

1 Application of Plasma and UV/H<sub>2</sub>O<sub>2</sub> for the Removal of Pharmaceuticals in Synthetic Urine

2

3 Enrique E. Rodriguez<sup>a</sup>, William A. Tarpeh<sup>b</sup>, Krista R. Wigginton<sup>a</sup>, and Nancy G.

4 Love<sup>a#</sup>

5

6 <sup>a</sup>Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI,

7 United States

8 <sup>b</sup>Chemical Engineering, Stanford University, Stanford, CA, United States

9

10 Main text word count: 4139

11 Abstract word count: 183

12

13 <sup>#</sup>Address correspondence to Nancy G. Love, [nglove@umich.edu](mailto:nglove@umich.edu), 734-763-9664

14

15    **Abstract**

16    Removal of pharmaceuticals in source-separated urine is an important step toward gaining  
17    acceptance of urine-derived fertilizers. Advanced oxidation processes (AOPs) have been studied  
18    for the removal of pharmaceuticals in various complex matrices, such as treated wastewaters. AOP  
19    methods that rely primarily on hydroxyl radicals as the oxidizing agents suffer from the impacts  
20    of scavengers. Here, we compared the performance of a dielectric barrier discharge plasma jet to  
21    ultraviolet (UV)/AOP in oxidizing six pharmaceuticals (acetaminophen, atenolol, 17 $\alpha$ -ethynyl  
22    estradiol, ibuprofen, naproxen, and sulfamethoxazole). The results show that the plasma reactor  
23    used produced hydroxyl radicals as the primary oxidizing agent and that other oxidizing factors  
24    were minimal. Both plasma and UV/H<sub>2</sub>O<sub>2</sub> experienced scavenging in fresh and hydrolyzed urine.  
25    The scavenging impacts were consistent across fresh and hydrolyzed urine for plasma whereas  
26    UV/H<sub>2</sub>O<sub>2</sub> experienced greater scavenging in fresh urine. The energy required per order of  
27    magnitude of pharmaceutical transformed was up to 3 orders of magnitude lower for UV/H<sub>2</sub>O<sub>2</sub>  
28    than for plasma and depended upon the matrix. Therefore, plasma can oxidize pharmaceuticals in  
29    fresh and hydrolyzed urine, and would be most useful for on-site or building-scale applications.

30 **Introduction**

31 Water Resource Recovery Facilities (WRRFs) invest heavily in advanced nutrient removal  
32 methods to mitigate the risks of eutrophication in surface waters, recycle nutrients,(1,2) and  
33 combat the threat of dwindling global phosphorus reserves.(3) Urine contains most of the nitrogen  
34 and phosphorus in domestic wastewater while composing less than 1% of the total volume.(4) It  
35 can be processed centrally or at the point of collection using building-scale systems(5). Separating  
36 urine at the point of generation and forming urine-derived fertilizers is a means of offsetting the  
37 energy and capital costs of nutrient removal at WRRFs(6) and of providing a concentrated,  
38 renewable stream of nutrients. Source-separated urine also produces a concentrated waste stream  
39 of pharmaceuticals that conventional wastewater treatment systems fail to fully address.(7)

40 Pharmaceuticals are important contaminants of concern because of their persistence in  
41 conventional wastewater treatment systems.(8) Among the options for removing pharmaceuticals,  
42 sorption-based processes and advanced oxidation processes (AOPs) are among the most  
43 common.(9–11) Several studies have been published on the treatment of pharmaceuticals in a  
44 variety of matrices by traditional AOPs like UV/H<sub>2</sub>O<sub>2</sub> and UV/ozone.(12–15) These AOP methods  
45 rely upon the high oxidative potential of hydroxyl radicals to degrade micropollutants.(16)  
46 Hydroxyl radicals often have second order rate constants with organic compounds that are near  
47 the limit of diffusion, meaning they will degrade these compounds nearly as rapidly as they  
48 collide.(17) However, the broad range of chemicals that hydroxyl radicals are able to rapidly  
49 degrade limits the selectivity of hydroxyl-radical-based AOPs.(18) Reactive chemicals outside of  
50 the contaminants targeted for degradation (i.e. scavengers) limit the ability of AOP treatments to  
51 degrade target pharmaceuticals and diminishes treatment efficiency.

52 Plasma is an alternative method to traditional AOPs that generates oxidative radicals and  
53 other oxidative species. Previous studies have shown that UV,  $\text{H}_2\text{O}_2$ ,  $\text{O}_3$ ,  $\text{H}_2$ ,  $\text{O}_2^-$ , and several other  
54 reactive chemical species are formed by plasma.(19–23) The generation of these species depends  
55 heavily on a wide set of factors that include (among others): reactor geometry, carrier gas, gas flow  
56 rate, type of power supply, frequency, voltage rise time, and liquid conductivity.(24–26) The  
57 potential for capturing the synergistic effects of multiple reactive chemical species makes plasma  
58 an appealing technology compared to traditional AOPs, which may not be suitable in complex  
59 matrixes such as urine. Similar to other AOPs, plasma can also provide multiple treatment benefits  
60 by serving as a disinfectant(27) and stabilizing ammonium by oxidizing it to nitrate.(28) This  
61 would be beneficial for processing source-separated urine where micropollutant elimination,  
62 pathogen disinfection, and nutrient stabilization are major priorities for fertilizer production.  
63 However, several questions need to be answered to understand the full potential of plasma for  
64 treating urine. Studies that probe plasma as a water purification method commonly rely on dyes as  
65 a proxy for micropollutants to investigate the performance of plasmas.(29–32) Consequently, the  
66 efficiency for degrading micropollutants in different matrices is largely unknown. Furthermore, it  
67 is unclear if radicals and oxidative species other than hydroxyl radical play significant roles in  
68 degrading compounds during plasma treatment.

69 Although there are multiple unit treatment processes for converting urine into useful  
70 products, management of pharmaceuticals in urine is understudied compared to nutrient recover  
71 for urine treatment. This study aims to assess the performance of a traditional AOP (UV/ $\text{H}_2\text{O}_2$ )  
72 and plasma AOP for oxidizing pharmaceuticals in fresh or hydrolyzed urine. To evaluate plasma,  
73 we apply a dielectric barrier discharge plasma reactor in liquid using laboratory studies with a suite  
74 of pharmaceutical compounds rather than dyes. The kinetic rate of pharmaceutical loss by both

75 AOP methods is determined and the likely oxidative mechanism responsible for degradation is  
76 assessed. Finally, the energy efficiency of both AOP methods employed during this study are  
77 assessed.

