QUIDAM: A Framework for Quantization-Aware DNN Accelerator and
Model Co-Exploration

AHMET INCI, Carnegie Mellon University, USA

SIRI GARUDANAGIRI VIRUPAKSHA, Carnegie Mellon University, USA

AMAN JAIN, Carnegie Mellon University, USA

TING-WU CHIN, Carnegie Mellon University, USA

VENKATA VIVEK THALLAM, Carnegie Mellon University, USA

RUIZHOU DING, Carnegie Mellon University, USA

DIANA MARCULESCU, Carnegie Mellon University, The University of Texas at Austin, USA

As the machine learning and systems communities strive to achieve higher energy-efficiency through custom deep neural
network (DNN) accelerators, varied precision or quantization levels, and model compression techniques, there is a need for
design space exploration frameworks that incorporate quantization-aware processing elements into the accelerator design
space while having accurate and fast power, performance, and area models. In this work, we present QUIDAM, a highly
parameterized quantization-aware DNN accelerator and model co-exploration framework. Our framework can facilitate
future research on design space exploration of DNN accelerators for various design choices such as bit precision, processing
element type, scratchpad sizes of processing elements, global buffer size, number of total processing elements, and DNN
configurations. Our results show that different bit precisions and processing element types lead to significant differences
in terms of performance per area and energy. Specifically, our framework identifies a wide range of design points where
performance per area and energy varies more than 5x and 35X, respectively. With the proposed framework, we show that
lightweight processing elements achieve on par accuracy results and up to 5.7X more performance per area and energy
improvement when compared to the best INT16 based implementation. Finally, due to the efficiency of the pre-characterized
power, performance, and area models, QUIDAM can speed up the design exploration process by 3-4 orders of magnitude as it
removes the need for expensive synthesis and characterization of each design.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable accomplishments across various applications ranging
from image recognition [47], object detection [48], to natural language processing [6]. However, the increasing
model size and computational cost of these models has become a challenging task for on-device machine learning
(ML) endeavours due to the stringent performance per area and energy constraints of the edge devices. To this
end, while machine learning practitioners focus on model compression techniques [5, 8, 15], computer architects

Authors’ addresses: Ahmet Inci, ainci@andrew.cmu.edu, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, USA, 15213;
Siri Garudanagiri Virupaksha, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, USA, 15213; Aman Jain, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, PA, USA, 15213; Ting-Wu Chin, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh,
PA, USA; Venkata Vivek Thallam, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, USA; Ruizhou Ding, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, PA, USA; Diana Marculescu, dianam(@utexas.edu, Carnegie Mellon University,, 5000 Forbes
Avenue, Pittsburgh, PA, 15213 and The University of Texas at Austin, 110 Inner Campus Drive, Austin, TX, USA, 78705.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2022/9-ART $15.00

https://doi.org/10.1145/3555807

ACM Trans. Embedd. Comput. Syst.

2 « Incietal.

investigate hardware architectures to overcome the energy-efficiency problem and improve the overall system
performance [2, 3, 14, 18-25, 39, 42].

As computing community hits the limits on consistent performance scaling for traditional architectures, there
has been a rising interest on enabling on-device machine learning applications through custom domain-specific
DNN accelerators. These domain-specific system-on-chip architectures are specifically designed to exploit the
application characteristics. As we deeply care about performance per area and energy-efficiency from a hardware
point of view, tailored DNN accelerators have shown significant improvements when compared to general-
purpose CPUs and GPUs [2, 10, 27-29, 37]. To better understand the trade-offs of various architectural design
choices and DNN workloads for domain-specific hardware architectures, there is a need for a design space
co-exploration framework that can rapidly iterate over various designs and generate power, performance, and
area (PPA) results for various DNN models. To this end, in this work we present QUIDAM, a framework for
quantization-aware DNN accelerator and model co-exploration.

This work makes the following contributions:

e We present QUIDAM, a quantization-aware power, performance, and area modeling framework for DNN
accelerators. Our framework can enable future research on DNN accelerator and model co-exploration
for various design choices such as bit precision, processing element types, scratchpad sizes of processing
elements, global buffer size, device bandwidth, number of total processing elements, and DNN architectures.

e Our framework provides power, performance, and area results not just for a single hardware design point
but for a range of different hardware designs as opposed to prior art [1, 2, 4, 31, 38]. Thus, it can be used
to jointly analyze trade-offs of various architectural design choices and DNN workloads and perform
multi-objective optimization to achieve a better trade-off front between accuracy and hardware-efficiency
metrics such as performance per area and energy.

The rest of the paper is organized as follows. In Section 2, we present a literature review on power and runtime
models for CNNs and design space exploration frameworks for hardware accelerators. In Section 3, we describe
the architectural details of the QUIDAM framework and the details of our methodology for power, performance,
and area modeling of DNN accelerators. In Section 4, we show experimental results demonstrating the efficacy
of QUIDAM’s power, performance, and area models and the efficacy of lightweight processing elements to
conventional designs in terms of performance per area and energy through a suite of case studies. Finally, Section
5 concludes the paper by summarizing the results.

2 RELATED WORK

Prior art has proposed runtime and energy models for DNN workloads [1, 34, 38]. However, these models have
been implemented specifically for GPU platforms and thus they create an important limitation for a design
space exploration of hardware architectures and potentially hardware and machine learning model co-design
opportunities [13, 51, 53].

On the other hand, the systems community has proposed several tools and simulation methodologies for
DNN accelerator design. Table 1 shows a comparison of existing hardware accelerator frameworks compared to
QUIDAM in terms of various design features in chronological order.

For example, Aladdin [43] is a pre-RTL power, performance, and area estimation tool for arbitrary hardware
accelerators. This simulator takes high-level language descriptions of algorithms as inputs similar to a high-level
synthesis (HLS) methodology and generates dynamic data dependence graphs as an approximate representation
of a hardware accelerator without generating RTL. While this approach can be useful for fast exploration of
various algorithms, it has limitations in the optimization of the generated hardware accelerators for deep neural
networks because it is not implemented in a domain-specific architecture manner.

ACM Trans. Embedd. Comput. Syst.

QUIDAM: A Framework for Quantization-Aware DNN Accelerator and Model Co-Exploration « 3

Accelerator Parameters DNN Configuration

Power, Performance, and Area Modeling

v

Accelerator Configuration and Associated
Power, Performance, Area

!

Pareto-Optimality Analysis
Performance
per Area

Section 3.3

Accuracy Energy

Section 4.3-4.4

Candidate HW Candidate DNN
Configurations Y Configurations

L——> DNN Accelerator and Model Co-Exploration je——

'

Power, Performance, Area, and RTL Section 4.5

Fig. 1. Overview of the QUIDAM framework.

Table 1. Comparison of DNN Accelerator Frameworks

Optimized for Fully- Row-Stationary | Quantization | Lightweight PE | Pre-Characterized DNN Accelerator/

H ’ CNNs Parameterized RTL Dataflow Support (Shift-Add Based) | Model based DSE | Model Co-Exploration
Aladdin [43] X X X X X v X
SCALE-Sim [40] 4 X X X X v X
Eyeriss [2] v X v X X X X
MAERI [31] v X v X X X X
MAESTRO [30] v X v X X v X
HAQ [49] v X X v X X X
Accelergy [50] v X v /1 X X X
Timeloop [36] v X v /2 X v X
Gemmini [11] v v X v X X X
QUIDAM (Ours) v v v /i v v/ /

1: Supports INTS8, INT16, FP32

2: Supports INT8, INT16, FP32

3: Supports INT8, UINT32, FP32

4: Supports INT4, INTS8, INT16, FP32

Similarly, SCALE-Sim [40] is a cycle accurate, systolic-array based DNN accelerator simulator. It has a python-
based cycle accurate model that can generate results for hardware performance and utilization metrics. Although
this tool can help rapid exploration of systolic-array based DNN accelerators for a given DNN layer, the built-in
model is difficult to modify for a different hardware accelerator architecture and it lacks significant features

ACM Trans. Embedd. Comput. Syst.

4 « Incietal

such as quantization support, lightweight processing elements, and DNN accelerator and model co-exploration
options.

As mapping deep neural networks onto DNN accelerators plays an important role in energy-efficiency, Eyeriss
[2] analyzed various dataflow strategies in the existing DNN accelerator domain and came up with a novel
approach called row-stationary dataflow which performs better than other dataflow strategies in terms of
throughput and energy-efficiency [2]. However, Eyeriss is only an instance in the vast design space of DNN
accelerators and its implementation is not open-source to foster future research on DNN accelerator and model
co-exploration.

