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Abstract

Abundant redundancies exist in video streams, thereby
pointing to opportunities to save computations. Towards
this end, we propose the Adaptive Network across Time
(ANT) framework to harness these redundancies for reduc-
ing the computational cost of video processing. Unlike most
dynamic networks that adapt their structures to different
static inputs, our method adapts networks along the tem-
poral dimension. By inspecting the semantic differences
between frames, the proposed ANT chooses a purpose-fit
network at test time to reduce overall computation, i.e.,
switching to a smaller network when observing mild differ-
ences. The proposed ANT adapts the structured networks
within a supernet, making it hardware-friendly and there-
fore achieves actual acceleration in real-world scenarios.
The proposed ANT is powered by (1) a fusion module that
utilizes the past features and (2) a dynamic gate to adjust
the network in a predictive fashion with negligible extra
cost. To ensure the generality of each subnet and the gate’s
fairness, we propose a two-stage training scheme. We first
train a weight-sharing supernet and then jointly train fusion
modules and gates. Evaluation of the video detection task
with the modern EfficientDet reveals the effectiveness of our
approach.

1. Introduction

Deep learning has come to a mobile era where we need
to deploy machine learning models on common mobile plat-
forms such as smartphones, drones, and self-driving vehi-
cles. A series of efficient deep learning algorithms have
been proposed to achieve this goal, such as network prun-
ing [5, 6, 19, 23, 24], quantization [3, 7, 9, 11, 15], Neural
Architecture Search (NAS) [2, 8, 10, 22, 28, 34, 40], and dy-
namic inference [4,14,18,31,35]. Dynamic inference meth-
ods have attracted much attention because of their ability to
save computation via adapting networks according to dif-
ferent inputs, i.e., using fewer computations for ’easy’ sam-
ples. However, most dynamic networks are limited to static
inputs. This paper studies the notion of dynamic network
for streaming applications, such as video processing.

Video processing usually involves a significantly larger
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Figure 1. ANT illustrated with The Horse in Motion [25]. The
proposed ANT adapts a purpose-fit network by inspecting the se-
mantic differences between frames, i.e., switching to a smaller net-
work when observing mild differences so as to save computation.

volume of data compared to static images. The computa-
tion cost grows linearly with the number of input frames
for deep neural networks. Thus, it is not practical for mo-
bile devices to process each frame, especially for dense
prediction tasks, such as object detection. Existing ap-
proaches [12, 16, 20, 27, 39] propose to exploit the tempo-
ral redundancies across frames via feature propagation [39]
or sparse convolution [12]. However, such approaches may
not achieve actual acceleration in real-world scenarios be-
cause of additional optical flow extraction [16, 39] or it re-
quires dedicated sparse convolution implementation [12].

To address the aforementioned issues, we propose a
framework which builds a dynamic network, specifically, a
weight-sharing supernet, that could Adapt Networks across
Time. As denoted in Fig. 1, ANT switches to a smaller net-
work when observing mild differences between frames to
save overall computation. The differences are measured in
a semantic space because pixels may change rapidly from
frame to frame, but the semantic content of a scene evolves
more slowly. Thanks to the structured property of the super-
net [2,18,36,37], ANT is hardware-friendly and can achieve
actual speedup in common devices without the needs for
dedicated convolution implementations.
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The success of the proposed ANT lies in two key fac-
tors: (1) leveraging the information of past frames, and (2)
adapting networks with negligible extra cost. Unlike prior
art [12, 39] which uses potentially expensive feature prop-
agation, ANT adopts a hardware-friendly feature fusion to
leverage past frames, e.g., a concatenation followed by a
convolution. In order to adapt networks across time, not
only does ANT rely on the current frame, but it also relies
on the differences across frames. Specifically, we propose
a dynamic gate [18, 31] operated on features after fusion to
predict the network. The gumbel− softmax function [17]
is utilized to optimize the non-differentiable dynamic gates.

