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Abstract—The efficient scheduling of transmission links in
a wireless network with a certain optimization objective and
subject to the interference and network flow constraints plays a
central role in wireless networking research. As an alternative to
traditional mathematical analysis, data-driven learning methods
have shown promise in solving difficult problems by extracting
knowledge from experiences and inspired applications of machine
learning in wireless networking. In this paper, we focus on
tackling the fundamental scheduling issue in multi-hop wireless
networks with machine learning, facing the great challenges
of the involvement of non-differentiable operations and the
consideration of variable network topologies. To address these
issues, we propose a reinforcement learning-based method to
solve a class of network flow problems under the protocol inter-
ference model. Learning from experience, the proposed approach
develops a strategy to sequentially select optimum subsets of links
to transmit simultaneously to maximize the system throughput
without causing interference. The model structure is designed
in a way that incorporates network topological information to
allow a flexible number of network nodes, and allows non-
differentiable decision operation to pass informative gradient
information. Experiments with synthetic and real-world deploy-
ment data demonstrate that the proposed algorithm achieves
close-to-optimum performance at a significantly reduced time
cost.

I. INTRODUCTION

With the advent of high-capacity and low-latency next-

generation communication networks, the need to efficiently

use all available resources is more desired than ever. In

existing wireless networks, a network optimization task is

typically dealt with by a designated entity which solves a

mathematical programming problem. Due to the interference

among co-channel transmissions in a wireless context, which

is reducible to the independence number problem, wireless

network optimization is NP-hard in general [1], [2].

The recent success of machine learning in perceptual do-

mains, e.g., computer vision or natural language processing,

has marked a major paradigm shift in the development of

algorithm design. In recent years, there have been attempts

to harness the power of machine learning (ML) in networking

problems such that smart decisions can be made by learning

from a large number of past experiences [3]. While there are

already some ML studies in physical layer [4], [5], network

layer [6], [7], and the upper layers [8], [9], the application of

ML in link scheduling (link layer) is quite limited. The existing

scheduling studies based on machine learning are constrained

to single-hop networking scenarios [10]. In this paper, we are

to address, with a machine learning approach, the scheduling

issue and network flow issue over a generic multi-hop wireless

network in a joint manner.

In this work, we consider the canonical multi-commodity

flow (MCF) problem in multi-hop wireless networks, where

multiple flow demands between different source-destination

node pairs exist. The central issue in multi-hop wireless

networks is that different links in proximity, if using the same

spectrum, interfere with each other when they transmit at the

same time. Thus, the basic idea of scheduling is that the

simultaneously active transmission links need to be far from

each other; if network links are represented as nodes in a

conflict graph, each set of active links form an independent

set on the conflict graph. These different independent sets take

turns to transmit in a time-sharing manner to satisfy the traffic

demands. The MCF optimization over a multi-hop wireless

network involves joint solution of routing and scheduling [1],

[2].

The wireless MCF optimization with independent set based

scheduling can be generically formulated as a linear pro-

gramming (LP) problem for either single-radio single-channel

multi-hop wireless networks [1] or more complex multi-radio

multi-channel multi-hop wireless networks [2], [11]. However,

the fundamental challenge is there are exponentially many

possible independent sets, thus the wireless MCF optimization

problem is still NP-hard in general. Existing approaches for

addressing the scheduling mostly develop certain approxi-

mation algorithms that utilize graph theory or combinatorics

[12], or heuristic algorithms based local search [13]. With

the former, the drawback is that performance is sacrificed

for theoretical performance guarantee in the worst or average

case; the latter suffers from a high dependence on hand-

crafted algorithmic parameters, which may be derived from

an application setting different from the one it is used.

In this paper, we propose an innovative reinforcement

learning (RL) based algorithm to solve the MCF optimization

problem, with independent set based scheduling, in multi-hop

wireless networks. Instead of applying the RL as a black-box

end-to-end solver, our approach combines the power of neural

networks with a proven algorithmic framework delayed col-

umn generation (DCG) [2], [14]. These studies show that the

independent sets for scheduling can be searched and updated

iteratively to keep improving the solution quality until the

optimum is reached. This iterated structure of DCG inspires
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us that the solution procedure can indeed be formulated as a

sequential Markov decision process (MDP), and thus enabling

the development of RL based methods. Specifically, given

the problem input, we treat it as an initial system state, to

which the algorithm responds with its action. The action is

exactly the selection of a set of communication links that can

be activated simultaneously under the interference constraints,

i.e., the selection of an independent set. Outcomes of the action

will be evaluated with a reward, and the system state will

also get updated according to the action and the current state.

