioning, and balancing (row 2)
there are few established analytical norms for handling missing
data (row 3) or ensuring reliable performance on future data
samples in this stress domain. In the absence of a normative
methodology, it is difficult for the research community to form a
consensus and ascertain which types of approaches consistently
perform well in new studies.

The lack of standard analytical approaches may be a symp-
tom of the lack of a common set of tools for stress assessment,
making it difficult to compare models and stress prediction
results. In our survey of recent in situ daily stress modeling
research, for example, stress is measured using the Perceived
Stress Scale (PSS) [65], State-Trait Anxiety Inventory (STAI) [90],
stress diaries [84], and custom Likert scale surveys (e.g., [72])
collected either retrospectively or via ecological momentary as-
sessments (EMAs) [91]. Sometimes stress is not even measured,
but asserted, depending on a participant’s engagement in cer-
tain activities (e.g., [27]). A healthy variety of novel methods
facilitates exploration, but it is difficult at present to ground
existing research because analytical procedures are not unified
across studies.

Other challenges pertaining to model validity are related to
decisions made during the machine learning process. A tradi-
tional machine learning pipeline involves numerous stages of
data processing to prepare for model training, including artifact
removal, missing data imputation and/or exclusion, ground
truth label generation, and feature extraction. At each point in
this process, data processing may result in the incidental intro-
duction of bias in the form of noisy data or label distortions.
The effects of these distortions are accumulated throughout the
machine learning pipeline and may result in reduced general-
izability. For example, the partitioning strategy employed for
model training, tuning, and testing can incidentally bias the
trained model, artificially inflating its accuracy and reducing
its generalizability. Using a partitioning strategy where each
participant’s data is completely contained in either the training
or test set (not both) when performing cross-validation can help
ensure the generalizability of the results and yield a realistic
out-of-sample accuracy metric (row 4).

Another common theme we observed in our literature sur-
vey was the decision to simplify the daily stress prediction
difficulty by either quantizing the daily stress labels or focusing
on prediction of the extreme values while ignoring the mid-
range stress labels, which are ostensibly the most difficult ones
(row 5). For a problem as difficult as stress prediction in the
wild, these types of simplifications are instrumental for devel-
oping an intuition and understanding of the limitations of stress
modeling. In aggregate, however, the abundance of research
efforts using these techniques and reporting high prediction
accuracies may give an inflated impression of the state of stress
prediction in the wild. In reality, these large performance scores
are often representative of a subset of the sample population
(e.g. people in the top and bottom 20% of reported stress levels)
and not suitable for generalization to the whole population.

These potential sources of data bias can have a substantial
impact on the resulting stress prediction performance. When
comparing results to baseline models or results in other works,
it is important to assess the statistical significance of the im-
provement of competing models (row 6). Apparent improve-
ment in performance may be due to sampling noise or data
biases, and measuring statistical significance is an instrumental
tool for reducing the chance that reported performance gains
are actually unrelated to a model’s genuine improvement.

Additional challenges to model validity appear at the eval-
uation stage when measuring and reporting a trained model’s
performance. Quantization of the stress scores obtained from
a validated stress survey reduces the amount of relevant in-
formation present in the emerging ground truth categories
(row 7) and thereby reduces the overall correspondence of the
stress predictions to the original stress scores (row 8). This is
especially true when treating the stress scores as ordinal data
as previous works have emphasized [92].

Finally, with all of these other factors potentially impacting
the validity of a stress model, it is important for studies to
report performance measures relative to reasonable baseline
models (row 9). This allows models to be evaluated with respect
to the unique contextual features of the domain of each study
(e.g. student stress, hospital worker stress).

2.5 Novelty of Current Study

Our survey of in situ daily stress prediction research studies
using physiological and contextual signals suggests too many
differences and inconsistencies exist in the approaches, meth-
ods, and results to be able to assess how accurately stress in-
ference can be performed in the wild. To establish a foundation
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TABLE 1
Challenges to building robust and valid daily stress inference systems for use at scale and in natural settings

Row Criteria Challenges Rationale Example
References

R
ob

us
tn

es
s

1

Reliability

Quantization thresholds are not standardized
and vary across studies

Models using stress bins may
disagree about stress levels [78], [82], [85], [88]

2 Imbalanced classes are balanced prior to
machine learning

Trained models have a false
notion of true stress distributions [78], [82]

3 Missing Data Lack of common method for excluding a
participant’s data based on its available quantity

Hard to compare different models,
and they may exclude different
types of data

[68], [78]

V
al

id
it

y

4

Generalizability

Introduction of data or prediction bias (e.g.,
models are evaluated using sample-level k-fold
cross-validation instead of subject-independent
cross-validation)

Prediction performance on an
individual participant or groups
is uncertain

[22], [68], [79], [85]

5 Quantized stress data in mid-range is omitted
from analysis All valid data should be included [33], [68], [79], [88]

6
Relative
Accuracy

Performance of competing models is not tested
for statistical significance

Unclear which model(s)
perform the best [33], [68], [85], [87]

7 Continuous stress scores are quantized before
modeling

Potentially relevant information
about stress levels is lost [81], [85]

8
Convergent
Validity

Quantized (e.g. binarized) stress may no longer
correspond to true mental state

Predicted stress has diminished
construct validity

[33], [68], [79], [85],
[27]

9 Performance of models is not tested against
suitable baselines or potentially mediating factors

Unclear how to assess a model’s
performance relative to the data [27], [72]

for robust in situ prediction of perceived stress from mobile
sensors, this work presents results from a large-scale study
of individuals in the information workforce. Several factors
make this study unique. First, it includes data from a large
(N=606) number of individuals, spanning five distinct cohorts,
in their respective natural work environments. Second, the
analysis focuses on maximizing the trained models’ robustness
and validity by addressing the challenges presented in Table
1. In particular, our study produces a robust model of stress
prediction which avoids excessive simplification during data
processing (e.g., quantization thresholds), predicts all stress
scores from all participants, and employs a variety of base-
lines, models, and evaluation metrics. Our analytical approach
seeks to maximize generalizability and construct validity by
using subject-independent data partitioning, directly predicting
stress scores, and grounding the model’s performance relative
to suitable baseline algorithms. The diverse participant pool,
spanning multiple industries and information workforce jobs,
used to train the model further enhances its generalizability.
In short, our results provide a practical, robust, and valid
benchmark for in situ perceived stress prediction of information
workers from their wearable sensor data.

