Auto-scaling HTCondor pools using Kubernetes compute resources
Igor Sfiligoi

University of California San Diego, La Jolla, CA, USA, isfiligoi@sdsc.edu

Thomas DeFanti

University of California San Diego, La Jolla, CA, USA, tdefanti@eng.ucsd.edu

Frank Wiirthwein

University of California San Diego, La Jolla, CA, USA, fkw@ucsd.edu

HTCondor has been very successful in managing globally distributed, pleasantly parallel scientific workloads, especially as part of the
Open Science Grid. HTCondor system design makes it ideal for integrating compute resources provisioned from anywhere, but it has very
limited native support for autonomously provisioning resources managed by other solutions. This work presents a solution that allows for
autonomous, demand-driven provisioning of Kubernetes-managed resources. A high-level overview of the employed architectures is
presented, paired with the description of the setups used in both on-prem and Cloud deployments in support of several Open Science Grid
communities. The experience suggests that the described solution should be generally suitable for contributing Kubernetes-based resources
to existing HTCondor pools.

CCS CONCEPTS * Computer systems organization~Architectures~Distributed architectures

Additional Keywords and Phrases: provisioning, auto scaling, HTCondor, Kubernetes

1 INTRODUCTION

The HTCondor batch workload management system [1,2] has long been used to aggregate resources from many
independent resource providers and is the core technology enabling the Open Science Grid (OSG) [3]. HTCondor
architecture has very few hard requirements, allowing its services to operate in virtually any environment, e.g. both with
and without elevated privileges, and in restricted network environments. Resource provisioning was, however, never a core
competency of the HTCondor stack, delegating that aspect to other software providers.

Kubernetes [4] is a popular container-based resource management system, that is getting significant traction in both on-
prem and Cloud environments. Integration of Kubernetes-managed resources into existing HTCondor pools is thus highly
desirable. As hinted above, joining a Kubernetes-managed resource, aka a Pod, to an existing HTCondor pool is relatively
easy, and has indeed been happening on the Pacific Research Platform’s (PRP) [5] Kubernetes cluster in opportunistic
mode since 2019 [6]. This work focuses on adding a proper demand-driven, auto-scaling provisioning mechanism that is
suitable for mainstream use.

Kubernetes does natively support the notion of auto-scaling a compute workload [7], which in our use-case represents
HTCondor execute services that will join an existing HTCondor pool. The default auto-scaling is, however, optimized for
uniform stateless services, while user jobs managed by the HTCondor execute services both possess state and can be

Pre-print, as of March 28, 2022. Final version to be published in proceedings of PEARC22

|.Sfiligoi, T. DeFanti and F. Wiirthwein, Auto-scaling HTCondor pools using Kubernetes compute resource.
To be published in proceedings of PEARC22

heterogeneous. We thus decided to implement a dedicated auto-scaling solution to achieve better resource utilization. The
code is open source and available in GitHub [8]. Section 2 provides an overview of the provisioning logic, while Section 3
provides some implementation details. Section 4 describes two operational modes employed to integrate Kubernetes
resources into globally distributed HTCondor pools. Section 5 describes our experience in using this mechanism in

preemptible environments and Section 6 explains how it interacts with Cloud auto-provisioning mechanisms.

1.1 Related work

Opportunistic, or backfill integration of Kubernetes resources into HTCondor pools has been used by several OSG
communities when dealing with on-prem deployments, like the PRP and the Scalable Systems Laboratory [9]. It is very
easy to setup and works really well when integrating with a single HTCondor pool. However, it is not suitable for sharing
resources between multiple communities, especially when some of them have only intermittent compute needs.

The most widely used dynamic HTCondor resource provisioning solution is currently GlideinWMS [10], which has
been in use by OSG communities for over a decade. It specializes in provisioning Grid computing resources, i.e. compute
resources managed by independent batch workload management systems, but currently has no Kubernetes integration.

Manual provisioning of resources is of course always an option and may be suitable for one-off, large-scale
exercises [11]. It is however relatively human effort intensive, and thus not suitable for ongoing operations.

2 AUTO-SCALING PROVISIONING LOGIC

The provisioning logic used for this project is relatively simple. The provisioning service keeps track of how many
HTCondor jobs need additional resources and periodically compares that with the number of Kubernetes pods waiting for
resources. If not enough pods are queued, more are submitted. The pods are configured to self-terminate if no user jobs are
waiting for resources, automating resource provisioning scale-down.