78 **Materials and Methods**

79 **Pharmaceutical Compounds**

80 Acetaminophen (Acros Organics; CAS #103-92-2; purity: 98%), atenolol (Acros  
81 Organics; CAS #29122-68-7; purity: 98%), 17a-ethynodiol (Acros Organics; CAS #57-63-  
82 6; purity: 98%), ibuprofen (Acros Organics; CAS #15687-27-1; purity: 99%), naproxen (MP  
83 Biomedicals; CAS #22204-53-1; purity: 99%), and sulfamethoxazole (MP Biomedicals; CAS  
84 #723-46-6; purity: 99%) were used to prepare a 400 mg/L pharmaceutical cocktail in 25 mL of  
85 methanol (Certified ACS; Fisher Scientific; CAS #67-56-1; purity: 99.9%). Pharmaceutical  
86 physicochemical parameters are found in Table S1. The pharmaceutical cocktail was stored in a -  
87 20°C freezer in between experiments. Acetaminophen-d3, atenolol-d7, estradiol-2,4,6,16,16-d4,  
88 (S)-(+)-ibuprofen-d3, (S)-naproxen-d3, sulfamethoxazole-d4 were all purchased from Toronto  
89 Research Chemicals. These deuterated standards were used to create a separate 10 mg/L super  
90 stock in 25 mL of methanol. The deuterated standard super stock was also stored in a -20°C freezer  
91 in between experiments.

92

93 **UV/H<sub>2</sub>O<sub>2</sub> Experiments**

94 The UV/H<sub>2</sub>O<sub>2</sub> experiments were carried out with six pharmaceuticals in nanopure water,  
95 synthetic fresh urine, and synthetic hydrolyzed urine. The synthetic urine recipes for both fresh  
96 and hydrolyzed urine are provided in Table S2 and are based on previous studies.(33,34)  
97 Experimental solutions in nanopure water or the synthetic urines were prepared by spiking the

98 pharmaceutical cocktail stocks to achieve concentrations of 1 mg/L and H<sub>2</sub>O<sub>2</sub> (Fisher Chemical;  
99 CAS #7722-81-1) stocks to achieve a concentration of 20 mg/L. Prior to treatment, initial samples  
100 (1.41 mL) were removed from the beaker reactors and placed in 2 mL screw top vials. The  
101 experimental solutions were exposed to a low-pressure ultraviolet lamp at a fluence rate of 0.54  
102 mW/cm<sup>2</sup> (Phillips Inc. #TUV PL-S 13W/2P) in a standard fluorescent light fixture with constant  
103 stirring. Every 2.5 minutes, aliquots were collected from the reactors and placed in 2 mL screw  
104 top vials. All samples were spiked with 0.09 mL of the 10 mg/L deuterated internal standard stock.  
105 Samples were collected up to a total reaction time of 20 minutes for nanopure water solutions and  
106 up to 60 minutes for synthetic urine solutions. This results in a fluence dose of 650 mJ/cm<sup>2</sup> and  
107 1,900 mJ/cm<sup>2</sup> for the nanopure water and synthetic urine solutions, respectively.

108

## 109 **Plasma Experiments**

110 The plasma reactor consisted of a 22-gauge, stainless-steel, high voltage electrode  
111 (McMaster-Carr) fed into cylindrical quartz tubing (Quartz Scientific) which acted as the dielectric  
112 barrier (Figure S1). The ground electrode was a corrosion-resistant tungsten wire (McMaster-Carr)  
113 wrapped around the quartz tubing. Argon gas was fed into the tubing at a rate of about 2.126 L  
114 min<sup>-1</sup> controlled by a 150-mm correlated flowmeter (Cole-Palmer). Power was supplied by a neon  
115 transformer (Franceformer; Fairview, Tennessee) with an output voltage of 15,000 volts and a  
116 frequency of 60 Hz.

117 Similar to the UV/H<sub>2</sub>O<sub>2</sub> experiments, experimental solutions consisted of nanopure water,  
118 synthetic fresh urine, or synthetic hydrolyzed urine spiked with the six pharmaceuticals to achieve  
119 1 mg/L. The experimental solution (72 mL) was transferred to a 100 mL graduated cylinder. At  
120 time = 0, an initial aliquot (1.41 mL) was collected from the reactor, placed in a 2 mL screw top

121 vial, and spiked with 0.09 mL of the deuterated standard. During treatment with the plasma reactor,  
122 aliquots were collected from the experimental solutions every 2.5 minutes for up to 20 minutes  
123 and were spiked with the deuterated internal standard stocks.

124

## 125 **Analytical Methods**

126 Pharmaceuticals in treated samples were quantified through online solid-phase extraction  
127 (SPE) followed by high performance liquid chromatography (HPLC) and high-resolution mass  
128 spectrometry (HRMS). Standard curves were prepared and consisted of six calibration points  
129 ranging from 100 mg/L to 1,200 mg/L and each containing 600 mg/L of the deuterated internal  
130 standard. Each standard curve was considered successful if the  $R^2$  was greater than 0.99. Online  
131 SPE was conducted with the Thermo Scientific Equan setup and a Hypersil Gold aQ trapping  
132 column (20 x 2.1 mm, 12  $\mu$ M particle size; Thermo Fisher Scientific). An Accucore aQ column  
133 (50 x 2.1 mm, 2.6  $\mu$ m particle size; Thermo Fisher Scientific) was used for chromatographic  
134 separation with an injection volume of 1000 mL into the trapping column. To elute the selected  
135 pharmaceuticals from the column with minimal interference two mobile phases were applied in  
136 gradient flow consisting of nanopure water and 0.1% formic acid for mobile phase A and methanol  
137 and 0.1% formic acid for mobile phase B. The flow rate was 0.175 mL/min for 12 minutes of the  
138 gradient flow and increased to 0.25 mL/min over the course of 0.2 minutes and held for 1.8  
139 minutes. Finally, the flow rate was decreased from 0.25 to 0.175 mL/min over the course of 0.2  
140 minutes. The mobile phase gradient flow was as follows: mobile phase A was held at 90% for 3  
141 minutes, steadily increased to 90% mobile phase B over the course of 8 minutes, held at 90%  
142 mobile phase B for 1 minute, and finally returned to 90% mobile phase A over 0.2 minutes.

143 All six pharmaceuticals were ionized in positive mode through electron spray ionization.  
144 Source parameters included: capillary temperature of 250 °C, auxiliary gas heater temperature of  
145 275 °C, a spray voltage of 3.5 kV, sheath gas flow rate of 30 arbitrary units, auxiliary gas flow rate  
146 of 20 arbitrary units, and sweep gas flow rate of 1 arbitrary unit. Resolution was set at 70,000 with  
147 a target automatic gain control (AGC) of  $1 \times 10^{-6}$  and a scan range from 150 to 2000 m/z. Analytes  
148 and their respective deuterated forms were found through their retention times and exact mass  
149 (Table S3). Concentrations for the treated samples were quantified by comparing the response ratio  
150 (the area of the target analyte divided by the area of the deuterated standard) of the samples to that  
151 of the standard curves generated.