3 METHODS

3.1 Data Set Description

This study was approved by the University of Notre Dame’s
IRB under protocol number 17-05-3870. A comprehensive ex-
planation of the data collection procedures is available in [73].
Key components are summarized in the following subsections.

3.1.1 Participants
A total of 606 full-time, salaried information workers (e.g., con-
sultants, engineers, business/finance workers who primarily
work with data) were enrolled in a year-long observational
study starting in mid-2018 (prior to the COVID-19 pandemic).
Participants were recruited from across the U.S. from em-
ployers and from community message boards. Four cohorts
were established from four different institutions: a nationally
distributed tech services firm (cohort 2), a large mid-western
United States tech and engineering firm (cohort 3), a small mid-
west United States software firm (cohort 4), and a medium-
sized mid-western university (cohort 5). A fifth cohort (co-
hort 1) was obtained from interested applicants from assorted
channels unaffiliated with the other institutions (e.g. friends
of recruited participants, respondents to newspaper articles).
The participant pool included a range of genders, occupations,
income levels, education levels, and job roles. Demographic
statistics for these participants are presented in Table S3.

3.1.2 Sensing Devices
The study utilized multiple sensing devices to capture a variety
of physiological and behavioral information streams, providing
time series data and snapshots of different aspects of daily life
(i.e., physical activity, workplace behavior, phone usage, sleep,
heart rate, weather, and day of the week). See Section 3.2.1 for
an explanation of the rationale for capturing these signals.

Participants were provided a commercial-grade Garmin
Vivosmart 3 to collect heart and physical activity measures.
This device obtained approximations of heart rate using photo-
plethysmography (PPG) [93] and assessed participant motion,
step count, and physical activity using an accelerometer. Pre-
vious studies have established the accuracy of this device and
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other types of PPG sensors by comparing its extracted heart
rate to electrocardiogram measures from a chest strap [94] or
by comparing its heart rate variability features to research-
grade PPG sensors [23]. In aggregate, the correlation between
commercial-grade PPG and classic ECG HR and HRV features
is excellent and appears robust to differences in skin color [23],
but it degrades as physical activity increases [95]. In our own
experiments, 136 volunteers among our participants elected to
wear both a Zephyr chest strap (ECG) and Garmin Vivosmart
3 (PPG) during the enrollment period, and 21 of them had
sufficient HR confidence (above 20%, computed by Zephyr)
for a period of at least 10 minutes. We compared the beat-to-
beat intervals of the two sensors over these periods of time
(mean duration of 26.2 minutes) using sliding time windows of
varying lengths (3s to 300s) and observed Pearson correlations
between 0.7 and 0.79. Garmin has also published results show-
ing that sleep stage timing and duration measurement is about
70% accurate in real-world conditions [96].

A custom smartphone application (Phone Agent) was in-
stalled on participants phones to collect phone usage metrics
such as number of phone unlocks, active screen time, and
GPS location [97]. Though the raw GPS was captured and
recorded, it was only used to extract coarse location data
from Foursquare, a location tracking app, and to estimate the
weather. Participants were also provided Bluetooth beacons
to be placed in their offices and homes. The signals from these
beacons were detected and timestamped by the smartphone ap-
plication, providing a proximity-based measure of when partic-
ipants were at home or in the office. Additionally, participants
received smaller, key-fob beacons which could be kept on their
keychains or in wallets/purses and which captured periods
when two participants were in close proximity. Additional con-
textual information about the weather was collected daily for
participants within range of their Bluetooth beacons at home,
using the zip code of the beacon and a web interface available
from the National Oceanic and Atmospheric Administration.

3.1.3 Data Collection Protocol

All participants provided written informed consent prior to
taking part in the study. Participants first completed a set of
individual differences questionnaires (not analyzed here), upon
which they were affixed with the devices. They were instructed
to wear the Garmin Vivosmart 3 at all times starting on the day
they completed enrollment, excluding time spent charging the
device and taking showers. Constant wear allowed the device
to capture daily measures of a participant’s step count, heart
rate and variability, and measures of sleep quality including
sleep phases, time to bed, and awake time. Battery life at
full charge lasted approximately 5 days and the device could
be charged to full in as little as half an hour. Researchers
recommended the device be charged any time a participant
was showering. Participants were able to report lost or broken
devices and receive replacement devices at any time over the
course of the year-long study.

Participants placed battery-powered Bluetooth beacons at
home and at work desks. The beacons could function for
up to 18 months while requiring no participant intervention
for the duration of the study. Participants were instructed to
keep the key-fob beacons on their person at all times so their
proximity to the Bluetooth beacons could be measured. The
battery level of these key-fobs was tracked during smartphone
sightings, and participants were periodically sent reminders to
change batteries when low. The smartphone app tracked these
sightings and also recorded and reported various metadata
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Fig. 1. A bar graph showing the number of completed daily stress
surveys for each of N=606 participants. The horizontal dashed line
denotes our threshold of survey compliance for inclusion in the modeling
process (# surveys ≥ 7).

including the time since last check in with the server and the
up-time of the app.