To this end, MAERI [31] and MAESTRO [30] have been proposed by the researchers to support spatial-array
architectures and enrich the design space with various dataflows such as row-stationary dataflow which was
originally proposed by Eyeriss [2]. MAERI [31] presents a new DNN accelerator architecture implemented with a
set of modular and reconfigurable building blocks which can easily support various DNN mappings onto the
accelerator by utilizing switches. On top of that, MAESTRO [30] presents an analytical cost model to predict
the hardware cost of dataflows to perform a design space exploration. These open-source frameworks assist
researchers to perform a design space exploration on various dataflows. However, they are incapable of supporting
various bit precision levels and efficient processing elements that utilize cheap shift logic instead of expensive
multipliers.

To further improve the computational efficiency of hardware accelerators, researchers have investigated tuning
the optimal bit precision level for each layer of a deep neural network. To this end, HAQ [49] proposed optimizing
the bit precision of DNN accelerators by proposing an automated hardware-aware quantization framework that
leverages reinforcement learning to automatically tune the quantization scheme for a given hardware architecture
by integrating the power and performance feedback signals coming from the hardware architecture in the design
loop.

As HAQ reveals that the optimal bit precision levels on different hardware architectures and resource constraints
are significantly different, recently Accelergy [50] and Timeloop [36] have been proposed to complement the
design space exploration process by supporting different bit precision levels with an architecture-level energy
estimation methodology [50] and a design space exploration framework [36] for DNN accelerators.

Accelergy [50] presents an architecture-level energy estimation methodology for hardware accelerators that
takes in an architecture description and hardware activity statistics such as action counts which are based on
a given workload that is needed to be generated by a separate performance model. Although Accelergy [50]
proposes a fast energy estimation methodology for DNN accelerators, it is not capable of performing a design
space exploration for hardware architectures by itself. To this end, Timeloop [36] presents a framework for
evaluating and performing a design space exploration of DNN accelerators. Timeloop [36] proposes a generic
template to describe DNN hardware accelerators and characterize deep learning workloads and provides a
practical design space exploration tool to understand the trade-offs in designing DNN accelerators across different
workloads.

Although these tools perform preliminary analysis on the design space for DNN accelerators in different
aspects, they do not incorporate specialized quantization-aware lightweight processing elements and they do not
generate or share a highly-parameterized RTL implementation of the chosen design based on the input hardware
configuration which is a significant impediment for enabling deployment of DNNs onto edge devices, as the
actual deployment of the hardware design takes a significant amount of engineering effort.

Finally, Gemmini [11] has been proposed as an open-source co-processor/accelerator generator framework that
leverages a flexible architectural template to represent different accelerator architectures. Moreover, Gemmini
[11] provides a parameterized RTL implementation to enable hardware architects to gain more control onto the
design and potentially gain subtle insights on how different architectural decisions affect overall performance
of the system. To enable system researchers to investigate and run software stacks on the generated hardware

ACM Trans. Embedd. Comput. Syst.

QUIDAM: A Framework for Quantization-Aware DNN Accelerator and Model Co-Exploration « 5

accelerator, Gemmini [11] also supports a full system-on-chip environment. From the hardware implementation
point of view, the internal DNN accelerator implementation is a systolic-array based architecture similar to
SCALE-Sim [40] which is a relatively more simplistic architecture when compared to spatial-array based dataflow
architectures [2]. Therefore, it does not support more sophisticated dataflows such as row-stationary dataflow and
quantization-aware lightweight processing elements which can enlarge the hardware accelerator design space
and push the Pareto-frontier even further in terms of accuracy and hardware efficiency metrics such as energy-
efficiency and performance per area. Moreover, this framework does not have a pre-characterized analytical
hardware cost model. Therefore, it is not suitable for a rapid design space exploration of DNN accelerators and
DNN accelerator and model co-exploration research. Therefore, there is a need for a framework that can assist
system architects and machine learning researchers to quickly iterate over various hardware accelerator designs
and DNN configurations while having an accurate hardware cost model and a flexible implementation to enable
researchers to easily build their novel ideas on top of it without going through the tedious and laborious effort of
RTL implementation from scratch.

To this end., we propose QUIDAM, a highly parameterized spatial-array based DNN accelerator framework that
has implicit optimizations for CNNs as it is a domain-specific architecture but also has sufficient flexibility in
terms of changing the microarchitectural features of the architecture, enriching the design space by providing
lightweight processing element implementations, and crucial DNN model parameters such as bit precision to
fully support DNN accelerator and model co-exploration.

As the systems community investigates novel hardware architectures and tools to enable deployment of efficient
inference on edge, the ML community has focused on model compression techniques to achieve these objectives.
Specifically, pruning [15] and quantization [52] have received great interestin the ML community to design models
for edge devices. In quantization, prior work focuses on improving fixed-point quantization [9, 26]. Additionally,
hardware-friendly quantization schemes have also been proposed [8, 33, 46]. In this work, we implement a specific
quantization scheme chosen for its hardware-efficiency as it relies on reduced representations using a limited
sum of power-of-two [8].

3 METHODOLOGY

In this section, we present the proposed QUIDAM framework, as shown in Figure 1. First, the proposed QUIDAM
framework takes hardware accelerator parameters and deep neural network configurations as inputs to obtain
power, performance, and area models for the next stages. Figure 2 shows the available hardware accelerator and
DNN configuration parameters that can be chosen using the QUIDAM framework. We show the implementation
details and architectural components of our QUIDAM framework, as depicted in Figure 2 (Section 3.1). More-
over, we also detail the lightweight processing elements (LightPE) that we implemented in our framework to
provide a specialized processing element (PE) type for quantized DNN models (Section 3.2). After developing
the power, performance, and area models for the QUIDAM framework for a wide range of accelerator and DNN
configurations (Section 3.3), we perform a Pareto-optimality analysis for accuracy and crucial hardware efficiency
metrics suchas performance per area and energy (Section 4.3-4.4). Finally, we carry out a DNN accelerator and
model co-exploration analysis by generating candidate hardware and DNN configurations and demonstrate the
generalizability of the proposed QUIDAM framework by co-exploring the design space of both hardware and
DNN configurations (Section 4.5). Therefore, the proposed framework provides power, performance, area, and
RTL implementation using the developed power, performance, and area models and parameterized RTL imple-
mentation. Our proposed framework fosters future research on design space co-exploration of DNN accelerators
and DNN configurations.

ACM Trans. Embedd. Comput. Syst.

6 « Incietal.

Accelerator Parameters

(PE type

of PEs/row Accelerator Architecture \
of PEs/column

Global Buffer size

1,

Spad sizes Output
Bit precision PE array Power
Memory BW Global m] I__Ll I:j) I:I:I Zerformance
DNN Configuration —+ Buffer . . _* "3 N, .

|:| . |:| . I::I . I::I PE utilization
Ifmap dimension - - Memory accesses
of channels DI:II:II:'
of filters

Filter size
Stride K QUIDAM /

Skip connections

Fig. 2. Schematic depicting QUIDAM framework, with accelerator parameters.and DNN configuration as inputs. The
framework takes in accelerator parameters and layer-wise DNN configurations and generates power, performance, area
results, and statistics on hardware utilization and memory accesses.

3.1 QUIDAM Framework

To enable comprehensive design space exploration for DNN accelerators for on-device machine learning, we
implemented QUIDAM, a highly parameterized spatial-array based DNN accelerator framework in RTL. Our
framework enables hardware designers and machine learning practitioners to rapidly iterate over various
accelerator designs and DNN configurations and better understand trade-offs of different architectural components
of the design for dizzying requirements of deploying machine learning models to edge devices. Moreover, hardware
designers can also use the automatically generated RTL code to follow the design synthesis flow.

