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ABSTRACT

With the growth of mobile technology in the 
last decade, wireless networks have become an 
integral part of our everyday lives. To meet the 
increasingly stringent application requirements, 
more and more network resources and features 
are becoming available, which requires innovative 
system designs such that the configuration and 
management of the networks can be performed 
automatically and autonomously. Due to its supe-
rior capability of discovering insightful knowledge 
in a data-driven manner, the emerging deep learn-
ing (DL) technology has shown great potential to 
fulfil this goal. This article systematically reviews 
recent efforts in leveraging DL for addressing wire-
less network optimization problems, presenting a 
fundamental understanding of where and how the 
supremacy of DL based approaches comes ver-
sus the conventional modeling based approaches. 
The basic research challenges and some promising 
research directions for fully exploiting the potential 
of DL in wireless network optimization are also 
discussed. The effectiveness of DL is illustrated with 
an innovative case study of integrating DL with 
multi-hop wireless network flow optimization.

INTRODUCTION
Recent years have witnessed the dramatic evolu-
tion of wireless networking. At the end of 2018, 
there were approximately 22 billion connect-
ed devices deployed around the world, most-
ly through wireless networking. Moreover, the 
recent emergence and integration of the Inter-
net-of-Things and a variety of other computing 
paradigms (such as cloud computing, edge com-
puting, and software-defined networking) have 
spawned a wide range of applications and ser-
vices over wireless networking, imposed new 
performance requirements on the service pro-
viders, and thus suggested a tremendous change 
in network management. With the proliferation 
of mobile devices and the adoption of technical 
innovations, the complexity and diversity of wire-
less networks skyrocket.

Conventionally, a wireless networking system 
is divided into several layers and researchers rely 
on analytical models to design management strat-
egies and control policies for delivering desirable 
network performance. For example, the scheduling 
issue at the link layer and the routing problem at 
the network layer had been intensively studied in 
the recent two decades, heavily relying on chan-

nel models, interference models, and optimization 
algorithms. These modeling oriented approaches, 
unfortunately, are becoming ineffective due to the 
discrepancies between the mathematical tractabil-
ity and the exponentially increased complexity of 
wireless networking, and may gradually fail to meet 
the stringent quality of service (QoS) requirements 
of emerging applications.

Due to its recent success in various domains 
[1], deep learning (DL) has been identified as a dis-
ruptive enabler for automatic and autonomous net-
work management. Incorporating DL intelligence 
into wireless networks not only has the potential 
to replace the manual interventions involved in 
the current engineering-intensive network man-
agement tasks, but also give rise to novel network 
optimization approaches that deliver superior sys-
tem performance in real-time. Given the strong 
capability in big data analytics, DL techniques can 
be leveraged to distill insightful knowledge (e.g., 
the intricate correlations between the network 
configurations and the achievable performances) 
from the abundant data over modern wireless net-
works to enable innovative control and optimiza-
tion methods. In particular, deep reinforcement 
learning (DRL) techniques, which have demonstrat-
ed impressive results in areas such as robotics and 
video games, provide promising opportunities for 
developing online control policies in complex and 
large-scale networking scenarios. Moreover, the 
emerging DL hardware accelerators significantly 
speed up the DL-related operations; the network 
controllers equipped with modern DL technologies 
are obtaining the capability to promptly adjust and 
optimize resource allocation efficiently in response 
to rapidly changing networking conditions.

The great potential of applying DL techniques 
in wireless network optimization has sparked a 
growing interest from both academia and indus-
try. However, most of the existing studies in this 
area are exploratory and conducted in an ad hoc 
manner. Therefore, we believe it is timely and 
imperative to review the state of the art with a 
holistic perspective, probing more insightfully why 
DL-based approaches have advantages over their 
traditional counterparts in wireless network opti-
mization. This article systematically reviews recent 
attempts at leveraging DL for addressing wireless 
network optimization problems, presenting a fun-
damental understanding of where and how the 
supremacy of DL comes regarding the wireless 
network optimization. In contrast to existing tuto-
rial articles, which focus on the benefits of adopt-
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ing DL techniques in specific network layers [2] 
and/or certain types of wireless networks [3], we 
instead investigate the power of DL in the context 
of generic wireless network optimizations that may 
arise in diverse situations.