3.1.4 Perceived Stress Assessment
For the first 56 days following enrollment, daily SMS mes-
sages were sent to the participants’ phones containing links
to surveys asking them to record their momentary level of
stress and also answer questions about their health, mood, and
sleep [73]. The surveys were sent at either 8am, noon, or 4pm
following a semi-random schedule, and participants’ responses
were accepted up to 4 hours later. Perceived stress was assessed
using the following question on a 5-point Likert scale: “Overall,
how would you rate your current level of stress?” (Response
scale: 1=No stress at all, 2=Very little stress, 3=Some stress,
4=A lot of stress, 5=A great deal of stress). This stress item was
validated by MITRE Corp. in an unpublished study involving
991 crowd-sourced participants, and the correlations with this
item and other validated stress measures are tabulated in Table
S2 in the supplemental material. The perceived stress measure
correlations were moderate and positive for state and trait
anxiety, negative affect, and neuroticism (.51<r<.61, demon-
strating convergence), but were negative for positive affect (r
= -.33, demonstrating discrimination), on par with results from
validation studies of 10-item perceived stress scales [98], [99].

3.1.5 Inclusion Criteria
In order to minimize the impact of severely insufficient stress
reports on modeling efforts, we required 7 of the roughly 56
daily stress surveys (see Section 3.1.3) to be completed per
participant. We chose 7 with the aim of excluding participants
who did not provide at least one week’s worth of data. Among
the 606 total participants available to the research team, 597
of them met this requirement and were used for further anal-
ysis. Figure 1 illustrates the number of daily stress surveys
completed by each participant with a dotted line denoting our
compliance threshold. These 597 participants produced a total
of 28,226 samples of daily stress survey scores and associated
data. Overall, the stress reports were highly skewed towards
the lower end of the scale with fewer than 5% being greater
than three (see Figure 3).

3.2 Constructing a Perceived Stress Inference System

3.2.1 Feature Extraction
An assortment of features was extracted from each of the
signals provided by the wearable sensors and corresponding
to known correlates of stress based on prior literature. Table
2 provides a summary of the sensors used, signals obtained,
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TABLE 2
A list of features extracted from signals obtained from our wearable sensors study

Sensor Signals Features

Garmin
Vivosmart 3

heart pulse (PPG),
motion, ambient light

HR, HRV (rmssd, sdnn, sdann), step count, illuminance, recent sleep (start, end, duration, rolling,
sleep debt, phase duration)

Phone Agent location, phone usage,
ambient light, motion

distance traveled, call (in count, out count, duration, missed count), unlocks (count, duration)
activity (on foot, biking, driving, tilting, sleeping), illuminance

Bluetooth
Beacons
and Key-fobs

location proximity duration at location (at work, at home, in bed, commuting, at desk, away from desk), work
activity (start time, end time, break count), social interactions (time spent near 0,1,2,3+ others)

Environment weather, sunrise,
sunset, time of day

temperature, precipitation, humidity, wind (speed, chill, feels like), visibility, pressure, cloud
cover, heat index, snow fall, sunrise and sunset time

PPG = photoplethysmography, HR = heart rate, HRV = heart rate variability, rmssd = root mean square of successive RR interval differences, sdnn = standard
deviation of NN intervals, sdann = standard deviation of 5-minute averaged NN intervals. Note: All features were aggregated per day. HRV features were
aggregated over various windows of time relative to survey completion and work start/stop hours (e.g., 30 minutes prior, from 8am to 6pm). Phone agent
features were additionally aggregated within each epoch, and the Garmin Vivosmart features were also aggregated within these windows: current time, daily,
weekly, during work, not during work, 15min prior to start of work, hour at start of work, hour at end of work, and within each epoch period.

features extracted from the signals, and the windows of time
over which the extracted features were based.

Heart rate variability and measures of physical activity
(motion, activity type, and heart rate) have been linked with
stress in a number of prior studies [49], [61], [100]. In the present
study, these measures were extracted from the Garmin Vivos-
mart 3, which also provided the number of steps taken and
time spent being physically active. Sleep duration and quality
are also well-understood contributors to perceived stress and
physical energy levels [101], [102]. The duration of the primary
period of sleep activity (excluding short naps) and sleep quality
metrics (e.g., rolling, sleep phase durations) were extracted
from the Garmin device using its approximate timestamps for
bedtime and awake time.

Personal smartphone usage has also recently been linked
with stress, especially due to a rise in the number of push noti-
fications, social media participation, and a growing expectation
of responsiveness [103], [104], [105]. We captured measures of
smartphone interactions while participants worked by counting
the number of phone screen unlocks, screen-on durations,
and the number and durations of phone calls. Furthermore,
extended stays at either home or work (e.g., working late, work-
ing on weekends, never leaving home outside of work) have
also been linked to sleep disturbances, exhaustion, and in some
cases physical injuries [106]. The proximity of participants’
smartphones to Bluetooth beacons and the GPS data were used
to produce several location-based features, such as the number
of work sessions, number of work breaks, time at the work
desk, number of unique places visited, time spent in vehicle,
and total distance traveled. Finally, because participants carried
Bluetooth key-fobs in addition to having static beacons, mutual
discovery allowed for the creation of social interaction features
such as daily interaction quantity and duration.

Changes in environmental conditions based on season (e.g.,
day light, temperature) are a known stressor for some individ-
uals with seasonal affective disorder [107], [108] but may also
have indirect effects on stress, for example, due to increased
traffic or effects on sleep duration [109], [110], [111], [112].
To capture stress effects resulting from weather changes, the
average weather conditions, 24-hour time of sunrise and sunset,
and temperature were recorded for each participant based on
their GPS location when near the Bluetooth beacon at home.