With an iterative operation which involves adjustment of action

policies and some other interactions with the environment,

the RL agent gives a collection of independent sets that are

expected to be used in optimum scheduling.

We would like to emphasize that adopting RL to address

the scheduling problem in MCF optimization is far more

challenging than a straightforward application of standard

RL implementation modules, with two fundamental reasons.

First, the possible independent sets are exponentially many

and unknown a priori, which thus leads to an exponentially

large and discrete action space. However, existing RL methods

perform best when there is a small, fixed number of discrete

candidates to choose from or the space action is continuous,

which is not applicable for our case. Second, it is desirable

that the control policy learned by the RL agent can be applied

robustly over diverse problem instances with a variable number

of network elements and different network topologies. This

prevents the straightforward use of top-of-the-shelf learning

modules, because they typically assume the input and output

variables have fixed dimensions.

As a response, we enhance the reinforcement learning

framework with two significant new features that can facilitate

our purpose. One is an order-invariant encoding module to de-

scribe the environment state, which can not only encode those

independent sets already searched, but also represent network

topology information in an order independent manner. Such an

encoder equips our methods with the extendability, that is, the

trained machine can be applied to different network topologies

without retraining but can still maintain good performance.

The other is the design of an action-searching mechanism

to infer a proper action by incorporating non-differentiable

operations into the decision process. In particular, a surrogate

function that locally approximates the non-differentiable part

while providing meaningful gradient information is used to

guide the optimizer.

We evaluate our approach by using both synthetic examples

and wireless networks from real world deployment. The per-

formance data is collected by running a trained RL model to

schedule the wireless link activation, and different network

settings are used for testing the generalization ability. We

find that the proposed method achieves an average of 26% of

reduction in needed number of iteration to reach a performance

level within 10% of the reference algorithm [2]. Moreover,

such advantages are observed in problem instances that are

differently generated from the ones used in training, suggesting

a strong generalization ability to situations unseen before.

The main contributions of this paper are three-fold:

• First, we propose a reinforcement-learning approach that

improves on the existing algorithmic framework. We

combine the power of RL and a proven column generation

framework to solve a complex network optimization

problem, offering new insights for algorithm design and

network improvement.

• Second, we design specific methods to tackle the varying

network size and non-differentiable processing steps for

solution generation, which are commonly encountered in

networking scenarios but cannot be easily handled with

the direct application of neural networks.

• Third, we test the performance numerically in terms of

time-saving and solution quality across various network

topologies and sizes to demonstrate the effectiveness

of the proposed method. It is shown to achieve a fast

convergence time and a high solution quality compared

with other heuristic methods.

The remainder of the paper is structured as follows. The

system model is presented in section II. In section III the

formal description of the problem is given, followed by our

algorithm design details. The numerical experiments’ methods

and results are documented in section IV. We review related

work to the problem we study and relevant new contributions

in this field in section V, and a brief discussion on our findings

is summarized in section VI.

II. SYSTEM MODEL

We consider a single-radio single-channel (SRSC) wireless

network1 represented by a directed graph G(N , E), where N
and E denote the sets of nodes and links, respectively. A

communication link exists from node u to node v if node v is

within the communication range of node u, which is denoted

by the tuple (u, v). Each link has a physical transmission

capacity c(u, v), specifying the peak data rate this link is able

to support.

We adopt the protocol interference model [15] to character-

ize the interference relationship in the wireless network. Under

this model, the receiver of a specific link can successfully

decode the transmitting signal if it falls outside the interference

range of the transmitters of other activated links. In other

words, links that interfere with each cannot be activated

simultaneously. Besides, a node can serve at most one active

link at a given moment. The conflict relations among all the

links can be represented by a conflict graph [1]. Each node

on the conflict graph represents a link on G, and two nodes

are adjacent if and only if these two links cannot transmit

simultaneously. In this way, links can be scheduled to transmit

only if they form an independent set (IS) on the conflict graph.

Regarding the MCF problem, there is a set K of node pairs

where a source node needs to transmit to a destination node,

by using multiple hops of wireless links. Each element in

1Note that a generic multi-radio multi-channel (MRMC) wireless network
can be mapped as a virtual SRSC with the multidimensional tuple modeling
technique developed in [11].
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commodity flow demands K is identified by its source and

destination node id, denoted by bk and dk, respectively. We

consider an MCF problem with concerns of both throughput

and fairness. More precisely, the objective of the studied

problem is to maximize the minimum commodity flow in the

network. In a wireless setting, due to link interference, this

network flow problem involves not only routing decisions but

also scheduling decisions in which ISs are activated in a time-

multiplexing manner.