As depicted in Figure 2, QUIDAM framework is based on spatial-array based accelerators and utilizes row
stationary dataflow which has been demonstrated to optimize the data movement in the storage hierarchy and
improve the energy-efficiency of the system [2]. QUIDAM features a set of processing elements organized as a
2D array and a global buffer that stores input feature maps, filters, and activations. The number of PEs in each
dimension can be tuned for different power, performance, and area requirements. Each PE includes an input
feature map, a filter, partial sum scratchpads, and a multiply-accumulate (MAC) unit which can be implemented
as a conventional MAC unit or a specialized shift-add unit based on the desired bit precision. Each of these
architectural components can be tuned in a flexible and automated manner to perform a comprehensive design
space co-exploration for on-device edge accelerators and DNN models. q

3.2 Lightweight Processing Elements (LightPE)

To enrich the design space of hardware accelerators and achieve a better Pareto-frontier for performance per
area and energy-efficiency, we include LightPE implementations in our framework. LightPEs utilize 8 bits for
activations, as well as 4 bits and 8 bits for weights for LightPE-1 and LightPE-2 designs, respectively. As 4 bit
and 8 bit quantization techniques for on-device machine learning have become prevalent in various computing

ACM Trans. Embedd. Comput. Syst.

QUIDAM: A Framework for Quantization-Aware DNN Accelerator and Model Co-Exploration « 7

Ifimap LA 2 m
tfmap III Seratchpad H Ifmap II s::::;:“ " o
lats
(o accumuate
III Filtar " H input partial sum
Filter " Filter .
Seratchpad [Output Filter III scratchpad B9 " & output
Input Partial Sum Input Partial Sum
Partial Sum Partial Sum
Partial Sum
Scratchpad ”
- reset accumulation
(a) FP32 Processing Element (b) INT16 Processing Element
[
L LA 2 Ll L
tnap —+] [| [R~ tinap —s [| | R
accumulate accumulate
input partial sum input partial sum
Filter . Filter .
Filter III Scratchpad I " D Output Filter III scratchpad JIFY " * Output
Input Partial Sum Input Partial Sum
Partial Sum Partial Sum
Partial Sum Partial Sum
Scratchpad Scratchpad I8 H p
L reset accumulation
(c) LightPE-1 Processing Element (d) LightPE-2 Processing Element

® ® @ @ D

FP Multiplier INT Multiplier FP Adder INT Adder Shift

Fig. 3. Detailed architectures of FP32, INT16, LightPE-1, and LightPE-2 processing elements.

platforms, we provide these specialized quantization-aware PE types in our QUIDAM framework to help hardware
designers to enrich their design space and find better Pareto-frontiers.

Specifically, LightPEs use-a special power-of-two quantization scheme [8] that quantizes the weights of the
neural network into a limited sum of powers-of-two. In this case, the multiplication between the activation and
weight can then be replaced by shifts and adds. More generally speaking, a multiplication between an 8-bit
activation x and an 8-bit weight w can be formulated as follows:

y=xXw

7
Z T(wi) X (x << i)
=0 (1)

1 the i’" bitof wis 1

where 1(w;) =]
0 otherwise

>

where << denotes a left shift operator. Based on equation 1, LightPE implementations approximate the sum with
k shifts and k — 1 add operations, which was shown to be effective for significantly increasing energy-efficiency
[7, 8]. We implement such an idea in LightPE-1 (for 1 shift) and LightPE-2 (for 2 shifts and one addition). In
addition to LightPEs, we have also incorporated the design of a conventional 16 bit integer quantization (INT16)
implementation and a conventional full-precision 32-bit floating point (FP32) implementation.

ACM Trans. Embedd. Comput. Syst.

8 « Incietal

[9)]

o Iy FP32
(]
< INTlG
24- . LightPE-1
” ! . LightPE-2
)
53
£ 5x
o
£
g2
el
(]
N
©1
E \J 35x a
[=] | Ll
2
0 SRTTTWT VW v " e
0 5 10 15 20 25 30 35 40

Normalized Energy

Fig. 4. Different PE types and bit precision lead to significant differences in performance per area and energy. Therefore,
there is a need for a design space exploration framework that incorporates quantization-aware processing elements and
rapidly iterate over various designs.

Figure 3 shows the detailed architectures of FP32, INT16, LightPE-1, and LightPE-2 processing elements. Each
processing element has four FIFOs for input feature map (ifmap), filter, input partial sum, and output partial sum.
Moreover, there are three scratchpad memories implemented in each processing element such as input feature
map scratchpad, filter scratchpad, and partial sum scratchpad which get the data from aforementioned FIFOs.
After getting the data from scratchpads, there are different versions of multiplication implementations between
weights and activations for different processing elements. More specifically, Figure 3a shows the FP32 processing
element that is used in QUIDAM framework. The FP32 implementation uses a 32-bit floating point multiplier
and adder as it is commonly implemented in conventional systems. Figure 3b shows the INT16 processing
element that has an 16-bit integer multiplier and adder. Figure 3¢ and Figure 3d show LightPE-1 and LightPE-2
implementations, respectively. The LightPE-1 implementation utilizes a shift instead of a multiplier and it uses
8 bits for activations and 4 bits for weights. To store a weight w = £27™, where m =0, 1, ..., 7, LightPE-1 needs
four bits: one bit for the sign(w) and three bits for |m|. On the other hand, the LightPE-2 implementation utilizes
two shifts and an addition as shown in Figure 3d. LightPE-2 utilizes 8 bits for activations and 8 bits for weights.
To store a weight w = £(27™ + 27™2), where my,m; = 0,1, ..., 7, LightPE-2 requires seven bits: one bit for the
sign(w), three bits for |m;|, and three bits for |mz|. For easier hardware implementation, 8 bits are used. After
completing the multiplication and shift operations, all processing element implementations rely on a multiplexer
for accumulating input partial sum data. Similarly, a second multiplexer is used for partial sum scratchpad to
reset the accumulation. Finally, after the final addition operation, the data is sent to the output partial sum FIFO
and the result is available.

Besides their low-precision benefits such as reducing the storage requirements, LightPEs also replace the
multiplications with a more energy and area-efficient shift operation or a limited number of shifts and add
operations [7, 8]. Therefore, LightPEs also achieve significant energy and area gains when compared to full-
precision 32-bit floating point and 16-bit integer based designs. As a result, LightPEs provide an enriched design
space for hardware designers and machine learning practitioners to analyze various trade-offs between accuracy
and performance per area and energy.

ACM Trans. Embedd. Comput. Syst.

QUIDAM: A Framework for Quantization-Aware DNN Accelerator and Model Co-Exploration « 9

To this end, we perform a design space exploration analysis with four different processing element types such
as FP32, INT16, LightPE-1, and LightPE-2 and compare them in terms of normalized performance per area and
normalized energy with respect to the INT16 design point with the highest performance per area. As seen in Figure
4, normalized energy varies 35X for almost the same performance per area region and normalized performance
per area varies 5X for almost the same energy region. In addition, while most of the configurations are clustered
around the knee of the scatter plot regardless of the quantization level, we note that FP32 configurations dominate
the highest energy ones, while LightPE-1 configurations are the ones that push performance per area to highest
values, orders of magnitude larger than the INT16 case. Therefore, different PE types and precision levels lead to
significant differences in terms of performance per area and energy. These results also reinforce the need for a
design space exploration framework that incorporates quantization-aware hardware and rapidly iterates over
various designs.

3.3 Power, Performance, and Area Modeling

To build our quantization-aware power, performance, and area models, we use various hardware and DNN
configurations. Specifically, to cover this comprehensive design space of hardware accelerators, we generate a
variety of possible designs by varying global buffer size, number of PEs per row and column in the 2D PE array,
bit precision, and PE type (FP32, INT16, LightPE-1, and LightPE-2). Within each PE, we also vary individual
scratchpad sizes for input feature map, filter, and partial sum scratchpads.

We use Synopsys Design Compiler and the open-source FreePDK45 which is a commonly used process design
kit [45] to synthesize our designs to obtain power, area, and initial timing results. We use Synopsys VCS RTL
simulator to perform functional verification and collect timing information for various DNN configurations such
as VGG-16 [44], ResNet-20, ResNet-34, ResNet-50, and ResNet-56 [16] that are implemented in our testbenches.
After collecting power, area, and timing results from these tools, we use polynomial regression models and model
selection techniques based on k-fold cross validation [35] to tune the degree of the polynomial.

More concretely, a K-degree polynomial regression model is defined as:

F(x) = Zc}-l—[x?'j
J

2
WherexERd;qUEN;Vj,Zq,-jSK, @
1

where x is a d-dimensional input feature vector with x; the i feature, j index denotes the jM-term of the
polynomial, and Vj, c¢; are learnable coefficients. We note that using polynomial regression in modeling the
power and performance characterizing deep neural networks when running on a fixed hardware (i.e., desktop
GPUs) has been studied before [1, 38]. To this end, for the novel design space where both the hardware and
network configurations can vary, we explain in the sequel how features should be chosen for modeling. We detail

the feature space for our proposed power, area, and latency models in the following.

