ACCEPTED FROM QPEN CALL

DEEP LEARNING FOR WIRELESS NETWORKING:
ThE NEXT FRONTIER

Yu Cheng, Bo Yin, and Shuai Zhang

Digital Object Identifier:

10.1109/MWC.001.2100005

ABSTRACT

With the growth of mobile technology in the
last decade, wireless networks have become an
integral part of our everyday lives. To meet the
increasingly stringent application requirements,
more and more network resources and features
are becoming available, which requires innovative
system designs such that the configuration and
management of the networks can be performed
automatically and autonomously. Due to its supe-
rior capability of discovering insightful knowledge
in a data-driven manner, the emerging deep learn-
ing (DL) technology has shown great potential to
fulfil this goal. This article systematically reviews
recent efforts in leveraging DL for addressing wire-
less network optimization problems, presenting a
fundamental understanding of where and how the
supremacy of DL based approaches comes ver-
sus the conventional modeling based approaches.
The basic research challenges and some promising
research directions for fully exploiting the potential
of DL in wireless network optimization are also
discussed. The effectiveness of DL is illustrated with
an innovative case study of integrating DL with
multi-hop wireless network flow optimization.

INTRODUCTION

Recent years have witnessed the dramatic evolu-
tion of wireless networking. At the end of 2018,
there were approximately 22 billion connect-
ed devices deployed around the world, most-
ly through wireless networking. Moreover, the
recent emergence and integration of the Inter-
net-of-Things and a variety of other computing
paradigms (such as cloud computing, edge com-
puting, and software-defined networking) have
spawned a wide range of applications and ser-
vices over wireless networking, imposed new
performance requirements on the service pro-
viders, and thus suggested a tremendous change
in network management. With the proliferation
of mobile devices and the adoption of technical
innovations, the complexity and diversity of wire-
less networks skyrocket.

Conventionally, a wireless networking system
is divided into several layers and researchers rely
on analytical models to design management strat-
egies and control policies for delivering desirable
network performance. For example, the scheduling
issue at the link layer and the routing problem at
the network layer had been intensively studied in
the recent two decades, heavily relying on chan-

nel models, interference models, and optimization
algorithms. These modeling oriented approaches,
unfortunately, are becoming ineffective due to the
discrepancies between the mathematical tractabil-
ity and the exponentially increased complexity of
wireless networking, and may gradually fail to meet
the stringent quality of service (QoS) requirements
of emerging applications.

Due to its recent success in various domains
[1], deep learning (DL) has been identified as a dis-
ruptive enabler for automatic and autonomous net-
work management. Incorporating DL intelligence
into wireless networks not only has the potential
to replace the manual interventions involved in
the current engineering-intensive network man-
agement tasks, but also give rise to novel network
optimization approaches that deliver superior sys-
tem performance in real-time. Given the strong
capability in big data analytics, DL techniques can
be leveraged to distill insightful knowledge (e.g.,
the intricate correlations between the network
configurations and the achievable performances)
from the abundant data over modern wireless net-
works to enable innovative control and optimiza-
tion methods. In particular, deep reinforcement
learning (DRL) techniques, which have demonstrat-
ed impressive results in areas such as robotics and
video games, provide promising opportunities for
developing online control policies in complex and
large-scale networking scenarios. Moreover, the
emerging DL hardware accelerators significantly
speed up the DL-related operations; the network
controllers equipped with modern DL technologies
are obtaining the capability to promptly adjust and
optimize resource allocation efficiently in response
to rapidly changing networking conditions.