In ANT, we need to train supernet weights as well as
fusion modules and dynamic gates, which is a highly entan-
gled bi-level optimization problem. To ensure the generality
of each subnet and the gate’s fairness, we propose using a
two-stage training scheme. We first train a weight-sharing
supernet following the weight-sharing NAS [2, 36]. In the
second stage, we jointly train fusion modules and dynamic
gates.

We evaluate ANT on a challenging video object detec-
tion task [33] with the state-of-the-art mobile object detec-
tor EfficientDet [30]. ANT is able to achieve nearly 30%
speedup compared to a static object detector, with negligi-
ble accuracy drop. Experiments also show that our ANT is
superior to its non-temporal dynamic network counterpart
as far as efficiency is concerned.

2. Related Work

Dynamic networks. Dynamic networks can adapt their
structures to different inputs, leading to notable computa-
tional efficiency [13]. Most literature [18, 31, 32, 35] is in
the static image space, where ’easy’ samples are routed to
fewer computations to amortize the cost. Strategies include
early exit [14], dropping residual blocks [35], or selecting a
fraction of network [18,31]. In contrast, the proposed ANT
is a dynamic network across the temporal dimension. Our
ANT framework adapts networks to the current frame and
the differences across frames, leveraging abundant redun-
dancies in video streams to save computations.

Efficient video processing. Video can be viewed as a
consecutive of frames. The key of efficient video process-
ing is in exploiting temporal redundancies across frames.
A common strategy is feature propagation [12, 20, 38, 39],
which computes the expensive backbone features only on
key frames. Subsequent non-key frames then adapt the
backbone features from key-frames directly [27] or after
spatial alignments via optical flow [16, 39], dynamic fil-
ters [20], or sparse convolution [12]. Similarly, ANT also
propagates features from the past key frames. However, we
use a hardware-friendly fusion module without expensive
optical flow [16, 39] or dedicated sparse convolution [12].

3. Methodology

The proposed ANT is a weighting-sharing supernet with
dynamic gates to adapt purpose-fit networks according to
differences between frames. In this section, we first dis-
cuss the weight-sharing supernet training (Sec. 3.1), then
the joint training of our ANT (Sec. 3.2), finally the adaptive
key frame selection(Sec. 3.3).

3.1. Weight-sharing supernet training

We apply ANT to the mobile object detector Efficient-
Det [30], which consists of a backbone feature extractor, a
Bi-FPN neck, and a detection head. We only transfer the
backbone into a supernet because it accounts for most of
the computation.

Let the weights of the backbone supernet be Wo and
a subnet configuration be {arch}, we denote the sliced
weights for the subnet by Wo(arch) The overall training
objective is to optimize Wo to make each supported subnet
Wo(arch) achieve the same level of accuracy as the inde-
pendently trained network with the same architectural con-
figuration. To make our ANT hardware-friendly, we only
select different filter numbers (widths) in the supernet. We
first train a standalone network on the target dataset and use
it as the initialization of supernet as in [2]. Knowledge dis-
tillation [2] and sandwich rule [36,37] are also used to boost
the accuracy.

3.2. Joint training fusions and gates

The overview of ANT is depicted in Fig. 2. Key frames
are processed through the entire network. Unlike Skip-
Conv [12], which stores features of every layer, we only
store the stage-level features [30], i.e. the last-layer feature
with the same spatial resolution. Non-key frames would
go through a subnet and reuse the stage-level features of
key frames via a light fusion module. More specifically, we
first concatenate corresponding features and then perform a
1×1 point-wise convolution followed by a 3×3 depth-wise
convolution. There are normalization and activation layers
following each convolution. We have also tried other fusion
mechanisms, such as self-attention [1]. It turns out self-
attention [1] can increase the performance but brings con-
siderable latency workload. Thus we use the simple convo-
lutional fusion as our default setting.