Power We use Synopsys Design Compiler with inherently assumed switching activity when generating
the power consumption. As a result, we choose x to be a four dimensional vector that includes: the scratchpad
size for input feature map (SPjf), the scratchpad size for partial sum (SP;), the scratchpad size for filter weights
(SPfw), and the number of PEs (#PE). Finally, we develop individual models for each processing element type to
improve the performance of our models as power depends on the PE type.

Area For area modeling, we use the same features as in power modeling because the features that affect
power and area come from the same source. The area model only depends on the hardware configuration in
contrast to the latency model which depends on both the hardware and the deep neural network configuration.
More specifically, we choose x to be a four dimensional vector that includes: the scratchpad size for input feature

ACM Trans. Embedd. Comput. Syst.

10 « Incietal

— 1000 2008 _ 5005
§ —— MAPE —— RMSPE = g\o, 160 —— MAPE —— RMSPE =
5 175 g 5 g
= b =140 L 200 D
5 800 1500 & 400",
@ [=)] [} o
7 g g0 £
600] v
é % § 100 300 E
400 g 1 g
g 758 2 200 §
3 0% 3% :
= c
g 200 g 2 401 lowest RMSPE g
c lowest RMSPE c 100
g \ »3 8 "
= 0 % , 8 = 20 g
1 2 3 4 5 6 7 = 1 2 3 4 5 6 7 ©
Degree of the Polynomial Model Degree of the Polynomial Model
(a) Power Modeling (b) Performance Modeling

- 2005

& —— MAPE —— RMSPE s

= 175 2

S 800 &

| 150 ¢

) g

£ 600 125 5

g o

5 100 &

S 400 g

= 75 5

e @

2200 30 ¢

[J)

< lowest RMSPE 5 =

g o g

0o &

1 2 3 4 5 & 7
Degree of the Polynomial Model

(c) Area Modeling

Fig. 5. Comparison of the performance results of the model with respect to the degree of the polynomial model. A polynomial
order of five is chosen for the power, performance, and area modeling since it achieves the lowest Root Mean Square
Percentage Error (RMSPE) and Mean Absolute Percentage Error (MAPE) at the same time.

map (SPjf), the scratchpad size for partial sum (SPys), the scratchpad size for filter weights (SPy), and the number
of PEs (#PE). Similar to power modeling, we build individual models for each processing element type as the
arithmetic units differ between PE types.

Latency Latency depends on both the hardware and the neural network configurations. To cope with diverse
network configurations, we adopt a layer-level latency modeling strategy. Specifically, we use the polynomial
model to infer the per-layer latencies and sum them to obtain a network-level value. As a result, our training data
for the polynomial model is at a layer-level granularity. We use a 12-dimensional feature vector for the latency
model, which includes SP;i¢, SP 5, SPy,, the number of rows in the PE array (PE,qys), the number of columns in
the PE array (PEcol), global bufter size (GBS), the input feature map dimension (A), the input channel count (C),
filter count (F), kernel size (K), stride (S), and padding (P). For ResNets, we add two more binary features that

ACM Trans. Embedd. Comput. Syst.

QUIDAM: A Framework for Quantization-Aware DNN Accelerator and Model Co-Exploration » 11

225 R2=0.99
200 140
175 120
) =z
€ 150 £100
= -
(o]
§125 £ 80
< 100 i_;
© T 60
2 75 £
& < 40
50
— y=x
25 20 = INT16
50 100 150 200 20 40 60 80 100 120 140
Estimated Power (mW) Estimated Power (mW)
40| R2=0,99 R2=0.99 |
35- 30
g 30 2 40
S £
=251 b
[¢] (]
z 230
£ 207 £
= =
2151 220
(9] O
<< <
101
— y=X 10 — y=X
31 A LightPE-1 | e LightPE-2
10 20 30 40 10 20 30 40 50
Estimated Power (mW) Estimated Power (mW)

Fig. 6. Power estimation results for various processing element types such as FP32, INT16, LightPE-1, and LightPE-2. Each
data point corresponds to a different hardware configuration that can be achieved by using the corresponding processing
element type. As it can be seen, the proposed polynomial model agrees closely with the actual values extracted from the
synthesis tools.

indicate whether the layer contains regular skip connection RS € {0, 1} and dotted skip connection DS € {0, 1}.
Similar to power and area models, we build latency models specific to each processing element type to capture
the correlation between PE implementations to latency. We use these latency models to obtain the performance
results by taking the inverse of latency estimations. Therefore, we refer to the inverse of latency as performance
throughout the paper.

Figure 5 depicts the model selection methodology used in our framework. We compare the mean absolute
percentage error (MAPE) and root mean square percentage error (RMSPE) jointly to properly tune the model
parameters of our polynomial model which we also apply model selection techniques based on k-fold cross
validation [35] to tune the degree of the polynomial. As it can be seen, both MAPE and RMSPE results continuously
decrease with a two degree of the polynomial model until a five degree of the polynomial model. Then, both

ACM Trans. Embedd. Comput. Syst.

12« Incietal

1.0 7 7 1.0
R2=0.94
9 9
EO'S §0.8
@ o
-)
506 206
N N
© ‘©
£ £
5 0.4 504
=2 =
E [
£ 0.2 £ 0.2
< — y=X < y=X
0.0 v FP32 0.0 = INT16
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Estimated Normalized Latency Estimated Normalized Latency
1.0 1.0 S .
2-0.93 2=0.94 |
0y g
c 0.8 c 0.8
g 8
© (1]
— —
©06 206
N N
© ©
E £
c 0.4 50.4 o
= z
E dE
502 £ 0.2
< — y=x p' — ¥Y=X
0.0l 4 A nghtPEj 0.0 e LightPE-2
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Estimated Normalized Latency Estimated Normalized Latency

Fig. 7. Performance estimation results for various processing element types such as FP32, INT16, LightPE-1, and LightPE-2.
Each data point corresponds to a different hardware configuration that can be achieved by using the corresponding processing
element type. As it can be seen, the proposed polynomial model agrees closely with the actual values extracted from the
synthesis tools.

MAPE and RMSPE results increase and get significantly higher. Therefore, for the power, performance, and area
models, we use five degree polynomial models as both MAPE and RMSPE results are negligibly small as shown
in Figure 5.

4 RESULTS

In this section, we present power, performance, and area modeling results for each processing element type
and perform a design space exploration on various DNN models such as VGG-16 [44], ResNet-20, ResNet-34,
ResNet-50, and ResNet-56 [16] on CIFAR-10, CIFAR-100, and ImageNet datasets to iterate through our framework
to demonstrate the flexibility of QUIDAM for future studies.

ACM Trans. Embedd. Comput. Syst.

QUIDAM: A Framework for Quantization-Aware DNN Accelerator and Model Co-Exploration « 13

1.0 0.6
tos £ 05
3 E
© m 0.4
0.6 o
< <
I © 0.3
=1 >
0.4 o
< <0.2
0.2 — Yy=X 0.1 — Yy=X
v FP32 ® INT16
0.2 0.4 0.6 0.8 1.0 0.1 0.2 0.3 0.4 0.5 0.6
Estimated Area (mm?) Estimated Area (mm?)
R2=0.99
0.175 0.2
0.150
& 7 0.201
£ £
£0.125 £
@ 1] i
20.100 o 055
< <
50.075 So.10
Q (&}
< < |
0.050
—d y=x 005’ — y=X
0.025 s LightPE-1 | e LightPE-2
0.05 0.10 0.15 0.05 0.10 0.15 0.20 0.25
Estimated Area (mm?) Estimated Area (mm?)

Fig. 8. Area estimation results for various processing element types such as FP32, INT16, LightPE-1, and LightPE-2. Each
data point corresponds to a different hardware configuration that can be achieved by using the corresponding processing
element type. As it can be seen, the proposed polynomial model agrees closely with the actual values extracted from the
synthesis tools.

4.1 Power, Performance, and Area Model Accuracy

The power, performance, and area models detailed in Section 3 significantly speed up the design space exploration
by 3-4 orders of magnitude. Indeed, QUIDAM enables fast design exploration since it reduces the characterization
process from days for synthesizing the RTL implementation and determining power, performance, and area,
results to seconds for using the trained models.

