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ABsTRrRACT.. Computed Tomography (CT) takes X-ray measurements on the
subjects to reconstruct tomographic images. As X-ray is radioactive, it is
desirable to control the total amount of dose of X-ray for safety concerns.
Therefore, we can only select a limited number of measurement angles and
assign each of them limited amount of dose. Traditional methods such as
compressed sensing usually randomly select the angles and equally distribute
the allowed dose on them. In most CT reconstruction models, the emphasize
is on designing effective image representations, while much less emphasize is
on improving the scanning strategy. The simple scanning strategy of random
angle selection and equal dose distribution performs well in general, but they
may not be ideal for each individual subject. It is more desirable to design a
personalized scanning strategy for each subject to obtain better reconstruction
result. In this paper, we propose to use Reinforcement Learning (RL) to learn
a personalized scanning policy to select the angles and the dose at each chosen
angle for each individual subject. We first formulate the CT scanning process
as an Markov Decision Process (MDP), and then use modern deep RL methods
to solve it. The learned personalized scanning strategy not only leads to better
reconstruction results, but also shows strong generalization to be combined
with different reconstruction algorithms.
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. In this paper, we focus on the angle and dose’s sample process in the whole
computerized tomography. Due to the detector’s limitation, we have restrictions
on angle and dose of X-ray. In order to get higher precision, we can select the
angle and dose from the information we have got from before data collection to
achieve personalize selection. After formulating the sample process to Markov
Decision Process (MDP), we use Proximal Policy Optimization (PPO) algorithm
from reinforcement learning combined with neural networks and successfully
get higher precision in the CT reconstruct process.

1. Introduction. X-ray based computed tomography (CT) is a medical imaging
procedure that reconstructs tomographic images by taking X-ray measurements
from different angles. To obtain high-quality reconstructions, in early reconstruction
algorithms such as filtered backproject (FBP) [35] and algebra reconstruction tech-
nique (ART) [28], a number of different angles need to be measured. However, since
X-ray is radioactive, the total dose of X-ray needs to be restricted in the scanning
process, and thus we need to either decrease the X-ray intensity at each chosen
angle, or to reduce the total number of angles taken. Decreasing X-ray intensity in
each angle will result in more noisy measurements, while fewer angles will reduce the
information we need for a high-quality reconstruction. This causes great challenges
in designing efficient and effective reconstruction algorithms.

Compressed sensing [19] resolves the issue to a certain extend. According to
the theory of compressed sensing, if an image has a sparse property after certain
transformations (e.g., wavelet transform), then it can be robustly reconstructed with
a reduced number of random measurements by solving an [/;-minimization problem
when the measurements and the transformation satisfy the D-RIP condition [10]. We
can use the alternating direction method of multipliers (ADMM) [26, 6, §| or primal-
dual hybrid gradient method (PDHG) [12, 79, 22| to solve this [;-minimization
problem to obtain a reconstructed image.

In the literature of CT image reconstruction or image restoration in general,
people focus on designing effective regularizations, which includes the total variation
(TV) [56], nonlocal means [7], block-matching and 3-Dfiltering (BM3D) [14], weighted
nuclear norm minimization (WNNM) [29], wavelets and wavelet frame models |16,
40, 18], K-SVD [21], data-driven (tight) frame [9, 65], low dimensional manifold
method (LDMM) [51], etc. More recently, the rapid development of machine
learning, especially deep learning, has lead to a paradigm shift of modeling and
algorithmic design in computer vision and medical imaging [66, 68, 41, 69, 77]. Deep
learning based models are able to leverage large image datasets to learn better image
representations and produce better image reconstruction results than traditional
methods [13, 32, 34, 78, 72, 60].

In most CT reconstruction models, the emphasize is on designing effective image
representation, while much less emphasize is on improving the scanning strategy.
In compressed sensing, the scanning strategy is entirely random [11, 10], i.e., the
measurement angles are selected randomly and the dose are allocated uniformly
across the angles. In theory, such random sampling is proven for exact recovery
using a convex model for MRI. However, such result is generally untrue for CT
imaging due to the coherence structure of Radon transform. In practice, uniform
sampling is often adopted. However, for each individual subject, a uniform or random
scanning strategy may not be ideal. It is more desirable to design a personalized
scanning strategy for each subject to achieve better reconstruction results. Our
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key observation is that the measurements collected in the early stage during the
scanning process can be used to guide the later scanning.