The great potential of applying DL techniques
in wireless network optimization has sparked a
growing interest from both academia and indus-
try. However, most of the existing studies in this
area are exploratory and conducted in an ad hoc
manner. Therefore, we believe it is timely and
imperative to review the state of the art with a
holistic perspective, probing more insightfully why
DL-based approaches have advantages over their
traditional counterparts in wireless network opti-
mization. This article systematically reviews recent
attempts at leveraging DL for addressing wireless
network optimization problems, presenting a fun-
damental understanding of where and how the
supremacy of DL comes regarding the wireless
network optimization. In contrast to existing tuto-
rial articles, which focus on the benefits of adopt-
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ing DL techniques in specific network layers [2]
and/or certain types of wireless networks [3], we
instead investigate the power of DL in the context
of generic wireless network optimizations that may
arise in diverse situations.

The remainder of this article is organized as fol-
lows. The conventional approaches for wireless
network optimization are discussed first, with a
focus on examining the inherent limit in this con-
ventional paradigm. Accordingly, the supremacy
of DL based methodologies will then be analyzed
from four complementary angles. Then we discuss
future research directions and related challenges.
An innovative case study of leveraging deep learn-
ing in the context of multi-hop wireless network
flow optimization is also included.

CONVENTIONAL MODELING AND OPTIMIZATION

Wireless network optimization tasks usually involve
the management or allocation of network resourc-
es (e.g., radios, channels and transmit power),
intending to deliver good network performance.
Most existing approaches to such tasks follow the
paradigm of mathematical programming, in which
a wireless network utility maximization (WNUM)
problem is formulated and solved.

Typically, a WNUM problem consists of an
objective function and a set of constraints. The for-
mer represents the target network utility one wants
to optimize while the latter captures the character-
istics of the constrained resource or budget. The
problem formulation process involves the establish-
ment of various mathematically describable mod-
els. For example, the multipath fading experienced
by a wireless channel is commonly modeled by
Rayleigh and Rician distributions. Establishing these
models requires domain knowledge to properly
abstract the physical systems and analytically char-
acterize the effects of different network entities.
With more and more advanced features incorpo-
rated in real-world wireless networks, it is becoming
intractable for the above manual-tuning approach
to model the network systems, which may contain
unknown characteristics that are difficult to mea-
sure and express.

When designing algorithms for WNUM prob-
lems, computational overhead and optimality are
the two most important concerns. To maximize
the network utility, the limited network resources
need to be allocated to different network entities
in a selective fashion. In a wireless network, due to
the broadcast nature of wireless communications,
neighboring links that share the same channel may
not be activated simultaneously for alleviating the
interference. In fact, most WNUM problems fall
in the class of combinatorial optimization prob-
lems, which are NP-hard in general. Therefore, the
major thread of solving these wireless network
optimization problems is the development of vari-
ous approximation algorithms or heuristics, which
generate a sub-optimal solution with an accept-
able computational cost, referring to [4] and the
references therein. In the wake of next-generation
wireless networks, technical solutions are expect-
ed to deliver improved network performance in
real-time, which the existing approaches may not
accomplish.

Wireless networks are inherently dynamic and
require adaptive control. Regarding a specific net-
work optimization task, it is not uncommon that
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FIGURE 1. The DL4AWNET framework.

the network controller has to solve a series of
WNUM problems with the same or similar struc-
ture to guarantee stable network performance. Tra-
ditionally, each problem instance is considered as
an isolated input and its solving procedure is start-
ed from scratch. Another re-optimization strategy
of using the solution to the latest instance as the
starting point for the current one is also employed
in many studies, which implicitly assumes that a
small modification has been made to the previous
instance. Those strategies fail to fully exploit the
computation experience of solving all the historical
problem instances. Intuitively, one can benefit from
certain generalizable knowledge if it somehow
captures the correlations among different instances
[5]. Nevertheless, how to discover this knowledge
and leverage it to fuel the re-optimization remains
open.

SUPREMACY OF DEEP LEARNING IN
WIRELESS NETWORK QPTIMIZATION

According to the challenges faced by the con-
ventional optimization paradigm, DL technolo-
gies can advance the state of the art of wireless
network optimization from four aspects: estab-
lishing practical and informative formulations of
the optimization tasks; alleviating the compu-
tational overhead of generating approximated
solutions; exploring approaches that are superior
to the existing ones; and discovering new latent
knowledge that facilitates efficient and effective
optimization.These four aspects can be summa-
rized into a deep learning for wireless networking
(DL4WNet) framework, as illustrated in Fig. 1.