The remainder of this article is organized as fol-
lows. The conventional approaches for wireless 
network optimization are discussed first, with a 
focus on examining the inherent limit in this con-
ventional paradigm. Accordingly, the supremacy 
of DL based methodologies will then be analyzed 
from four complementary angles. Then we discuss 
future research directions and related challenges. 
An innovative case study of leveraging deep learn-
ing in the context of multi-hop wireless network 
fl ow optimization is also included.

CONVENTIONAL MODELING AND OPTIMIZATION
Wireless network optimization tasks usually involve 
the management or allocation of network resourc-
es (e.g., radios, channels and transmit power), 
intending to deliver good network performance. 
Most existing approaches to such tasks follow the 
paradigm of mathematical programming, in which 
a wireless network utility maximization (WNUM) 
problem is formulated and solved.

Typically, a WNUM problem consists of an 
objective function and a set of constraints. The for-
mer represents the target network utility one wants 
to optimize while the latter captures the character-
istics of the constrained resource or budget. The 
problem formulation process involves the establish-
ment of various mathematically describable mod-
els. For example, the multipath fading experienced 
by a wireless channel is commonly modeled by 
Rayleigh and Rician distributions. Establishing these 
models requires domain knowledge to properly 
abstract the physical systems and analytically char-
acterize the effects of different network entities. 
With more and more advanced features incorpo-
rated in real-world wireless networks, it is becoming 
intractable for the above manual-tuning approach 
to model the network systems, which may contain 
unknown characteristics that are difficult to mea-
sure and express.

When designing algorithms for WNUM prob-
lems, computational overhead and optimality are 
the two most important concerns. To maximize 
the network utility, the limited network resources 
need to be allocated to diff erent network entities 
in a selective fashion. In a wireless network, due to 
the broadcast nature of wireless communications, 
neighboring links that share the same channel may 
not be activated simultaneously for alleviating the 
interference. In fact, most WNUM problems fall 
in the class of combinatorial optimization prob-
lems, which are NP-hard in general. Therefore, the 
major thread of solving these wireless network 
optimization problems is the development of vari-
ous approximation algorithms or heuristics, which 
generate a sub-optimal solution with an accept-
able computational cost, referring to [4] and the 
references therein. In the wake of next-generation 
wireless networks, technical solutions are expect-
ed to deliver improved network performance in 
real-time, which the existing approaches may not 
accomplish.

Wireless networks are inherently dynamic and 
require adaptive control. Regarding a specifi c net-
work optimization task, it is not uncommon that 

the network controller has to solve a series of 
WNUM problems with the same or similar struc-
ture to guarantee stable network performance. Tra-
ditionally, each problem instance is considered as 
an isolated input and its solving procedure is start-
ed from scratch. Another re-optimization strategy 
of using the solution to the latest instance as the 
starting point for the current one is also employed 
in many studies, which implicitly assumes that a 
small modifi cation has been made to the previous 
instance. Those strategies fail to fully exploit the 
computation experience of solving all the historical 
problem instances. Intuitively, one can benefi t from 
certain generalizable knowledge if it somehow 
captures the correlations among diff erent instances 
[5]. Nevertheless, how to discover this knowledge 
and leverage it to fuel the re-optimization remains 
open.

SUPREMACY OF DEEP LEARNING IN 

WIRELESS NETWORK OPTIMIZATION
According to the challenges faced by the con-
ventional optimization paradigm, DL technolo-
gies can advance the state of the art of wireless 
network optimization from four aspects: estab-
lishing practical and informative formulations of 
the optimization tasks; alleviating the compu-
tational overhead of generating approximated 
solutions; exploring approaches that are superior 
to the existing ones; and discovering new latent 
knowledge that facilitates efficient and effective 
optimization.These four aspects can be summa-
rized into a deep learning for wireless networking 
(DL4WNet) framework, as illustrated in Fig. 1.

UNIVERSAL AND INFORMATIVE MODELING
In light of the ability of a deep neural network 
(DNN) to fi t a wide range of functions, DL tech-
nologies provide a universal approach to model 
the optimization tasks that are intractable to for-
mulate mathematically. The work in [6] employs 
DNNs to develop an end-to-end wireless com-
munication system in which several key functions, 
including encoding, decoding, modulation and 
demodulation, are performed in an integrated 
fashion. Specifically, the transmitter and receiv-
ers are respectively modeled by an auto-encoder 
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FIGURE 1. The DL4WNET framework.
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DNN and auto-decoder DNN while the channel 
effects are represented by a conditional genera-
tive adversarial net (GAN). In this way, the prior 
information of the channel is not required and the 
whole system can be trained in a supervised man-
ner. Such an end-to-end framework provides a 
universal solution for diff erent channels. In partic-
ular, encouraging results on additive white Gauss-
ian noise (AWGN) channels, Rayleigh fading 
channels, and frequency-selective channels are 
reported in [6] that the neural-based approach 
can achieve similar or better performance than 
those of traditional approaches with expert knowl-
edge and channel models.