Figure 6-8 show the actual and estimated power, performance, and area results for each processing element
type such as FP32, INT16, LightPE-1, and LightPE-2. Each data point in Figure 6-8 corresponds to a different
hardware accelerator configuration in the comprehensive design space. As shown by the results, QUIDAM’s PPA
models achieve high correlation to the actual PPA values.

ACM Trans. Embedd. Comput. Syst.

14 « Incietal

w
w

w
w
<

'S
N
u

—
v

IN) w
Normalized Energy
N
o

=
o

[

Normalized Performance per Area
w

- & 0 1. 1

FP32 INT16 LightPE-1 LightPE-2 FP32 INT16 LightPE-1 LightPE-2

Fig. 9. Violin plots showing the full distribution of normalized performance per area (left chart) and normalized energy
(right chart) results with respect to the best INT16 configuration for various processing element types such as FP32, INT16,
LightPE-1, and LightPE-2. Each plot shows the full spectrum results for each PE type and black bars show the minimum,
the maximum, and the median values. LightPEs provide higher performance per area and energy-efficient designs when
compared to FP32 and INT16 based designs.

Figure 6,8 also show that the FP32 implementation has the highest area and power cost whereas LightPEs have
the lowest area and power results when one processing element is considered. This shows the hardware-efficiency
of LightPEs when compared to conventional PE implementations.

We also note that Figure 6 and Figure 8 show a higher correlation to actual power and area results than the
corresponding chart for latency shown in Figure 7. This is expected because the performance results depend on
both hardware accelerator and deep neural network configurations whereas the power and the area models have
only hardware accelerator features. Therefore, building a close to perfect performance model is more difficult
given the feature space dimensionality and richness.

4.2 Accelerator Design Space Exploration Results

To show the efficacy of LightPEs to conventional PE designs, we perform design space exploration on various
DNN models such as VGG-16 [44], ResNet-20, ResNet-34, ResNet-50, and ResNet-56 [16] on CIFAR-10, CIFAR-100,
and ImageNet datasets as shown in Figure 9. We show the normalized performance per area and normalized
energy results for each PE type with respect to the baseline INT16 based implementation with the highest
performance per area for the given design space. Performance per area is a useful metric as different processing
element implementations use different bit precision and this affects the required storage of these implementations.
Therefore, we use performance per area as a comparison metric in our analysis.

As it can be seen, LightPE implementations consistently outperform conventional INT16 and FP32 in both
performance per area and energy objectives, which proves their efficacy in terms of hardware-efficiency. Figure 9
shows the full distribution including the minimum, the maximum, and the median results for each PE type. As it
can be seen, LightPEs consistently provide higher performance per area and lower energy consuming design
points as opposed to FP32 and INT16 based designs. Specifically, LightPE-1 and LightPE-2 achieve 4.8x and 4.1x
more performance per area and 4.7X and 4X less energy on average across VGG-16, ResNet-20, and ResNet-56
workloads on CIFAR-10/CIFAR-100 and VGG-16, ResNet-34, and ResNet-50 workloads on ImageNet datasets
when compared to the best INT16 hardware configuration, respectively. On the other hand, INT16 baseline
implementation achieves 1.8X more performance per area and 1.5X less energy on average when compared to
the best FP32 configuration.

ACM Trans. Embedd. Comput. Syst.

QUIDAM: A Framework for Quantization-Aware DNN Accelerator and Model Co-Exploration

« 15
© VGG-164, v FP32 © VGG-164 v fp32
2 \. = INT16 g5 \b = INT16
5 Reshet-56 ' 4 LightPE-1l | 5 ResNet-56 U 4 LightPE-1
2 ResNet-20 Tl 1 ® LightPE-2 | & ResNet-20 IS ! @ LightPE-2
v - i g o -~ 1 g
c4 S B o4 Ee s l
& Tl e, © T b '

2 ~e ! £] | i
53 \ i 53 5 ! !
£ 1} | = ' i 1
7] b 1 a7} \ |]
= \ : = 4 : :
h=] l ° 1 i
g2 '. 22 : :
H \ i = \ 1 i
E 4 i E i] !
S 1 L]] .‘v s 1] :,\ E

v v v ¥
92.0 925 93.0 93.5 94.0 94.5 67 68 69 70 71 72 73 74 75
CIFAR-10 Top-1 Accuracy (%)

CIFAR-100 Top-1 Accuracy (%)

Fig. 10. Normalized performance per area and top-1 accuracy results for various processing element types such as FP32,
INT16, LightPE-1, and LightPE-2 for CIFAR-10 (left chart) and CIFAR-100 (right chart). Each data point corresponds to the
hardware configuration with the highest performance per area for the corresponding processing element type. Pareto-front
is shown with a dashed line for each DNN model. LightPEs are consistently on Parete-front for various DNN models.

These conclusions hold for all the models and the datasets considered in this work such as VGG-16, ResNet-20,
ResNet-34, ResNet-50, and ResNet-56 thereby showing that the benefits of using lower precision generalize
across a variety of models. We conclude that different bit precisions and PE types can lead to significantly

different performance per area and energy results which are two critical metrics for machine learning and systems
community strives to improve upon.

4.3 Pareto-Optimality for Accuracy and Performance per Area

To show the accuracy and performance per area trade-off for different processing element types, we perform
a Pareto-front analysis by training VGG-16, ResNet-20, and ResNet-56 models for CIFAR-10 and CIFAR-100
datasets. For both datasets, we perform five runs for each DNN model and processing element type and plot the
mean top-1 accuracy results: The training recipe for both CIFAR-10/CIFAR-100 datasets follows prior art [5, 17]
which uses stochastic gradient descent with nesterov momentum, weight decay 0.0005, batch size 128, 0.1 initial
learning rate with decrease by 5x at epochs 60, 120, and 160, and train for 200 epochs in total. We note that this
training recipe is tuned for full-precision models. Therefore, the accuracy results for LightPE variants might be
higher with proper hyperparameter tuning.

Figure 10 shows the normalized performance per area and accuracy results for FP32, INT16, LightPE-1, and
LightPE-2. Performance per area results are normalized with respect to the best INT16 configuration for each DNN
model. We plot the hardware configurations with the highest performance per area results for each processing
element type. Next, we perform a Pareto-front analysis among different processing element types and show
the Pareto-frontier with a dashed line for each DNN model. As it can be seen, LightPEs are consistently on the
Pareto-front for various DNN models and datasets, whereas FP32 and INT16 based designs are occasionally
dominated by LightPE variants mostly due to LightPE implementations pushing the Pareto-frontier by being more
hardware-efficient in terms of performance per area and energy than FP32 and INT16 based designs. Moreover, in

certain situations such as CIFAR-10 accuracy results LightPE-2 based design dominates FP32 and both INT16 and
FP32 not only in hardware-efficiency metrics but also in accuracy results for ResNet-20 and ResNet-56 models,
respectively. To sum up, LightPE-1 and LightPE-2 achieve on par accuracy results with FP32 and INT16 while
achieving up to 5.7x and 4.9x more performance per area when compared to INT16 configuration, respectively.

ACM Trans. Embedd. Comput. Syst.

16 « Incietal

18 Y v FP32 18 v v FP32
1.6 v m INT1e 1.6 v m INT16
A LightPE-1 \ A LightPE-1
>1.4 . 1.4 i .
e LightPE-2 & ! ® LightPE-2
21.2-% g12- ¥ i
hY w)
Y10 W] ® F10 W] w
= 4 A\ = H { Y
o 1 [y) i 1 \
g 0.8 | \\ E 0.8] | \“
1 1]
206 Y So6 | ; y
] i 1
1 A [l] Y
0.4- i Y ResNet-20 041 | \, ResNet-20
@-comme Lo L RocNetEg ETTmmmmme—eee VGG-16 & --oc____ nocNettg = BTTmmmmme—eell
0.2 8220 VGETE -4 ResNet-56 = 0.2 [y - ResNet-56 A
6.00 6.25 650 675 700 7.25 750 7.75 8.00 27 28 29 30 31 32 33
CIFAR-10 Top-1 Error (%)

CIFAR-100 Top-1 Error (%}

Fig. 11. Normalized energy and top-1 error results for various processing element types such as FP32, INT16, LightPE-1, and
LightPE-2 for CIFAR-10 (left chart) and CIFAR-100 (right chart). Each data point corresponds to the hardware configuration

with the lowest energy for the corresponding processing element type. Pareto-front is shown with a dashed line for each
DNN madel. LightPEs are consistently on Pareto-front for various DNN models.