152

### 153 **Data Analysis**

154 Observed rate constants for each pharmaceutical in both reactor systems were determined  
155 by assuming pseudo-first order conditions. Reported  $k_{obs}$  values in all matrixes were determined  
156 based on the slopes found in Figures S2-S4 and are reported in Table S4. In the case of the  
157 UV/H<sub>2</sub>O<sub>2</sub>, the reaction mechanism includes both direct and indirect photolysis and is defined as  
158 follows:

$$159 \frac{d[Pharm]}{dt} = -k_{d,Pharm}[Pharm] - k_{\cdot OH,Pharm}[\cdot OH][Pharm]$$
$$160 = -k_{obs}^{UV}[Pharm]$$

161 where  $k_{d,Pharm}$  (s<sup>-1</sup>) is the direct photolysis rate constant,  $k_{\cdot OH,Pharm}$  (M<sup>-1</sup>s<sup>-1</sup>) is the second-order rate  
162 constant with hydroxyl radical,  $k_{obs}^{UV}$  (s<sup>-1</sup>) is the observed rate constant, [Pharm] (M) is the  
163 pharmaceutical concentration, and [·OH] (M) is the hydroxyl radical concentration. Integrating  
164 results in the relationship:

$$165 \ln\left(\frac{[Pharm]}{[Pharm]_0}\right) = -k_{obs}^{UV}t.$$

166 The observed rate constant can be determined by plotting the experimentally determined  
167 pharmaceutical concentration ratio over time. For the case of the plasma reactor, the observed rate  
168 constant is defined as:

169 
$$\frac{d[Pharm]}{dt} = -k_{\cdot OH, Pharm}[\cdot OH][Pharm] - k_{O_3, Pharm}[O_3][Pharm] - k_{d, Pharm}[Pharm] - \dots$$

170 
$$= -k_{obs}^P[Pharm]$$

171 
$$\ln\left(\frac{[Pharm]}{[Pharm]_0}\right) = -k_{obs}^P t .$$

172 Statistical analysis of observed rate constants was conducted using GraphPad Prism version 8.4.3  
173 for MacOS Catalina, GraphPad Software, San Diego, California USA, [www.graphpad.com](http://www.graphpad.com).

174

175 **Energy Efficiency Calculations**

176  $E_{EO}$  is a metric defined by Bolton et al.(35) that indicates the energy investment required  
177 to achieve 90% removal of a contaminant.  $E_{EO}$  is calculated for an idealized batch reactor as  
178 follows:

179

180 
$$E_{EO} = \frac{38.38 P}{V k}$$

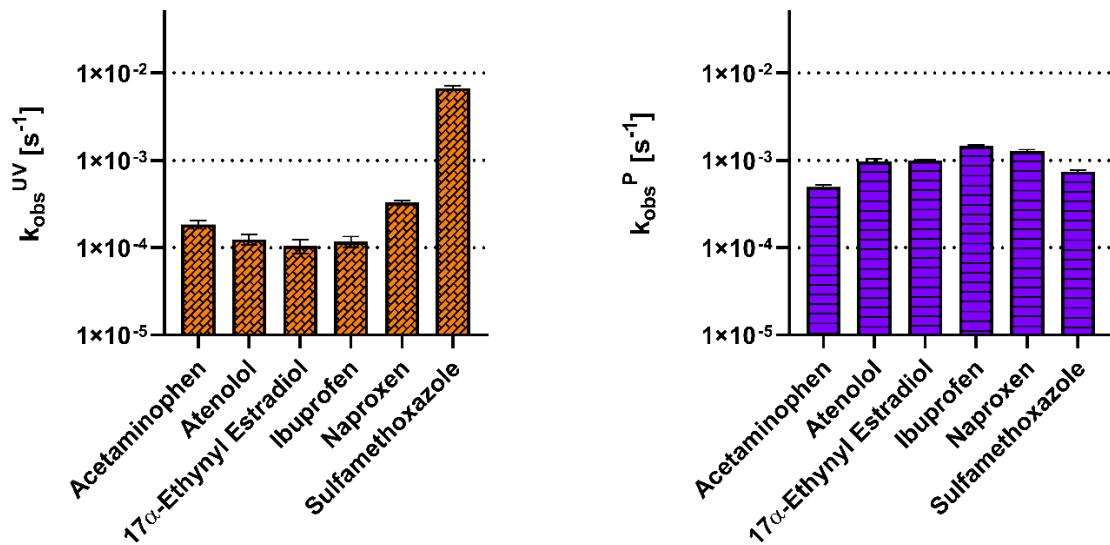
181

182 where P is the power (kW), V is the volume (L), and k is the observed rate constant (min<sup>-1</sup>). An  
183 individual  $E_{EO}$  was calculated using each of the observed rate constants of the target  
184 pharmaceuticals treated in each of the reactors across all three experimental matrices.

185 The UV irradiance of our UV/H<sub>2</sub>O<sub>2</sub> reactor setup was determined by potassium iodide  
186 actinometry as described previously(36) and was used as the power value for the  $E_{EO}$  calculation.  
187 We measured the power used by the plasma reactor to degrade the pharmaceuticals by measuring

188 the voltage and current running through the positive and ground electrodes described above. The  
189 voltage was measured using a high voltage probe (Tektronix P6015A; Beaverton, Oregon) and the  
190 current was measured with a Pearson coil. The signals from the probe and coil were monitored and  
191 captured through a BK Precision Model-2190D oscilloscope (Yorba Linda, California). These  
192 signals were then integrated over a single phase to determine the power dissipated directly into the  
193 reactor.

194


## 195 **Results and Discussion**

### 196 **Hydroxyl radicals are the primary degradation mechanism in plasma treatment**

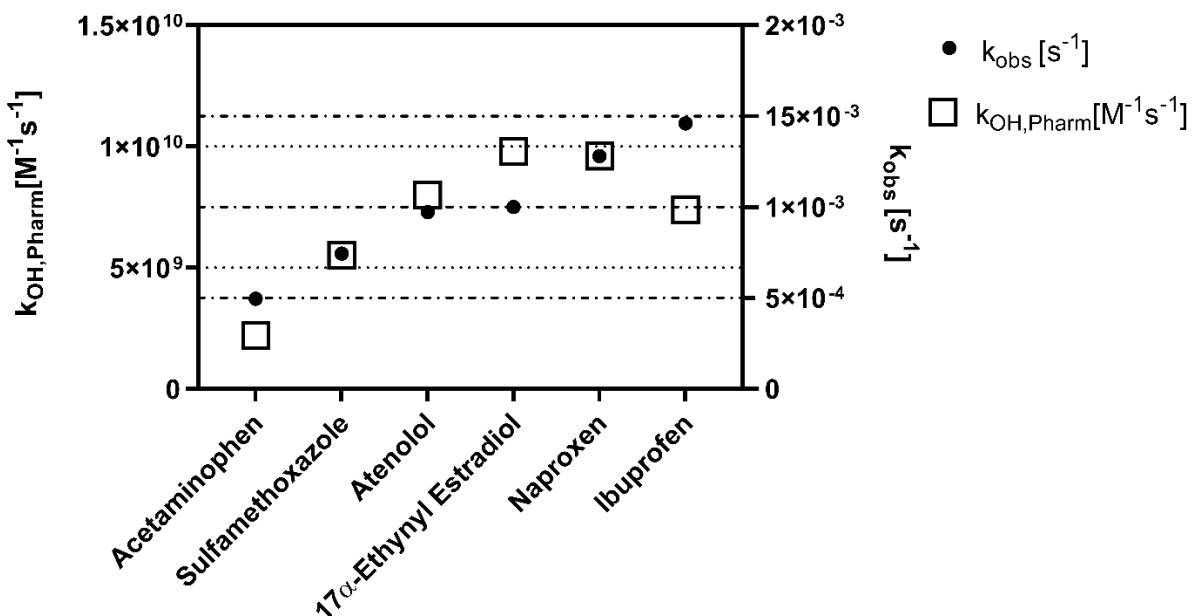
197 Experiments with nanopure water show that the UV/H<sub>2</sub>O<sub>2</sub> reactor transforms our test  
198 pharmaceuticals in a similar manner to other UV/H<sub>2</sub>O<sub>2</sub> studies in water. Sulfamethoxazole, which  
199 has a higher quantum yield and molar extinction coefficient than the other pharmaceuticals and is  
200 thus susceptible to both direct and indirect photolysis, had a rate constant between 20 and 65 times  
201 higher than all the other pharmaceuticals tested (Figure 1) and this difference was significant  
202 (Tukey's multiple comparison test, p < 0.05). This pattern is similar to what was found by Wols et  
203 al. 2013 in which sulfamethoxazole degraded more rapidly than acetaminophen and atenolol at a  
204 comparable UV dose and H<sub>2</sub>O<sub>2</sub> concentration.(37) This result shows that our UV/H<sub>2</sub>O<sub>2</sub>  
205 experimental setup produces results consistent with other published studies. We treated the same  
206 set of pharmaceuticals with our experimental plasma reactor and found observed rate constants  
207 ranging from 4.95 x 10<sup>-4</sup> to 1.46 x 10<sup>-3</sup> s<sup>-1</sup>. Importantly, the observed rate constant for  
208 sulfamethoxazole was within the same order of magnitude as the other pharmaceuticals tested.  
209 This suggests that degradation by direct photolysis is not a significant pathway for pharmaceutical  
210 loss in our plasma reactor. UV production by plasma has been reported(38); however, consistent