The provisioning service allows for filtering of HTCondor jobs based on advertise attributes, so only jobs that can run
on the managed Kubernetes system are considered for auto-scaling purposes. The filter is also propagated to the HTCondor
execute configuration, enforcing the desired policy for all provisioned pods. The HTCondor execute services running in
Kubernetes pods can also advertise additional attributes, and those attributes can be used in the filter as well.

Given that user jobs submitted to HTCondor queues tend to be heterogeneous, the provisioning service groups together
jobs with similar requirements and independently requests Kubernetes resource with matching requirements, effectively
creating independent filtering groups. The grouping criteria is currently based on CPU, GPU, memory and disk
requirements, but could be extended in the future.

3 AUTO-SCALER IMPLEMENTATION

The auto-scaling provisioning service has been implemented as a Python process and is typically run inside an unprivileged
pod in the Kubernetes cluster whose resources are being provisioned. A namespaced service account token [12] is used for
interfacing with the Kubernetes cluster, while the HTCondor credentials must be passed as a Kubernetes secret object. The
location of the HTCondor central manager must be passed as a pod environment value.

The default configuration is usable as-is and includes a CentOS-based GPU-enabled execute container image. Most
resource managers will, however, likely want to add additional attributes and modify the filters. The service uses a standard
Python configparser INI file [13], that is passed to the pod as a configmap object. On top of attributes and filters, the
resource manager can also change the container image used, set the priority class, tolerations and node selectors, and

configure storage areas. An example INI file is available in Figure 1.

Pre-print, as of March 28§, 2022
2

|.Sfiligoi, T. DeFanti and F. Wiirthwein, Auto-scaling HTCondor pools using Kubernetes compute resource.
To be published in proceedings of PEARC22

[DEFAULT]

k8s_domain=nrp-nautilus.io

[k8s]

tolerations list=nautilus.io/noceph, nautilus.io/suncave

node affinity dict="nautilus.io/low-power:true,gpu-type:A100|A40|V100
priority class=opportunistic

envs_dict=USE SINGULARITY:no,GLIDEIN Site:SDSC-PRP

Figure 1: Example configuration file

The code is licensed under the BSD open source license and is available on GitHub [8].

4 INTEGRATION WITH PRODUCTION HTCONDOR POOLS

Integrating Kubernetes-managed resources into production HTCondor pools typically means crossing organizational
boundaries. This implies that not all user jobs are able or allowed to make use of the provisioned resources. The limits
could be due to policy or technical reasons, e.g. restrictions on data access. Filtering, proper attribute advertisement and
proper job runtime environment thus become very important.

Given the flexibility of the HTCondor ecosystem, direct integration with a production HTCondor pool typically requires
a moderate understanding of the conventions and expectations of its users. This operation mode is thus best suited for when
personnel associated with HTCondor operations can themselves instantiate an auto-scaling provisioning service, e.g. by
being granted access to a namespace in the target Kubernetes system. We have experience provisioning Kubernetes
resources this way for two HTCondor pools, one serving the UCSD physics users [14] and one serving IceCube [15]
production simulation activities.

However, when user communities do not have sufficient manpower or expertise to operate yet another service, the auto-
scaling provisioning system can be used by a Kubernetes resource owner to create a Grid interface, that can then be
integrated with established tools like OSG’s GlideinWMS. In this operation mode, the Kubernetes resource owner creates
a local, dedicated HTCondor pool, alongside a Grid portal, e.g. HTCondor-CE [16], which can naturally interface with it.
The auto-scaling provisioning service, still operated by the resource owner, can now be significantly simplified, as most
of the user community specific configuration and policy decisions are now handled at the Grid level, e.g. as part of the
pilot paradigm. There is of course some overhead involved in this layered provisioning scheme but may be the only viable
option for some communities. At the time of writing, the PRP operators were supporting several OSG-affiliated

communities this way.