Despite the potential improvement of a personalized scanning strategy for each
individual subject, it is very difficult to handcraft such a strategy by a human expert.
This is where machine learning can help. The personalized scanning strategy can be
learned using either active learning [59] or Reinforcement Learning (RL) [38]. In
this paper, we propose to use reinforcement learning to learn such a personalized
scanning strategy for each subject. The reason we choose RL over active learning
is that RL is non-greedy and naturally guarantees the long-term reconstruction
quality. We formulate the CT scanning process as a Markov Decision Process (MDP),
where the state includes currently collected measurements, the action determines
the next measurement angle and the dose usage, and the reward depends on the
reconstruction quality. We further use modern Deep RL algorithms to solve it.
We show in the experiments that the personalized scanning policy learned by RL
significantly outperforms the random scanning strategy in terms of the reconstruction
quality, and can generalize to be combined with different reconstruction algorithms.

We note that current commercial CT system does not support to select angles
and dose as freely as what the trained RL agent suggests since it requires fast
and irregular acquisition motion of the gantry. The proposed approach serves as
a proof of concept and experimental study to investigate the potential benefits of
the scanning strategies suggested by the trained RL agents. Nonetheless, there are
multi-beam X-ray systems available to which the proposed scanning strategy can be
applied to [74, 70, 52].

1.1. Related works. For compressed sensing, there have been two primary cate-
gories of scanning strategies: static and dynamic. Static scanning strategy refers
to the method which collects measurements in a fixed order. Low-discrepancy
sampling [50] and uniformly spaced sparse sampling methods [46] are two examples
of static scanning strategy. Non-uniform static scanning strategy based on the model
of the subject to be scanned is proposed in [48, 67]. However, because the order of
measurements is predetermined, static scanning strategy is not flexible for different
subjects and may lead to poor results for some of them.

Dynamic scanning strategy refers to the methods which collect measurement
adaptively based on information obtained from previous measurements. One tradi-
tional method tries to find the most suitable measurements which can minimize the
entropy to decrease uncertainty of images, such as BCS [31, 58]. Similarly, other
methods [4, 15] use the information gained at each additional scan to guide the
selection of the next measurement. However, these methods are typically greedy
methods in nature, have many hyperparameters to be properly tuned, and are slow
during inference as they either need to take inverse of large matrices, or to run
the reconstruction algorithm for many times when determining the best next angle.
More recently, deep neural networks are used to estimate the expected reduction in
distortion (ERD) in the reconstructed image when an additional measurement is
selected [24, 25, 76, 75, 30, 47]. However, for the estimate of ERD to be accurate, it
requires a large number of measurements in training.

All the above methods are not specific to CT scanning. They are greedy in
nature and do not provide a strategy for dose allocation. In contrast, RL is able to
generate a non-greedy policy that aims at maximizing long-term rewards which, in
this paper, is the quality of the reconstructed CT image. Furthermore, the setting
of RL is flexible enough to handle both angle selection and dose allocation, and
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even more decision options during scanning. Therefore, in this paper we use RL to
design a scanning policy that acts optimally on each individual subject. In Scanning
Transmission Electron Microscopy (STEM), a recent work by [20] proposes to use RL
to guide the movement of the detector and uses a generator to generate reconstructed
images. However, since the image modality is drastically different from CT, the
proposed MDP (especially the state, action and architecture of the policy network)
is vastly different from what is proposed in this paper.

Recently, there has been a line of work that uses RL to solve combinatorial
optimization problems, such as Travelling Salesman Problem [5], Vehicle Routing
Problem [37], Influence Maximization [43], Autonomous Exploration [39], and they
all show RL can obtain better results than traditional solvers. Given the success of
these prior works, and that the angle selection in CT scanning is also a combinatorial
optimization problem, it naturally motivates us to try to use RL to solve the problem
and see if it brings any benefit.