UNIVERSAL AND INFORMATIVE MODELING
In light of the ability of a deep neural network
(DNN) to fit a wide range of functions, DL tech-
nologies provide a universal approach to model
the optimization tasks that are intractable to for-
mulate mathematically. The work in [6] employs
DNNs to develop an end-to-end wireless com-
munication system in which several key functions,
including encoding, decoding, modulation and
demodulation, are performed in an integrated
fashion. Specifically, the transmitter and receiv-
ers are respectively modeled by an auto-encoder
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FIGURE 2. Hybrid DL model to perform spatio-temporal modeling and predic-
tion for each cell (m, n), proposed in [7].

DNN and auto-decoder DNN while the channel
effects are represented by a conditional genera-
tive adversarial net (GAN). In this way, the prior
information of the channel is not required and the
whole system can be trained in a supervised man-
ner. Such an end-to-end framework provides a
universal solution for different channels. In partic-
ular, encouraging results on additive white Gauss-
ian noise (AWGN) channels, Rayleigh fading
channels, and frequency-selective channels are
reported in [6] that the neural-based approach
can achieve similar or better performance than
those of traditional approaches with expert knowl-
edge and channel models.

Additionally, the advancements in DL technol-
ogies motivate researchers to incorporate extra
information into the optimization models. Thanks
to the convenience brought by the DL models
for making predictions, proactive resource allo-
cation algorithms have recently received a great
deal of attention. By leveraging the near-term
predictions of some system parameters (e.g., traf-
fic loads, content requests, and user trajectory),
those approaches can serve the demands pro-
actively to improve the performance, which also
demonstrate good adaptability to the dynamic
environments. As the prerequisites, the prediction
methods play a critical role in the development
of proactive serving algorithms. Taking traffic
prediction as an example, a hybrid DL model is
proposed in [7] to capture the spatial-temporal
correlations of traffic loads in cellular networks.
As shown in Fig. 2, an autoencoder-based model,
which consists of a global stacked autoencoder
(GSAE) and multiple local SAEs (LSAEs), is used
to characterize the spatial correlations, while the
temporal characteristics are represented through
a long short-term memory (LSTM) architecture.
In terms of prediction accuracy, the advantages
of the proposed model over two commonly used
baseline models, support vector regression (SVR)
and autoregressive integrated moving average
(ARIMA), are validated by extensive experiments
with a real-world dataset.

COMPLEXITY MiTIGATION

In addition to the benefits in the aspect of mod-
eling, exploiting the expressive power of DNNs
brings huge potential to reduce the computation-
al overhead of solving optimization problems.
A natural way to achieve this goal is to replace
some computation-intensive tasks with properly

designed DNNs as the output of a DNN can be
efficiently evaluated. With the help of modern
DL platforms, a DL model can be built generical-
ly without expert knowledge about the approxi-
mated procedure. For example, the channel state
information (CSI) is normally required for appro-
priate resource allocation over wireless networks,
whereas the CSI estimation is expensive in dense
networks. Recognizing that the CSI is basically
determined by the geographic location informa-
tion (GLI) of the transmitters and receivers, the
authors in [8] propose to construct a DNN, which
takes the GLI as input and bypasses the CSI esti-
mation, to learn the optimal link scheduling in
D2D networks. Experimental results show that the
ML-based scheduling can converge to a near-opti-
mal solution within a small number of iterations in
online operation.