5 OPERATING IN PREEMPTIBLE ENVIRONMENTS

Batch scheduling is typically used to maximize the utilization of compute resources. Ideally, thus, all compute resources
are always in use, and user jobs are expected to wait in queue to achieve this level of utilization. Kubernetes is, however,
often used to also serve service-oriented applications, who need relatively low startup latency. The resource administrators
thus must choose between keeping some resources always unused or schedule batch pods in preemptible mode.
HTCondor transparently handles resource preemption and the auto-scaling provisioning setup also gracefully deals with
preemption; batch jobs being preempted will be rescheduled to another compute resource. Enabling preemption thus likely

Pre-print, as of March 28§, 2022
3

|.Sfiligoi, T. DeFanti and F. Wiirthwein, Auto-scaling HTCondor pools using Kubernetes compute resource.
To be published in proceedings of PEARC22

results in higher science output, as at least some user jobs complete on resources that would otherwise be left unused. We
have extensive experience running the provisioner on the PRP in preemptible mode, by assigning a lower priority to the
HTCondor execute pods, as shown in Figure 1. For example, this has allowed several OSG-affiliated science communities
to make good use of 350k GPU hours of compute from the PRP’s Kubernetes cluster in 2021, as shown in Figure 2, without

any effect on other users and services of the same Kubernetes cluster.

GPU Wall Hours By Project GPU Wall Hours by Project

100 K

75K == |ceCube 236K
50K COVID19_FoldingAtHome 83K
25K B nova 12K

o.Ml T I T . — PixeyLab 9K

01/01 03/01 05/01 07/01 09/01 11/01 01/01 = TG-CHE200122 4K
== IceCube COVID19_FoldingAtHome nova == PixleyLab == TG-CHE200122 = COVID19_JHU_Howard 2K
== COVID19_JHU_Howard == LIGO == ligo == JHU_Howard == FSU_Kolberg - LIGO 692
== OSG-Staff == NeuroscienceGateway == fermilab == 1IT_Cheng — ligo 544
== CampusWorkshop Feb2021 == osa.NeuroscienceGatewav GATech PACE

Figure 2: Screenshot of OSG GRACC GPU Payload Jobs Summary for the PRP Facility covering year 2021.
Each bin in the histogram represents 2 weeks’ worth of GPU compute. (https://gracc.opensciencegrid.org/)

Preemption can also occur at Kubernetes node level, either due to hardware errors, system maintenance or hardware
sharing; in all cases, HTCondor and the provisioner transparently deal with them. A particularly useful scenario is the use
of spot-priced Cloud instances, which are available at significant discount but guarantee no uptime. We have been running
in spot mode on the Google Kubernetes Engine (GKE) [17] for many weeks, and never experienced a problem due to
preemption.

6 INTERACTION WITH CLOUD NODE AUTO-SCALING

Most Cloud Kubernetes deployments support the notion of node auto-scaling, i.e. autonomously changing the number of
instances that identify as Kubernetes nodes based on the amount of pod request in the Kubernetes queue. This feature
makes the elastic use of Cloud resources easy to use and allows the Kubernetes administrators to only pay for the amount
of resources in use at any point in time.

Our auto-scaling HTCondor execute pod provisioner works seamlessly with the Cloud node auto-scaling mechanism.
The number of HTCondor execute pods in Kubernetes queue varies with HTCondor-driven demand, and this in turn drives
the number of Kubernetes nodes provisioned by the Cloud auto-scaler. We tested this using GKE node auto-
provisioning [18], and the resulting number of provisioned Cloud resources matched nicely with the demand created by
our pod provisioner, as shown in Figure 3. New Kubernetes nodes were promptly provisioned. As expected, the de-
provisioning of Kubernetes nodes resulted in some unused resources, but this is unavoidable when several pods are allowed
to share a single node, as was the case in our setup, since pod lifetime is dictated by user jobs, and they thus rarely terminate
all at the same time. That said, we consider the observed waste in out GKE test run to be close to the minimum achievable.

Pre-print, as of March 28§, 2022
4

|.Sfiligoi, T. DeFanti and F. Wiirthwein, Auto-scaling HTCondor pools using Kubernetes compute resource.
To be published in proceedings of PEARC22

200 A
—— Provisioned GPUs
150 4 _— Runn.mg pods
—— Pending pods
100 A
50
0 -

2/23 22:00 2/24 11:53 2/25 01:46 2/25 15:40

Figure 3: Monitoring snapshot of the GKE auto-scaling test run. Each provisioned Kubernetes node had 7 GPUs and
each Kubernetes pod was requesting a single GPU. The pods in Kubernetes were submitted by the HTCondor-driven provisioner.

7 CONCLUSIONS AND FUTURE WORK

Kubernetes has become a prominent resource management solution, both on-prem and in the Clouds. Having the ability to
integrate Kubernetes-managed resources into production HTCondor pools is thus highly desirable.