Additionally, the advancements in DL technol-
ogies motivate researchers to incorporate extra 
information into the optimization models. Thanks 
to the convenience brought by the DL models 
for making predictions, proactive resource allo-
cation algorithms have recently received a great 
deal of attention. By leveraging the near-term 
predictions of some system parameters (e.g., traf-
fic loads, content requests, and user trajectory), 
those approaches can serve the demands pro-
actively to improve the performance, which also 
demonstrate good adaptability to the dynamic 
environments. As the prerequisites, the prediction 
methods play a critical role in the development 
of proactive serving algorithms. Taking traffic 
prediction as an example, a hybrid DL model is 
proposed in [7] to capture the spatial-temporal 
correlations of traffic loads in cellular networks. 
As shown in Fig. 2, an autoencoder-based model, 
which consists of a global stacked autoencoder 
(GSAE) and multiple local SAEs (LSAEs), is used 
to characterize the spatial correlations, while the 
temporal characteristics are represented through 
a long short-term memory (LSTM) architecture. 
In terms of prediction accuracy, the advantages 
of the proposed model over two commonly used 
baseline models, support vector regression (SVR) 
and autoregressive integrated moving average 
(ARIMA), are validated by extensive experiments 
with a real-world dataset.

COMPLEXITY MITIGATION
In addition to the benefi ts in the aspect of mod-
eling, exploiting the expressive power of DNNs 
brings huge potential to reduce the computation-
al overhead of solving optimization problems. 
A natural way to achieve this goal is to replace 
some computation-intensive tasks with properly 

designed DNNs as the output of a DNN can be 
efficiently evaluated. With the help of modern 
DL platforms, a DL model can be built generical-
ly without expert knowledge about the approxi-
mated procedure. For example, the channel state 
information (CSI) is normally required for appro-
priate resource allocation over wireless networks, 
whereas the CSI estimation is expensive in dense 
networks. Recognizing that the CSI is basically 
determined by the geographic location informa-
tion (GLI) of the transmitters and receivers, the 
authors in [8] propose to construct a DNN, which 
takes the GLI as input and bypasses the CSI esti-
mation, to learn the optimal link scheduling in 
D2D networks. Experimental results show that the 
ML-based scheduling can converge to a near-opti-
mal solution within a small number of iterations in 
online operation.

Another interesting application of DL meth-
odology for the purpose of speeding up the 
problem-solving process is based on the idea of 
dimensionality reduction. Roughly speaking, a 
DL model is utilized to fi gure out the key factors 
that have a great impact on the network perfor-
mance. In this way, the complexity of designing 
a reasonable control policy can be alleviated. 
Consider the novel features and emerging pro-
tocols that are incorporated into the 5G net-
works, it is becoming diffi  cult, if not impossible, 
to enumerate the relationships between the 
network parameters and the quality of experi-
ence (QoE) relevant key performance indica-
tors (KPIs) explicitly. In the work of [9], a deep 
learning-based QoE prediction approach is pro-
posed to evaluate users’ experiences in mobile 
video transmission. To enable such a data-driven 
approach, a large-scale QoE dataset, which con-
sists of more than 80000 pieces of data about 
four kinds of subjective scores and 89 network 
parameters, is fi rst established. Observing that a 
specifi c QoE score may be infl uenced by a small 
portion of network parameters, the feature selec-
tion and boxplot methods are applied to reduce 
the redundancy among the network parame-
ters and clean the raw data, respectively. With 
the preprocessed data, it is shown in [9] that a 
DNN-based model results in more accurate QoE 
assessments than that achieved by some clas-
sic methods, such as support vector machines 
(SVM) and decision tree.