Formally, let fk(u, v) denote the amount of traffic flow

associated with commodity k = 0, 1, · · · , |K| − 1 on the link

(u, v). Besides, let M be the set of all ISs and αm denotes

the fraction of time allocated to IS m. For commodity k, the

achievable throughput rk is the net flow out of the source

node, i.e.,

Rk =
∑

v∈N+

bk

fk(bk, v) =
∑

v∈N−

bk

fk(v, bk), (1)

where N−
v and N+

v denote the set of links going in and out

of v, respectively.

We define pm(u, v) as the effective capacity in an IS m.

pm(u, v) equals to c(u, v) if link (u, v) is activated in m and

0 otherwise. The optimization problem can be formulated as

follows.

Maximize
{fk(u,v)},{am},z

z (2)

s.t. z ≤ Rk, ∀k (2a)

K∑

k=1

fk(u, v) ≤
∑

m∈M

αmpm(u, v), ∀(u, v) ∈ E (2b)

∑

u∈N−

v

fk(u, v) =
∑

u∈N+
v

fk(v, u), ∀v �= bk, dk (2c)

∑

m∈M

αm = 1 (2d)

fk(u, v) ≥ 0, ∀(u, v) ∈ E , k (2e)

αm ≥ 0, ∀m ∈ M (2f)

In this formulation, z is the minimum of the achieved

commodity flow when the problem is solved, guaranteed by

the Constraint (2a) and that the problem is a maximization.

Constraints (2b) indicate that for any link, the total amount of

network flow should not exceed its capacity over a unit time,

Constraints (2c) are the flow conservation constraints: for any

commodity flow k, and each node v that is not a source or

destination node in any demand, the amount of flow entering

should equal to that of the flow exiting the node. Constraint

(2d) requires that the time fraction assigned to all ISs must

sum to unity.

Problem (2) is an LP problem because both the objective

and constraints are linear functions of the optimization vari-

ables. However, the size of M is exponentially large and

cannot be easily enumerated; even to obtain one set of non-

interfering links is equivalent to finding a graph coloring of

rt

st

at: new IS

LP solver

Environment

IS generation

state
 encoding

RL Agent

at

Fig. 1: High-level overview

edges. Therefore solving the problem requires solving a series

of integer programming instances followed by an LP with an

exponential number of variables. To the best of our knowledge,

the most efficient approximation with guaranteed bound anal-

ysis is the delayed column generation (DCG) method [14] [2].

The DCG method is based on the observation that, although

the size of M is exponentially large, only a small portion

of ISs will be used, i.e., have positive scheduling time, in

the optimal solution. Therefore, instead of enumerating all the

ISs, the DCG method aims to figure out a set of ISs with

a reasonable size in which all these critical ISs are included.

With such a IS set, the MCF problem can be readily addressed

via an LP solver.

The DCG algorithm starts with an initial set of ISs that

makes the problem feasible and iteratively adds new ISs into

that set. At each iteration, an LP problem is firstly solved.

This problem, called restricted master problem (RMP), has

the same structure of problem (2) except that a subset of

M is considered. The dual information is then leveraged

to generate new ISs that have the potential to improve the

objective value of the RMP. Using the dual as the link weight,

the DCG algorithm selects the maximum weighted link sets

that do not interfere with each other as a new set to be added

into the current solution. The process of choosing such a

link set is termed as solving the sub-problem, and it is an

equivalent to solving a maximum weighted independent set

(MWIS) problem [2] which is computationally challenging.

According to the theoretical results in [14], the solution to the

original problem can always be improved in this way until

the optimal one is obtained. Additionally, it is proven in [2]

that a solution with guaranteed performance bound can be

obtained if each sub-problem is solved approximately. Hence,

the algorithm stops either when the solution can no longer be

improved or upon a predefined maximum iteration number has

been reached.

III. PROPOSED SOLUTIONS

In this section we present our proposed solution with a

reinforcement learning approach. First we reformulate this

problem in the framework of reinforcement learning, and the

proposed neural network modules are presented. A high-level

overview is shown in fig. 1.
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A. Scheduling links as a sequential decision-making

We are inspired by the DCG algorithmic process because

each iteration of the algorithm can be seen as a trial-and-

error process, in the sense that the solver generates a new

column, i.e., an IS of the conflict graph, and receives feedback

information from the environment as part of the input for

making the next decision. This is akin to the reinforcement

learning process, with the important difference that the action

is generated not from a fixed rule but must be learned from

empirical data.