3.2.2 Feature Aggregation

To facilitate the investigation of the dynamics of stress over the
course of a day, the extracted features from all signals were
aggregated in time. Table 2 lists the time windows considered
for features derived from each sensor. All features were aggre-
gated per day using a typical set of statistical functionals: mean,
median, min, max, range, variance, and standard deviation.
Some of the features extracted from the Garmin Vivosmart 3
were aggregated using the same functional set applied over
other time windows as well, for example during work or while
away from work. Physiological features and phone usage and
activity features were aggregated using the same functions
across different time spans during the day (epoch 1: 12am -
9am, epoch 2: 9am - 6pm, and epoch 3: 6pm - 12am) and also
aggregated according to location context (e.g., at home, at work,
in the car) and time relative to survey response (e.g., within 30
minutes or 1 hour prior to survey completion). All date-time
and categorical features were converted to numerical values for
machine learning. In total, there were 488 features with these
feature functionals included (236 from the Garmin Vivosmart
3, 131 from the Phone Agent, 103 from Bluetooth beacons, and
18 from the environment).

3.2.3 Machine Learning Pipeline

Partitioning and Stratified Cross-validation: Five data folds
were extracted from the 28,226 samples of daily participant
data using a subject-independent stratified sampling method,
described as follows. The daily stress reports were averaged per
subject, leaving 597 mean stress values, each corresponding to
a participant. A binned distribution of these mean stress scores
was obtained using deciles. Five mutually exclusive groups of
these scores were extracted by randomly sampling 20% of the
scores from each of the ten bins without replacement, resulting
in five sample groupings with equivalent binned distributions.
The resulting five lists of participants formed the five subject-
independent folds, which were used to train a stress inference
system using nested cross-validation. Note that resampling
techniques were not used to balance instances of the five stress
labels (see Figure 3) to avoid giving the model a false sense
of the uniformity of stress in the wild (i.e., row 2 in Table 1).
Figure 2 gives an overview of the partitioning, training, and
testing scheme.
Missing Data Imputation: Given the challenging nature of
conducting in situ human sensing studies [69], some proportion
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Fig. 2. An overview of the machine learning training and testing strategy
using a subject-independent data partitioning scheme (best viewed in
color).

of the observed data was non-compliant and missing due to
factors such as dead sensor batteries, sensing failures, and
participant attrition. We estimated 9.5% of all data collected
was missing due to non-compliance by counting the number of
missing features per day per participant where no valid data
was present from any portable sensor (i.e., Garmin Vivosmart
3, phone agent, or Bluetooth beacons). Furthermore, because
of the highly context-dependent nature of the features we
extracted (e.g. number of beacon detections at work, HRV at
the end of work, duration of phone calls), data for many daily
features were missing due to the participants’ daily schedules,
actions, and choices on any particular day (e.g., not going into
work on an off-day). On days where at least some valid par-
ticipant data was recorded, approximately 32% of the features
were irrelevant and missing due to these factors. Though in
principle it would be interesting to investigate fully context-
dependent modeling which only uses data from valid sources
(e.g., only using work-related features on work days), we elect
to conduct cross-subject analysis by imputing missing data. We
tested several methods for imputing missing data within each
feature, including zero-fill, mean-fill, person-specific mean-fill,
and a more advanced multiple imputation with denoising au-
toencoder approach [113]. Although these imputation methods
are conceptually unique, their impact on the resulting models’
performance in our case was negligible. Therefore, all results
reported in this work are derived from a mean-fill imputation
method calculated and applied separately per fold during
cross-validation.
Model Selection: Stress prediction was conducted using the
full set of features previously described and a variety of ma-
chine learning models. Elastic net (EN) and random forest
(RF) algorithms were selected for their interpretability and
ability to reduce the effective feature set during training. A
feed-forward multi-layer perceptron (MLP) was used as a
baseline for deep learning approaches, and two time-aware
methods including gated recurrent-unit (GRU) networks and
long short-term memory (LSTM) networks were employed to
predict stress based on the previous three days of data. These
algorithms were tuned using a nested five-fold cross-validation
strategy with participant-independent folds. In turn, each of

the five precomputed data folds obtained from the stratified
partitioning strategy (described earlier) were held-out and used
for model evaluation. The remaining data (training data) in
each iteration was further partitioned into five folds using
the same participant-independent stratified sampling technique
and used for hyperparameter tuning. Data imputation and z-
normalization were fitted and applied independently to each
feature in the training set during training and applied to the
held-out portion for validation and testing. For each of the
two learning algorithms, the hyperparameter set with the best
average performance during tuning was used to retrain a model
on all training data and make predictions on the held-out data
(see Figure 2).
Model Tuning and Evaluation: For the RF and EN methods,
separate models were trained for each of two final evaluation
metrics: Spearman’s correlation coefficient (ρ) and symmetric
mean absolute percentage error (SMAPE) [114], both of which
were also used for hyperparameter tuning. The particular for-
mulation of the EN objective function was as follows:

1

2n
‖s−Xw‖22 + αβ‖w‖1 +

1

2
α(1− β)‖w‖22

where s and X denote stress labels and the data
respectively, w denotes the linear weights, and α
and β are tunable constants. The hyperparameters
for this model were tuned over a grid (Spearman:
α ∈ {0.01, 0.1, 1.0}, β ∈ {0.6, 0.7, 0.8, 0.9, 0.95, 0.99};
SMAPE: α ∈ {10−30,10−20, 10−18, 10−14}, β ∈ {10−40, 10−20,
10−12, 10−6}). Random forest parameters were also tuned
over a grid (Spearman: number of trees {100, 500, 800, 1200},
maximum forest depth {10, 20, 50, 100,∞}; SMAPE: number
of trees {100, 500, 800, 1200}, maximum forest depth
{10, 20, 50, 100,∞}). For the neural methods, the number
of layers (depth) and nodes per layer (width) in the MLP
were tuned over a grid in a similar fashion to [38]: width
∈ {10, 20, 30, 40}, depth ∈ {1, 2, 3, 4}, and we also tested
different loss functions (smooth L1 loss, mean squared error),
optimizers (stochastic gradient descent, adam), activation
functions (Gaussian error linear units, rectified linear units),
and learning rates (10−1, 10−2, 10−3). Based on results from
early tests, we used a batch size of 32 to encourage adequate
exploration of the loss function space and we trained over 50
epochs for computational tractability. The same neural network
structure and learning parameters (but not weights) resulting
from hyperparameter optimization of the MLP network was
used for the GRU and LSTM models, except these models
included an extra input layer of width ∈ {10, 20, 30, 40}
of either GRU or LSTM units respectively. The optimal
hyperparameters for all models appear in bold font.

The pipeline was implemented using Python 3.6, Scikit-
learn 0.20.2 [115], Tensor Flow 2.6.0 [116], PyTorch 1.10.1 [117].
Data is available at: https://tesserae.nd.edu/data-sharing/
and the modeling and data analysis code is available at:
https://github.com/emotive-computing/mosaic stress 2021.

3.2.4 Experiments
For each of the models, standard, shuffled baseline, and within-
subject shuffled baseline experiments were conducted. The stan-
dard version followed the methodology described thus far
where subject-independent folds and nested cross-validation
were employed to predict stress. In the shuffled baseline variant,
the daily stress scores were randomly shuffled across the entire
data set prior to training. The within-subject shuffled baseline sim-
ilarly shuffled the stress labels but ensured that the randomized
mixing was performed within each subject’s sample data. These
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two shuffling algorithms provided a simulated noise baseline
for comparison with the standard version.

4 RESULTS

4.1 Perceived Stress Prediction
Figure 3 illustrates the distributions of self-reported (i.e.,
ground truth) and predicted stress scores across all surveys and
all participants for the MLP model and the RF model optimized
for Spearman correlation in the standard experiment. Instead
of evaluating the models on instance-level stress predictions,
we computed performance measures per participant and then
aggregated these measures across participants to give a more
realistic perspective on the expected performance of the models
on future participants. Table 3 summarizes the distributions
of participant-level performance metrics for each model in
the standard and shuffled baseline variants (see Figure S1 for
histograms).

Two-tailed paired-sample t-tests indicated that the stan-
dard EN, RF, and MLP models achieved significantly higher
(p < 0.001) Spearman correlations than both shuffled baseline
variants, but failed to significantly outperform the baselines
using SMAPE. Both the GRU and LSTM models performed
comparably in both Spearman correlation and SMAPE when
compared to their shuffled baseline variants, indicating chance-
level accuracy. If we compare the per-participant distributions
of Spearman correlations in the standard experiment among the
top three models using a two-tailed paired sample t-test (not
shown in Table 3), we find that the RF model significantly
outperformed the EN model while the mean difference between
the RF and MLP models is not significant.

An ordinal evaluation metric, such as the Spearman correla-
tion coefficient, captures the relative differences in stress levels
on different days and therefore may be preferable to interval-
scale metrics given the skewed distribution of stress scores (see
Figure 3). Furthermore, since the output stress prediction range
is constricted relative to the ground truth, Spearman correlation
offers a more practical measure of model performance. For
these reasons, we proceed with further analysis using Spear-
man correlation as the primary performance metric.

Both the RF and MLP models demonstrated a significant
gain in Spearman correlation (upwards of 0.15) and per-
formed comparably. Figure 4 shows a histogram of the within-
participant Spearman correlations for the standard RF model,
which achieved the highest mean performance, and shows that
for 82% of participants, stress predictions of the RF model had
higher Spearman correlations than the within-subject shuffled
baseline mean (indicated by the dark blue line).

4.2 Comparison to Other Stress Models
Though not significantly different from the MLP, the RF model
achieved the highest average Spearman correlation, so we
selected this model for comparison to two other physiological
measures of stress: the Garmin wristband sensor’s stress score
and HRV (inversely related to stress in stress elicitation lab
studies [49]). Garmin’s stress score is intended to be used
for tracking well-being over time and is a public-facing but
proprietary measure. The HRV measure was calculated from
the beat-to-beat intervals (BBI) using the standard deviation of
average normal-to-normal formula (SDANN; an international
standard for long-term HRV [118]). Per-minute BBI values
were obtained by averaging over sliding five-minute windows
as long as data from four of the five minutes were present.
The standard deviation was computed from these minute-level
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Fig. 3. Distribution of daily reports of stress levels across all participants
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using RF predictions and ground truth stress. The dark blue line marks
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TABLE 3
Summary statistics of the distribution of performance metrics

applied to individual participants

Experiment Model ρ (σ) s (σ)

B
as

el
in

es

Shuffled
Cross-subject

EN -.01 (.12) .38 (.06)
RF -.01 (.15) .39 (.06)

MLP -.00 (.18) .39 (.06)
GRU -.00 (.18) .43 (.06)
LSTM .00 (.17) .45 (.06)

Shuffled
Within-subject

EN -.00 (.12) .38 (.06)
RF .05 (.18) .39 (.05)

MLP -.01 (.18) .39 (.13)
GRU -.00 (.18) .46 (.12)
LSTM -.02 (.18) .47 (.11)

St
an

da
rd

Standard

EN .16 (.16)∗† .39 (.05)
RF .19 (.18)∗† .39 (.05)

MLP .18 (.19)∗† .39 (.12)
GRU -.00 (.17) .47 (.08)
LSTM -.01 (.18) .48 (.08)

RF+STAI .25 (.19)∗† -

O
th

er Comparison Garmin .00 (.21) -
HRV .01 (.28) -

EN = elastic net, RF = random forest, MLP = multilayer percep-
tron, GRU = gated recurrent unit network, LSTM = long short-term
memory network, STAI = state-trait anxiety inventory, ρ = Spearman
correlation, s = SMAPE, σ = standard deviation of metric across
participants, ∗,† = significant improvement in mean difference from
shuffled baselines (*) or other comparison models (†) using a paired-
sample two-tailed t-test (p < 0.001).
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averages between 8am and 6pm, resulting in a daily HRV
measure.