DISRUPTIVE ALGORITHM DESIGN
Beyond increasing the efficiency of tackling 
wireless network optimization tasks, research-
ers also adopt DL techniques, particularly DRL 
techniques, to develop innovative neural-based 
approaches that can yield better utility, as 
shown in Fig. 3. The end-to-end optimization 
framework aims to train a DL model that can 
output a solution to the optimization problem 
directly. A general procedure to achieve this is 
to recast the optimization problem in the form 
of the Markov decision process (MDP) and train 
a learning agent that explores the solution space 
and derives the optimal control policy from its 
experience. In the setting of DRL, the control 
policy is commonly parameterized through 
DNNs. Such an experience-driven framework 
off ers a fl exible way to deal with highly dynam-
ic systems with complicated state space (e.g., 

FIGURE 2. Hybrid DL model to perform spatio-temporal modeling and predic-
tion for each cell (m, n), proposed in [7].
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many factors are jointly considered) in an end-
to-end fashion. In other words, learning out 
of experience can circumvent the necessity of 
developing an extra scheme to coordinate a set 
of algorithms or protocols that are studied sep-
arately for diff erent sub-systems. Therefore, the 
potential performance degradation caused by 
the coordination can be avoided. In this context, 
the work in [10] studies the resource allocation 
problem in an LTE-WiFi coexistence environ-
ment, where multiple small base stations (SBSs) 
proactively perform dynamic channel selec-
tion, carrier aggregation, and fractional spec-
trum access. With a game-theoretic model, an 
RL-LSTM framework is proposed to predict the 
spectrum availability and plan the channel usage 
autonomously. It is shown that the control poli-
cy learned by each SBS can drive the whole sys-
tem to a mixed-strategy Nash equilibrium (NE), 
which witnesses the great performance boost 
for the SBSs while preventing WiFi performance 
degradation.

Recent research attempts at embedding DL 
models in the traditional algorithmic frameworks 
for combinatorial optimization also reveal promis-
ing results in advancing the state of the art meth-
odologies [11, 12], which shed light on a hybrid 
optimization framework for algorithm design. The 
former work focuses on a greedy heuristic frame-
work in which the criterion for selecting the next 
step option is learned using DRL methods. The lat-
ter work investigates the local search framework, 
where the search direction is guided by the outputs 
of DNNs. Given the pervasiveness of heuristics in 
the wireless networking domain, we envision that 
the idea of leveraging DL to promote existing algo-
rithms can be leveraged to address wireless net-
work optimization tasks in a broader sense. Note 
that many conventional optimization algorithms, 
especially for multi-hop wireless networks, cannot 
be fully replaced by machine learning based solu-
tions yet [5]. The hybrid model enables gradual 
progress toward the ultimate goal.

LATENT KNOWLEDGE EXPLORATION
Traditional approaches with the paradigm of 
mathematical programming typically aim to 
develop mathematical expressions that can relate 
user Traffic, network Resource, and the Quality 
of service metrics, which can be termed as TRQ 
functions. Nevertheless, the DL-based approach-
es enable people to exploit latent knowledge 
embedded in the historical data from new angles, 
beyond the traditional TRQ relationship. The sem-
inal work in [5] proposes the idea of leveraging 
DL to identify insightful patterns from the conven-
tional solutions of previous wireless network fl ow 
optimization instances. The knowledge extract-
ed with DL is leveraged to tailor the new opti-
mization instances to reduce the problem size, 
which can then be solved by the conventional 
algorithm with signifi cantly less computation time 
but solution quality maintained. The view in [5] 
in fact brings a complementary angle to integrate 
DL with conventional optimization algorithms, 
enabled by ML’s capability of revealing latent 
knowledge beyond human expertise. Specifical-
ly, the work in [5] addresses the demand con-
strained energy minimization problem in generic 
multi-commodity fl ow networks. A deep belief net 

(DBN) based DNN is developed to capture the 
latent relationship between fl ow information and 
link usage. Based on the flow demands, the DL 
model can estimate the usefulness of each link in 
the network, that is, the probability that a specif-
ic link will be scheduled. In this way, those links 
that are unlikely to be used will be pruned before 
applying the existing optimization algorithms. 
Despite the extra prediction overhead, this meth-
od can greatly improve the efficiency of solving 
network optimization problems. It is reported in 
[5] that solutions with minor quality degradation 
can be produced by dealing with the reduced-size 
problems while the computational costs decrease 
by up to 50 percent.

CHALLENGES AND DISCUSSIONS
Despite the advantages of incorporating DL 
models in wireless network optimization, some 
fundamental research challenges have yet to be 
addressed to fully unleash the potential of DL 
technologies in simplifying network management 
and enhancing network performance. In this sec-
tion, we discuss such challenges and illustrate 
some of the research topics that deserve further 
considerations.