Another interesting application of DL meth-
odology for the purpose of speeding up the
problem-solving process is based on the idea of
dimensionality reduction. Roughly speaking, a
DL model is utilized to figure out the key factors
that have a great impact on the network perfor-
mance. In this way, the complexity of designing
a reasonable control policy can be alleviated.
Consider the novel features and emerging pro-
tocols that are incorporated into the 5G net-
works, it is becoming difficult, if not impossible,
to enumerate the relationships between the
network parameters and the quality of experi-
ence (QoE) relevant key performance indica-
tors (KPIs) explicitly. In the work of [9], a deep
learning-based QoE prediction approach is pro-
posed to evaluate users’ experiences in mobile
video transmission. To enable such a data-driven
approach, a large-scale QoE dataset, which con-
sists of more than 80000 pieces of data about
four kinds of subjective scores and 89 network
parameters, is first established. Observing that a
specific QoE score may be influenced by a small
portion of network parameters, the feature selec-
tion and boxplot methods are applied to reduce
the redundancy among the network parame-
ters and clean the raw data, respectively. With
the preprocessed data, it is shown in [9] that a
DNN-based model results in more accurate QoE
assessments than that achieved by some clas-
sic methods, such as support vector machines
(SVM) and decision tree.

DISRUPTIVE ALGORITHM DESIGN

Beyond increasing the efficiency of tackling
wireless network optimization tasks, research-
ers also adopt DL techniques, particularly DRL
techniques, to develop innovative neural-based
approaches that can yield better utility, as
shown in Fig. 3. The end-to-end optimization
framework aims to train a DL model that can
output a solution to the optimization problem
directly. A general procedure to achieve this is
to recast the optimization problem in the form
of the Markov decision process (MDP) and train
a learning agent that explores the solution space
and derives the optimal control policy from its
experience. In the setting of DRL, the control
policy is commonly parameterized through
DNNs. Such an experience-driven framework
offers a flexible way to deal with highly dynam-
ic systems with complicated state space (e.g.,
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many factors are jointly considered) in an end-
to-end fashion. In other words, learning out
of experience can circumvent the necessity of
developing an extra scheme to coordinate a set
of algorithms or protocols that are studied sep-
arately for different sub-systems. Therefore, the
potential performance degradation caused by
the coordination can be avoided. In this context,
the work in [10] studies the resource allocation
problem in an LTE-WiFi coexistence environ-
ment, where multiple small base stations (SBSs)
proactively perform dynamic channel selec-
tion, carrier aggregation, and fractional spec-
trum access. With a game-theoretic model, an
RL-LSTM framework is proposed to predict the
spectrum availability and plan the channel usage
autonomously. It is shown that the control poli-
cy learned by each SBS can drive the whole sys-
tem to a mixed-strategy Nash equilibrium (NE),
which witnesses the great performance boost
for the SBSs while preventing WiFi performance
degradation.

Recent research attempts at embedding DL
models in the traditional algorithmic frameworks
for combinatorial optimization also reveal promis-
ing results in advancing the state of the art meth-
odologies [11, 121, which shed light on a hybrid
optimization framework for algorithm design. The
former work focuses on a greedy heuristic frame-
work in which the criterion for selecting the next
step option is learned using DRL methods. The lat-
ter work investigates the local search framework,
where the search direction is guided by the outputs
of DNNs. Given the pervasiveness of heuristics in
the wireless networking domain, we envision that
the idea of leveraging DL to promote existing algo-
rithms can be leveraged to address wireless net-
work optimization tasks in a broader sense. Note
that many conventional optimization algorithms,
especially for multi-hop wireless networks, cannot
be fully replaced by machine learning based solu-
tions yet [5]. The hybrid model enables gradual
progress toward the ultimate goal.