211 with our results, its contribution to the degradation of organic contaminants was negligible. Our  
212 results are also consistent with those of Singh et al. who evaluated degradation pathways for  
213 diclofenac, carbamazepine, and ciprofloxacin in a pulsed corona discharge plasma reactor and  
214 found the most prominent mechanism for mineralization was by electrophilic addition of hydroxyl  
215 radicals.(39)

216



217


218 **Figure 1.** Observed first order rate constants for pharmaceutical loss in nanopure water treated by  
219 the UV/ $\text{H}_2\text{O}_2$  system (left) and the plasma system (right).

220

221 Comparing the observed rate constants with reported rate constants for hydroxyl radicals,  
222 ozone, and direct photolysis confirms the conclusions from our experimental results on the impact  
223 of direct photolysis and provide insight into the contribution of ozone towards pharmaceutical  
224 degradation (Figure 2). The literature-based second-order rate constants with hydroxyl radical  
225 correspond with a higher observed rate constant for most of the pharmaceuticals. Specifically, the  
226 correlation ( $R^2$ : 0.54; significantly non-zero slope  $P = 0.0005$ ) between the observed rate constants

227 and the hydroxyl radical second-order rate constants suggests that hydroxyl radical is the  
228 predominant oxidative agent. A lack of correlation would suggest other radical species were  
229 driving the degradation of the pharmaceuticals. By comparison, the rate constants of the ozone and  
230 UV<sub>254</sub> radiation do not correlate ( $R^2$ : 0.0001 and  $R^2$ : 0.2 respectively; non-significant non-zero  
231 slope  $P = 0.96$  and  $P = 0.07$ ) with the observed rate constants (Figures S5 and S6). The larger  
232 second-order rate constants of the pharmaceuticals with hydroxyl radical demonstrate that the  
233 plasma reactor would need to generate ozone concentrations three to nine orders of magnitude  
234 greater than the hydroxyl radical concentrations to play a role in pharmaceutical degradation. The  
235 exception to this observation is with 17a-ethynodiol, which has a second-order rate constant  
236 with ozone ( $7.4 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$ ) similar to the second-order rate constant with hydroxyl radical ( $9.8$   
237  $\times 10^9 \text{ M}^{-1}\text{s}^{-1}$ ). The general trend suggest that ozone is produced at insufficient quantities to increase  
238 the observed rate constant.

239 Our results suggest the main mechanism responsible for pharmaceutical losses observed  
240 during our plasma experiments is hydroxyl radical oxidation. However, our results do not exclude  
241 the possibility that UV and reactive species beyond hydroxyl radicals were produced; rather, they  
242 show that they were not formed at intensities sufficient to compete with hydroxyl radicals for  
243 degradation of the pharmaceutical compounds we evaluated. The types and amounts of radicals  
244 produced by plasma are impacted by operating and design conditions such as carrier gas, gas flow  
245 rates, reactor geometry, input power, type of power supply, and electrode types.(40) By making  
246 changes to these conditions, it is feasible that the primary reaction mechanism could shift to other  
247 radicals beyond hydroxyl radical, such as UV, ozone, or peroxide. However, our reactor allows us  
248 to focus on hydroxyl radical as an oxidative mechanism, which is known to be a major oxidative  
249 radical for degradation of pharmaceutical compounds.

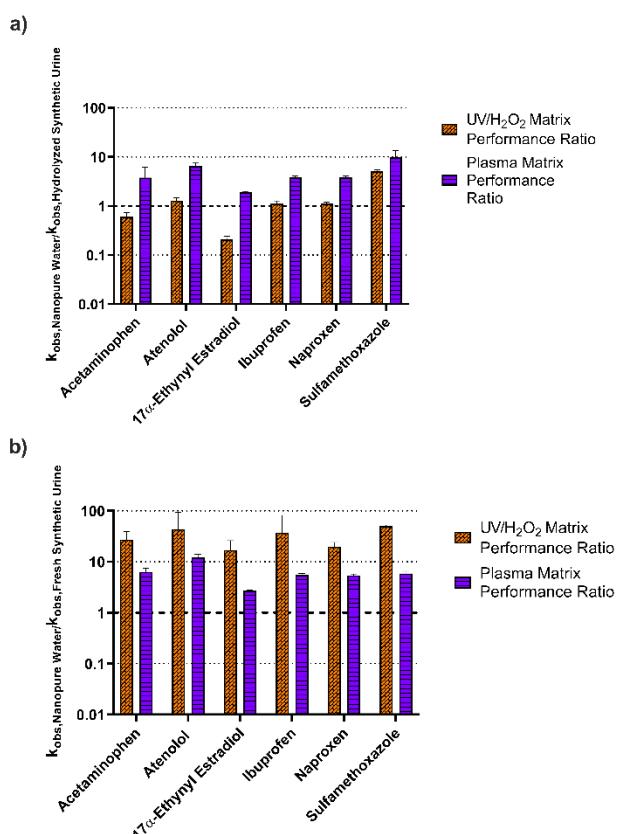


252 **Figure 2.** Second-order rate constants reported in the literature for each pharmaceutical with  
 253 hydroxyl radical are presented on the left y-axis.(41–44) Observed first-order rate constants for  
 254 each pharmaceutical in nanopure water are presented on the right y-axis. Both axes are presented  
 255 on a linear scale to see the relationship between first and second-order rate constants.