We adopt the terms used in reinforcement learning literature,

and frame the problem as a Markov sequential decision

process. We define the agent to be the network controller that

aims to schedule links through experiencing the environment.

At a time step indexed with t, the agent observes the current

system state st ∈ S , and selects an action at ∈ At, and

receives a scalar reward rt ∈ R. The decision by the agent

derives from a policy π, which maps a state to a probability

distribution over the actions available at that time. The system

state transitions from st to st+1 after the action selection

by following a distribution st+1 ∼ p(s|st, at), which can

potentially be unknown to the agent.

The goal of the agent is to maximize the expected cu-

mulative reward J , which is defined as the sum of rewards

over a time period with maximum length T . Since for each

policy π, there exists a corresponding cumulative reward

value, this is often written in a functional expression J(π) =
Eπ[

∑T−1
t=0 γtrt], with the future discounting factor 0 ≤ γ ≤ 1.

The expectation is both over the state transitions and action

selection. In the context of the link scheduling problem, the

above components are defined as follows.

a) State: The state of the system can be determined

by the problem input, the current (partial) solution, and the

proportion of the link capacity that has been used by the

current solution. With the former two, the solver’s state is

completely specified, but we found that adding the latter

helps performance improvement. The state transitions when

the agent indicates a new link set to be added, and the

master problem is solved again to obtain the new solution.

Specifically, the state vector contains information regarding:

whether a link is part of a traffic demand, the link capacity,

the link source and destination node’s coordinates, the current

set of ISs, how much capacity is left given the current solution,

and the flow amount for each commodity.

b) Action: The action at for time step t is the subset of

network links that should be added into the master problem. It

is a discrete |E|-dimensional vector, and each element is either

0 or 1.

c) Reward: The reward signal for one step is set to the

difference of the network utility in this and previous time step.

In this setting, we let it be the difference of achieved flow

rt = z(t+1) − z(t). This is to make the agent prefer solving

the problem with fewer iterations in order to obtain a fast

solution process since, with the discounting factor, the future

solution improvement is counted less.

B. Solution overview

Even though the problem can be reformulated as a Markov

decision process with ease, there are significant technical chal-

lenges that have not received ample attention in the literature.

We highlight a few of them as follows and introduces our

solution to address them.

First, a proper representation of a variable sized set is

needed. Most present solutions of neural networks assume that

information under processing has a fixed dimension, especially

problems whose solutions are not affected by the variability

in the network topology [16], [17]. But in this problem, there

may be an unspecified number of links or nodes, and there

can be an undetermined number of intermediate ISs, each of

which containing an unknown amount of links. To overcome

this, we designed our model architecture such that it could

adapt to variable problem size and represent quantities with

unknown dimensions.

Second, the action space is too large to allow directly

learning a policy as the probability distribution p(at|st). Recall

that At represents the set of all conflict-free network links, and

is an independent set on the conflict graph. There can be an

exponential number of such link subsets, and it changes across

different problem instances. In comparison, the agent in most

reported works only has to select an action out of a few known

actions. As a response, we develop a differentiable searching

procedure to address this.

Third, more efficient learning is a must. Direct application

of reinforcement learning can be sample inefficient and achiev-

ing good performance requires a huge amount of interactions

with the problem environment. This can become problematic

where the environment evaluation is not cheap. For example,

suppose each time the agent selects the action, an external

routine is called to evaluate the quality of that selection

and this time cost could add up to make the training of

a reinforcement agent prohibitively expensive. We design a

proper encoding scheme and use curriculum training procedure

to make the learning process more efficient.

C. Encoding the link sets

Since the environment state must contain the current partial

solution consisting of all the ISs found so far, they must be

properly encoded in order to be processed by other parts of

the neural network. This is important as the input may present

different number of nodes and links, and as a result, the

possible number of ISs and the number of links in each IS

can vary greatly.

Generic neural networks cannot process such set data, where

the order does not matter. To require the neural network to deal

with input with varying sizes is to enforce some form of order

invariance, because the output should be a function of each

element’s attributes only and not dependent on their order of

input to the learning agent.

It is suggested that as long as the model architecture has the

form of sum decomposition, its output has order invariance.
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Theorem 1 ([18]). A function f(X) operating on a set X

having elements from a countable universe, is a valid set

function, invariant to the permutation of the instances in X , iff

it can be decomposed in the form ρ
∑

x∈X ϕ(x), for suitable

transformations ϕ and ρ.