In this work we provide a summary overview of a new HTCondor-driven, auto-scaling provisioning tool, alongside our
experience in using it to provision Kubernetes resources for several OSG-affiliated scientific communities. We integrated
both on-prem and Cloud resources in HTCondor pools of those communities and are very satisfied with the operational
experience so far.

The tool is available under an open source license in GitHub [8] and aims to be generic enough to be used by many
user communities. The main deployments have been so far managed by our group, but we expect to expand this in the near
future.

ACKNOWLEDGMENTS

This work has been partially funded by the US National Science Foundation (NSF) Grants OAC-1826967, OAC-2030508,
CNS-1925001, OAC-1841530, CNS-1730158, OAC-2112167, CNS-2100237 and CNS-2120019. All Google Kubernetes

Engine costs have been covered by Google-issued credits.

REFERENCES

[1] Michael Litzkow, Miron Livny, and Matthew Mutka. 1988. Condor - A Hunter of Idle Workstations. Proceedings of the 8th International Conference
of Distributed Computing Systems.

[2] HTCondor Home Page. Accesses March 2022. https://htcondor.org/
[3] Ruth Pordes et al. 2007. The open science grid. J. Phys.: Conf. Ser. 78 012057
[4] Kubernetes Home Page. Accessed March 2022. https://kubernetes.io/

[5] Larry Smarr et al. 2018. The Pacific Research Platform: Making High-Speed Networking a Reality for the Scientist. PEARC '18: Proceedings of the
Practice and Experience on Advanced Research Computing. 29 pp 1-8. https://doi.org/10.1145/3219104.3219108

[6] Igor Sfiligoi. 2019. Serving HTC Users in Kubernetes by Leveraging HTCondor. KubeCon North America 2019. https://youtu.be/TwQytlk1ZiM

[7] HorizontalPodAutoscaler =~ Walkthrough. Accessed March 2022. https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-
walkthrough/

[8] GitHub repository for prp-htcondor-portal. Accessed March 2022. https://github.com/sfiligoi/prp-htcondor-portal

[9] Robert Gardner et al. 2020. The Scalable Systems Laboratory: a Platform for Software Innovation for HEP. EPJ Web of Conferences 245, 05019
https://doi.org/10.1051/epjcont/202024505019

Pre-print, as of March 28, 2022
5

|.Sfiligoi, T. DeFanti and F. Wiirthwein, Auto-scaling HTCondor pools using Kubernetes compute resource.
To be published in proceedings of PEARC22

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

Igor Sfiligoi et al. 2009. The Pilot Way to Grid Resources Using glideinWMS. 2009 WRI World Congress on Computer Science and Information
Engineering, pp. 428-432. https://doi.org/10.1109/CSIE.2009.950

Igor Sfiligoi, Frank Wiirthwein, Benedikt Riedel, and David Schultz. 2020. Running a Pre-exascale, Geographically Distributed, Multi-cloud Scientific
Simulation. Proceeding of High Performance Computing. ISC High Performance 2020. Lecture Notes in Computer Science 12151.
https://doi.org/10.1007/978-3-030-50743-5_2

Kubernetes Documentation: Configure Service Accounts for Pods. Accessed March 2022. https://kubernetes.io/docs/tasks/configure-pod-
container/configure-service-account/

Python Documentation: Configuration file parser. Accessed March 2022. https://docs.python.org/3/library/configparser.html

Igor Sfiligoi, Frank Wiirthwein, and Diego Davila. 2021. Data intensive physics analysis in Azure cloud. To be published in Proceedings of ICOCBI
2021

M. G. Aartsen et al. 2015. The IceProd framework: Distributed data processing for the IceCube neutrino observatory. Journal of Parallel and Distributed
Computing 75 198-211. ISSN 0743-7315. https://doi.org/10.1016/j.jpdc.2014.08.001

Brian Bockelman, Miron Livny, Brian Lin, and Francesco Prelz. 2020. Principles, technologies, and time: The translational journey of the HTCondor-
CE. J. Comp. Sci. 101213. https://doi.org/10.1016/j.jocs.2020.101213

GKE Documentation: https://cloud.google.com/kubernetes-engine/docs/how-to/spot-vms. Accessed March 2022.
https://cloud.google.com/kubernetes-engine/docs/how-to/spot-vms

GKE Documentation: Using node auto-provisioning. Accessed March 2022. https://cloud.google.com/kubernetes-engine/docs/how-to/node-auto-
provisioning

Pre-print, as of March 28§, 2022
6