## 257 **Plasma oxidation treatment is consistent across different synthetic urine matrices**

258 Experiments were conducted to determine if the matrix of synthetic urine would equally impact  
 259 the performance of the two AOP treatments. We use a matrix performance ratio ( $k_{\text{obs,nanopure}}$   
 260 water/ $k_{\text{obs,synthetic urine}}$ ) to characterize these matrix effects for both fresh and hydrolyzed synthetic  
 261 urine; a ratio greater than one indicates that the pharmaceutical degraded faster in the nanopure  
 262 water and a ratio less than one indicates degradation occurred faster in the synthetic urine (Fig. 3).  
 263 Using this metric, we show that both the UV/H<sub>2</sub>O<sub>2</sub> and plasma reactors were negatively impacted  
 264 by the switch to a hydrolyzed synthetic urine matrix.

265 The hydrolyzed urine matrix introduces hydroxyl radical scavenging effects for both oxidation  
 266 technologies, however to a different degree. For UV/H<sub>2</sub>O<sub>2</sub> in hydrolyzed synthetic urine, the


matrix performance ratio ranged from  $0.21 \pm 0.030$  to  $5.2 \pm 0.010$  across all pharmaceuticals (Fig. 3a). Atenolol, ibuprofen, naproxen, and sulfamethoxazole had a ratio above one, indicating that the presence of hydroxyl radical scavengers in the urine matrix diminish the rate at which the pharmaceuticals are degraded.(34) Acetaminophen and  $17\alpha$ -ethynodiol had matrix performance ratios below one, indicating a matrix enhancement effect. Studies have shown that the presence of bicarbonate, a compound found in hydrolyzed urine, leads to the formation of carbonate radicals in UV-AOP systems, which in turn increases the degradation rates of acetaminophen and estrogenic compounds and could explain this matrix enhancement effect.(45,46) Similarly, all of the pharmaceuticals degraded faster in nanopure water compared to hydrolyzed synthetic urine when treated with plasma (Fig. 3a). The matrix performance ratios ranged from  $1.9 \pm 0.010$  to  $9.7 \pm 3.9$ , demonstrating a slightly greater scavenging impact with plasma treatment compared to UV/ $H_2O_2$  treatment. For both UV/ $H_2O_2$  AOP and plasma AOP, the hydroxyl scavengers in the hydrolyzed synthetic urine, including ammonium and bicarbonate, decrease the number of hydroxyl radicals available for the target compounds. (34) An additional effect of the plasma reactor is that the strong electric field is diminished as the conductivity of the solution increased.(47) Alternative plasma reactor configurations may lessen the negative conductivity effects. For example, an over-the-liquid plasma, which generates electrical discharges just above the water, demonstrated increased radical production at higher conductivities.(48) Use of a power supply with less time between low to high voltage (rise time)(48) could also minimize conductivity effects, as shown by Wang et al.(49)

When tested in nanopore water versus fresh synthetic urine, the UV/ $H_2O_2$  reactor exhibited matrix performance ratios that ranged from  $20 \pm 4.0$  to  $50 \pm 3.1$  (Fig. 3b). Performance for the plasma reactor was less impacted by the switch to fresh synthetic urine than was UV/ $H_2O_2$ , as

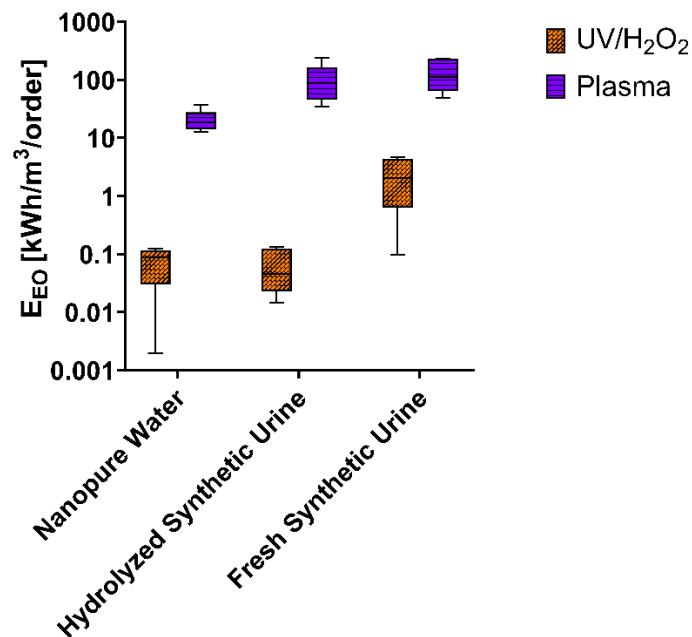
290 reflected by the pharmaceuticals having matrix performance ratios ranging from  $2.7 \pm 0.1$  to  $12 \pm$   
291 2.0 (Fig. 3b). These matrix performance ratios are similar to those observed for the plasma reactor  
292 in hydrolyzed urine compared to nanopure water. The presence of creatinine at 9.7 mM (a waste  
293 product released by muscles) in the fresh synthetic urine likely caused performance of the  
294 UV/H<sub>2</sub>O<sub>2</sub> reactor to diminish. Creatinine has a high experimental molar extinction coefficient ( $\epsilon =$   
295 246 m<sup>2</sup> mol<sup>-1</sup>) than H<sub>2</sub>O<sub>2</sub> ( $\epsilon = 1.86$  m<sup>2</sup> mol<sup>-1</sup>), consistent with the hypothesis that creatinine  
296 interfered with H<sub>2</sub>O<sub>2</sub> absorption of UV<sub>254</sub>.(50) Less H<sub>2</sub>O<sub>2</sub> absorption results in reduced production  
297 of hydroxyl radicals. Since creatinine undergoes hydrolysis as a result of the urease enzyme  
298 converting urea from urine into ammonium, creatinine is not added to the hydrolyzed synthetic  
299 urine recipe.(51) The presence of different scavengers in a given matrix is key when deciding  
300 which technology to use in a given urine treatment process train. Our results show that while the  
301 plasma treatment efficiency is more impacted by the hydrolyzed urine constituents than the  
302 UV/H<sub>2</sub>O<sub>2</sub> reactor, it performed similarly (within an order of magnitude) across multiple urine  
303 matrices.

304 Conductivity differences between the two urine matrices did not seem to play a significant  
305 role in performance of the plasma. The conductivity of the fresh synthetic urine (16 mS/cm) was  
306 less than half that of the hydrolyzed synthetic urine (36 mS/cm), and both match conductivities  
307 observed for real fresh and hydrolyzed urine. Nevertheless, conductivity still played a role given  
308 that switching from nanopure water (< 100  $\mu$ S/cm) to synthetic urine diminished performance.  
309 Shih et al. operated a point-to-plane in water plasma reactor and found that the production of  
310 hydroxyl radicals diminished as the conductivity increased; however, this effect plateaued after  
311 reaching 0.30 mS/cm.(47) Given that the conductivities of both synthetic urines are well above  
312 this level, the negative effects of conductivity could have reached their limit.

