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ABSTRACT
Collisional self-interactions occurring in protostellar jets give rise to strong shocks,
the structure of which can be a↵ected by radiative cooling within the flow. To study
such colliding flows, we use the AstroBEAR AMR code to conduct hydrodynamic
simulations in both one and three dimensions with a power law cooling function.
The characteristic length and time scales for cooling are temperature dependent and
thus may vary as shocked gas cools. When the cooling length decreases su�ciently
rapidly the system becomes unstable to the radiative shock instability, which produces
oscillations in the position of the shock front; these oscillations can be seen in both
the one and three dimensional cases. Our simulations show no evidence of the density
clumping characteristic of a thermal instability, even when the cooling function meets
the expected criteria. In the three-dimensional case, the nonlinear thin shell instability
(NTSI) is found to dominate when the cooling length is su�ciently small. When the
flows are subjected to the radiative shock instability, oscillations in the size of the
cooling region allow NTSI to occur at larger cooling lengths, though larger cooling
lengths delay the onset of NTSI by increasing the oscillation period.

Key words: Herbig–Haro objects – hydrodynamics – ISM: jets and outflows – in-
stabilities – methods: numerical – shock waves

1 INTRODUCTION

Hypersonic flows of magnetized plasmas naturally produce
strong shocks when obstructions or self-interactions (flow
collisions) occur. Such complex flows occur in a wide vari-
ety of astrophysical settings. These include supernova ex-
plosions, shock cloud interactions, space weather and cloud
collisions during galaxy interactions. Colliding flows also oc-
cur in High Energy Density Plasma (HEDP) settings as well
such as Z-pinches and laser driven implosion experiments.

A particularly noteworthy form of colliding flows are
the highly collimated outflows known as ”protostellar jets”
or ”Herbig Haro jets” (Frank et al. 2014). These occur when
a young stellar object (YSO) ejects matter via rotational
magnetohydrodynamic processes to form a dense and nar-
row beam of collimated matter (Ray et al. 2007; Frank et al.
2014). The colliding flow aspect of these jets comes from ob-
servations which often show chains of knots (Hartigan et al.
2011). This morphology likely arises from collisions between
faster moving jet material with slower material ejected ear-
lier. Hydrodynamic and MHD evolution in these interaction
zones produce is then expected to lead to high degrees of
heterogenity or ”clumpiness” (Hansen et al. 2017).

Radiative cooling will be significant for jet systems in
star forming regions. Over the years many simulations have

been performed to study various aspects of ”radiative jets”
such as basic flow properties de Gouveia dal Pino & Birkin-
shaw (1996) the role of magnetic fields (Gardiner et al.
(2000); O’Sullivan & Ray (2000) and the interactions be-
tween jet flows and protostellar disc winds.

All supersonic jets, whether adiabatic or cooling due to
optically thin radiative losses, are structurally composed of
a supersonic beam, a cocoon of shocked jet gas at the end
of the beam, a region of shocked ambient gas pushed by the
cocoon, and a bow shock (Blondin et al. 1990). The bow
shock moves at velocity (de Gouveia dal Pino & Benz 1993)

vbs = vj
h
1 + (⌘↵)�

1
2

i�1
, (1)

where vbs and vj are the respective velocities of the bow
shock and the jet, ⌘ is the ratio density of the jet material
to that of the ambient medium (⇢j/⇢a), and ↵ is the square
of the ratio of the radius of the beam to the radius of the
head of the jet. Note that for radiative jets a number of
dimensionless parameters are used to characterize the sys-
tem, such as ⌘ defined above, the mach number M , and the
cooling parameter � = tcool/thydro, which is given as the
ratio between cooling time-scale (defined in section 2.2) and
hydrodynamic time-scale.
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When radiative energy losses are significant (� . 1),
jets tend to exhibit instabilities occurring in the regions be-
hind shocks. In particular, three dimensional models show
considerable structure formation occurring in unstable re-
gions associated with shocks, leading to strong ”clumping”
in the simulated jets much like what is seen in the observa-
tion.

The mode involved in these instabilities is, however, not
always clear. There are a number of unstable modes available
in radiatively cooling regions in protostellar jets. First there
is the radiative shock instability which leads to oscillations
in the shock front (e.g. Langer et al. 1981; Strickland &
Blondin 1995; Walder & Folini 1998). The Nonlinear Thin
Shell Instability (NTSI) (Vishniac 1994), which is a bending
mode of the ”cold slab” of post-shock cooled material can
also occur in protostellar jets. Finally, there is the Thermal
or Field instability (Field 1965; Balbus 1986) in which cold
clumps condense out of a hotter background.

The question of which instability dominates in radia-
tively cooling jets also comes up in laboratory experiments,
which have been used to study the properties of plasma jets.
While the physical scale of laboratory experiments di↵ers
from that of astrophysical jets by several orders of magni-
tude, correspondence of results can be obtained through the
use of dimensionless parameters as established in Ryutov
et al. (2000). Experiments performed at Imperial College
(Suzuki-Vidal et al. 2009; Ciardi et al. 2009) and Cornell
University (Gourdain et al. 2010) have created single radia-
tively cooling jets using a pulse-powered generator driving a
radial foil z-pinch. Collimation occurs via the formation of
a magnetic tower of toroidal fields as predicted by Lynden-
Bell (1996). In Suzuki-Vidal et al. (2012) the interaction of
a jet with the ambient medium was studied.

Of particular interest for this study are experiments by
Suzuki-Vidal et al. (2015) who examined the structure of
bow shocks formed by the collision of two jet flows. Among
the most important results of these experiments was the
formation of small-scale structures in the interaction region
where the two jets collided. The time-scale over which the
formation of these structures occurred was consistent with
the estimated time-scales for radiative cooling. In that paper
the authors concluded that the most likely unstable mode
was due to the thermal or ”Field” instability (Field 1965)
however this conjecture could not be tested.