LATENT KNOWLEDGE EXPLORATION

Traditional approaches with the paradigm of
mathematical programming typically aim to
develop mathematical expressions that can relate
user Traffic, network Resource, and the Quality
of service metrics, which can be termed as TRQ
functions. Nevertheless, the DL-based approach-
es enable people to exploit latent knowledge
embedded in the historical data from new angles,
beyond the traditional TRQ relationship. The sem-
inal work in [5] proposes the idea of leveraging
DL to identify insightful patterns from the conven-
tional solutions of previous wireless network flow
optimization instances. The knowledge extract-
ed with DL is leveraged to tailor the new opti-
mization instances to reduce the problem size,
which can then be solved by the conventional
algorithm with significantly less computation time
but solution quality maintained. The view in [5]
in fact brings a complementary angle to integrate
DL with conventional optimization algorithms,
enabled by ML’s capability of revealing latent
knowledge beyond human expertise. Specifical-
ly, the work in [5] addresses the demand con-
strained energy minimization problem in generic
multi-commodity flow networks. A deep belief net

control decisions

network state
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control decisions

network state

optimization solver

(b)

next
action

FIGURE 3. DL based network control: a) end-to-end optimization framework;

b) hybrid optimization framework.

(DBN) based DNN is developed to capture the
latent relationship between flow information and
link usage. Based on the flow demands, the DL
model can estimate the usefulness of each link in
the network, that is, the probability that a specif-
ic link will be scheduled. In this way, those links
that are unlikely to be used will be pruned before
applying the existing optimization algorithms.
Despite the extra prediction overhead, this meth-
od can greatly improve the efficiency of solving
network optimization problems. It is reported in
[5] that solutions with minor quality degradation
can be produced by dealing with the reduced-size
problems while the computational costs decrease
by up to 50 percent.

CHALLENGES AND DISCUSSIONS

Despite the advantages of incorporating DL
models in wireless network optimization, some
fundamental research challenges have yet to be
addressed to fully unleash the potential of DL
technologies in simplifying network management
and enhancing network performance. In this sec-
tion, we discuss such challenges and illustrate
some of the research topics that deserve further
considerations.

INFORMATIVE TRAINING DATA GENERATION
Training a sensible DL model usually requires a
large amount of data. Moreover, the quality of
the dataset is critical to the generalization perfor-
mance of the learning-based algorithm. Unfortu-
nately, the lack of high-quality large-scale datasets
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is not uncommon for many network optimization
tasks, which will stifle the adoption of DL tech-
niques in the network control domain. A natural
strategy to mitigate this issue is data augmenta-
tion, which generates modified versions of sam-
ples in the existing dataset. This process needs to
perform carefully such that the distribution of the
problem instances does not change significantly.
In this context, generative models such as GAN
may provide powerful tools for data augmenta-
tion. Another candidate solution that has received
increasing attention recently is transfer learning.
That is, first training the DL model by leveraging
the data of relevant tasks and then fine-tuning the
model with the data associated with the specific
task.

The information involved in the network control
domain typically has a different structure from that
of the data in perceptual domains, such as com-
puter vision and natural language processing. How
to find a generic paradigm for organizing and rep-
resenting the information remains an open issue.
Considering that many network resource allocation
problems are modeled over graphs, the emerging
family of graph neural networks (GNNs) could be
a viable architecture to handle the data.

EFFECTIVE TRAINING OBJECTIVE DESIGN

In the context of learning-based wireless network
control, the methodologies for training the DL
models can be broadly categorized into either
imitation learning or reinforcement learning. In
the imitation learning setting, a DL model is often
used to approximate the solutions produced by a
teacher algorithm. Intuitively, the DNN is trained
for minimizing the distance between its outputs
and the expected solutions. The distance met-
ric has significant impacts on the final objective
values of the network optimization problems.
Given a near-optimal solution to the D2D link
scheduling problem, a solution that looks “close”
to the given one (e.g., activating one extra link)
may result in substantial performance degrada-
tion. Therefore, the distance metric is supposed
to reflect the optimization objective, whereas
designing a desirable metric is usually non-trivial.
In the case of reinforcement learning, the agent
improves the control policy for accumulating the
rewards through trial and error. To facilitate suf-
ficient exploration for discovering a reasonable
policy, it is sometimes necessary to introduce
surrogate reward signals that direct the agent
to accomplish several subgoals. Matching these
subgoals with the objective of the optimization
problem can be very challenging. An inappro-
priate reward function may lead to an agent get-
ting stuck at a tricky situation in which rewards
can be collected without making any progress
toward the ultimate goal (e.g., achieving some
subgoals repeatedly).