313 When plasma reactors are used to degrade pharmaceuticals in complex matrices,  
 314 experiments should be designed to avoid the two-fold problem of conductivity and scavenging.  
 315 Guo et al. combined pulsed discharge plasma with reduced graphene oxide/TiO<sub>2</sub> nanocomposites  
 316 to enhance the degradation potential of flumequine (fluoroquinolone antibiotic) for water  
 317 treatment.(52) The reduced graphene/TiO<sub>2</sub> nanocomposites facilitated the formation of ozone,  
 318 which ultimately led to the formation of a higher quantity of hydroxyl radicals compared to the  
 319 plasma alone or the TiO<sub>2</sub> alone. By coupling plasma with other existing technologies, the  
 320 scavengers that lower hydroxyl radical production could be counteracted and offer new  
 321 degradation pathways to address pharmaceutical concerns.



322


323 **Figure 3:** (a) Comparison of hydrolyzed synthetic urine matrix effects on the degradation rate of  
 324 pharmaceuticals in each of the two reactors. (b) Comparison of fresh synthetic urine matrix  
 325 effects on the degradation rate of pharmaceuticals in each of the two reactors.

326

327 **Energy efficiency limits the scale of plasma treatment**

328 The electric energy per order of magnitude ( $E_{EO}$ ) was calculated to compare the energy  
329 intensity of the two reactors, which had different pharmaceutical degradation mechanisms,  
330 geometries, and levels of power applied. In all matrices, the  $E_{EO}$  for the UV/H<sub>2</sub>O<sub>2</sub> reactor was two  
331 to three orders of magnitude smaller than the plasma reactor (Figure 4), signifying overall better  
332 energy efficiency in the UV/H<sub>2</sub>O<sub>2</sub> reactor. Even in the fresh synthetic urine matrix, which reduced  
333 the removal of pharmaceuticals significantly for the UV/H<sub>2</sub>O<sub>2</sub> reactor compared to nanopure water,  
334 the  $E_{EO}$  remained lower than that of the plasma reactor. Miklos et al. conducted an extensive review  
335 on several studies that evaluated the degradation of organic compounds with various technologies  
336 and found that UV/H<sub>2</sub>O<sub>2</sub> was an order of magnitude more efficient than plasma.(53) Notably, these  
337 studies did not examine complex matrixes such as urine with much higher conductivities.

338



339

340 **Figure 4:** Calculated electric energy per order ( $E_{EO}$ ) (kWh/m<sup>3</sup>/order) for both bench-scale reactors  
341 in the nanopure water and synthetic urine matrixes. The box and whisker plot displays 95%  
342 confidence intervals for  $E_{EO}$  values (n=6, all pharmaceutical compounds in each data point).  
343

344           From an energy perspective, plasma at a full scale is mainly hindered by mass transfer  
345           limitations for the dissolution of oxidative species in solution, which lower the overall process  
346           efficiency.(54) However, plasma treatment has been implemented widely in small- and medium-  
347           scale applications.(55–60) Despite plasma's lower energy efficiency per unit of treatment, plasma  
348           warrants further evaluation for possible application in resource recovery fluids such as a small-  
349           scale or on-site urine-derived fertilizer processing facilities.

350           **Conclusions**

351           Creating sustainable and publicly acceptable fertilizers from source-separated urine  
352           requires mitigating the release of micropollutants.(61) In this study, we compared two advanced  
353           oxidation methods to reduce pharmaceutical concentrations in urine. Our results show that a  
354           dielectric barrier discharge plasma reactor can oxidize pharmaceuticals in both fresh and  
355           hydrolyzed synthetic urine; however, it did so at a higher energy cost than UV/H<sub>2</sub>O<sub>2</sub>, which is an  
356           established technology that has many large-scale deployments. Collection and production of urine-  
357           derived fertilizers can occur at various scales, including the building-scale that has single- or  
358           multiple- dwelling units or multi-floor office buildings. Plasma oxidation has the benefit of  
359           chemical-free implementation and should be considered as an option, along with other traditional  
360           advanced oxidation processes, for building-scale pharmaceutical degradation at the point of urine  
361           collection and processing. Furthermore, the wide range of plasma reactor geometries could allow  
362           for treatment-specific configurations. Despite the lack of evidence for the role of reactive chemical  
363           species beyond the hydroxyl radical in the reactor configuration evaluated for this study, changes  
364           to the reactor geometry, carrier gas, power supply used, and various other operating parameters  
365           could be implemented to improve the efficiency of pharmaceutical treatment in urine-derived  
366           fertilizers. Alternatively, the reactor can be optimized to produce and transfer more hydroxyl

367 radicals than seen in our study, which would enhance their diffusion into the liquid phase. Some  
368 intermediate liquids formed during urine processing that capture the pharmaceuticals, such as the  
369 residual water produced during phosphorus-capturing struvite precipitation(62), may be more  
370 amenable to plasma treatment than unprocessed urine. Finally, pharmaceutical degradation  
371 mechanisms and pathways due to plasma treatment can be further elucidated by studying the  
372 transformation products of treated pharmaceuticals.

373

374

375 **Conflicts of Interest**

376 There are no conflicts of interest to declare.

377

378 **Acknowledgements**

379 This research was supported by the U.S. National Science Foundation under award number  
380 INFEWS 1639244. The authors would like to thank Drs. Selman Mujovic, John Foster, Tian Xia,  
381 and Herek Clack for their guidance in construction and operation of the plasma reactor.

382

383 **References**

384 1. EPA US. Biological Nutrient Removal Processes and Costs. 2007.

385 2. Maurer M, Schwegler P, Larsen TA. Nutrients in urine: energetic aspects of removal and  
386 recovery. *Water Sci Technol* [Internet]. 2003 Jul 1;48(1):37 LP – 46. Available from:  
387 <http://wst.iwaponline.com/content/48/1/37.abstract>

388 3. Cordell D, White S. Peak phosphorus: Clarifying the key issues of a vigorous debate about  
389 long-term phosphorus security. *Sustainability*. 2011;3(10):2027–49.

390 4. Udert KM, Larsen TA, Gujer W. Fate of major compounds in source-separated urine.  
391 *Water Sci Technol*. 2006;54(11–12):413–20.

392 5. Larsen TA, Alder AC, Eggen RIL, Maurer M, Lienert J. Source separation: Will we see a  
393 paradigm shift in wastewater handling? *Environ Sci Technol*. 2009;43(16):6121–5.

394 6. Hilton SP, Keoleian GA, Daigger GT, Zhou B, Love NG. Life Cycle Assessment of Urine  
395 Diversion and Conversion to Fertilizer Products at the City Scale. *Environ Sci Technol*  
396 [Internet]. 2020; Available from:  
397 <http://journals.sagepub.com/doi/10.1177/1120700020921110%0Ahttps://doi.org/10.1016/j.reuma.2018.06.001%0Ahttps://doi.org/10.1016/j.arth.2018.03.044%0Ahttps://reader.elsevier.com/reader/sd/pii/S1063458420300078?token=C039B8B13922A2079230DC9AF11A333E295FCD8>

401 7. Lienert J, Bürki T, Escher BI. Reducing micropollutants with source control: Substance  
402 flow analysis of 212 pharmaceuticals in faeces and urine. *Water Sci Technol*.  
403 2007;56(5):87–96.

404 8. Deo RP. Pharmaceuticals in the Surface Water of the USA: A Review. *Curr Environ Heal  
405 Reports*. 2014;1(2):113–22.