In this paper, the first in a series, we begin a study of
the colliding radiative flows like those of Suzuki-Vidal et al.
(2015). While astrophysical jets are likely magnetic, it is
prudent to build a realistic jet model in stages by under-
standing first the radiative hydrodynamic case, which is it-
self rich in the underlying physics; we will ultimately have a
better understanding of the particular signatures of the mag-
netic case if we first understand the case without magnetic
fields for future comparison. Our goal in the present paper is
therefore to focus solely on hydrodynamic simulations using
an analytic form of radiative cooling (i.e. a power-law cool-
ing function), which allows us to mimic di↵erent regions of
a full cooling curve. We begin with one-dimensional simula-
tions to reproduce and extend previous studies by Strickland
& Blondin (1995) and to test our model. We then move on
to three-dimensional simulations aimed to further investi-
gate the results of Suzuki-Vidal et al. (2015) with the goal
of gaining a better understanding of which instability, driven

Figure 1. Identification of key components of the colliding jet
systems before and after collision.

by radiative cooling behind the shock, is at work in both the
laboratory experiments and astrophysical radiative jets.

This paper is organized as follows: In section 2, we be-
gin with necessary background on the structure of colliding
flows (2.1) before discussing theoretical aspects of cooling
(2.2) and instabilities (2.3) which may be applicable. In Sec-
tion 3 we discuss the model system and simulation parame-
ters. In section 4, we present the results of the simulations,
with section 4.1 containing the results of the 1-dimensional
simulations while section 4.2 contains the results of the 3-
dimensional simulations. Section 5 will include a discussion
of instabilities relevant to these results.

2 THEORETICAL BACKGROUND

2.1 Morphology of Colliding Jets

We begin with a brief description of the general morphology
of the colliding jets in our simulations (see figure 1). Prior to
collisions, the jets propagate towards each other creating the
well characterized structure composed of a forward (relative
to the flow direction) facing bow shock and a rearward fac-
ing jet shock. As jet material passes through the jet shock it
flows sideways and away from the jet head to form a cocoon
surrounding the body of the jet (Blondin et al. 1990). Note
that Figure 1 shows that the flow of post jet shock material
produces feedback on the jet head in our simulations, bevel-
ing the edge of the jet. This pre-collision shaping of the jet
will leave an imprint which will appear later as instabilities
grow.

After the collision of the two jets, the jet shocks become
boundaries forming an interaction region. The structure of
radiative shocks always shows high temperatures directly
behind the shock followed by a cooling region, in which the
shocked gas goes from its post-shock temperature Ts back
to a lower temperature. Behind the cooling region is a cold
slab where gas temperatures reach their final post-cooling
value and densities are highest. Since the jets in our simula-
tion have identical parameters, the interaction region does
not change position unless disrupted by instabilities. Some
shocked material gets ejected laterally by the high pressures
throughout the interaction region (Falle & Raga 1993).

MNRAS 000, 1–14 (0000)
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2.2 Cooling Scales

The impact of radiative cooling on the structure of the jet
can be described in terms of the cooling length and cooling
time, which are given by (de Gouveia dal Pino & Benz 1993;
Blondin et al. 1990)

dcool ⇡
vstcool

4
=

vs
4

3kTs

n⇤(T )
, (2)

where n⇤(T ) is a cooling function, which gives the energy
loss per unit volume, and vs

4 gives the approximate post-
shock velocity for a strong � = 5

3 shock. Only when the
cooling length is much larger than any other length scale
relevant to structure formation can the system be approxi-
mated as adiabatic. Conversely a very short cooling length
allows for an isothermal approximation.

In real systems ”cooling functions” are based on mi-
crophysical processes usually associated with the collisional
excitation and radiative de-excitation of atomic or molecular
transitions. Such cooling functions can have many local min-
ima and maxima as a function of temperature. In this paper
we wish to focus only on the slope of the cooling curves and
its e↵ect on the dynamics. Thus the cooling function we use
is a simple power law

⇤(T ) = ↵

✓
T
T0

◆�

, (3)

where we treat ↵, � and T0 as free parameters. ↵ is used
to set the absolute value of the cooling strength and, hence,
the immediate post-shock cooling time t̂cool is given as

t̂cool = (tcool)T=Ts
=

3kTs

n↵

✓
T0

Ts

◆�

. (4)

In practice we set T0 to be the temperature just behind the
shocks in an e↵ort to keep t̂cool consistent across a range of �.
This value for the cooling time, along with the correspond-
ing cooling length, are accurate in the region immediately
behind the shock front.

As the gas cools behind the shock, the decreasing tem-
perature and corresponding change in density result in the
local value of the cooling time changing across the cooling

region. If density scales as n = n0

�
T
T0

�⇠
then the cooling

time scales as

tcool =
3kT
n↵

✓
T0

T

◆(�)

=
3kT0

n0↵

✓
T
T0

◆(1���⇠)

, (5)

so the cooling time decreases as the gas cools if

@(ln⇤)
@(lnT )

= � < 1� ⇠. (6)

In a 1D flow, such as that behind a shock, conservation of
mass implies that velocity changes inversely with density.
Thus the cooling length decreases as the gas cools if

@(ln⇤)
@(lnT )

= � < 1� 2⇠. (7)

For isochoric cooling, ⇠ = 0 so both the cooling length and
time scales would decrease as the gas cools if � < 1. For
isobaric cooling, ⇠ = �1 so the cooling length decreases as
the gas cools whenever � < 3 while the cooling time only
decreases as the gas cools if � < 2.

If ⇣ = ⇠+��1 vanishes, then the cooling time is uniform
with the value given by equation 4. The time required for

cooling from temperature Ts to temperature Tf can there-
fore be given as

t(Tf )� t(Ts) = Ct(Tf )t̂cool = ln

✓
Ts

Tf

◆
t̂cool. (8)

For all other values of ⇣, the cooling time varies with tem-
perature. A more accurate estimation of the time required
for cooling from temperature Ts to temperature Tf can be
estimated by multiplying t̂cool by a correction factor

Ct(Tf ) =

Z Ts

Tf

✓
T0

T

◆⇣+1 dT
T0

=

⇣
T0
Tf

⌘⇣
�

⇣
T0
Ts

⌘⇣

⇣
. (9)

In the limit where ⇣ approaches zero this correction fac-

tor approaches ln
⇣

Ts
Tf

⌘
as is expected for a uniform cool-

ing time. The cooling distance can be corrected in a similar
manner except that ⇣ = 2⇠ + � � 1.