2. Preliminaries.

2.1. A brief review on MDP and reinforcement learning [63]. A sequential
decision problem can be formulated as a Markov Decision Process (MDP). MDP
is a tuple (S, A,~,P,r) that consists of the state space S, the action space A, the
discount factor +, the transition probability of the environment P: S x Ax S — [0, 1]
and the reward r : S x A — R. A policy 7 in RL is a probability distribution on
the action A over §: 7 : S x A — [0,1]. Denote the interactions between the agent
and the environment as a trajectory 7 = (sg, ag, o, .-+, ST, a1, 7T, ...). The return of
7 is the discounted sum of all its future rewards:

G(r) = Z Yory.
t=0

Given a policy 7, the value of a state s is defined as the expected return of all the
trajectories when the agent starts at s and then follows

V7™ (s) = E;[G(T)|7(s0) = 8,7 ~ 7]

Similarly, the value of a state-action pair is defined as the expected return of all
trajectories when the agent starts at s, takes action a, and then follows :

Q" (s,a) = E;[G(T)[7(s0) = s,7(a0) = a, 7 ~ 7]

Given an MDP, the goal of a reinforcement learning algorithm is to find a policy
7 that maximizes the discounted accumulated rewards in this MDP:

(1) mgxn(ﬂ) :ESONP(S))[VW(S)].

Many effective RL algorithms have been developed to find the optimal policy 7.
They can be generally classified into two categories: valued-based methods and
policy gradient methods.

Value-based methods such as Q-learning [71, 44| uses the Bellman Equation to
learn the optimal Q function, and then derive the optimal policy by acting greedily
according to the optimal Q function. Formally, the Bellman Optimal Equation is:

Q" (s, ) = maxQ" (s, a)

Q" (styar) =1(st,a1) + VEs, , ~P(|50,a1) Igl?ﬁ(@*(stﬂa at+1)
t
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Methods like DQN [45] uses a deep neural network @,, to learn the optimal Q*
by storing transitions {s,a,r, s’} in an off-line replay buffer and minimizing the
following Bellman Error:

L(’LU) = ]ES,(%T,S' [(Qw(sa CL) - (T + ')/ H}f}x QTTJ(Slv al))2]

where @y is the target QQ network whose parameters w are periodically copied from
w to stabilize training. After the optimal @) function is learned, the policy is simply
m(s) = argmax, Qw(s,a). Due to this arg max operator, value-based methods are
mostly suitable for discrete actions. Because our action contains continuous variables
(the dose allocation), we do not use value-based methods as our RL algorithm.

Policy gradient methods [64, 62] directly optimize a parameterized policy by
computing a surrogate objective. Given a policy my parameterized by a neural
network 6, the policy gradient theorem [64] states that:

V977(7Te) = ES,aNﬂ'e [VQ IOg Uy (CL‘S) . Qﬂ'e (Sa a)]

Policy gradient methods is suitable for continuous action space. One drawback of
vanilla policy gradient method is that the gradient might have high variance and
make the update of # unstable. Many more advanced methods have then been
proposed to address this. In this paper, we use the Proximal Policy Optimization
(PPO) algorithm [57], which updates the policy in a proximal region to avoid unstable
updates. We now briefly review how it works. Given a parameterized policy my,
its advantage function is defined as A™ (s,a) = Q™ (s,a) — V™ (s). Given an old

policy mg,,,, let by(s,a) = %, PPO optimizes 7y w.r.t. the following surrogate
objective using gradient descent:
(2)

JTO9) = Es,anmg,,, [min(be(s,a)A™etd (s, a), clip(bo(s, a),1 — €, 1 4+ ) A"t (s, a))],
where clip(z, a,b) = max(min(z, b), a).

2.2. CT reconstruction. One of the common CT systems is the cone-beam CT
system. In the 2-dimensional case, it is known as the fan-beam CT, and this is the
CT system that we focus on in this paper. For a given angle 6 and X-ray beamlet r,
the X-ray projection operator A%" is defined as follows:

” o
(3) ATTIf](t) f(xq + nl)dl

0

where f is the unknown image (X-ray attenuation coefficients) that needs to be
reconstructed, xo = (xg,yp) represents the coordinate of the X-ray source which
is different for different projection angle 6, n = (n,,n,) is the direction vector of
beamlet r, ¢ is the coordinate on the X-ray imager which is precisely the intersection
of the beamlet r with the X-ray imager. L(t) is the length of the X-ray beamlet
from the source to the location  on the imager. If A%7[f](t) is sampled with respect
to t for each angle 6, the resulting data projection can essentially be written as a
vector pg. Now, putting the vectors py together for all different angles 6, we obtain
an image denoted as p whose columns are formed by py.