It is worth mentioning that some recent stud-
ies [8] streamline the procedure of the teach-
er algorithms and the backpropagation process
in DNN training. In this way, the DL models can
be trained in an unsupervised fashion, which can
bypass the difficulty of metric design. Howev-
er, those approaches are limited to optimization
problems for which the teacher algorithms are
gradient-based such that the intermediate results
of gradient descent steps can be used directly for

backpropagation. The application of this idea to
approximation algorithms of other types is yet to
be explored.

PERFORMANCE GUARANTEES

A fundamental challenge that arises in develop-
ing neural-based algorithms for wireless network
optimization tasks is the feasibility issue of the
learned solutions. By its nature, a DNN is trained
in a stochastic sense, minimizing the empirical
loss. Therefore, the DL model offers no guarantee
on whether its output can respect the constraints
of the optimization problem. To produce feasi-
ble solutions, dedicated modules are expected to
be incorporated in the neural architecture, which
can drive the outputs in the right direction. Decid-
ing how to project an arbitrary result onto the
feasible region is not an easy task. Note that the
projection mapping needs to be differentiable to
support the backpropagation.

The design of traditional approximation algo-
rithms crucially relies on the worst-case analysis
to certify the quality of the proposed algorithms.
In contrast, the development of the DL-based
algorithms is mainly experiment-oriented. In this
way, the DL-based algorithms can hardly give any
guarantee in terms of optimality. In particular, DL
models have been reported to perform poorly
over adversarial examples (e.g., normal examples
with small perturbations) [13]. Although several
countermeasures have been proposed to mitigate
the adversarial attacks, a generic methodology that
can evaluate the robustness of a DL model is still
missing. This methodology is of critical importance
since it not only determines to what extent people
can safely deploy the learned algorithms in produc-
tion systems, but also provides insights into algo-
rithm comparisons. In light of the difference in the
design philosophy between traditional algorithms
and DL-based algorithms, the analytical framework
used to evaluate the robustness of the learned
algorithms might be fairly different from the meth-
odologies which are currently used for designing
approximation algorithms.

SCALABILITY

When developing learning-based algorithms for
wireless network optimization tasks, the challenge
in terms of scalability contains many aspects. On
one hand, as the network size keeps increasing, a
well-trained DL model may have to handle prob-
lem instances with an unprecedented scale. Study-
ing how to preserve its performance or avoid
significant performance degradation on larger
problems remains a demanding job. One possi-
ble research direction to tackle this issue is to use
the DL techniques to discover locally “stationary”
patterns of optimization solutions. In this way, the
same DL model can be applied to different areas
of network coverage. One may construct a rea-
sonable global solution by leveraging the local
information. On the other hand, the growth of the
network scale indicates the rise of heterogeneity.
It is very challenging for a centralized controller
to manage the resources from a large number of
network entities with diverse capabilities. There-
fore, training and deploying the DL models distrib-
utedly becomes an interesting research topic. The
advances in the areas of federated learning and
multi-agent reinforcement learning are particularly
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attractive. The former enables multiple devices to
collaboratively learn a shared DL model without
exchanging their training samples, while the lat-
ter addresses tasks in which multiple agents learn
their individual control policy via interactions with
others.

A CASE Stupy

We initiated the study of integrating DL with
multi-hop wireless network flow optimization in
[5], which was however limited to the situation
with a static topology. In this section, we present
some of our current studies that extend the meth-
odology to a more generic scenario with dynamic
topologies. To maintain the tutorial nature, we here
focus on the methodologies and illustrating numer-
ical results; technical details can be found in [14].