An additional correction to equation 4 is needed to ac-
count for the tendency for temperature to increase as a re-
sult of compression. Written in terms of temperature, energy
conservation (equation 16) for an ideal gas is given by

1
� � 1


@
@t

+ v ·r
�
T =

T
⇢


@
@t

+ v ·r
�
⇢� n⇤(T ). (10)

Equation 4 is correct for � = 5
3 in the case where D ⇢

D t van-

ishes. If instead ⇢ scales as T ⇠, then equation 10 becomes

1
� � 1


@
@t

+ v ·r
�
T = ⇠


@
@t

+ v ·r
�
T � n⇤(T ). (11)

This is equivalent to the case where D ⇢
D t vanishes if ⇤(T )

(in the case of a power law, ↵) is divided by the correction
factor 1�(��1)⇠. Unlike the correction given by equation 9,
this correction is independent of temperature and (provided
that a power law relation between density and temperature
holds) is uniform throughout the cooling region.

2.3 Instabilities

As discussed in the introduction radiative shocks are suscep-
tible to a number of instabilities. In this section we briefly
describe the unstable modes which have been considered to
be the most important based on previous studies. These are
the modes we will focus on in our study.

The so-called radiative shock instability, first described
by Langer et al. (1981), arises when discrepancies between
the cooling length and the size of the cooling region lead to
oscillations in the position of the shock front.

When the size of the cooling region is less than the
cooling length, the cooling region becomes over-pressured
as a result of the post-shock gas not having su�cient time
to cool before reaching the cold slab; this causes the shock
to expand forward. Meanwhile if the cooling region becomes
larger than the cooling length, the shock becomes under-
pressured and retreats backwards.

In the former scenario as the shock velocity increases in
an attempt to recover pressure equilibrium, the post-shock
temperature will similarly increase; for systems with su�-
ciently low � this will result in a decreased cooling length.
Thus the e↵orts of the system to restore pressure equilibrium
result instead in a further imbalance. While the size of cool-
ing region will eventually exceed the cooling length, by that
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point the system will have been driven beyond its steady-
state configuration, resulting in oscillatory behaviour. As �
is increased the oscillations become damped as the correla-
tion between shock velocity and cooling time changes from
positive to negative (Strickland & Blondin 1995). The period
of oscillation is proportional to the thickness of the cooling
region divided by the velocity of the preshock gas (Chevalier
& Imamura 1982), therefore decreasing as cooling strength
(↵) in creases.

Theoretical work by Langer et al. (1981) suggested that
shocks with � & 1.1 are stable against oscillations. The
specific critical values however may be lower and are sen-
sitive to boundary conditions (Strickland & Blondin 1995;
Mignone 2005). For example, lower overtones more easily
damped in the presence of a reflecting wall, since a wave
traversing the cold slab can be reflected out of phase with
the original shock wave; under such conditions Strickland
& Blondin (1995) found that oscillations begin to become
damped at lower values of � & 0.7 for overtones and � & 0.4
for the fundamental. In addition to the e↵ects of bound-
ary conditions, critical values are also found to decrease at
lower specific heat ratio � (Ramachandran & Smith 2005)
and at lower Mach numbers (Ramachandran & Smith 2006;
Pittard et al. 2005). Multi-dimensional simulations (Suther-
land et al. 2003) demonstrate that pulsations in the direction
of the shock still occur though the flow becomes turbulent
which can lead to the development of structure within the
cooling zone and cold slab (see figure 12 of Sutherland et al.
(2003)).

A second instability relevant to our simulations is
the nonlinear thin shell instability (NTSI) (Vishniac 1994;
Blondin & Marks 1996). This instability arises from the in-
teraction between ram pressure of the incoming flow and the
thermal pressure inside the shell (see figure 1 of McLeod &
Whitworth (2013)). In unperturbed conditions, the direction
of the flow is normal to the surface of the shell, so the gra-
dients of these pressures cancel as a result of this alignment.
If however the shell is perturbed by a finite amount, the sur-
face of the shell can become misaligned from the flow. Such
a misalignment results in an imbalance of forces, pushing
additional shell material away from the regions of greatest
misalignment and toward the regions of greatest perturba-
tion zones; this promotes growth of the perturbation. The
growth rate of perturbations of amplitude  and wavelength
� is given by

 ̇ ⇠
✓
 
�

◆ 3
2

cs. (12)

The thickness of the shell limits the NTSI in two ways. First,
perturbations are stable to linear order and require a seed of
thickness greater than that of the shell. Second, corrugation
of the slab is limited to wavelengths larger than the thickness
of the shell; longer wavelengths have slower growth rates per
equation 12 and thus the maximum growth rate for NTSI is
slower for thicker shells (McLeod & Whitworth 2013). The
e↵ect of shell thickness also plays a role in saturation of the
NTSI: Blondin & Marks (1996) found that as perturbations
grow, the shell increases in width, eventually exceeding one
half-wavelength and inhibiting further growth.