INFORMATIVE TRAINING DATA GENERATION
Training a sensible DL model usually requires a 
large amount of data. Moreover, the quality of 
the dataset is critical to the generalization perfor-
mance of the learning-based algorithm. Unfortu-
nately, the lack of high-quality large-scale datasets 

FIGURE 3. DL based network control: a) end-to-end optimization framework; 
b) hybrid optimization framework.
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is not uncommon for many network optimization 
tasks, which will stifle the adoption of DL tech-
niques in the network control domain. A natural 
strategy to mitigate this issue is data augmenta-
tion, which generates modified versions of sam-
ples in the existing dataset. This process needs to 
perform carefully such that the distribution of the 
problem instances does not change significantly. 
In this context, generative models such as GAN 
may provide powerful tools for data augmenta-
tion. Another candidate solution that has received 
increasing attention recently is transfer learning. 
That is, first training the DL model by leveraging 
the data of relevant tasks and then fine-tuning the 
model with the data associated with the specific 
task.

The information involved in the network control 
domain typically has a different structure from that 
of the data in perceptual domains, such as com-
puter vision and natural language processing. How 
to find a generic paradigm for organizing and rep-
resenting the information remains an open issue. 
Considering that many network resource allocation 
problems are modeled over graphs, the emerging 
family of graph neural networks (GNNs) could be 
a viable architecture to handle the data.

EFFECTIVE TRAINING OBJECTIVE DESIGN
In the context of learning-based wireless network 
control, the methodologies for training the DL 
models can be broadly categorized into either 
imitation learning or reinforcement learning. In 
the imitation learning setting, a DL model is often 
used to approximate the solutions produced by a 
teacher algorithm. Intuitively, the DNN is trained 
for minimizing the distance between its outputs 
and the expected solutions. The distance met-
ric has significant impacts on the final objective 
values of the network optimization problems. 
Given a near-optimal solution to the D2D link 
scheduling problem, a solution that looks “close” 
to the given one (e.g., activating one extra link) 
may result in substantial performance degrada-
tion. Therefore, the distance metric is supposed 
to reflect the optimization objective, whereas 
designing a desirable metric is usually non-trivial. 
In the case of reinforcement learning, the agent 
improves the control policy for accumulating the 
rewards through trial and error. To facilitate suf-
ficient exploration for discovering a reasonable 
policy, it is sometimes necessary to introduce 
surrogate reward signals that direct the agent 
to accomplish several subgoals. Matching these 
subgoals with the objective of the optimization 
problem can be very challenging. An inappro-
priate reward function may lead to an agent get-
ting stuck at a tricky situation in which rewards 
can be collected without making any progress 
toward the ultimate goal (e.g., achieving some 
subgoals repeatedly).

It is worth mentioning that some recent stud-
ies [8] streamline the procedure of the teach-
er algorithms and the backpropagation process 
in DNN training. In this way, the DL models can 
be trained in an unsupervised fashion, which can 
bypass the difficulty of metric design. Howev-
er, those approaches are limited to optimization 
problems for which the teacher algorithms are 
gradient-based such that the intermediate results 
of gradient descent steps can be used directly for 

backpropagation. The application of this idea to 
approximation algorithms of other types is yet to 
be explored.

PERFORMANCE GUARANTEES
A fundamental challenge that arises in develop-
ing neural-based algorithms for wireless network 
optimization tasks is the feasibility issue of the 
learned solutions. By its nature, a DNN is trained 
in a stochastic sense, minimizing the empirical 
loss. Therefore, the DL model offers no guarantee 
on whether its output can respect the constraints 
of the optimization problem. To produce feasi-
ble solutions, dedicated modules are expected to 
be incorporated in the neural architecture, which 
can drive the outputs in the right direction. Decid-
ing how to project an arbitrary result onto the 
feasible region is not an easy task. Note that the 
projection mapping needs to be differentiable to 
support the backpropagation.