Fused stage-level features, containing the current frames
and frames differences will decide the stage width through
a dynamic gate. For the dynamic gate, we follow the stan-
dard design from prior work [18, 31]. To reduce complex-
ity, every stage-level feature is first condensed to a vector
via a global pooling. Then, we use the pooled vector to pre-
dict the width of the current sample. Following [18], we
adopt two fully connected layers and a ReLU non-linearity
layer in between to predict scores for each stage width. An
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Figure 2. Overview of our ANT. Key frames would go through the entire network. Non-key frames would reuse the stage-level features of
key frames via a light fusion module. For non-key frames, fused stage-level features, containing the information of current frame and the
changes across frames would decide the stage width through a dynamic gate. The neck and head are shared for all frames.

Figure 3. Adaptive key frame selection. As we proceed fur-
ther away from the key frame, the feature deviation gradually in-
creases. When the deviation goes beyond a pre-defined threshold,
the current frame will be selected as a new key frame.

argmax function is subsequently applied to generate the
predicted choice. The gumbel− softmax [17] is utilized
to optimize the non-differentiable dynamic gates.

After we obtain the static image supernet from Sec. 3.1,
we add the random initialized fusion module, dynamic gates
to the framework, and jointly train the weights. We freeze
the stem module as shown in Fig. 2 and use a fixed key/non-
key frame scheduler, e.g., 1/3 in our experiment. We still
use the knowledge distillation (KD) technique in this stage.
Specifically, the non-key frames will also go through the
entire work to get the golden features(not shown in Fig. 2).
The KD loss is applied between golden features and fused
features. Intuitively, KD helps guide the fusion module
learning.

3.3. Adaptive key frame selection

An important video processing step is to select the key
frames, i.e., the frame that goes through the entire net-
work and serves as a reference. More frequent key frames

would lead to better performance but result in more com-
putation cost. To make our ANT more flexible, we aban-
don the fixed-rate schedulers [12, 39] and choose to select
the key frame adaptively during test. While pixels may
change rapidly from frame to frame, we find that the se-
mantic content of a scene evolves more slowly. Moreover,
the deviation of shallow features, e.g., features after first
conv-stem module, are good to represent the semantic dif-
ferences across frames [20]. We calculate the normalized
L1 deviation across different frames in Fig. 3. We can eas-
ily find that the feature deviation would generally increase
over time. When the deviation reaches to a certain thresh-
old, we reset the current frame as the new key frame and
continue the process.

4. Experiments

4.1. Setup

Dataset. We evaluate the proposed ANT on a challeng-
ing video object detection benchmark UA-DETRAC dataset
[33]. The dataset consists of 10 hours of real-world traf-
fic videos at 24 different locations, leading to 140 thousand
frames and a total of 1.21 million labeled bounding boxes
of vehicles. The total 100 videos are split 60/40 as rain
and test data, respectively. The performance is evaluated in
terms of average precision (AP) across multiple IoU thresh-
olds [0.5 : 0.05 : 0.95], similar to COCO [21].

Model. We use the state-of-the-art mobile object de-
tector EfficientDet [30]. As detailed in Sec. 3.1, we only
turn the EfficientNet [29] backbone into supernet stages.
The basic building block of EfficientNet is the mobile in-
verted bottleneck MBConv [26]. For simplicity, we denote
by MBConvK the MBConv with expansion ratio K. We
modify 6 MBConv6 stages into supernet, excluding the first
stem convolution and second MBConv1 block. For every
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Method
Params

(M)
GMAC Latency†

(ms)
AP

D0 [12, 29] 3.8 2.2 320 52.7
D0 w/ SkipConv [12] 4.0 0.7 480 52.3
D0 w/ ANT (Ours) 4.3 1.7 262 52.5
D0+ w/ ANT (Ours) 5.5 1.6 251 52.8

Table 1. Comparison with state-of-the-art methods of object video
detection on UA-DETRAC. D0 is the abbreviation of EfficientDet-
D0. The proposed ANT is hardware-friendly and can achieve real
acceleration on common devices. D0+ denotes using wider back-
bone. † Latency is measured on one intel i7 CPU core.

stage, we have 6 expansion ratios [1, 2, 3, 4, 5, 6], leading to
66 subnets.