Instabilities such as the NTSI do not occur in isolation,
rather other e↵ects can promote, inhibit, or result from the

instability. Some instabilities such as the transverse acceler-
ation instability may exist alongside the NTSI (Dgani et al.
1996), though in the isothermal limit the NTSI is found to
dominate the long-term evolution of the shock front even
when other instabilities have higher estimated growth rates
(Blondin & Koerwer 1998; Lamberts et al. 2011). Other in-
stabilities which can occur in our set-up may act as seeds for
the NTSI. When two collimated flows collide, turbulence can
be seen to arise in the cold slab and cooling region as a result
of either Rayleigh-Taylor and Richtmyer-Meshkov (Walder
& Folini 1998). Velocity shear, which arises from the obliq-
uity of the slab and promotes growth of the NTSI (Blondin
& Marks 1996), can also trigger turbulence via the Kelvin-
Helmholtz instability (Stevens et al. 1992; Lamberts et al.
2011). Thus turbulent behaviour in the cold slab may result
in bending modes that trigger the NTSI (Folini & Walder
2006). The spatial scale of these structures grows with time
as the cold slab accumulates matter. Finally, as obliquity of
the shock increases, the shock temperature falls, resulting in
reduction in thermal X-Ray emissions (Steinberg & Metzger
2018).

The final instability we focus on is the Thermal or Field
instability described by (Field 1965). This mode is applica-
ble in regions of the fluid lying behind the shock where cool-
ing occurs. The tendencies of a fluid to evolve towards pres-
sure equilibrium results in the compression of cooler regions.
Thus, in the presence of cooling, pockets of higher density
and lower temperature than their surroundings can form.
For instability to occur, the cooling time must decrease with
decreasing entropy (Balbus 1986). Since entropy decreases
as the gas cools, the instability criterion can be expressed as

@(ln⇤)
@(lnT )

<

(
+1.0 isochoric flow

+2.0 isobaric flow
. (13)

Isobaric modes are unstable for higher values of � since the
increase in density of an isobaric perturbation provides an
increase in the cooling rate, counteracting the reduction in
cooling arising from decrease in temperature. More recently,
Falle et al. (2020) reanalysed the stability criteria and ob-
tained the following results: first, isobaric instability occurs
if in equilibrium pressure decreases with increasing density;
second, isentropic instability occurs if the equilibrium sound
speed exceeds the frozen (adiabatic) sound speed; third, that
the inclusion of magnetic fields does not alter the stability
criteria.

3 METHODS AND MODEL

The simulations in this study were conducted using As-
troBEAR1 (Cunningham et al. 2009; Carroll-Nellenback
et al. 2013), which is a massively parallelized adaptive mesh
refinement (AMR) code that includes a variety of multi-
physics solvers, such as magnetic resistivity, radiative trans-
port, self-gravity, heat conduction, and ionization dynamics.
Our study uses only the hydro solvers with an energy source
term associated with the radiative cooling (see section 2.2).

1 https://astrobear.pas.rochester.edu/
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Thus our governing equations are:

@⇢
@t

+r · ⇢v = 0 (14)

@⇢v
@t

+r · (⇢v ⌦ v) = �rp (15)

@E
@t

+r · ((E + p)v) = �n2⇤(T ) (16)

where ⇢ is the mass density, n is the number density of
nuclei, v is the fluid velocity, p is the thermal pressure, �
is the gravitational potential, and E = 1

��1p + 1
2⇢v

2 is the
combined internal and kinetic energies. In all runs an average
particle mass of 1 amu was used.

Cooling was applied only at temperatures above the
floor temperature of the simulation in order to safeguard
against runaway cooling. Since realistic cooling curves tend
to vanish at low temperatures, this behaviour is justifiable
on physical grounds, though it may be worth noting that
Pittard et al. (2005) found that cooling below the pre-shock
temperature enhances the radiative shock instability.

For the one dimensional runs we do not run two jets
into each other. Rather we use boundary conditions with
extrapolation (specifically, Neumann boundary conditions
with a derivative of zero) on the left and a reflecting wall
on the right. The flow (the jet) is sent into the grid from
the left boundary and a shock is established when this flow
collides with the reflecting wall on the right boundary. The
physical scales of flow where chosen to be applicable to the
laboratory experiments of (Suzuki-Vidal et al. 2015). The
dimensionless numbers for our simulations (M, ⌘,�) place
them in the same family of flows as protostellar jets. The
flow is injected with a uniform density of 1017 particles per
cm3, a velocity of +47 km s�1, and a temperature of 720K. ↵
and T0 were fixed at 8.27⇥10�23 erg cm3 s�1 and 5.060⇥104

K respectively. � was varied across a range from �1.0 to
3.0 in half-integer increments. For temperatures close to T0,
these parameters give a cooling time of t̂cool = 6.33 ⇥ 10�7

s and a cooling length of d̂cool = 2.97 cm.
For the three dimensional runs, we drove two cylindri-

cal jets each with speed 31.58 km s�1 from the top and
bottom z-boundaries. The jet densities were set to 6⇥ 1016

particles per cm3, at a temperature of 720 K, while the am-
bient medium density was 1 ⇥ 1016 particles per cm3 at a
temperature of 4320 K. T0 was fixed 2.25 ⇥ 104 K across
all runs. Extrapolated boundary conditions were used in all
directions.

Four sets of three-dimensional runs were performed,
summarised in table 1. For the first set of runs we fixed
↵ to a value ↵0 ⌘ 4.086 ⇥ 10�24 erg cm3 s�1 while � was
varied from �1.0 to 3.0 as for the 1-D case. This corresponds
to a cooling time (as given by equation 4) of 9.5 ⇥ 10�6 s
and a cooling length of 7.5 cm (more accurate estimates are
given in table 1). Inside a cylindrical region of radius 2.0,
refinement was allowed to proceed to four levels, with 16
cells per cu (1 cu = 0.748 cm). Refinement was restricted to
three levels within radius 3.0 (8 cells per cu) and two levels
(4 cells per cu) outside that. The jet radius was set to 2.0
cu, or 32 cells at maximum resolution.