By this reasoning, we adopt an attention mechanism [19] to

encode the link vectors in the set that follows the constraints

given above. Suppose link i in a given IS M is represented

as a vector li. It is a concatenation of link capacity, link node

positions, and indicator of flow demand, which marks the link

if it is part of a flow demand, as well as how much capacity

this link still has given the current solution. The IS is encoded

as

fLL2(x, y) � InnerProduct(MLP1(x),MLP1(y)) (3)

l̂i = MLP2(
∑

j∈M

fLL2(li, lj)∑
j∈M fLL2(li, lj)

· li) (4)

LS(M) = MLP3(
∑

i∈M

l̂i), (5)

where fLL2 is the pair-wise function that captures the link

interactions in the solution process. MLP stands for Multi-

layer perceptron, consisting of several cascading neural net-

work linear layers, each followed by a non-linear activation

function. These results are transformed as weights that add up

the link vectors to form the intermediate link specific vectors

l̂i.

They are then added and then passed through an MLP layer

for the link set level representation.

D. Producing link-level searching clues

In each iteration, a new IS is discovered, encoded as

previously stated, and added to the set of known ISs. The agent

has exact knowledge of these encoded ISs and uses them to

generate a per-link vector, to be used in searching for a new

IS.

We again make use of the attention mechanism. We denote

the encoded, known ISs as a matrix M of shape |Mt| × hM ,

where hM is the dimension determined by MLP3 in eq. (3).

Let L be the set of link vectors. First, each link vector

individually performs attention with the current set of ISs:

fLL3(Q,K, V ) � softmax(
QKT

√
n

)V (6)

LLS = f(L,MLP4(M),M). (7)

Next, each row of the matrix LLS is put into a order-

invariant structure to obtain one vector that represents the

current problem context hcontext. The per-link result lout,i,

where i is the link index, is produced by a pairwise operation

with this context:

hcontext = MLP5(

|E|∑

i=0

LLS [i]) (8)

lout,i = MLP6(li, hcontext). (9)

The last layer of MLP6 gives a scalar for each link. The

purpose of this step is to generate a per-link signal that

incorporates the current situation and each link vector’s own

attributes. The results act as a “clue” for searching for an IS

to give a proper action.

E. Differentiable searching

The agent’s policy produces a vector for all links in the

network which must be eventually transformed into a link set.

We call this a “searching” process because of the similarity of

the task’s goal: from a continuous vector, the output needs to

be a certain subset of a known set of elements. For simplicity,

we aim to select greedily a subset with the maximum sum

of weights produced previously, as long as the links do not

interfere with each other. But this process is not by itself

made up of differentiable neural network operations, so back-

propagation cannot be directly applied for training.

This is due to the discrete nature of this process. Assuming

the input of the search is a continuous variable p and the output

z is a discrete variable from a finite set. It can be noticed

that the input p’s change may not cause a change in z at all.

Otherwise, at certain values of p, z change discontinuously.

This means the gradient is either 0 or does not exist, causing

gradient flow to be useless.

To overcome this drawback, we use an interpolation method

[20] which uses a surrogate differentiable function whose

gradient information can be used to guide the optimizer for

parameter update.

In our case, z is the |E|-dimensional 0-1 vector that forms

an IS on the conflict graph, and p is the continuous searching

clue lout. As z performs the search for independent set, the

relation

z(p) = φz∈Z [−zT p] (10)

holds. We consider an continuous approximation that incorpo-

rates the final training loss function ξ:

zλ(p) � φz∈Z [−zT p+ λξ(z)] (11)

ξλ(p) � ξ(zλ(p))−
1

λ
[−zT p− zTλ p], (12)

where ξ is the global loss function and λ is a scalar hyper-

parameter set experimentally at 20. The gradient we would like

to obtain was ∇pξ, and is now replaced by the approximate,

but more smooth version ∇pξλ(p).
Differentiating with respect to p gives the correct update

formula:

∇pξλ(p) = − 1

λ
[−z(p) + zλ(p)] (13)

zλ(p) = φ[p+ λξ′(p)] (14)

As a result, the approximate gradient calculated at p is given

by

∇pξ ≈ 1

λ
(φ(p)− φ(p+ λ · ∇zξ(φ(p))). (15)

The training process itself is a standard policy gradient

technique, with the samples sorted according to the difficulty.
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IV. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of our proposed

scheme through different kinds of numerical experiments.