We used the Spearman correlation measure to assess the
performance of each model for each participant because it is
agnostic to range differences in each model’s stress representa-
tion (i.e., it used ranks for comparison). The RF model achieved
a mean Spearman correlation ρ = 0.19 while the Garmin stress
model obtained ρ = 0.00 and the HRV model ρ = 0.01.
A set of pairwise two-tailed paired-sample t-tests revealed
the mean difference of about 0.18 between the RF and other
models was significant (p < 0.001) in both cases while the 0.01
mean difference between the Garmin and HRV models was not
significant (p = 0.47). Furthermore, we computed one-sample
two-sided t-tests for each model to assess whether their per-
subject Spearman correlation distributions could be generated
by a process with a mean of zero. The RF model’s ρ distribution
was determined to be significantly distinct (p < 0.001) while
neither the Garmin (p = 0.92) nor HRV (p = 0.35) models
were significantly different, indicating chance performance.
These results demonstrate that the RF model, using features
derived from wearable sensor data, was able to model some
variation in stress while the Garmin and HRV model results are
indistinguishable from purely uncorrelated stress predictions.

4.3 Feature Information

The top 15 features selected by the two interpretable models
(EN and RF) are shown in Figure 5. The top 15 EN features
accounted for about 56% of the total feature weight, and due
to the sparsity induced by the L1 regularization term, only
162 of the total 488 features received non-zero weights. The
top 15 features for the RF model accounted for approximately
22% of the total weight of all features, and none of the features
received zero weight. In both models, the top 15 features consist
of a combination of information from all sensors (see Table 2)
demonstrating that successful perceived stress inference is a
multi-modal problem which relies on the union of contextual,
physiological, and behavioral information. Furthermore, Figure
5 color-codes corresponding features that were separately se-
lected among the top 15 by both models. The top choice in both
models by a large margin was a binary indicator of whether
a participant went to work on a particular day. The other top
features shared by both models were humidity and the average
difference in sleep duration between weekdays and weekends
(suggesting recovery from sleep debt). These three shared top
features may be more reliable predictors of stress than others
due to their utility in both models. Work is the primary source
of stress for a majority of information working professionals, so
it is no surprise to see the “at work” feature at the top of both
models. The shared humidity and weekend/weekday sleep
difference duration features support findings in other works
noting their importance for stress assessment [107], [108], [109],
[110], [111].

4.4 Enhanced Model with State and Trait Anxiety

In a separate experiment, we tested adding a pertinent anxiety
trait measure to the standard model to see if knowledge of
individual differences in baseline anxiety levels would improve
perceived stress inference, as many works have established
a link between anxiety and stress (e.g., [119], [120], [121],
[122]). The anxiety measures came from the State-Trait Anxiety
Inventory (STAI) questionnaire [123] completed by participants
during study enrollment and prior to the beginning of the study
period. Figure S2 shows the distribution of STAI scores across

participants, and readers are referred to [73] for more informa-
tion about the pre-study survey. Borrowing the same optimal
hyperparameters, we retrained the top-performing RF standard
model with this STAI feature and observed an increase in Spear-
man correlation from 0.19 to 0.25. The relative difference in
performance is significant (p < 0.001, two-tailed paired-sample
t-test) when adding this single feature and results in a Cohen’s d
effect size increase of 0.13, indicating that individual differences
in stress sensitivity hold additional pertinent information for
perceived stress inference.

4.5 Effect of demographics and personal traits on stress
prediction (Generalizability)

Personal and demographic traits may be associated with
unique physiological signal patterns [124], [125] and thus may
serve as moderating variables for daily stress scores. To system-
atically explore this hypothesis, we examined how individual
differences in stress levels varied with respect to demographic
factors: age, gender, language proficiency, supervision role,
education, income, and cohort. We also controlled for the
number of days participants were compliant. Table S3 shows
standardized linear regression beta coefficients and p values
between these factors and 1) averaged daily self-reported stress,
2) averaged RF stress predictions, and 3) Spearman correlations
between the perceived stress and RF stress predictions. We
found that in general demographics were not significant predic-
tors of either perceived stress, predicted stress, or differences in
stress predictability between participants, suggesting no mod-
eration by demographics. Unsurprisingly, the more compliant
participants reported lower stress scores and this was also de-
tected by the RF model (RF stress predictions column). However,
model accuracy (RF Spearman column) was not predicted by
compliance.

4.6 Comparison to Other Stress Studies in the Wild

Many studies focused on understanding the link between con-
textual and physiological factors and perceived stress have re-
ported model performance on binned data (recall rows 1, 7, and
8 in Table 1 regarding challenges to robustness and validity).
Though this work aims to report performance measures for
robust and valid modeling approaches, we include such binary
classification metrics only for comparison to similar studies.