Specifically, we consider the multi-commodity
network flow optimization problem in a multi-hop
single-radio single-channel wireless network. Given
the network topology, the task is to calculate a
time-sharing link schedule and associated link flow
allocation to maximize the system throughput for
nodes with traffic demands (specifically, to maxi-
mize the minimum of the commodity flows for a
reasonable consideration of fairness). The schedul-
ing is constrained by a protocol interference model
[4] where an active transmission link should be free
of interference within the receiver’s interference
range. The conflict relationship among all the links
can be characterized by a conflict graph, where
a node represents a link in the original network
and two nodes are connected if they conflict with
each other. An independent set (IS) over the con-
flict graph corresponds to a set of links that can
be scheduled for transmission simultaneously with-
out interfering each other. With such modeling,
the scheduling can be mapped to a problem of
searching for the optimal time sharing among an
optimal collection of ISs. While this computation
problem is still NP-hard (due to the exponentially
many possible ISs), it can be formulated as a linear
programming problem and solved iteratively by the
delayed column generation (DCG) method, with
guaranteed performance bound [4].

In order to facilitate computing the optimization
problem as described above, we propose a topol-
ogy-aware deep learning (TADL) framework as
illustrated in Fig. 4. The TADL follows the basic prin-
ciple that we initiated in [5], but incorporates new
elements to extend the applicability of the trained
machine to different topologies. Specifically, we
compute a large number of problem instances,
with different network topologies and commodity
flow deployments, and their solutions, which are
used to train a DL model that predicts the impor-
tance of a link based on whether it is used in the
DCG scheduling decisions. Therefore, given a new
problem instance, the trained model can predict
the importance level of each link and prune off the
unimportant ones, so the network scheduler only
needs to solve a smaller-sized problem.

As shown in Fig. 4, the TADL framework con-
sists of a graph embedding unit and a topology
reduction network. The embedding unit is the key
element that enables the topology-aware capabili-
ty of TADL. A straightforward idea to incorporate
topology into learning is feeding the topology
information, in the form of the adjacency matrix,
directly to the machine. However, the topology

Historical Instances

- O

Vector
Representation

Original Problem

Graph

Reduced-Size Problem

Topology Reduction
Embedding Unit Network

FIGURE 4. An illustration of the topology-aware deep learning (TADL) frame-

work.

representation based on the adjacency matrix will
be dependent on the specific node indexes: one
topology may lead to different adjacency matrix
representations based on different node index
assignments, which may be interpreted by the
machine as different networks. To address such
an index-dependent issue, the embedding unit
will attach each node and link with an embedding
vector that encodes appropriate index-indepen-
dent topological information: it can be interpreted
as a summary, obtained through training, of the
locations of the transmitters and receivers within
a neighborhood, their interference relationships,
and the impact of such information on schedul-
ing. The implementation details about embedding
are available in [14]. Those embedding vectors are
then leveraged by the topology reduction network,
in which attention mechanism is used to identify
network links that are likely to be used in an opti-
mized way.

We define two performance metrics to evaluate
the performance of TADL. One is the approxima-
tion ratio (AR), defined as the ratio of the optimum
value achieved from the pruned instance to that
achieved from the original instance; the other is
the time reduction (TR), defined as the ratio of the
amount of computation time reduction to the origi-
nal instance’s computation time. A normalized per-
formance index (Pl), combining both AR and TR,
can be further defined as Pl = 0.5 x (AR + TR). For
all three metrics, a larger value indicates a better
performance.