Specifically, these experiments examine the performance from

these aspects:

• Speed. We would like to see if the RL method can help

accelerate the solution of the problems, both in terms of

the number of iterations and the absolute time.

• Optimality. We test if the RL-based method results in

solutions with a higher quality compared with other

heuristic methods.

• Generalization. When the agent sees a problem instance

of a different size from the ones of a size it has seen

in training, we test if the benefits of speed and quality

still persist. We also test the cases where the problem

instances are generated with a different distribution than

the data used in training.

The problem instances under consideration can be classified

into these categories: random, grid, office. In each of the

scenario, after the nodes are placed, their channel information

is treated as only containing a path loss component, signifying

that only the scalar link quality information is available.

The link capacity is calculated by Shannon channel capacity

formula and it is determined by the physical distance between

the source and destination node.

• Random instances are generated by setting a cell area of

1000 m by 1000 m square and randomly placing nodes

with a minimum distance of 0.5 m. The interference range

and communication range are 50 m and 30 m respectively.

The nodes transmit with a transmission power 1 mW. The

topology obtained this way can be classified as a random

geometric graph and is widely studied in networking

analysis.

• The grid instances represent a situation where the nodes

are placed on a regular, rectangular grid. This scenario is

typically used in wireless sensor placement.

• The office instances are obtained by using the layouts in

an existing study [21]. The instances are augmented by

randomly perturbing the node position within the room.

For random and grid cases, we vary the number of nodes to

test the performance under different network sizes. We denote

instances with at most 15 nodes as small, 50-node instances

as medium and 200-node instances as large.

We compare the performance of the proposed method

with the following heuristics commonly used in problems of

this nature. They follow the framework of iterative column

generation, and differ in the way link patterns are chosen.

We have chosen this way because the MWIS and Greedy are

the most commonly used approaches due to their simplicity;

we have not listed other RL methods in network scheduling

because they mostly have vastly different network settings (e.g.

static wireline networks) to give a meaningful comparison.

• Random. This method selects random links and attempts

to pick as many links as possible without causing interfer-

ence. This amounts to obtaining an unweighted, maximal

independent set.

• Greedy. Each link uses the dual variable value provided

by the master LP problem as its weight, and builds up a

conflict-free set of links with maximal sum weight.

• Maximum weighted independent set (MWIS). Each link

also uses the dual variable value provided by the envi-

ronment, but uses an integer programming solver instead

for the true maximum weighted independent set as the

next link pattern. The objective value obtained with this

method is considered as close to optimum and used as a

benchmark for quality comparison.

• Maximum residual capacity (MRC). The links with maxi-

mum sum of residual capacity with no conflict are chosen

as the next link pattern.

The simulation environment is written in Python program-

ming language, as well as a mixed-integer linear programming

solver Gurobi [22] to calculate the state transitions. For neural

network and deep reinforcement learning, we use the software

frameworks PyTorch [23] and RLLib [24].

A. An example of a typical solution process

As a concrete example, we demonstrate a specific solu-

tion process selected from medium and large-sized instances,

respectively. In the plots, the horizontal axis is the iteration

number and the vertical axis represents the problem specific

objective value. As these algorithms explore more link sets,

the objective value increases monotonically. The performance

of MWIS is treated as a standard baseline, and is seen to be

more effective than the other heuristics. We can observe that

the proposed method (termed “RL”) achieves faster increase

in the objective value, often choosing to have larger objective

value gains in a few iterations instead of greedily choosing

whatever that can improve at each iteration.

(a) A medium instances (b) A large instance

Fig. 2: Example solution processes for a medium and large

instance from random dataset.

B. Time cost

From the examples, it is shown that an RL agent can help

identify high quality link sets to help the solution process

achieve a close-to-optimum objective value. But a question

remains whether the overall time cost can be lowered as a

result of RL performance. The specific execution time is not

an easy figure to measure, because there are many factors
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affecting whether a fair comparison can be made. For instance,

neural networks enjoy highly parallel hardware or software im-

plementations, whose execution time may scale easily with ad-

ditional computing devices, whereas conventional algorithms

rely on the traditional CPU-bound computation that cannot be

easily parallelized.

In this subsection, we consider a comparison of the time it

takes to solve a problem instance. We do not count training

time for RL method, because it is a large but ultimately one-

time cost for a deployed model. We define the time cost of RL

method as the sum of all action generation and environment

transition time, and avoid batching which is not available

for traditional algorithms. Similarly, the computation time for

other methods is treated as the sum of decision generation

time and environment transition time.