The design of traditional approximation algo-
rithms crucially relies on the worst-case analysis 
to certify the quality of the proposed algorithms. 
In contrast, the development of the DL-based 
algorithms is mainly experiment-oriented. In this 
way, the DL-based algorithms can hardly give any 
guarantee in terms of optimality. In particular, DL 
models have been reported to perform poorly 
over adversarial examples (e.g., normal examples 
with small perturbations) [13]. Although several 
countermeasures have been proposed to mitigate 
the adversarial attacks, a generic methodology that 
can evaluate the robustness of a DL model is still 
missing. This methodology is of critical importance 
since it not only determines to what extent people 
can safely deploy the learned algorithms in produc-
tion systems, but also provides insights into algo-
rithm comparisons. In light of the difference in the 
design philosophy between traditional algorithms 
and DL-based algorithms, the analytical framework 
used to evaluate the robustness of the learned 
algorithms might be fairly different from the meth-
odologies which are currently used for designing 
approximation algorithms.

SCALABILITY
When developing learning-based algorithms for 
wireless network optimization tasks, the challenge 
in terms of scalability contains many aspects. On 
one hand, as the network size keeps increasing, a 
well-trained DL model may have to handle prob-
lem instances with an unprecedented scale. Study-
ing how to preserve its performance or avoid 
significant performance degradation on larger 
problems remains a demanding job. One possi-
ble research direction to tackle this issue is to use 
the DL techniques to discover locally “stationary” 
patterns of optimization solutions. In this way, the 
same DL model can be applied to different areas 
of network coverage. One may construct a rea-
sonable global solution by leveraging the local 
information. On the other hand, the growth of the 
network scale indicates the rise of heterogeneity. 
It is very challenging for a centralized controller 
to manage the resources from a large number of 
network entities with diverse capabilities. There-
fore, training and deploying the DL models distrib-
utedly becomes an interesting research topic. The 
advances in the areas of federated learning and 
multi-agent reinforcement learning are particularly 
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attractive. The former enables multiple devices to 
collaboratively learn a shared DL model without 
exchanging their training samples, while the lat-
ter addresses tasks in which multiple agents learn 
their individual control policy via interactions with 
others.

A CASE STUDY
We initiated the study of integrating DL with 
multi-hop wireless network flow optimization in 
[5], which was however limited to the situation 
with a static topology. In this section, we present 
some of our current studies that extend the meth-
odology to a more generic scenario with dynamic 
topologies. To maintain the tutorial nature, we here 
focus on the methodologies and illustrating numer-
ical results; technical details can be found in [14].

Specifically, we consider the multi-commodity 
network fl ow optimization problem in a multi-hop 
single-radio single-channel wireless network. Given 
the network topology, the task is to calculate a 
time-sharing link schedule and associated link fl ow 
allocation to maximize the system throughput for 
nodes with traffic demands (specifically, to maxi-
mize the minimum of the commodity flows for a 
reasonable consideration of fairness). The schedul-
ing is constrained by a protocol interference model 
[4] where an active transmission link should be free 
of interference within the receiver’s interference 
range. The confl ict relationship among all the links 
can be characterized by a conflict graph, where 
a node represents a link in the original network 
and two nodes are connected if they confl ict with 
each other. An independent set (IS) over the con-
flict graph corresponds to a set of links that can 
be scheduled for transmission simultaneously with-
out interfering each other. With such modeling, 
the scheduling can be mapped to a problem of 
searching for the optimal time sharing among an 
optimal collection of ISs. While this computation 
problem is still NP-hard (due to the exponentially 
many possible ISs), it can be formulated as a linear 
programming problem and solved iteratively by the 
delayed column generation (DCG) method, with 
guaranteed performance bound [4].

In order to facilitate computing the optimization 
problem as described above, we propose a topol-
ogy-aware deep learning (TADL) framework as 
illustrated in Fig. 4. The TADL follows the basic prin-
ciple that we initiated in [5], but incorporates new 
elements to extend the applicability of the trained 
machine to different topologies. Specifically, we 
compute a large number of problem instances, 
with diff erent network topologies and commodity 
flow deployments, and their solutions, which are 
used to train a DL model that predicts the impor-
tance of a link based on whether it is used in the 
DCG scheduling decisions. Therefore, given a new 
problem instance, the trained model can predict 
the importance level of each link and prune off  the 
unimportant ones, so the network scheduler only 
needs to solve a smaller-sized problem.