The second set of runs repeated the first set for � =
�1.0,+1.0, and +3.0 using a larger jet radius of 16.0 cu.

figure radius ↵ � resolution dcool

10,12 2.0 cu ↵0 -1.0 0.0625 cu 1.50 cu

12 2.0 cu ↵0 0.0 0.0625 cu 2.00 cu

12 2.0 cu ↵0 +1.0 0.0625 cu 2.97 cu

12 2.0 cu ↵0 +2.0 0.0625 cu 5.41 cu

11,12 2.0 cu ↵0 +3.0 0.0625 cu 10.36 cu

13, 14 16.0 cu ↵0 -1.0 0.125 cu 1.50 cu

17 16.0 cu ↵0 +1.0 0.125 cu 2.97 cu

19 16.0 cu ↵0 +3.0 0.125 cu 10.36 cu

15 16.0 cu 10↵0 -1.0 0.125 cu 0.15 cu

18 16.0 cu 10↵0 +1.0 0.125 cu 0.30 cu

20 16.0 cu 10↵0 +3.0 0.125 cu 1.04 cu

16 16.0 cu 0.1↵0 -1.0 0.125 cu 15.0 cu

21 16.0 cu 100↵0 +3.0 0.125 cu 0.10 cu

Table 1. A summary of parameters varied between three-
dimensional runs, namely radius (given in computational units,
1 cu = 0.748 cm), ↵ (given in terms of ↵0 ⌘ 4.086 ⇥ 10�24 erg
cm3 s�1), and �, and resolution. Also given are estimates for the
cooling length (specifically, the distance required for the tempera-
ture to drop by a factor of 10), including all applicable correction
factors detailed in section 2.2; isobaric cooling is assumed.

Refinement was restricted to 3 levels inside the jet radius
and 2 levels outside that, so the jet radius was 128 cells at
maximum resolution. In an e↵ort to suppress numerical in-
stabilities, these runs included the standard di↵usion that is
part of the 3rd order PPM scheme, which adds dissipation
at converging flows. The third set of runs repeated the sec-
ond set of runs with ↵ = ↵h ⌘ 10↵0, giving a cooling time
of 9.5 ⇥ 10�7 s and a cooling length of 0.75 cm. The final
set of runs consisted of repeating the � = +3.0 case with
↵ = 10↵h and the � = �1.0 case with ↵ = 0.1↵0.

4 RESULTS

4.1 One Dimension

We have carried out a series of one dimensional simula-
tions to both verify and extend previous results (Strick-
land & Blondin 1995). In previous work oscillations of radia-
tive shock positions were for � . 0.75. We seek to confirm
that our models recover these results and explore the conse-
quences of higher values of � where the thermal instability
may still be active (Suzuki-Vidal et al. 2015).

We begin by focusing on the structure of radiative
shocks as captured in our simulation. Figure 2 shows the
run of density and temperature in a radiative shock simu-
lation for a model with � = 0.0. This image is taken after
36.84t̂cool. The temperature is observed to increase at the
shock to Ts = 2.747 ⇥ 104 K while density sees the factor
of ⇠ 4 as expected for a strong shock. At a distance on the
order of one cooling length behind the shock, the tempera-
ture returns to its ambient value. As the temperature (and

MNRAS 000, 1–14 (0000)



6 R.N. Markwick et al.

Figure 2. The temperature and density vs position after
3.11⇥ 10�5 seconds for the � = 0 run. In all runs, the tempera-
ture increases rapidly at the front of the shock, which also sees a
moderate increase in density. The shocked material cools further
from the shock front, before cooling rapidly after some distance.
At this point a cold slab of a much higher density begins to build
up behind the shock. Some oscillations in the density of this cold
slab may form, likely arising from oscillations in the shock itself.

Figure 3. The temperature and density vs position after 3.11⇥
10�5 seconds for runs with varying values of �. As � increases,
initial temperature decrease is steeper immediately behind the
shock, since the cooling rate is higher at larger temperatures. The
cold slab however forms at a distance further behind the shock
front. For � = 3, clumps of matter which are slightly colder and
more dense than the surrounding regions begin to form.

pressure) drop to its preshock value, the density rises lead-
ing to the formation of a ”cold slab”. Thus the simulations
recovers the classic features expected for a radiative shock.

In Figure 3 we explore the e↵ect of di↵erent
power law exponents for the cooling. We show density
and temperature distributions for the runs with � =
�0.5,+1.0,+2.0, and 3.0. The figure shows that for low
� the temperature decrease in the cooling region becomes
steeper at distances farther from the shock. This is to be

Figure 4. A trace of the position of the shock front, measured
as the location of peak temperature (red), and the beginning of
cold slab (blue) taken for � = 0. For this cooling law, the posi-
tion of the shock front has a tendency to oscillate forwards and
backwards with an average linear trend resulting from a buildup
of mass in the cold slab.

Figure 5. A time-space diagram showing density in the � = 0
case.

expected: for negative power laws the cooling rate increases
as the temperature drops, so a gas parcel passing through
the shock will experience a progressively higher cooling rate
the farther it recedes from the front. For power laws with
� > 1, the cooling rate reduces with distance from the front.

The observed size of the cooling region where the tem-
perature drops from Ts to Ta thus deviates from the zeroth
order estimate of equation 2 and described in section 2.2.
The increasing size of the cooling region is particularly ap-
parent in the � = 3.0 case which shows a log-linear decrease
in T backwards from the shock. The discrepancy between
the estimated post shock temperature used to set T0 and
the observed post shock temperature Ts also contributes to
the increased cooling length observed for larger values of �.

Figures 2 and 3 both show how oscillations in the shock
front imprint on the cold slab density. The variations in ⇢
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Figure 6. Same as the previous figure but for various values of
�. As predicted by Strickland & Blondin (1995), the oscillations
disappear between � = 0.5 (not shown) and � = 1.0. At � = 2.0,
the motion becomes nearly perfectly linear.

Figure 7. A time-space diagram showing density in the cases
shown in figure 6.

for the � = �0.5, 0.0 and 1.0 cases result from oscillations
in the shock position. For � > 2.0, the oscillatory behaviour
of the shock front completely vanishes and we see a flat
distribution for the cold slab. At � = 3.0, clumps of matter
which are slightly colder and denser are observed within the
region between the shock front and the cold slab.