4.4 Pareto-Optimality for Accuracy and Energy

We also perform a Pareto-front analysis for accuracy and energy results. We follow the same training methodology
explained in Section 4-2. Figure 11 shows the normalized energy and accuracy results for FP32, INT16, LightPE-1,
and LightPE-2 based designs. Energy results are normalized with respect to the best INT16 configuration for
each DNN model. As it can be seen, LightPEs are systematically on Pareto-front for various DNN models and
datasets. Specifically, LightPE-1 and LightPE-2 achieve 4.7X and 4X less energy on average across different
workloads and datasets when compared to INT16 configuration, respectively. In addition, we note that as the
model complexity increases, the accuracy gap between LightPEs and conventional FP32 and INT16 based designs
decreases. Thus, we conclude that our proposed LightPEs have promising results for training larger models with
negligible accuracy loss while achieving significant performance per area and energy improvements.

We summarize our findings in Table 2 which shows the Pareto-optimal results for each PE type for model
accuracy and hardware-efficiency metrics such as performance per area and energy for VGG-16, ResNet-20, and
ResNet-56 models on CIFAR-10 and CIFAR-100 datasets. Our results show that LightPE implementations provide
on par accuracy results across models and datasets and improve the hardware-efficiency in terms of energy and
performance per area when compared to FP32 and INT16 based designs. As it can be seen from Table 2, LightPEs
consistently dominate FP32 and INT16 based designs in terms of hardware-efficiency metrics such as energy and
performance per area. In addition, although we only claim that LightPEs can achieve similar accuracy to FP32
and INT16 designs, in certain situations such as ResNet-20 and ResNet-56 for CIFAR-10 dataset, the LightPE-2
based design achieves higher accuracy than the FP32 based design for ResNet-20, and both FP32 and INT16 based
designs for ResNet-56, respectively.

Furthermore, Table 3 shows the clock frequency values found by QUIDAM for designs with different PE types.
We note that LightPE based implementations provide up to 1.7x and 1.6X speedup when compared to FP32 and
INT16 based designs, respectively. In addition, we note that LightPE-2 and LightPE-1 implementations achieve
435 MHz and 455 MHz in 45 nm technology node [45], respectively. As the Eyeriss design reports its core clock
frequency as 200 MHz and it utilizes 65 nm technology node [4], we apply the prominent technology scaling rules
to make a fair comparison among different designs. Based on these scaled calculations [41], we note that QUIDAM
finds LightPE implementations that are 1.5X to 1.6X faster when compared to Eyeriss [4] design. Moreover, with

the same INT16 based implementation, the QUIDAM generated DNN accelerator configuration achieves similar
clock frequency (197 MHz) after technology scaling.

ACM Trans. Embedd. Comput. Syst.

QUIDAM: A Framework for Quantization-Aware DNN Accelerator and Model Co-Exploration « 17

Table 2. Pareto-Optimal Results

Accuracy (%)
Network | PE Type CIFAR-10 CIFAR-100 Energy | Performance per Area
FP32 93.96 73.28 1.2X 0.69x
VGG-16 -INT16 93.87 73.31 1X 1X
LightPE-2 93.78 73.16 0.20x 4.9%
LightPE-1 93.60 72.88 0.18x 5.7X
FP32 92.48 68.85 1.8X 0.48x
ResNet-20 -INT16 92.82 69.13 1X 1X
LightPE-2 92.68 68.64 0.29x 3.4X
LightPE-1 92.22 606.78 0.25X% 4.1X
FP32 93.72 72.18 1.6X 0.53x
INT16 93.60 72.03 1X 1X
ResNet-56 -
e LightPE-2 | 93.75 7104 | 0.27% 3.8%
LightPE-1 93.13 70.83 0.22X 4.6X

Table 3. Clock frequency values of QUIDAM generated designs with different PE types

|| PE Type [Clock Frequency H

FP32 275 MHz
INT16 285 MHz
LightPE-2 435 MHz
LightPE-1 455 MHz

4.5 DNN Accelerator and Model Co-Exploration

So far, we have demonstrated the usefulness of our proposed framework by mainly varying the hardware
architecture given some commonly adopted neural network designs. In this subsection, we demonstrate the
generalizability of the proposed framework by co-exploring the design space of both hardware configurations
and neural network architectures. To do so, we need an accuracy model for neural architectures in addition to the
proposed power, performance, and area hardware cost models to rapidly iterate over different DNN models and
perform a DNN accelerator and model co-exploration analysis. We note that an accuracy proxy model is needed
since the search space of DNN architectures is extremely large (hundreds of thousands) which would require an
untenable cost of training. To this end, we adopt the weight-sharing evaluation technique to estimate the accuracy
of a candidate neural network architecture [12, 32]. More specifically, we first define a neural architecture search
space for an existing VGG-16 network as shown in Table 4. The neural architecture search space used in our
analysis is composed of Conv-BN-ReLU and MaxPool blocks with number of repetitions of each block ranging
from 1 to 3, and number of channels ranging from 40 to 512 based on the layer number. It can be observed that
the largest configuration is a VGG-16 architecture and there are smaller variants to be searched. The baseline
VGG-16 model can be achieved by choosing the largest number of repetitions per block and the largest number
of channels available in the search space shown in Table 4. The entire search space contains 110,592 candidate

ACM Trans. Embedd. Comput. Syst.

18 « Incietal

Table 4. Search space for neural architectures used in DNN accelerator and model co-exploration analysis

|| Block ‘ Number of Repetitions ‘ Channels ||
Conv-BN-ReLLU {1,2} {40, 48, 56, 64}
MaxPool 1 N/A
Conv-BN-ReLU {1,2} {80, 96, 112, 128}
MaxPool 1 N/A
Conv-BN-ReLU {1,2,3} {160, 192, 224, 256}
MaxPool 1 N/A
Conv-BN-ReLU {1,2,3} {320, 384, 448, 512}
MaxPool 1 N/A
Conv-BN-ReL.U {1,2,3} {320, 384, 448, 512}
MaxPool 1 N/A

neural network architectures which is found by multiplying the number of all possible choices in each step
of candidate architecture search. To obtain an accuracy predictor, we train the neural network by randomly
sampling an architecture from the search space for each batch while sharing the weights with the largest neural
network architecture [12, 32]. After the training is done, we randomly select 1, 000 network architectures and
directly evaluate their accuracy on the validation set as our output for the accuracy predictor.

Figure 12 shows the normalized energy and the normalized area vs. top-1 model error results for various DNN
accelerator and model pairs on the CIFAR-10 dataset. We randomly sample accelerator configurations and use
1000 DNN models. We then evaluate each accelerator and model pairs in terms of Pareto-optimality. Performance
per area and energy results are normalized with respect to the minimum energy and area point in the INT16
design space, respectively. Figure 12 shows that LightPEs are consistently on the Pareto-front even when the
DNN accelerator and model configurations are co-explored which shows the efficacy of LightPEs not only in a
few commonly adopted DNN models but in a generalized DNN accelerator and model co-design space.

Based on these analyses and results, we conjecture that QUIDAM can successfully provide a wide range of DNN
accelerator and model pairs based on different needs in terms of accuracy and critical hardware-efficiency metrics
such as performance per area and energy. Therefore, we conclude that QUIDAM can be used for DNN accelerator
and model co-design as it incorporates quantization-aware hardware and PPA models which significantly speeds
up the co-design efforts.

5 CONCLUSION

In this work, we present QUIDAM, a quantization-aware highly parameterized DNN accelerator and model
co-exploration framework. Our framework can foster future research on design space co-exploration of DNN
accelerators for various design choices such as bit precision, processing element type, scratchpad size of processing
elements, global buffer size, device bandwidth, number of total processing elements in the the design, and DNN
configurations. Our results show that different bit precisions and processing element types lead to significant
differences in terms of performance per area and energy. Specifically, LightPE-1 and LightPE-2 achieve 4.8X
and 4.1X more performance per area and 4.7X and 4X energy improvement on average when compared to the
best INT16 hardware configuration, respectively. We also show that our proposed LightPEs consistently achieve
Pareto-optimal results in terms of accuracy and performance per area and energy for commonly used DNN
models as well as when DNN accelerator and model configurations are co-explored. Therefore, design space

ACM Trans. Embedd. Comput. Syst.