A common approach used to assess accuracy in stress pre-
diction performance involves the training and testing of models
on binarized stress labels (e.g., [34], [35], [37]). To mitigate per-
participant binning variance due to individual differences in
stress valuation, we computed the median stress score for each
participant based on their responses and then split their scores
into low and high bins. We tuned, trained, and evaluated three
classification models to predict these binary labels using 5-fold
nested cross-validation: a random forest, k-nearest neighbor
classifier, and a support vector machine (see the Github code
for details). The random forest yielded the highest F1-score
of 0.75, which is similar to the F1-score of 0.77 reported by
Mishra et al. [34] when both physiological and contextual
features were used to predict perceived stress in the wild. Our
accuracy (0.62), precision (0.65), and recall (0.89) values were
also higher than those reported by Soto et al. [37] (0.54, 0.25,
0.44, respectively) for their models trained on physiological and
computer interaction data in an 8-week study of 14 participants
in the workplace.
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Weekend/Weekday Adjusted Sleep Duration Difference
HR Percentile Relative to Previous Week

Humidity
Duration Near 1+ Participants, 12am−9am
Work/Nonwork−hours SDANN HRV Ratio

Wakeup Time via Phone Agent
Has Home Office

Phone Unlock Duration, 6pm−12am
Time of Last Work Beacon

Step Count
Work/Non−work−hours SDANN HRV Difference

Weekend/Weekday Sleep Duration Difference
Weekend/Weekday Bedtime Difference

Midpoint of Main Sleep
At Work Today

0.24 0.16 0.08 0
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(a)

In Vehicle Between 9am−6pm 
Phone Session Count over Last 24 Hours
Time of Arrival At Home After 12pm
Weekend/Weekday PA−Adjusted Sleep Duration Difference
Weekend/Weekday Adjusted Sleep Duration Difference
Screen Time over Last 24 Hours
Humidity
Running Average HR With Garmin Filtering
Running Average HR
Running Average SDNN HRV
Sunset Time
Sunrise Time
Running Average RMSSD HRV
Location via Beacon Proximity
At Work Today

0.00 0.02 0.04 0.06
Top RF Features

(b)

Fig. 5. Relative importance of the top 15 features in both the EN (left) and RF (right) models. Features appearing in both models are colored the
same.

5 DISCUSSION

Understanding the dynamics of perceived stress prediction in
the wild for different individuals using contextual, environ-
mental and physiological information is a difficult prospect
but one which could greatly improve mental health and well-
being if done properly. Our results, like many other studies,
demonstrate that physiological and behavioral features capture
meaningful information about stress, but it also points out that
empirically these features only account for a modest amount
of the observed variance. In the remainder of this section,
we reexamine our main findings and consider limitations and
future work.

5.1 Main Findings

The stress prediction results in Table 3 demonstrate that the
best standard model (RF) offers some predictive power for
perceived stress prediction when compared to the shuffled
baselines. However, Figure 3 illustrates that this model does
not capture the same magnitude of variability or range of stress
responses present in the data. It should be noted that stress
scores of 4 and 5 occur in less than 5% of the data, so the
trained models may not have sufficient information to be able to
predict these scores. The limited range of output values implies
that the trained models are not able to distinguish between
the sampled features corresponding to extreme levels of stress
compared to those associated with more average stress values.
This observation is in line with other recent in situ studies
conducted in the wild (e.g., [72]).

Our top-performing RF model not only outperforms the
shuffled baselines but also both the Garmin stress and HRV
stress models. Using the ordinal Spearman metric, the two latter
models appear insufficient for use in the wild as their perfor-
mance is indistinguishable from an uncorrelated process. Stress
prediction in the wild therefore seems to be highly multi-modal
and demands an understanding of contextual factors beyond
physiology, which has also been noted in several recent works
(e.g., [34], [35]). The presence of sunrise time, weather, and
other temporally non-local features among the most important
features appearing in Figure 5b supports this as well.

We have made extensive efforts to ensure that our models
were robustly trained according to the criteria laid out in
Section 2.2. We established the robustness of our models by

demonstrating the per-participant correlations were above the
shuffled baseline performance for 82% of people in our study
(see Figure 4) and that model with the highest mean correlation
(RF) significantly outperformed the best baseline’s mean per-
formance (ρ = 0.05, RF shuffled within subject). Missing data
was imputed without peeking into the test set while nearly all
the available data was used for training and testing, and the
model was able to achieve better stress prediction performance
than the two shuffled baselines, Garmin stress, and HRV stress
models.

Additionally, we have established the validity of our models
through the data processing and machine learning pipeline
procedures. We trained our models using subject-independent
folds and cross-validation to help ensure generalizability. Each
model was trained to measure performance on the perceived
stress scores directly, avoiding unnecessary quantization and
potential information loss. We also examined various demo-
graphic factors and showed that, apart from the number of days
of compliance, there were no inadvertent demographic biases
present in the ground truth or being introduced into the stress
prediction model. Since the RF predictions were estimates of
the unmodified ground truth stress scores, the convergence of
the RF predictions to perceived stress is more accurately repre-
sented by the 0.19 (to 0.25 with state-trait anxiety) correlation
with ground truth (see Table 3).

This raises the question of how to interpret the magnitude
of the correlations. Using the widely used, but sometimes
disputed, criteria of 0.1, 0.3, and 0.5 correlations corresponding
to small, medium, and large effects [126], the present results are
suggestive of a small to medium-sized effect. Put differently,
our correlations are equivalent to Cohen’s d’s of 0.39 and 0.52,
respectively, which are also within the small-to-medium sized
range in terms of effect sizes. Though modest, these results
are consistent with decades of research in the psychologi-
cal sciences pertaining to weak associations between behav-
ioral signals and subjective mental states, especially when the
phenomena occur naturally rather than being experimentally
elicited [127], [128]. Consider for example, a meta-analysis of
36 lab-studies that contrasted resting state HRV in 2086 patients
with an anxiety disorder and 2294 healthy controls [129]. This
study concluded that “anxiety disorders are associated with
reduced HRV [and] associated with a small-to-moderate effect
size” (Hedges’ g = −0.29 for high frequency HRV, CI: [-0.41
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to -0.17], p < 0.001), which is consistent with the effects found
here.