Figures 4 through 9 show direct evidence for shock front
oscillations from tracking the shock front position over time.
Figure 4 shows the position of the shock front and the cold
slab for the run with � = 0.0. The shock front position was
determined by identifying the position of the peak tempera-
ture behind the shock in each frame of the simulation. Mean-
while the position of the cold slab by identifying the point
furthest behind the shock front with a temperature above
a threshold of 760K, with this threshold being chosen to be
slightly higher than the cold slab temperature of 720K in an
e↵ort to reduce noise. In the � = 0.0 case, strong oscillations

Figure 8. Fourier transform of the shock position shown in
figure 4. A strong peak near frequency ⇡ 10 corresponds to the
oscillations mentioned in that figure.

Figure 9. Fourier transforms of the shock front positions shown
in figure 6. The strong strong peak near frequency ⇡ 101 is no-
ticeably weaker at � = 1.0 and vanishes for larger values of �.
Such a peak corresponds to the oscillations of the shock front.

in the position of the shock from t = 0 to t ⇠ 0.7⇥10�5s are
evident, followed by lower amplitude oscillations as the post
shock pressure is reduced by cooling and the shock position
collapses back towards the cold slab. The reduction in ampli-
tude arises from a damping e↵ect provided by the cold slab
once it has reached su�cient size. The cold slab itself also
shows evidence for oscillations. The entire shock/cold slab
structure propagates leftward from the wall with a nearly
constant average velocity. The evolution of structure in the
cold slab can be seen in the time-space diagram presented
in figure 5

We turn now to other values of � as shown in figures 6
and 7. We find that strong and persistent oscillations per-
sist in both the shock front and cold slab for � < 0. The
oscillations decay over time for positive � and disappear
within a few cycles at � = 1.0, though lower-frequency os-
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cillations driven by cold slab structure return at later times.
For � = 2.0, no oscillations in the front are seen as the shock
moves steadily to the left as the simulation proceeds, and a
constant density is observed throughout the cold slab. No os-
cillations are seen in the � = 3.0 simulation either though,
as noted above, we do see structure forming in the cooling
region.

Lastly, we computed the power spectra for the di↵erent
runs. Figure 8 shows a Fourier transform of the shock front
position shown in 4, with both axes plotted as a natural
logarithm. A peak is observed near frequency ⇡ 10, which
corresponds to the oscillations in the shock front. Similarly
figure 9 shows a Fourier transform of the shock front po-
sitions shown in 6. The peak corresponding to oscillations
becomes progressively weaker starting � & +0.5, and com-
pletely vanishes at � & +1.5.

4.2 Three Dimensions

To explore the structure and dynamics of the colliding jets,
we begin with lower resolution 3-D runs that allow us to
track the global evolution of the jet propagation and subse-
quent collision. We first examine the case with � = �1.0 and
a jet radius r = 32�x (where �x ⇠ .047 cm is the maximum
resolution in our AMR grid structure).

Figure 10 shows the propagation of the jets from their
upper and lower injection points. The beam narrows near
the heads as a result of the bow shock/cocoon pressure. Af-
ter the jets collide, the interaction region forms and mate-
rial is ejected laterally. The lateral flow drives its own shocks
into the ambient medium which eventually propagate o↵ the
grid. Most importantly, the interaction region eventually be-
comes unstable and develops strong corrugation-like features
which oscillate over time and eventually break into smaller,
higher spatial frequency fragments. These structures have
a similar morphology to the NTSI instability seen in other
studies (Walder & Folini 1998).

The temperature plots for the � = �1.0 case show
the evolution of the cooling region and cold slab more di-
rectly. Initially, before the collision, we see high tempera-
tures only directly behind the bow shocks. After the colli-
sion, the interaction region shows high temperatures adja-
cent to the shocks. Lower temperatures appear along the
midplane showing the formation of the cold slab. Subse-
quently, we see the initiation of a sinusoidal disturbance
across the interaction region which then grows to disrupt
the region. By the final frames we see the high frequency
corrugations that dominate the interaction region, showing
high temperatures only behind the peaks of the oscillations.

Next we examine the � = +3.0, case. Slices from the
run are shown in figure 11. Once again we see bow shocks
forming in front of the jets before their collision. After the
collision the formation of the interaction region and the lat-
eral flows are also seen, as in the � = �1.0 case. Unlike
the negative � case however, no strong corrugation of the
interaction occurs. Instead the interaction region as a whole
appears to oscillate or flicker. These oscillations leave an
imprint in the laterally ejected material which drive a se-
quence of shocks into the ambient space around the jets.
These shocks are particularly apparent in the temperature
plots. In the temperature plots we can see the formation of a
cold slab, but the slab material does not reach the ambient

Figure 10. This and all subsequent figures (except as noted)
show logarithmic density and temperature midplane slices, with
the major tick marks placed at intervals of 10cu = 7.48 cm. For
this figure, the � = �1.0 run is shown.

temperature. This is because the positive slope of the cooling
curve weakens the cooling rate as the temperatures behind
the shocks fall (equation 9). We note also that the ambient
medium does not cool much below its original temperature
for the same reason.

In figure 12 we show a larger set of runs with di↵erent
values of �. As � increases from �1 to 3 we see the nature
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Figure 11. Density and temperature slices of the � = 3.0 run. In
both the initial jet beam as well as the laterally ejected matter, a
hot region of shocked gas is followed by a tail of cooled gas which
has a lower temperature than the ambient medium.

of the interaction change. As we have already explored, for
� = �1.0 the interaction region is disrupted. For � = 0.0, or
constant cooling, such disruption is no longer present how-
ever. As � increases further we do see the interaction region
oscillate as a whole or flicker. Because the interaction region
behaves as a more cohesive unit for � & 1.0, more coher-
ent lateral ejections appear, and form a sequence of shocks.
These are most conspicuous in the temperature plots, as

Figure 12. Density slices for runs with integer values of � after
3.42 ⇥ 10�5 s. The interaction region is observed unstable for
� = �1.0, in which the interaction region breaks apart into several
smaller fragments.

in Figure 11). Finally, we note that because the 3-D sim-
ulations discussed so far were designed to also capture the
lateral flows, they have a lower resolution. We next turn to
a set of simulations with higher resolution across the jet to
study the nature of its instabilities.