QUIDAM: A Framework for Quantization-Aware DNN Accelerator and Model Co-Exploration « 19

lel0
B — SO R — + FP32
14 e : :::3126 25 e - e INT16
v o ===z : LightPE-1
P + LightPE-1 LightPE-2
12 vy ¥ « LightPE-2
Tetey v 20
- -
1.0
B -l 3
3] v i =
Sos vV u Yipk o 15
k-] | &
& RAEY 5
2o vy :
£ =V 210-
=4 v Fv v B
04f 1 —
f';- e D SRR Xe
LR
" Xa ® gogery vam i o 5
02 Wy Ty
NS R |
I - _‘n?g:"’ odpe 5
0.0 ey WL, 3 o EElCEsTTTTTTTEEEEE UL L e
10 20 30 60 70 80 10 20 30 60 70 80

40 50 40 50
Top-1 Error (%) Top-1 Error (%)
Fig. 12. Normalized energy (left chart) and normalized area (right chart) vs. top-1 error results for various DNN configurations
and processing element types such as FP32, INT16, LightPE-1, and LightPE-2. Each data point corresponds to a different
hardware and DNN architecture pair which are normalized to the minimum energy (left chart) and the minimum area (right
chart) pair in the INT16 design space. Pareto-front for the co-exploration space is shown with a dashed line. As it can be
seen, LightPEs are consistently on Pareto-front even when DNN accelerator and model configurations are co-explored.

co-exploration of quantization-aware DNN accelerators and models merits a meticulous analysis that takes these
factors into account.

ACKNOWLEDGMENTS
This research was supported in part by NSF CCF Grant No. 1815899 and NSF CSR Grant No. 1815780.

REFERENCES

[1] Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, and Diana Marculescu. 2017. Neuralpower: Predict and deploy energy-eflicient

convolutional neural networks. Asian Conference on Machine Learning (ACML) (2017), 622,637.

Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Architecture for Energy-efficient Dataflow for Convolutional

Neural Networks. In Proceedings of the 43rd International Symposium on Computer Architecture (Seoul, Republic of Korea). IEEE Press,

Piscataway, NJ, USA, 367-379. https://doi.org/10.1109/ISCA.2016.40

Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2017. Using Dataflow to Optimize Energy Efficiency of Deep Neural Network Accelerators.

IEEE Micro 37, 3 (2017), 12-21. https://doi.org/10.1109/MM.2017.54

Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 52(1):127-138, 2017. Eyeriss: An Energy-Efficient Reconfigurable

Accelerator for Deep Convolutional Neural Networks. IEEE Journal of Solid-State Circuits 52, 1 (Jan 52(1):127-138, 2017), 127-138.

https://doi.org/10.1109/JSSC.2016.2616357

[5] Ting-Wu Chin, Ruizhou Ding, Cha Zhang, and Diana Marculescu. 2020. Towards Efficient Model Compression via Learned Global
Ranking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6] J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In NAACL-HLT.

[7] Ruizhou Ding, Zeye Liu, R. D. (Shawn) Blanton, and Diana Marculescu. 2018. Lightening the Load with Highly Accurate Storage- and
Energy-Efficient LightNNs. ACM Trans. Reconfigurable Technol. Syst. 11, 3, Article 17 (Dec. 2018), 24 pages. https://doi.org/10.1145/3270689

[8] Ruizhou Ding, Zeye Liu, Rongye Shi, Diana Marculescu, and R.D. (Shawn) Blanton. 2017. LightNN: Filling the Gap between Conventional

Deep Neural Networks and Binarized Networks. In Proceedings of the on Great Lakes Symposium on VLSI 2017 (Banft, Alberta, Canada)

(GLSVLSI ’17). Association for Computing Machinery, New York, NY, USA, 35-40. https://doi.org/10.1145/3060403.3060465

Steven K. Esser, Jeftrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmendra S. Modha. 2020. LEARNED STEP

SIZE QUANTIZATION. In International Conference on Learning Representations. https://openreview.net/forum?id=rkgO66VKDS

[2

3

[4

[9

ACM Trans. Embedd. Comput. Syst.

20 « Incietal

[10] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. 2017. TETRIS: Scalable and Efficient Neural Network
Acceleration with 3D Memory. SIGARCH Computer Architecture News 45, 1 (2017), 751-764. https://doi.org/10.1145/3093337.3037702

[11] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer, Pranav Prakash, Jerry Zhao, Daniel Grubb, Harrison Liew, Howard

Mao, Albert Ou, Colin Schmidt, Samuel Steffl, John Wright, Ton Stoica, Jonathan Ragan-Kelley, Krste Asanovic, Borivoje Nikolic,

and Yakun Sophia Shao. 2021. Gemmini: Enabling Systematic Deep-Learning Architecture Evaluation via Full-Stack Integration. In

Proceedings of the 58th Annual Design Automation Conference (DAC).

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. 2020. Single path one-shot neural

architecture search with uniform sampling. In European Conference on Computer Vision. Springer, 544-560.

Suyog Gupta and Berkin Akin. 2020. Accelerator-aware Neural Network Design using AutoML. On-Device Intelligence Workshop in

conjunction with MLSys (2020).

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J Dally. 2016. EIE: Efficient Inference

Engine on Compressed Deep Neural Network. International Conference on Computer Architecture (ISCA) (2016).

Song Han, Huizi Mao, and William J Dally. 2016. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained

Quantization and Huffman Coding. International Conference on Learning Representations (ICLR) (2016).

K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). 770-778.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. 2018. Soft Filter Pruning for Accelerating Deep Convolutional Neural

Networks. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (Stockholm, Sweden) (IJCAI'18). AAAI Press,

2234-2240.

[18] Ahmet Inci, Evgeny Bolotin, Yaosheng Fu, Gal Dalal, Shie Mannor, David Nellans, and Diana Marculescu. 2020. The Architectural
Implications of Distributed Reinforcement Learning on CPU-GPU Systems. arXiv preprint arXiv:2012.04210 (2020).

[19] Ahmet Inci, Mehmet Meric Isgenc, and Diana Marculescu. 2021. Cross-Layer Design Space Exploration of NVM-based Caches for Deep
Learning. NVMW (2021).

[20] Ahmet Inci, Mehmet Meric Isgenc, and Diana Marculescu. 2021. DeepNVM++: Cross-Layer Modeling and Optimization Framework of
Non-Volatile Memories for Deep Learning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2021), 1-1.
https://doi.org/10.1109/TCAD.2021.3127148

[21] Ahmet Inci, Mehmet Meric Isgenc, and Diana Marculescu. 2022. Efficient Deep Learning Using Non-Volatile Memory Technology. arXiv
preprint arXiv:2206.13601 (2022).

[22] Ahmet Inci and Diana Marculescu. 2018. Solving the Non-Volatile Memory Conundrum for Deep Learning Workloads. Architectures and
Systems for Big Data Workshop in conjunction with ISCA (2018).

[23] Ahmet Inci, Siri Garudanagiri Virupaksha, Aman Jain, Venkata Vivek Thallam, Ruizhou Ding. and Diana Marculescu. 2022. QADAM:
Quantization-Aware DNN Accelerator Modeling for Pareto-Optimality. arXiv preprint arXiv:2205.13045 (2022).

[24] Ahmet Inci, Siri Garudanagiri Virupaksha, Aman Jain, Venkata Vivek Thallam, Ruizhou Ding, and Diana Marculescu. 2022. QAPPA:

Quantization-Aware Power, Performance, and Area Modeling of DNN Accelerators. arXiv preprint arXiv:2205.08648 (2022).

Ahmet Fatih Inci, Mehmet Meric Isgenc, and Diana Marculescu. 2020. DeepNVM: A Framework for Modeling and Analysis of Non-

Volatile Memory Technologies for Deep Learning Applications. In Proceedings of the 23rd Conference on Design, Automation and Test in

Europe (Grenoble, France) (DATE '20). 1295-1298.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko.

2018. Quantization and training of neural networks for efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. 2704-2713.