In summary, the limited amount of information relevant
to perceived stress present in the multitude of sensors and
features we gathered in this work strongly suggests that there
is no uncomplicated path to automated stress inference, which
should not be surprising given the multitude of factors and
stressors which influence each of us daily. Indeed, there is a
major conceptual leap between lab studies with elicited affect,
research-grade sensors, and clear ground truth and studies
conducted in-the-wild with natural affect, consumer-grade sen-
sors, and noisy ground truth. When developing new stress
prediction techniques, especially for inferring stress scores di-
rectly rather than (over-)simplified versions of the problem, we
should expect performance gains to be roughly proportional
to our intuition and expectations about stress. Given the low
to moderate correlations associated with the valid and robust
approach to perceived stress prediction in this work, we want
to emphasize that the problem of developing real-world daily
stress inference systems based on passive sensing is still largely
unsolved. We hope the results in this work can serve as a
foundation for future efforts attempting to link physiological,
behavioral, and contextual information to perceived stress in
natural settings.

5.2 Limitations and Future Work
Though this work strived to illustrate how reliably and robustly
daily perceived stress could be predicted using physiologi-
cal, contextual, and environmental information, there were a
number of limitations. This work predicted daily stress from
aggregated measures over different periods of time during the
day, but it was unable to model the temporal dynamics (e.g.
motifs) of stress during a single day due to the low temporal
resolution of stress labels. The importance of the “at work
today” feature in Figure 5 emphasizes that stress is higher
on work days, but more frequent stress labels would enable
models to determine which factors conditionally contribute to
stress when at work compared to other times. Several recent
works underscore that the performance of perceived stress
inference can be improved when more contextual information
(e.g., activity labels, day of the week) is combined with higher
temporal resolution perceived stress reports [34], [35]. There
were many observable signals that were not captured or were
captured with low fidelity in our data that may offer further
insights into perceived stress dynamics. Some examples include
vocalizations and speech, traffic reports, and work-specific
stressors such as email or distractions. Furthermore, the recent
COVID-19 pandemic has affected, perhaps permanently, the
times and locations where people engage in their work, which
merits further investigation.

To complement this endeavor, adequate time series mod-
eling techniques and experimentation will be needed. The
two time-aware models tested in this paper (GRU and LSTM)
performed at chance compared to the MLP model which they
were based on, likely due to the lack of sufficient time series
data. In separate experiments not reported in this paper, we
tried training the MLP, GRU, and LSTM models for 500 epochs
instead of 50 to see if performance improved. None of these
models benefited from the additional training, so more work
will be needed to test these and other promising time-aware
models that might leverage the rich temporal and contextual
information gained from future data sets supporting stress
inference in the wild.

One intriguing avenue for further research is developing an
understanding of how common contextual factors (e.g. physical

and mental activities, location) specifically influence stress.
Some research is already striving towards this goal [34], [35],
[38], but the results so far are limited to binary or binned stress
prediction. More work is needed to understand how much
a situational context differentially affects stress levels within
individuals and how to use this information to accurately and
robustly infer stress levels.

Further research is also needed to understand the relation-
ship between the number of compliance days and perceived
stress. The negative relationship we observed (β = −0.14 from
Table S3) suggests the absence of data (i.e. non-compliance)
provides valuable contextual information for stress prediction.
Future work should consider modeling patterns in missing data
and inferring when the lack of data can be interpreted in this
way.

Arguably, the ultimate goal of achieving robust and valid
stress inference in the wild is to provide feedback to partici-
pants about stress levels when that stress is having a negative
effect on well-being and performance. Future work focused on
this topic should seek to understand when and how much
stress is beneficial versus detrimental. Finding the right time
and right method for providing feedback to negatively stressed
individuals will also be difficult because, among other factors,
different people prefer feedback at different times and in differ-
ent ways [130] and simply suggesting that people are stressed
may induce additional stress [131], [132].

6 CONCLUDING REMARKS

Robust and valid prediction of perceived stress in situ and at
scale using contextual information and data from wearables de-
pends on the procedural faithfulness of the modeling pipeline
used to produce a trained learning model. In our case study
(N=606), we were able to achieve a 0.19 Spearman correlation
(equivalent to a Cohen’s d of 0.39), which is consistent with a
small-to-medium effect size [133]. Our inclusion of personal
difference information (i.e., state-trait anxiety) led to an effect
size increase of 0.11, demonstrating that individual differences
in sensitivity to these stressors likely plays a significant role. We
believe that the results presented in this study advance the field
of in situ stress assessment by offering a practical, robust, and
valid benchmark for daily stress inference using an assortment
of contextual and physiological information collected from a
large diverse group.
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C. Ersoy, “How laboratory experiments can be exploited for
monitoring stress in the wild: a bridge between laboratory and
daily life,” Sensors, vol. 20, no. 3, p. 838, 2020.

[39] W. Lovallo, “The cold pressor test and autonomic function: a
review and integration,” Psychophysiology, vol. 12, no. 3, pp. 268–
282, 1975.

[40] Z. B. Moses, L. J. Luecken, and J. C. Eason, “Measuring task-
related changes in heart rate variability,” in 2007 29th Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society. IEEE, 2007, pp. 644–647.

[41] C. Kirschbaum, K.-M. Pirke, and D. H. Hellhammer, “The ‘trier
social stress test’–a tool for investigating psychobiological stress
responses in a laboratory setting,” Neuropsychobiology, vol. 28, no.
1-2, pp. 76–81, 1993.
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