406 9. Zhang R, Yang Y, Huang CH, Zhao L, Sun P. Kinetics and modeling of sulfonamide  
407 antibiotic degradation in wastewater and human urine by UV/H<sub>2</sub>O<sub>2</sub> and UV/PDS.  
408 Water Res [Internet]. 2016;103:283–92. Available from:  
409 <http://dx.doi.org/10.1016/j.watres.2016.07.037>

410 10. Zhang R, Yang Y, Huang CH, Li N, Liu H, Zhao L, et al. UV/H<sub>2</sub>O<sub>2</sub> and UV/PDS  
411 Treatment of Trimethoprim and Sulfamethoxazole in Synthetic Human Urine:  
412 Transformation Products and Toxicity. Environ Sci Technol. 2016;50(5):2573–83.

413 11. Köpping I, McArdell CS, Borowska E, Böhler MA, Udert KM. Removal of  
414 pharmaceuticals from nitrified urine by adsorption on granular activated carbon. Water  
415 Res X. 2020;9.

416 12. Ikehata K, Jodeiri Naghashkar N, Gamal El-Din M. Degradation of aqueous  
417 pharmaceuticals by ozonation and advanced oxidation processes: A review. Ozone Sci  
418 Eng. 2006;28(6):353–414.

419 13. Feng L, van Hullebusch ED, Rodrigo MA, Esposito G, Oturan MA. Removal of residual  
420 anti-inflammatory and analgesic pharmaceuticals from aqueous systems by  
421 electrochemical advanced oxidation processes. A review. Chem Eng J. 2013;228:944–64.

422 14. Lester Y, Avisar D, Gozlan I, Mamane H. Removal of pharmaceuticals using combination  
423 of UV/H<sub>2</sub>O<sub>2</sub>/O<sub>3</sub> advanced oxidation process. Water Sci Technol. 2011;64(11):2230–8.

424 15. Klavarioti M, Mantzavinos D, Kassinos D. Removal of residual pharmaceuticals from  
425 aqueous systems by advanced oxidation processes. Environ Int [Internet].  
426 2009;35(2):402–17. Available from: <http://dx.doi.org/10.1016/j.envint.2008.07.009>

427 16. Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M. Electrochemical advanced  
428 oxidation processes: Today and tomorrow. A review. Environ Sci Pollut Res.

429 2014;21(14):8336–67.

430 17. Kwon BG, Ryu S, Yoon J. Determination of hydroxyl radical rate constants in a  
431 continuous flow system using competition kinetics. *J Ind Eng Chem.* 2009;15(6):809–12.

432 18. Haag WR, David Yao CC. Rate Constants for Reaction of Hydroxyl Radicals with Several  
433 Drinking Water Contaminants. *Environ Sci Technol.* 1992;26(5):1005–13.

434 19. Anpilov a M, Barkhudarov EM, Bark YB, Zadiraka Y V, Christofi M, Kozlov YN, et al.  
435 Electric discharge in water as a source of UV radiation, ozone and hydrogen peroxide. *J  
436 Phys D Appl Phys.* 2001;34:993–9.

437 20. Bruggeman P, Schram DC. On OH production in water containing atmospheric pressure  
438 plasmas. *Plasma Sources Sci Technol.* 2010;19(4).

439 21. Lukes P, Appleton AT, Locke BR. Hydrogen Peroxide and Ozone Formation in Hybrid  
440 Gas–Liquid Electrical Discharge Reactors. *IEEE Trans Ind Appl.* 2004;40(1):60–7.

441 22. Sunka P, Babický V, Clupek M, Lukes P, Simek M, Schmidt J, et al. Generation of  
442 chemically active species by electrical discharges in water. *Plasma Sources Sci Technol.*  
443 1999;8(2):258–65.

444 23. Velikonja J, Bergougnou MA, Castle GSP, Caims WL, Inculet II. Co-generation of ozone  
445 and hydrogen peroxide by dielectric barrier AC discharge in humid oxygen. *Ozone Sci  
446 Eng.* 2001;23(6):467–78.

447 24. Joshi RP, Thagard SM. Streamer-like electrical discharges in water: Part I. fundamental  
448 mechanisms. *Plasma Chem Plasma Process.* 2013;33(1):1–15.

449 25. Joshi RP, Thagard SM. Streamer-like electrical discharges in water: Part II. environmental  
450 applications. *Plasma Chem Plasma Process.* 2013;33(1):17–49.

451 26. Locke BR, Sato M, Sunka P, Hoffmann MR, Chang JS. Electrohydraulic discharge and

452 nonthermal plasma for water treatment. *Ind Eng Chem Res.* 2006;45(3):882–905.

453 27. Liu F, Sun P, Bai N, Tian Y, Zhou H, Wei S, et al. Inactivation of bacteria in an aqueous  
454 environment by a direct-current, cold-atmospheric-pressure air plasma microjet. *Plasma  
455 Process Polym.* 2010;7(3–4):231–6.

456 28. Kornev I, Osokin G, Galanov A, Yavorovskiy N, Preis S. Formation of Nitrite- and  
457 Nitrate-Ions in Aqueous Solutions Treated with Pulsed Electric Discharges. *Ozone Sci  
458 Eng.* 2013;35(1):22–30.

459 29. Foster JE, Adamovsky G, Gucker SN, Blankson IM. A comparative study of the time-  
460 resolved decomposition of methylene blue dye under the action of a nanosecond  
461 repetitively pulsed dbd plasma jet using liquid chromatography and spectrophotometry.  
462 *IEEE Trans Plasma Sci.* 2013;41(3):503–12.

463 30. Malik MA, Ubaid-Ur-Rehman, Ghaffar A, Ahmed K. Synergistic effect of pulsed corona  
464 discharges and ozonation on decolourization of methylene blue in water. *Plasma Sources  
465 Sci Technol.* 2002;11(3):236–40.

466 31. Gao J, Wang X, Hu Z, Deng H, Hou J, Lu X, et al. Plasma degradation of dyes in water  
467 with contact glow discharge electrolysis. *Water Res.* 2003;37(2):267–72.

468 32. Sugiarto AT, Ito S, Ohshima T, Sato M, Skalny JD. Oxidative decoloration of dyes by  
469 pulsed discharge plasma in water. *J Electrostat.* 2003;58(1–2):135–45.

470 33. Tilley E, Atwater J, Mavinic D. Effects of storage on phosphorus recovery from urine.  
471 *Environ Technol.* 2008;29(7):807–16.

472 34. Zhang R, Sun P, Boyer TH, Zhao L, Huang CH. Degradation of pharmaceuticals and  
473 metabolite in synthetic human urine by UV, UV/H<sub>2</sub>O<sub>2</sub>, and UV/PDS. *Environ Sci  
474 Technol.* 2015;49(5):3056–66.

475 35. Bolton JR, Stefan MI. Fundamental photochemical approach to the concepts of fluence  
476 (UV dose) and electrical energy efficiency in photochemical degradation reactions. *Res  
477 Chem Intermed.* 2002;28(7–9):857–70.

478 36. Rahn R. Potassium Iodide as a Chemical Actinometer for 254 nm Radiation : Use of  
479 Iodate as an Electron Scavenger. *Photochem Photobiol.* 1997;66(4):450–5.