RL Random Greedy MWIS MRC

random-small 0.60 1.14 0.52 0.58 0.55
random-medium 3.19 4.94 3.41 3.37 3.43
random-large 21.55 - 33.51 28.26 32.10
grid-small 0.66 1.58 0.69 0.73 0.95
grid-medium 2.84 4.33 3.85 3.45 3.84
grid-large 20.72 41.59 38.61 33.80 39.08
office 1.59 1.84 2.13 1.74 1.79

TABLE I: Comparison of the average computation time on

different types of problem instances. Units are in seconds, and

the values are the lower the better. Entries marked with ‘-’

correspond to the situation where a method does not gather

sufficient number of cases that reach the target performance

within a reasonable time budget.

Fig. 3: Histogram of the time savings in random-large datasets.

Plotted for the testing data points. The horizontal axis is the

time savings percentage number, and the vertical axis is the

number of samples

In Table I, we list the run time to reach within 10% of

objective value obtained by MWIS algorithm, for different

types of problem instances on differently sized networks. We

found that even at handicapped position without batching to

lower the amortized time cost, on average the RL agent is still

time efficient. In Figure 3, the time saving for the random-large

samples is plotted in a histogram. We can see that the majority

of the time saving is between 15% and 37%, suggesting a

significant performance improvement. This is largely due to

the similar per iteration action generation time compared with

other methods, and also that the number of iterations needed is

lower. This effect is more easily observed in larger instances

where the proportion of time cost is spent on generating a

good link subset.

C. Convergence performance

Since eventually given long enough time, most algorithms

can converge to a value close to the optimum, we examine how

fast the algorithms reach a target level of performance in terms

of iterations. Similarly, we treat the objective value obtained by

the traditional algorithm (MWIS) as a goal value, and count

the number of iterations it takes to reach that level for all

algorithms. In Table II, we show the number of iterations for

each type of algorithm on different types of problem instances

of different sizes. We can observe from the performance of RL

agent that the number of iterations is significantly reduced in

larger instances, up to 18%. The lower variance of the results

also suggests that RL policy achieves a consistent advantage.

D. Solution optimality

In this experiment, we focus on the large instances to

see if, given the same number of iterations, the RL policy

reaches a better problem objective value. This is to compare

the quality of solution under the same iteration budget. This

is different from the experiment in section IV-C, since here

the performance improvement within the first few iterations

matter more than others. We give a summary of performance

comparison for large instances in Table III. When each is given

a maximum number of iterations, we see that the RL agent in

most scenarios obtains a better objective value. The advantage

of the RL policy is clear from the start. While other algorithms

suffer from uninformative exploration, the RL agent is able

to come up with performative link sets, which contributes to

faster value improvement.

E. Generalization to different data

As the performance of reinforcement learning performance

heavily relies on the data it has seen during training, we

naturally would like to see how a model trained on one type

of problem instance can be applied to another type with a

different set of data generation parameters.

a) Number of Nodes in the Network: We train the agent

on instances of smaller sizes and then apply larger instances on

testing. The problem size may have an impact on the problem

because there are more combinatorial relationships that need

modeling. We can observe in Figure 4a that even trained on

medium instances, the large instances’ performance is still

competitive. The performance gap between the differently

trained agent exists, but on the whole the performance loss

is within 16%. This shows the power of the neural network to

learn a good selection criterion that does not simply captures

the patterns that are dependent on irrelevant factors like the

number of nodes in the graph.
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RL Random Greedy MWIS MRC

random-small 9.48 ± 10.42 22.77 ± 11.09 16.74 ± 12.31 9.51 ± 7.35 20.15 ± 10.12
random-medium 22.85 ± 14.15 39.85 ± 11.52 42.98 ± 13.84 35.09 ± 16.74 41.59 ± 13.08
random-large 71.55 ± 18.25 - 94.51 ± 26.12 87.50 ± 20.04 96.10 ± 15.39
grid-small 10.75 ± 8.23 19.32 ± 13.60 18.40 ± 16.64 14.33 ± 9.98 17.44 ± 22.39
grid-medium 24.65 ± 13.87 44.62 ± 12.60 42.67 ± 20.11 29.82 ± 17.81 43.49 ± 17.37
grid-large 68.72 ± 16.86 84.37 ± 22.13 88.61 ± 23.46 73.80 ± 22.10 85.35 ± 16.05
office 28.20 ± 12.41 48.82 ± 16.35 48.95 ± 18.37 33.17 ± 16.99 47.47 ± 17.44

TABLE II: Comparison of the number of iterations

random-large grid-large office

RL 69.0 ± 25.2 80.1 ± 25.4 62.4 ± 24.7
Random 54.5 ± 18.4 75.1 ± 17.2 60.0 ± 23.6
Greedy 62.7 ± 19.5 69.7 ± 26.7 58.6 ± 25.0
MWIS 68.4 ± 20.7 80.9 ± 18.3 61.1 ± 21.1
MRC 56.2 ± 23.8 73.7 ± 24.2 59.2 ± 21.3

TABLE III: Objective values achieved by running the algo-

rithm for a fixed number 60 iterations.