In Table 1, we list the measures achieved by
TADL in comparison to the topology-blind (BLIND)
approach: each link is independently pruned with a
probability that is equal to the pruning ratio in the
counterpart TADL scenario, while certain process-
ing [14] is conducted to maintain the feasibility in
optimization over the reduced topology. Note that
with TADL, the machine is trained in the setting of
50 nodes, where the node positions are randomly
placed to generate different topologies. More than
1 million instances (with different topologies and
commodity settings) are solved to generate the
training data. The trained machine is then applied,
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10 nodes 30 nodes 50 nodes
Commodities
1 3 5 1 3 5 1 3 5

TADL-AR 0.96 0.94 0.93 0.95 0.91 0.92 0.92 0.91 0.88
TADL-TR 0.78 0.72 0.69 0.67 0.64 0.58 0.66 0.62 0.60
BLIND-AR 0.67 0.72 0.72 0.68 0.64 0.66 0.56 0.51 0.43
BLIND-TR 0.42 0.40 0.37 0.48 0.35 0.35 0.37 0.33 0.04
TADL-PI 0.87 0.83 0.81 0.81 0.78 0.75 0.79 0.77 0.74
BLIND-PI 0.55 0.56 0.55 0.58 0.50 0.51 0.47 0.42 0.24
Tested instances 726 3450 4902 3620 4686 12990 19660 39160 39480

TABLE 1. The performance of TADL versus the BLIND approach, in different topology sizes (10, 30, or 50

nodes) with different number of commodity flows(1, 3, or 5 flows), respectively. The machine is trained
in the scenario with 50 nodes using more than 1 million instances, and then applied to all the cases in

this table without retraining.

Si: source node for flow i
Di: dest. node for flow i
----- pruned

retained

used in or|g|na| OPT

FIGURE 5. A wireless mesh topology in an office setting constructed in [15].
TADL link prediction and the optimal link set are shown. The links in red
color are the ones maintained by the DL model.

without any retraining, to all the cases reported in
Table I to evaluate the topology-aware capability
of TADL. The number of tested cases to gener-
ate the average performance measures in each
scenario is also reported in Table 1. It can be seen
that the TADL approach significantly outperforms
the BLIND counterpart in all cases, credited to the
intelligence of DL. The robustness of TADL over
dynamic topologies is explicitly demonstrated
through the steady high Pls over different network
scales, with the same number of commodity flows.
For example, when we observe the cases of five
commodity flows under the setting of 10, 30, and
50 nodes respectively, the TADL-PI values are 0.81,
0.75, and 0.74 accordingly. The 50-node (largest
scale for training) scenario defines the capacity
boundary of the TADL; when it then applies to eas-
ier tasks over smaller scale networks, we indeed
see better performance as indicated by the PI
value. In [14], the advantage of TADL is further
demonstrated with comparison to the situations
that the network topology is input to TADL in the
form of adjacency matrix (which is order-depen-
dent) instead of using a proper graph embedding
technique.

While Table 1 presents performance evalua-
tion averaged over many random topologies, Fig.
5 illustrates the operation of TADL over a specific
wireless mesh topology with 23 nodes and two

commodity flows, in a practical office setting such
as is studied in [15]. In the topology, each edge
represents a bi-directional link, thus giving 96 uni-
directional links in total. TADL leads to a reduced
problem of 29 links, which results in a TR of 76
percent and an AR of 97 percent (i.e., only with 3
percent performance degradation). Figure 5 also
indicates the exact set of links that are activated in
the optimal solution from the original problem to
benchmark the prediction accuracy. We can tell
that TADL only incorrectly prunes a few links and
includes a small set of redundant links.

CONCLUSION

This article provides a survey, with a holistic per-
spective, of the recent efforts in leveraging DL for
wireless network optimization, probing insightful-
ly where and how the supremacy of DL based
approaches comes versus the conventional mod-
eling based approaches. We have also discussed
the challenges of applying the state of the art
from the machine learning community to gener-
al wireless network optimization problems and
pointed out several promising research directions.
In addition, to demonstrate the potential of DL
techniques, we have presented a case study in
which DL based approaches are used to mitigate
the computation complexity in the canonical yet
challenging wireless network flow optimization
problem.
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