We now explore runs with a jet radius of r = 128�x
(where �x ⇠ .093 cm is the maximum resolution for these
runs). Thus these runs have 4 times higher resolution that
those just discussed. For each value of � = �1.0 we made two
runs, with low and high values of cooling strength coe�cient
↵ respectively. For our low value we use ↵0 and for our high
value of ↵h = 10↵0.

We first discuss the � = �1.0 low ↵ case shown in fig-
ure 13. The larger jet radius and higher resolution allows the
internal structure of the interaction zone to be more readily
observable. We now see the formation of the cold dense slab
(in red on the density maps) behind the two shocks which
define the limits of the interaction region. We also see the
e↵ect of the radiative shock instability as the cooling dis-
tance between the shock and the cold dense slab collapses
leaving the shock in close proximity to the cold dense slab.
This collapse then triggers the NTSI as the shocks begin to
show the growth of bending-mode perturbations.

In figure 14 we show a series of more closely spaced
frames in time with a spatial zoom in on the interaction re-
gion. This figure allows us to temporally resolve the oscilla-
tions of the shock fronts, which show a period of 8.6⇥10�6s.
Note in particular, how the oscillation of dcool separating the
cold slab from the shock in di↵erent parts of the interaction
region are out of phase. Changes in dcool at centre of the jet
lag behind the oscillations at the edge of the jet by about a
quarter period.

When we rerun the simulation with the higher value of
↵ (shown in figure 15) the cooling becomes stronger and dcool
decreases. We once again see the onset of the NTSI as the
shock collapses on to the cold slab. In this case however, the
size of the cooling region is reduced to a scale smaller than
the grid resolution so we can no longer follow the oscillations
of the radiative shock instability.

When we instead rerun the simulation with ↵ = 0.1↵0
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Figure 13. Density and temperature midplane slices for the ↵ =
↵0,� = �1.0 run with increased jet radius. Note that gas outside
of the cooling region approaches the isothermal limit since cooling
strength increases at lower temperatures

Figure 14. Oscillations in the shock front position as seen in
the 3D run with ↵ = ↵0,� = �1.0, and larger jet radius.

Figure 15. Density slices for the ↵ = 10↵0,� = �1.0 run with
increased jet radius. Temperature is omitted since the cooling
length is comparable the grid resolution.

Figure 16. Density and temperature slices for the ↵ = 0.1↵0,� =
�1.0 run with increased jet radius.
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Figure 17. Density and temperature slices for the ↵ = ↵0,� =
+1.0 run with increased jet radius.

(figure 16) the oscillation slows such that a single oscillation
period exceeds the duration of the simulation, so NTSI (if
present) does not begin until after the duration of the run.
It is worth noting however that the cold slab in this case
develops structure rich in bending modes, likely imposed
from the early jet shaping, making NTSI likely to occur
once the cooling region collapses.

We now turn to the � = +1.0 case which exhibits pro-
nounced di↵erences as ↵ changes. For low ↵ (shown in figure
17) the separation between the shocks and the cold slab re-
mains initially stable. This is expected as � = +1.0 is too
large to initiate the radiative shock instability. Since dcool is
large enough to ensure no contact between the shocks and
the cold slab, the global bending modes of the NTSI are not
triggered. However, as the simulation progresses we do see
ripples growing along its length of the cold slab with a co-
herent wavelength comparable to its thickness � ⇠ dslab. It
should be noted that if the simulation is run without di↵u-
sion, a large perturbation develops along the axis of the jet,
likely seeded by grid e↵ects.

In figure 18 we show the � = +1.0 simulation run with
the larger ↵ = ↵h. In this case the lower value of dcool means
the shock discontinuity is closer to the cold slab. This implies
the shock geometry will respond to any variations of the cold

Figure 18. Density and temperature slices for the ↵ = 10↵0,� =
+1.0 run with increased jet radius.

slab and once again we see the NTSI is triggered. Growth of
the bending modes begins at large radii from the jet axis
where the jet head was imprinted with features from its
propagation before the collision. The NTSI appears to begin
at these features and propagate inwards. Such behaviour was
also seen for the � = �1.0 case but was less pronounced
there, likely due to the NTSI being triggered from radiative
shock oscillations along the entire length of the cold slab.

Finally we examine the � = +3.0 case. The ↵ = ↵0 (fig-
ure 19) case does not exhibit instabilities since the cooling
length increases at higher �. The ↵ = ↵h (figure 20) case
remains stable near the centre, while jet shaping seeds in-
stabilities near the edges which progress slightly inward at
later times. Since the cooling length increases at higher �,
the separation between the shock and the cold slab is larger
than what is seen in the � = +1.0 case, weakening the e↵ects
of NTSI and slowing the rate at which instabilities grow and
progress inward. When ↵ is increased to 10↵h (figure 21),
the cooling length is once again small enough to fully al-
low for NTSI in a manner similar to the � = +1.0,↵ = ↵h

case. It should be noted that multiple instabilities were seen
when the � = +3.0 case was run without di↵usion: car-
buncles were seen to form behind the shock discontinuity,

MNRAS 000, 1–14 (0000)
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Figure 19. Density and temperature slices for the ↵ = ↵0,� =
+3.0 run with increased jet radius.

perturbations grow in the cold slab, and at later times local
curvature distortions arise in the cooling region.

We also ran a case with an even higher value of ↵ which
is shown in figure 21. we find as expected that the NTSI is
triggered early as the shock collapses on to the cold slab as
occurred in the strong cooling case for � = +1.