(a) Generalization across the num-
ber of nodes. Trained on random
instances.

(b) Generalization across instance
transmission power. Trained on
medium size instances with 1.0
mW node power.

Fig. 4: Generalization performance. We train the model on one

data point and use the model on data with different parameters

and observe the difference in performance.

b) Data generation parameters: Another aspect that may

significantly change the data distribution is the generation

parameters used. In this experiment, we choose to compare the

performance under different transmission power. It is chosen

because this parameter directly affects the link quality in

the network, therefore causing the interference relationship

between the links to vary greatly. In a sense, this parameter has

even more impact on the topology formation than the number

of nodes. We train the agent on one set of instances with

1.0 mW transmission power and use it on the instances with

different power budgets, and compare their performance with

the traditional algorithm. In Figure 4b, we observe that the

performance is almost on the same level. This suggests that

the model’s strategy does not change significantly with the

data’s specific parameter choice and is robust.

V. RELATED WORK

Since link scheduling is one of the most fundamental

problems in networking research, numerous works are present

to provide theoretical and implementational ideas.

a) Data-driven solutions to network problems: Aspects

of network design problems can be cast as optimum control

problems, and there have been attempts to apply machine

learning methods as a way to discover heuristic algorithms

from data. The work in [10] studies the wireless scheduling

in a device-to-device (D2D) network and develops a neural

network architecture that can judiciously activate a subset

of links to yield near-optimal network sum-rate at one shot.

[25] typifies the supervised approach to optimize the flow

scheduling in wireless ad-hoc networks. Another approach as

exemplified in the use of actor-critic style models is reported

in [7], where the neural model optimizes the data flow path

in a data center network. Similar ideas appear in a series of

recent online network control problems [7], [26], [27].

More recently, there is a line of research work which at-

tempts to apply sequence modeling to graphs, with the goal of

learning useful problem solutions from learned models. Pointer

network [28], a model based on attention multi-head atten-

tion mechanism, solves variable-sized combinatorial problems

by using the attention scores as selection criteria, and this

approach is shown to achieve reasonable performance level

with classic problems including Traveling Salesman Problem

and Delaunay triangulation. This idea is further expanded to

solve a vehicle routing problem [29]. Using the problem graph

instance as an input to a transformer, the output is determined

by the embedded node vectors. On the outer level, the model

is further trained by a policy gradient reinforcement learning

algorithm REINFORCE.

Another line seeks a proper representation of the graphical

structure in the neural network context. It is shown that

by using a structure-aware model structure2vec [30],

[31], the neural networks can learn to build up approximate

solutions by iteratively adding new nodes to an existing partial

solution, with the necessary problem-specific helper functions.

b) Conventional wireless network optimization: Wireless

network optimization had been a key research area in the

recent two decades. The basic methodology is to compute

the resource allocation aspects such as channel assignment,

base station association, scheduling and power control using

various mathematical programming algorithms [32]. Due to

the complex inference relationship, wireless network optimiza-

tion is NP-hard in general, and the major thread of efforts in

the community is the development of various approximation

algorithms [1], [33]. The studies had also been extended

from single-radio single-channel context to complex multi-

radio multi-channel context [21], [34], [35]. A particular
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issue inspiring the machine learning study in [25] and this

paper is that a new optimization problem instance is always

solved either from scratch or with a trivial re-optimization

approach [36]; machine learning aims to exploit the historical

computation effort to benefit new optimization instances.

VI. CONCLUSIONS

In this paper, a deep reinforcement learning based method

to the link scheduling problem is presented. The model learns

a strategy for choosing link sets iteratively for the overall

network flow. To enable flexibility to process variable number

of network links and nodes, and allow constrained output,

we develop an attention-based neural network module and

an augmented module for differentiation. In the numerical

experiments, we observe promising performance suggesting

that it is able to learn to select link patterns and the benefit is

consistent and robust across different configurations.
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