We can write the CT image reconstruction problem as a linear inverse problem

(4) p=Af +e,

where A is the linear operator represents the collection of discrete line integration at
different projection angles and along different beamlets, and € is an additive noise.
In our simulations, the matrix A is generated by Siddon’s algorithm [54] As equation
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(4) is a linear equation, it can be directly solved by ART or SART algorithm [28, 49].
However, as m can be far smaller than n, equation (4) has far less equations than
unknowns. In order to obtain high-quality solutions, regularization-based models
are often used, which typically take the form as follows:

5) min 2 | — Af[3 + AR(S)

where R(f) is the regularization term. Two benchmarking regularization terms are
TV regularization R(f) = ||V f|1 [61] and wavelet regularization R(f) = ||W f|1 [17],
where W is the wavelet transform. Both of these two optimization problems can be
solved by ADMM or PDHG.

2.3. Relationship between measurement noise and dose. Noise intensity on
measurements heavily relies on the X-ray dose. It is common to assume that the
measurement noise follows a Gaussian distribution|73], e ~ N (0,0), and

1
(6) o o ,
Nmaxd exp (—P)

where d is the X-ray dose used in a measurement, P is the average intensity of
measurement, and 7,4, 1S the maximum number of photons the source can generate.
We can easily see that if we use more dose, the noise level becomes smaller. We note
that the Poisson distribution can also be used here. However, according to [73], the
Gaussian distribution approximates the noise well enough.

2.4. Some further discussions. As equation (4) shows, the measurements we
obtain from a CT scan depends both on the angle (which determines A), and the
X-ray dose (which determines €). Due to the limitation on X-ray dose usage, we can
only select a limited number of angles and assign each of them limited amount of
dose. Traditional methods simply randomly select the angles and equally distribute
the allowed dose on them. Our goal is to use RL to learn a personalized policy to
select the angles and the dose at each chosen angle for each individual subject.

3. Method. Our goal is to learn a policy that can decide the next measurement
angle and its corresponding X-ray dose based on the measurements that we have
already obtained in the scanning process. We now present how the scanning process
can be formulated as a Markov Decision Process (MDP) and solved by reinforcement
learning algorithms.

3.1. MDP formulation of personalized scanning. We note that the angle
selection problem in CT scanning itself is a combinatorial optimization problem and
is NP-Hard. However, we can view it as a sequential decision process and use RL to
solve it effectively. This is similar to works that use RL to solve other combinatorial
optimization problems such as Influence Maximization [43]. Specifically, the CT
scanning process can be viewed as a sequential decision process, where at each time
step we need to decide on the measurement angle and the corresponding X-ray dose.
Given an Image I and the number of all possible angles N (e.g., N = 360 if we can
choose all the integer angles from 0°to 359°), we now elaborate how the CT scanning
process on I can be formulated as an MDP:
1) The state is a sequence §; = (1, 82, ..., 8¢ ), where s; = (pg, d2¢, di*"). p, is the
collected measurement at time step ¢t. di° records the used dose distribution
up to time step t. It is an N dimensional vector, and the value at each
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entry represents the used X-ray dose at that corresponding angle. di®t is
a scalar that represents the amount of the remaining dose that we can use.
Because the reconstructed image at time step ¢ relies on all previously collected
measurements, we include all of them in the state.

2) The action is a; = (a5, ad°s®). ¢€"° is the angle we choose at time step t,
and it is a one-hot vector of dimension N. af°*® € [0,1] is the fraction of dose
that we apply at the corresponding angle. If at a certain time ¢, the total used
dose exceeds the total allowed dose, we clip the exceeding dose and terminate
the MDP.

3) The reward is computed as 7(s;, a;) = PSNR(I, I) — PSNR(I;_1,I), where
I is the groundtruth image, I; is the reconstructed image at time step ¢, and
PSNR(1, I) represents the Peak Signal to Noise Ratio (PSNR) value of the
reconstructed image I. We use the increment of PSNR to evaluate how much
benefit the new chosen angle/dose brings. The reconstructed image I; can be
obtained from any reconstruction algorithm such as SART, TV regularization
[56, 27], wavelet frame regularization [55, 8], and any modern deep learning
based methods [3]. Note that a more refined image reconstruction algorithm
leads to higher quality reconstructed image which may bring benefit for training
the RL policy. However, regularization based methods normally have at
least one hyerparameter that needs to be tuned when number of projections
changes for optimal reconstruction. On the other hand, deep learning methods
normally have generalization issue when number of projections vary drastically.
Therefore, for practical concern, it is more convenient to apply SART or other
iterative reconstruction methods that do not have generalization issues and
do not require hyperprameter tuning. Furthermore, angle selection and dose
allocation may not require very refined reconstructions, but rather a global
reconstruction of anatomical structures. Therefore, we shall use SART to
compute the reward.