480 37. Wols BA, Hofman-Caris CHM, Harmsen DJH, Beerendonk EF. Degradation of 40  
481 selected pharmaceuticals by UV/H<sub>2</sub>O<sub>2</sub>. *Water Res [Internet].* 2013;47(15):5876–88.  
482 Available from: <http://dx.doi.org/10.1016/j.watres.2013.07.008>

483 38. Huang HB, Ye DQ, Fu ML, Feng F Da. Contribution of UV light to the decomposition of  
484 toluene in dielectric barrier discharge plasma/photocatalysis system. *Plasma Chem Plasma  
485 Process.* 2007;27(5):577–88.

486 39. Singh RK, Philip L, Ramanujam S. Rapid degradation, mineralization and detoxification  
487 of pharmaceutically active compounds in aqueous solution during pulsed corona discharge  
488 treatment. *Water Res [Internet].* 2017;121:20–36. Available from:  
489 <http://dx.doi.org/10.1016/j.watres.2017.05.006>

490 40. Locke BR, Thagard SM. Analysis and review of chemical reactions and transport  
491 processes in pulsed electrical discharge plasma formed directly in liquid water. *Plasma  
492 Chem Plasma Process.* 2012;32(5):875–917.

493 41. Andreozzi R, Caprio V, Marotta R, Radovnikovic A. Ozonation and H<sub>2</sub>O<sub>2</sub>/UV  
494 treatment of clofibric acid in water: a kinetic investigation. *J Hazard Mater.*  
495 2003;103(3):233–46.

496 42. Benner J, Salhi E, Ternes T, von Gunten U. Ozonation of reverse osmosis concentrate:  
497 Kinetics and efficiency of beta blocker oxidation. *Water Res.* 2008;42(12):3003–12.

498 43. Huber MM, Canonica S, Park GY, Von Gunten U. Oxidation of pharmaceuticals during  
499 ozonation and advanced oxidation processes. *Environ Sci Technol.* 2003;37(5):1016–24.

500 44. Packer JL, Werner JJ, Latch DE, McNeill K, Arnold WA. Photochemical fate of  
501 pharmaceuticals in the environment: Naproxen, diclofenac, clofibric acid, and ibuprofen.  
502 *Aquat Sci.* 2003;65(4):342–51.

503 45. Bai Y, Cui Z, Su R, Qu K. Influence of DOM components, salinity, pH, nitrate, and  
504 bicarbonate on the indirect photodegradation of acetaminophen in simulated coastal  
505 waters. *Chemosphere* [Internet]. 2018;205:108–17. Available from:  
506 <https://doi.org/10.1016/j.chemosphere.2018.04.087>

507 46. Lian L, Miao C, Hao Z, Liu Q, Liu Y, Song W, et al. Reevaluation of the contributions of  
508 reactive intermediates to the photochemical transformation of 17 $\beta$ -estradiol in sewage  
509 effluent. *Water Res* [Internet]. 2021;189:116633. Available from:  
510 <https://doi.org/10.1016/j.watres.2020.116633>

511 47. Shih KY, Locke BR. Optical and electrical diagnostics of the effects of conductivity on  
512 liquid phase electrical discharge. *IEEE Trans Plasma Sci.* 2011;39(3):883–92.

513 48. Thagard SM, Takashima K, Mizuno A. Chemistry of the positive and negative electrical  
514 discharges formed in liquid water and above a gas-liquid surface. *Plasma Chem Plasma  
515 Process.* 2009;29(6):455–73.

516 49. Xie X, Wang Z, Li Y, Zhan L, Nie Z. Investigation and Applications of In-Source  
517 Oxidation in Liquid Sampling-Atmospheric Pressure Afterglow Microplasma Ionization  
518 (LS-APAG) Source. *J Am Soc Mass Spectrom.* 2017;28(6):1036–47.

519 50. BŁedzka D, Gryglik D, Olak M, Gebicki JL, Miller JS. Degradation of n-butylparaben  
520 and 4-tert-octylphenol in H<sub>2</sub>O<sub>2</sub>/UV system. *Radiat Phys Chem.* 2010;79(4):409–16.

521 51. Miller TJ. The kinetics and mechanism of the hydrolysis of creatinine in urine. *Anal Lett.*  
522 1991;24(10):1779–84.

523 52. Guo H, Jiang N, Wang H, Shang K, Lu N, Li J, et al. Degradation of flumequine in water  
524 by pulsed discharge plasma coupled with reduced graphene oxide/TiO<sub>2</sub> nanocomposites.  
525 *Sep Purif Technol.* 2019;218(March):206–16.

526 53. Miklos DB, Remy C, Jekel M, Linden KG, Drewes JE, Hübner U. Evaluation of advanced  
527 oxidation processes for water and wastewater treatment – A critical review. *Water Res.*  
528 2018;139:118–31.

529 54. Wardenier N, Liu Z, Nikiforov A, Van Hulle SWH, Leys C. Micropollutant elimination  
530 by O<sub>3</sub>, UV and plasma-based AOPs: An evaluation of treatment and energy costs.  
531 *Chemosphere* [Internet]. 2019;234:715–24. Available from:  
532 <https://linkinghub.elsevier.com/retrieve/pii/S0045653519312627>

533 55. Foster JE, Weatherford B, Gillman E, Yee B. Underwater operation of a DBD plasma jet.  
534 *Plasma Sources Sci Technol.* 2010;19(2).

535 56. Gerrity D, Stanford BD, Trenholm RA, Snyder SA. An evaluation of a pilot-scale  
536 nonthermal plasma advanced oxidation process for trace organic compound degradation.  
537 *Water Res* [Internet]. 2010;44(2):493–504. Available from:  
538 <http://dx.doi.org/10.1016/j.watres.2009.09.029>

539 57. Kim KS, Yang CS, Mok YS. Degradation of veterinary antibiotics by dielectric barrier  
540 discharge plasma. *Chem Eng J* [Internet]. 2013;219:19–27. Available from:  
541 <http://dx.doi.org/10.1016/j.cej.2012.12.079>

542 58. Magureanu M, Piroi D, Mandache NB, David V, Medvedovici A, Bradu C, et al.  
543 Degradation of antibiotics in water by non-thermal plasma treatment. *Water Res.*

544 2011;45(11):3407–16.

545 59. Mok YS, Jo JO, Lee HJ, Ahn HT, Kim JT. Application of dielectric barrier discharge  
546 reactor immersed in wastewater to the oxidative degradation of organic contaminant.

547 Plasma Chem Plasma Process. 2007;27(1):51–64.

548 60. Stará Z, Krčma F, Nejezchleb M, Dušan Skalný J. Organic dye decomposition by DC  
549 diaphragm discharge in water: Effect of solution properties on dye removal. Desalination.  
550 2009;239(1–3):283–94.

551 61. Segrè Cohen A, Love NG, Nace KK, Árvai J. Consumers' Acceptance of Agricultural  
552 Fertilizers Derived from Diverted and Recycled Human Urine. Environ Sci Technol.  
553 2020;54(8):5297–305.

554 62. Ronteltap M, Maurer M, Gujer W. The behaviour of pharmaceuticals and heavy metals  
555 during struvite precipitation in urine. Water Res. 2007;41(9):1859–68.

556