As shown in Fig. 4, the TADL framework con-
sists of a graph embedding unit and a topology 
reduction network. The embedding unit is the key 
element that enables the topology-aware capabili-
ty of TADL. A straightforward idea to incorporate 
topology into learning is feeding the topology 
information, in the form of the adjacency matrix, 
directly to the machine. However, the topology 

representation based on the adjacency matrix will 
be dependent on the specific node indexes: one 
topology may lead to different adjacency matrix 
representations based on different node index 
assignments, which may be interpreted by the 
machine as different networks. To address such 
an index-dependent issue, the embedding unit 
will attach each node and link with an embedding 
vector that encodes appropriate index-indepen-
dent topological information: it can be interpreted 
as a summary, obtained through training, of the 
locations of the transmitters and receivers within 
a neighborhood, their interference relationships, 
and the impact of such information on schedul-
ing. The implementation details about embedding 
are available in [14]. Those embedding vectors are 
then leveraged by the topology reduction network, 
in which attention mechanism is used to identify 
network links that are likely to be used in an opti-
mized way.

We defi ne two performance metrics to evaluate 
the performance of TADL. One is the approxima-
tion ratio (AR), defi ned as the ratio of the optimum 
value achieved from the pruned instance to that 
achieved from the original instance; the other is 
the time reduction (TR), defi ned as the ratio of the 
amount of computation time reduction to the origi-
nal instance’s computation time. A normalized per-
formance index (PI), combining both AR and TR, 
can be further defi ned as PI = 0.5  (AR + TR). For 
all three metrics, a larger value indicates a better 
performance.

In Table 1, we list the measures achieved by 
TADL in comparison to the topology-blind (BLIND) 
approach: each link is independently pruned with a 
probability that is equal to the pruning ratio in the 
counterpart TADL scenario, while certain process-
ing [14] is conducted to maintain the feasibility in 
optimization over the reduced topology. Note that 
with TADL, the machine is trained in the setting of 
50 nodes, where the node positions are randomly 
placed to generate diff erent topologies. More than 
1 million instances (with different topologies and 
commodity settings) are solved to generate the 
training data. The trained machine is then applied, 

FIGURE 4. An illustration of the topology-aware deep learning (TADL) frame-
work.
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without any retraining, to all the cases reported in 
Table I to evaluate the topology-aware capability 
of TADL. The number of tested cases to gener-
ate the average performance measures in each 
scenario is also reported in Table I. It can be seen 
that the TADL approach signifi cantly outperforms 
the BLIND counterpart in all cases, credited to the 
intelligence of DL. The robustness of TADL over 
dynamic topologies is explicitly demonstrated 
through the steady high PIs over diff erent network 
scales, with the same number of commodity fl ows. 
For example, when we observe the cases of five 
commodity fl ows under the setting of 10, 30, and 
50 nodes respectively, the TADL-PI values are 0.81, 
0.75, and 0.74 accordingly. The 50-node (largest 
scale for training) scenario defines the capacity 
boundary of the TADL; when it then applies to eas-
ier tasks over smaller scale networks, we indeed 
see better performance as indicated by the PI 
value. In [14], the advantage of TADL is further 
demonstrated with comparison to the situations 
that the network topology is input to TADL in the 
form of adjacency matrix (which is order-depen-
dent) instead of using a proper graph embedding 
technique.

While Table 1 presents performance evalua-
tion averaged over many random topologies, Fig. 
5 illustrates the operation of TADL over a specifi c 
wireless mesh topology with 23 nodes and two 

commodity fl ows, in a practical offi  ce setting such 
as is studied in [15]. In the topology, each edge 
represents a bi-directional link, thus giving 96 uni-
directional links in total. TADL leads to a reduced 
problem of 29 links, which results in a TR of 76 
percent and an AR of 97 percent (i.e., only with 3 
percent performance degradation). Figure 5 also 
indicates the exact set of links that are activated in 
the optimal solution from the original problem to 
benchmark the prediction accuracy. We can tell 
that TADL only incorrectly prunes a few links and 
includes a small set of redundant links.

CONCLUSION
This article provides a survey, with a holistic per-
spective, of the recent eff orts in leveraging DL for 
wireless network optimization, probing insightful-
ly where and how the supremacy of DL based 
approaches comes versus the conventional mod-
eling based approaches. We have also discussed 
the challenges of applying the state of the art 
from the machine learning community to gener-
al wireless network optimization problems and 
pointed out several promising research directions. 
In addition, to demonstrate the potential of DL 
techniques, we have presented a case study in 
which DL based approaches are used to mitigate 
the computation complexity in the canonical yet 
challenging wireless network flow optimization 
problem.
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