Jun-Woo Jang, Sehwan Lee, Dongyoung Kim, Hyunsun Park, Ali Shafiee Ardestani, Yeongjae Choi, Channoh Kim, Yoojin Kim, Hyeongseok

Yu, Hamzah Abdel-Aziz, Jun-Seok Park, Heonsoo Lee, Dongwoo Lee, Myeong Woo Kim, Hanwoong Jung, Heewoo Nam, Dongguen

Lim, Seungwon Lee, Joon-Ho Song, Suknam Kwon, Joseph Hassoun, SukHwan Lim, and Changkyu Choi. 2021. Sparsity-Aware and

Re-configurable NPU Architecture for Samsung Flagship Mobile SoC. In 2021 ACM/IEEE 48th Annual International Symposium on

Computer Architecture (ISCA). 15-28. https://doi.org/10.1109/ISCA52012.2021.00011

N. Jouppi, C. Young, Nishant Patil, David A. Patterson, Gaurav Agrawal, R. Bajwa, Sarah Bates, Suresh Bhatia, N. Boden, Al Borchers,

Rick Boyle, Pierre luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, J. Dean, Ben Gelb, T. Ghaemmaghami,

R. Gottipati, William Gulland, R. Hagmann, C. R. Ho, Doug Hogberg, John Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, Alek Jaworski,

Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, J. Laudon, James Law, Diemthu Le, Chris

Leary, Zhuyuan Liu, Kyle A. Lucke, Alan Lundin, G. MacKean, A. Maggiore, Maire Mahony, K. Miller, R. Nagarajan, Ravi Narayanaswami,

Ray Ni, K. Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda, A. Phelps, Jonathan Ross, Matt Ross, Amir Salek, E. Samadiani,

C. Severn, G. Sizikov, Matthew Snelham, J. Souter, D. Steinberg, Andy Swing, Mercedes Tan, G. Thorson, Bo Tian, H. Toma, Erick

Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and D. Yoon. 2017. In-datacenter performance analysis of a tensor

processing unit. 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA) (2017), 1-12.

(12

(13

(14

(15

(16

(17

(25

[26

[27

[28

ACM Trans. Embedd. Comput. Syst.

QUIDAM: A Framework for Quantization-Aware DNN Accelerator and Model Co-Exploration » 21

[29] Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B. Jablin, George Kurian, James Laudon, Sheng Li, Peter

Ma, Xiaoyu Ma, Thomas Norrie, Nishant Patil, Sushma Prasad, Cliff Young, Zongwei Zhou, and David Patterson. 2021. Ten Lessons

From Three Generations Shaped Google’s TPUv4i : Industrial Product. In 2021 ACM/IEEE 48th Annual International Symposium on

Computer Architecture (ISCA). 1-14. https://doi.org/10.1109/ISCA52012.2021.00010

Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman Parashar, Vivek Sarkar, and Tushar Krishna. 2019. Understanding

Reuse, Performance, and Hardware Cost of DNN Dataflow: A Data-Centric Approach. In Proceedings of the 52nd Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO. ACM, 754-768.

Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. 2018. MAERI: Enabling Flexible Dataflow Mapping over DNN Accelerators via

Reconfigurable Interconnects. 461-475. https://doi.org/10.1145/3173162.3173176

Liam Li and Ameet Talwalkar. 2020. Random search and reproducibility for neural architecture search. In Uncertainty in Artificial

Intelligence. PMLR, 367-377.

Yuhang Li, Xin Dong, and Wei Wang. 2020. Additive Powers-of-Two Quantization: An Efficient Non-uniform Discretization for Neural

Networks. In International Conference on Learning Representations. https://openreview.net/forum?id=BkgXT24tDS

[34] Diana Marculescu, Dimitrios Stamoulis, and Ermao Cai. 2018. Hardware-Aware Machine Learning: Modeling and Optimization. In 2018

IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (San Diego, CA, USA). IEEE Press, 1-8. https://dol.org/10.1145/

3240765.3243479

F. Mosteller and J. W. Tukey. 1968. Data analysis, including statistics. In Handbook of Social Psychology, Vol. 2, G. Lindzey and E. Aronson

(Eds.). Addison-Wesley.

[36] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen, Victor A. Ying, Anurag Mukkara, Rangharajan Venkatesan,
Brucek Khailany, Stephen W. Keckler, and Joel Emer. 2019. Timeloop: A Systematic Approach to DNN Accelerator Evaluation. In 2019 IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS). 304=315. https://doi.org/10.1109/ISPASS.2019.00042

[37] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, R. Venkatesan, B. Khailany, J. Emer, Stephen W. Keckler, and W.

Dally. 2017. SCNN: An accelerator for compressed-sparse convolutional neural networks. ISCA (2017).

Hang Qi, Evan R. Sparks, and Ameet Talwalkar. 2017. Paleo: A Performance Model for Deep Neural Networks. In Proceedings of the

International Conference on Learning Representations.

Mohamed M. Sabry Aly, Mingyu Gao, Gage Hills, Chi-Shuen Lee, Greg Pitner, Max M. Shulaker, Tony F. Wu, Mehdi Asheghi, Jeff

Bokor, Franz Franchetti, Kenneth E. Goodson, Christos Kozyrakis, Igor Markov, Kunle Olukotun, Larry Pileggi, Eric Pop, Jan Rabaey,

Christopher Ré, H.-S. Philip Wong, and Subhasish Mitra. 2015. Energy-Efficient Abundant-Data Computing: The N3XT 1.000x. Computer

48, 12 (2015), 24-33. https://doi.org/10.1109/MC.2015.376

[40] Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar Krishna. 2018. SCALE-Sim: Systolic CNN Accelerator

Simulator. arXiv preprint arXiv:1811.02883 (2018).

Satyabrata Sarangi and Bevan Baas. 2021. DeepScaleTool: A Tool for the Accurate Estimation of Technology Scaling in the Deep-

Submicron Era. In 2021 IEEE International Symposium on Circuits and Systems (ISCAS). 1-5. https://doi.org/10.1109/ISCAS51556.2021.

9401196

Y. Shao, Jason Clemons, Rangharajan Venkatesan, B. Zimmer, Matthew R. Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, N. Pinckney,

Priyanka Raina, S. Tell, Yanqing Zhang, W. Dally, J. Emer, C. T. Gray, B. Khailany, and S. Keckler. 2019. Simba: Scaling Deep-Learning

Inference with Multi-Chip-Module-Based Architecture. Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microar-

chitecture (2019).

[43] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. 2014. Aladdin: A pre-RTL, power-performance accelerator
simulator enabling large design space exploration of customized architectures. In 2014 ACM/IEEE 41st International Symposium on
Computer Architecture (ISCA). 97-108. https://doi.org/10.1109/ISCA.2014.6853196

[44] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition. In International
Conference on Learning Representations.

[45]]. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis, P. D. Franzon, M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal. 2007.
FreePDK: An Open-Source Variation-Aware Design Kit. In MSE'07.

[46] Thierry Tambe, En-Yu Yang, Zishen Wan, Yuntian Deng, Vijay Janapa Reddi, Alexander Rush, David Brooks, and Gu-Yeon Wei. 2020.

Algorithm-hardware co-design of adaptive floating-point encodings for resilient deep learning inference. In 2020 57th ACM/IEEE Design

Automation Conference (DAC). IEEE, 1-6.

Mingxing Tan and Quoc Le. 2019. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, Kamalika Chaudhuri and

Ruslan Salakhutdinov (Eds.), Vol. 97. PMLR, 6105-6114.

Mingxing Tan, R. Pang, and Quoc V. Le. 2020. EfficientDet: Scalable and Efficient Object Detection. 2020 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR) (2020), 10778-10787.

[49] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. 2019. HAQ: Hardware-Aware Automated Quantization With Mixed Precision.
In IEEE Conference on Computer Vision and Pattern Recognition (CVFR).

(30

[31

[32

(33

(35

(38

(39

[41

[42

[47

(48

ACM Trans. Embedd. Comput. Syst.

22« Incietal

[50] Yannan N. Wu, Joel S. Emer, and Vivienne Sze. 2019. Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator
Designs. In IEEE/ACM International Conference On Computer Aided Design (ICCAD).

[51] Lei Yang, Zheyu Yan, Meng Li, Hyoukjun Kwon, Liangzhen Lai, Tushar Krishna, Vikas Chandra, Weiwen Jiang, and Yiyu Shi. 2020.
Co-Exploration of Neural Architectures and Heterogeneous ASIC Accelerator Designs Targeting Multiple Tasks. 2020 57th ACM/IEEE
Design Automation Conference (DAC) (2020), 1-6.

[52] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. 2016. Dorefa-net: Training low bitwidth convolutional
neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160 (2016).

[53] Yanqi Zhou, Xuanyi Dong, Berkin Akin, Mingxing Tan, Daiyi Peng, Tianjian Meng, Amir Yazdanbakhsh, Da Huang, Ravi Narayanaswami,
and James Laudon. 2021. Rethinking Co-design of Neural Architectures and Hardware Accelerators. arXiv preprint arXiv:2102.08619
(2021).

ACM Trans. Embedd. Comput. Syst.