4) The transition model P represents the scanning process of CT. At time
step t, given the state §; and action a;, the next state ;11 is simply the
concatenation of §; and siy1 = (pi41,d2S, d;S}). We now show how each of
the three elements in s;y1 can be computed.

rue

1. The new measurement is obtained as p;+1 = p! ' + ¢, where pﬁlf is the
angle

clean projected value obtained using the chosen angle a; =", and ¢ is
the measurement noise. The noise depends on the chosen dose af°*® as
mentioned in section 2.3: € ~ N (0,0), L , where P

o
V/"imaxados® exp (—P)
is the average of p{"“f.
2. The new dose distribution is obtained by adding the new decision: d?{; =
dF + 1 jangte - adose, where 1 janzie is the one-hot vector of the chosen angle
t t
angle

ay
3. The rest amount of dose is updated by subtracting the used dose: dj$} =

diest — gfdose. The MDP terminates once the dose is used up.

As we choose the increment in PSNR as the reward, the total sum of reward (when
there is no discounting, as in our experiments) is the PSNR value of the final
reconstructed image. Therefore, if we find the optimal policy to this MDP, it will
also have the best reconstruction result for the image.

We note that, the final output of the RL policy is a set of angles (as well as the
corresponding allocated doses). Although the angles are selected by the RL policy
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in an orderly fashion, in terms of image reconstruction afterwards, such order is not
essential. However, the order is essential during the angle selection stage, i.e., the
inference stage of the trained RL policy. This is because during inference, we do
not know the structure of the object to be imaged a priori. Thus, it is difficult to
make a global personalized decision by selecting all angles at once. What the RL
policy does is by making smart angle selections step by step (e.g. by first selecting a
few angles around the object to acquire a coarse estimation of the global structure
and refine it afterwards) so that the final collection of angles is good. A poorly
trained policy may make poor sequential angle selection from the beginning which
can eventually lead to an inferior collection of angles.

3.2. Policy network architecture. Because we include all the previous measure-
ments in the state, the dimension of the state vector increases as we take more
measurements. To handle the varying dimensionality of the state vector, we represent
the policy network as a Recurrent Neural Network (RNN), so all the information
from the past measurements can be encoded in the hidden state of the RNN. Specif-
ically, we use the Gated Recurrent Unit (GRU). Besides, the policy network needs
to output two different actions: the discrete action for choosing the angle a8,
and the continuous action for choosing the dose al°*®. To handle this, we design
a special architecture for the policy network, as shown in Figure 1. We use sep-
arate Multi-Layer Perceptron (MLP) after the RNN hidden states for these two
actions. a8 is sampled from a probability vector of length N, where the value
at each entry represents the probability of choosing that angle. We use softmax
after the final linear layer to obtain the probability vector. We also introduce
a mask to remove the previously chosen angles, which is obtained from d2¢ that
records the used dose distribution on all angles up to time t. For the dose usage
agose, we assume as® ~ N (o5 09°5¢) with the mean and std both learned by a
MLP. It is natural to determine the amount of dose after the angle is chosen, i.e.,
mg(a|5) = mp(ad®%, a*8¢|5) = 1y (a?8°|5)mp(ad"%°|5, a?8°), so we concatenate the
one-hot vector of the chosen angle as part of the input for the dose MLP.

4. Experiments.

4.1. Experiment setup. We train the RL policy on 250 CT images of size 512 x 512
from the AAPM dataset of the “2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand
Challenge" [42]. The 250 training images are slices of the 3D CT image of one patient.
The ground-truth images are obtained by using the commercial reconstruction
algorithm with normal dose. We use ASTRA Toolbox [1, 2| to generate the sinogram
data. During training, we use SART as the reconstruction algorithm for computing
the reward. The possible angles are all integers in [0°,360°). We use Adam [36]
to optimize both the policy network and the value network, with a learning rate
of 0.0004, and (1, 82 = (0.5,0.999). More detailed hyperparameters for PPO and
network architecture can be found in the code which will be released upon acceptance
of this paper.