Implementation details We follow the UA-DETRAC
setting of Skip-Conv [12]. The standalone network is ini-
tialized with the pre-trained weights from MS COCO [21].
We train the model for 4 epochs using the SGD optimizer
with momentum 0.9 and weight decay 4e-5. The initial
learning rate is 0.01 and decays to 0.001 at epoch 3. The
batch size is 16 across 2 GPUs (batch size 8 for each card).
We also use a high drop path rate of 0.5 to avoid overfit-
ting. For the first stage of supernet training, we initialize the
supernet with the standalone network and follow the same
settings as the standalone network. We initialize with the
trained supernet for the second stage of joint training and
add random initialized fusion modules and gates. Then we
train ANT for 8 epochs with a lower learning rate of 0.002.

4.2. Main results

Comparison with state-of-the-art methods. In order
to run the detector on edge devices, we use the smallest
EfficientDet-D0 for our experiments. The state-of-the-art
method SkipConv [12] achieves a considerable reduction
of Giga-multiply-accumulate (GMAC). However, when we
measure its latency on CPU, which has no sparse convo-
lution implementation, we find SkipConv is slower than the
regular network (see Tab. 1). In contrast, the proposed ANT
is hardware-friendly and can achieve actual acceleration in
real-world scenarios. More specifically, ANT can reduce
the amortized latency of EfficientDet-D0 from 320ms to
262ms with negligible accuracy loss. Inspired by NAS lit-
erature [2,36], we further use a wider backbone to boost the
accuracy. We widen all the channels in D0’s backbone with
a 1.1× factor and apply ANT on it (denoted as D0+). With
a wider backbone, ANT reduces the latency from 320ms
to 251ms (1.3× reduction) with a slight AP increase from
52.7 to 52.8. Our results show that GMAC counts are poor
proxies for the latency of ML tasks on real hardware.

Comparison with static NAS models. As detailed in
Sec. 3.1, we first start with a weight-sharing supernet. We
can easily sample static models from the supernet using a

1.2 1.4 1.6 1.8 2.0 2.2
GMAC

49

50

51

52

AP

D0
D0 w/ NAS
D0 w/ NonTemp DN
D0 w/ ANT (Ours)

Figure 4. Ablation study. D0 is the abbreviation of EfficientDet-
D0. D0 w/ NAS are static networks that are searched using NAS.
D0 w/ NonTemp DN is the non-temporal dynamic network that
changes the network solely depending on the current frame. The
proposed ANT adapts networks depending on the current frame
and the differences across frames.

standard NAS procedure [36]. As shown in Fig. 4, the
proposed dynamic ANT performs consistently better than
static NAS models. This is because the proposed ANT can
adapt the network across time, while static NAS models are
fixed for all the inputs. Moreover, we may have to maintain
several different static networks for different computation
constraints. The proposed ANT, in contrast, can easily fit
into different requirements through adjusting the key/non-
key frame threshold (Sec. 3.3).

Comparison with the non-temporal dynamic net-
work. We further compare with the non-temporal dynamic
network [18] that changes network solely depending on the
current frame. As shown in Fig. 4, the non-temporal dy-
namic network suppresses static NAS models but performs
worse than the proposed ANT. The main reason is that not
only can ANT use the current frame, but it can also uti-
lize the differences across frames. The proposed ANT can
leverage abundant redundancies in video streams.

5. Conclusion
Towards the goal of efficient video processing, we pro-

pose the Adaptive Network across Time (ANT) framework
to harness redundancies in video streams so as to save com-
putations. The proposed ANT adapts a purpose-fit network
by inspecting the semantic differences between frames, i.e.,
switching to a smaller network when observing mild dif-
ferences. ANT is built upon a weight-sharing supernet
with proposed fusion and dynamic gate modules. ANT
is hardware-friendly and can achieve actual acceleration in
real-world scenarios.
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