5 INTERPRETATION WITH RESPECT TO
THEORETICAL INSTABILITIES

The purpose of this paper was to initiate a set of studies rel-
evant to the experiments of (Suzuki-Vidal et al. 2015) which
themselves addressed issues associated with the evolution of
bow shocks in astrophysical jets. In particular, bow shocks
occurring in environments dense enough to allow for strong
radiative cooling are often observed to show fragmentation
and clumpiness (Hartigan et al. 2011). Such fragmentation
was also seen in the experiments of (Suzuki-Vidal et al. 2015)
who attributed break-up of the bow shock to thermal insta-
bilities. In this paper, we have focused solely on the nature of
instabilities in colliding flows abstracting the problem away
from either the laboratory or astrophysical situation by us-
ing a simplified power-law cooling curve and using identical

Figure 20. Density and temperature slices for the ↵ = 10↵0,� =
+3.0 run with increased jet radius.

flows without magnetic fields. In what follows we discuss the
extent to which the di↵erent unstable modes introduced in
section 2.3 are evident in our simulations.

We begin with the thermal instability Field (1965).
While Suzuki-Vidal et al. (2015) argued the thermal mode as
the source of their shock structure, we do not see evidence of
this instability in our simulations. The thermal mode should
occur for � < +2.0. In our one-dimensional runs (figures 2
and 3) we do not see strong density ”clumping” in either
the cooling region or the cold slab. The density variations
that are seen do not grow significantly and are not accom-
panied by temperature changes and are thus not isobaric.
These variations are likely the result of the motions of the
shock front leaving an imprint on the cold slab.

Next, we turn to the radiative shock instability first
described by Langer et al. (1981). Our one-dimensional sim-
ulations instability limits (� < 1 for the instability to grow)
agree with the results found by Strickland & Blondin (1995).
The presence of oscillations can be seen in figures 4 and 6,
where the location of the shock front is seen to oscillate for
those runs for which the value of � is below the critical value.

Further, while variations appear in both the location of
shock front and the cold slab with time, the oscillations are
much more pronounced for the shock front. This is consistent
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Figure 21. Density and temperature slices for the ↵ =
100↵0,� = +3.0 run with increased jet radius.

with the oscillations being driven by imbalances of pressure
at the shock front driving oscillations in the location of the
shock, while the cold slab is in approximate pressure equi-
librium with the cooling region and thus its variations are
likely a residual e↵ect of the shock front oscillations.

Most importantly we are able to observe these oscilla-
tions in the shock fronts in the 3D runs for low �. Observa-
tion of the radiative shock instabilities oscillations require
resolution of the cooling region and hence depend on the
strength of cooling which was controlled in our simulation
by the parameter ↵. Neither the � = 1.0 or � = 3.0 runs
showed strong shock oscillations as expected based on the
stability limits confirmed in the 1-D simulations.

Of particular significance to our conclusions is the pres-
ence of bending modes in 3D runs, consistent with the NTSI.
We note that this instability is not directly dependent on �
however the strength of cooling does determine the struc-
ture of the interaction region and so allows the ”thin shell”
conditions in the NTSI to appear. What matters for trig-
gering the NTSI is that cooling length dcool is small enough
that perturbations in the cold slab are communicated to the
shock waves bounding the interaction regions.

To explicate this point, note that in our lower cooling
strength (↵0) cases the NTSI is only observed in runs when

the value of � is below the critical value given by Strickland
& Blondin (1995). In these cases even if the nominal dcool
is large, the shock oscillations mean there are periods where
the cooling region collapses and the NTSI can be triggered.
However if ↵ is lowered even further the frequency of shock
oscillations decreases, resulting in NTSI not being triggered
until a much later time. Thus the � < �cr and � > �cr
recover similar behaviour at finite times as the in the as
cooling approaches the adiabatic limit.

For � = +1.0 and weaker cooling (figure 17) dcool is
large and the NTSI does not occur. The distance between the
shock and the cold slab remains constant, and even though
perturbations do eventually appear in just the cold slab,
the entire interaction region does not participate in them.
Only for the ↵h case (figure 18) do we see global disruption
of the interaction by the NTSI. The same holds true for
the � = +3.0 case (figures 19,20, 21), except that an even
higher value of ↵ is required to fully exhibit the e↵ects of
NTSI. Note that while all runs with the same value of ↵
have the same cooling length estimate given by equations 2
and 4, the correction factor given by equation 9 increases
for higher values of �.

Finally we note that the NTSI requires an initial pertur-
bation for growth to occur. For � < �cr it is likely that the
oscillations from the radiative shock instability seed an ini-
tial perturbation. While the radiative shock instability itself
only provides time variation, a combination of edge e↵ects
and bow shock curvature results in oscillations in the middle
of the jet, lagging about a quarter-period behind the oscil-
lations in the edge (see figure 14). This produces a spatial
variation which would allow the non-linear e↵ects to begin.
The fundamental mode dominates this initial variation, but
shorter wavelengths dominate growth (see figures 13). This
is consistent with the instability having a faster growth rate
for shorter wavelengths (equation 12), thus preferentially
amplifying these modes relative to the fundamental.

For the bending modes observed in cases with � > �cr,
strong cooling runs may be seeded by early jet shaping (fig-
ure 1). As perturbations grow in the outer regions, they
cause disturbances in progressively inward regions, consis-
tent with the behaviour observed in figure 18. The detailed
e↵ects of curvature and jet shaping on shock structure will
be examined in a future paper.

We conclude that the strong fragmentation of the in-
teraction region in colliding flows leading to strong clump-
ing is most easily promoted by a combination of the ra-
diative shock instability and the NTSI. If the cooling is
strong enough and local perturbations are present however,
the NTSI can be triggered by strong modifications in the
interaction region on its own. Because cooling curves such
as those used for both astrophysical and laboratory stud-
ies show a range of slopes, d⇤(T )

dT , both in terms of sign
and magnitude, future studies should attempt to isolate the
temperature and strength (i.e. ↵) regions where conditions
lead to the radiative shock instability and NTSI and drive
fragmentation.
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