After training, we test the learned RL policy on 350 slices of CT images of
another patient from the AAPM dataset. We compare the following three scanning
strategies: (1) UF-AEC, which selects angles uniformly and distributes the doze
by automatic exposure control (AEC)[23, 33]; (2) DS-ED, which selects angle by
a dynamic sample strategy based on entropy from [53] , while distributes the doze
uniformly; (3) RL-AD: which uses the learned personalized policy for both angle
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FI1GURE 1. Policy network architecture. Each MLP contains two
hidden layers with 512 neurons. We use a multi-layer GRU which
contains 3 recurrent layers and each layer has 256 neurons. The
Angle MLP has one hidden layer of 512 neurons, and the Dose MLP
has 2 hidden layers with 512 neurons.

selection and dose allocation at each chosen angle. During testing, we use four
different reconstruction algorithms: SART, TV regularization (TV) [56, 27], wavelet
frame (WF) regularization [55, 8], and the recently proposed deep learning method
PD-net [3]. Note that during the angle selection stage, i.e. the inference stage of the
trained RL policy, we do not need to conduct image reconstruction. The decision
on the next angle and the associated dose is determined from the sinogram formed
by the angles and doses that have already been selected by the RL policy. We
run the reconstruction algorithm after all angles are selected by the Rl policy. In
other words, the angles/dose selection and image reconstruction are two independent
stages. The evaluation metric is PSNR and the structure similarity metric (SSIM)
of the reconstructed images. In the testing phase, we add an additional Poisson
noise to the sinogram. Recall that the original noise in the sinogram is Gaussian as
described in Section 2.3. Note that we add additional noise to test the robustness
and generalization ability of our trained RL policy, and we choose Poisson noise
since it is widely accepted in CT imaging that the measurement noise is Poisson.
The incident photon intensities of the additional Poisson noise are 107, 106 and 10.
We denote these three levels of noise as Noise 1, Noise 2 and Noise 3.

A difficulty in conducting a fair comparison of UF-AEC and DS-ED with RL-AD
is that the number of selected angles of RL-AD is personalized and hence different
for different subjects (see Figure 4). In our experiments below, we choose the number
of measurement angles for RD-AEC and DS-ED to be 60, which is the mean number
of measurement angles selected by RL-AD over all the 350 test images. Thus, the
dose on each measurement angle of UF-AEC and DS-ED is 1/60. We also note that
the deep reconstruction model PD-net is trained from scratch on the 250 images in
the training set using 60 angles and cone-beams geometry.

4.2. Results. Table 1 presents the mean and standard deviation of the PSNR and
SSIM values of the reconstructed images of all compared scanning strategies and
reconstruction algorithms. As one can see that the proposed scanning strategy
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F1cURrE 2. Histograms of PSNR and SSIM from all the 350 test
images as shown in Table 1. Figures in (a), (b) and (c) correspond
to the three different noise levels. For each (a), (b) and (c), the first
row is PSNR and the second is SSIM. Figures from left to right are
results from reconstruction methods SART, TV, WF and PD-net
respectively. Every sub-figure contains histograms of three scanning
strategies, i.e., RL-AD, DS-ED and UF-AEC.
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Reconstruction Method \ RL-AD \ DS-ED \ UF-AEC
Noise 1
SART PSNR 23.48(0.47) 23.30(0.64) | 23.01(0.64)
SSIM 0.424(0.020) | 0.403(0.023) | 0.391(0.022)
TV PSNR 23.85(0.42) 23.75(0.41) | 23.63(0.38)
SSIM 0.582(0.030) | 0.579(0.030) | 0.578(0.028)
WF PSNR 25.14(0.40) 25.05(0.42) 24.91(0.39)
SSIM 0.659(0.027) | 0.652(0.027) | 0.649(0.026)
PD-net PSNR 30.87(0.64) 30.44(0.51) | 30.23(0.46)
SSIM 0.776(0.036) | 0.771(0.029) | 0.773(0.028)
Noise 2
SART PSNR 23.15(0.48) 22.91(0.53) | 22.60(0.64)
SSIM 0.413(0.020) | 0.390(0.024) | 0.378(0.024)
TV PSNR 23.74(0.40) 23.50(0.36) | 23.27(0.40)
SSIM 0.580(0.030) | 0.576(0.030) | 0.573(0.028)
WF PSNR 24.98(0.29) 24.84(0.41) | 24.68(0.39)
SSIM 0.657(0.027) | 0.649(0.026) | 0.646(0.026)
PD-net PSNR 30.78(0.64) 30.35(0.51) | 30.15(0.77)
SSIM 0.774(0.037) | 0.769(0.030) | 0.771(0.029)
Noise 3
SART PSNR 20.71(0.55) 20.26(0.72) | 19.83(0.66)
SSIM 0.334(0.026) | 0.304(0.030) | 0.291(0.029)
v PSNR 21.73(0.57) | 21.43(0.48) | 21.08(0.47)
SSIM 0.568(0.027) | 0.555(0.026) | 0.545(0.026)
WF PSNR 23.35(0.48) 23.05(0.51) | 22.72(0.55)
SSIM 0.636(0.0326) | 0.616(0.027) | 0.605(0.028)
PD-net PSNR 29.97(0.66) 29.56(0.51) | 29.36(0.47)
SSIM 0.753(0.038) | 0.746(0.032) | 0.747(0.031)
Inference Time (s) 0.46(0.02) 0.21(0.008) | 0.20(0.001)

TABLE 1. This table presents comparisons of different scanning
strategies (1-3rd column for RL-AD, DS-ED and UF-AEC respec-
tively) combined with different image reconstruction methods (1-4th
row for SART, TV, WF and PD-net respectively). Last row presents
the inference times of angle selection (in seconds) of the three com-
pared scanning strategies. The mean (std) of the PSNR and SSIM
of the reconstructed images and the inference times are computed
among all 350 testing CT images. The best results among the
compared algorithms are shown in bold numbers.
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RL-AD significantly outperforms dynamic sampling (DS-ED) and uniform sampling
(UF-AEC), while DS-ED outperforms UF-AEC.

We also note that the RL-policy is trained only using the SART for computing
the reward function, whereas the learned policy can generalize well to three other re-
construction algorithms, i.e., the TV regularization, the wavelet frame regularization
and the deep learning model PD-net, where it still brings a notable improvement
upon the dynamic sampling and uniform scanning baseline in reconstruction quality.
We further note that during training, only Gaussian noise was included following
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\
.

(b)

FI1GURE 3. Two examples of the reconstructed images. The top
row contains the ground truth images and their zoom-in views.
The second through the fourth row contain results from UF-AEC,
DS-ED and RL-AD respectively, and combined with PD-net’s re-
construction. Note that RL-AD selects 65 measurement angles for
the subject in (a) and 54 measurement angles for the subject in (b).

the formula given in Section 2.3. The results in Table 1 also shows that the trained
RL-policy is also transferable to different noise levels.

More fine-grained demonstrations of the results shown in Table 1 are given in
Figure 2, where we present the histograms of the compared scanning strategies and
reconstructions methods. As one can see that the proposed scanning strategy by RL
generally shifted the histogram towards the right and outperforms DS and UF by a
significant margin.

In Figure 3, we further show two examples of the reconstructed images using
the uniform sampling (UF-AEC), the dynamic sampling strategy (DS-ED) and the
learned personalized policy (RL-AD), reconstructed using the deep learning model
PD-net. We can see that the reconstructions using the RL policy are of higher
qualities than those using random and dynamic sampling strategy, especially from
the zoom-in views of the figures.

We plot the distribution of number of measurements taken by the learned person-
alized policy (RL-AD) in Figure 4 (a). The result demonstrates that for different
subjects, the learned RL policy selects different number of angles and dose allocations.
In Figure 4 (b) and (c), we take 8 images on which the learned RL policy selects
54 and 64 angles respectively and plot the distributions of the dose usage of these
images. It can be seen that images using the same number of measurement angles
have very similar dose allocations, and images that have more measurement angles
use less dose at each angle. In Figure 5, we show 2 example images where the RL
policy selects 54 and 65 measurement angles respectively. We can see that images
upon which the RL policy selects more measurement angles have more structures in
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50 s 600 625 650 675

FIGURE 4. (a) Distribution of number of measurements of the
learned policy (RL-AD) on all the 350 testing CT images. (b) Dose
usage distribution of 8 images that use around 54 measurements.
(c) Dose usage distribution of 8 images that use around 65 measure-
ments.

the image, and thus more information/measurements need to be collected to obtain
a high-quality reconstruction. In Figure 6, we present the selected angles and part
of the dose allocation on the subjects shown in Figure 5.

100 200 300 400 500

(a)

FIGURE 5. (a): an example image that takes 54 measurements. (b):
an example image that takes 64 measurements. We can see that
the images for which RL selects more measurement angles contains
more structures.

5. Conclusion. In this paper, we proposed to use reinforcement learning to learn
a personalized CT scanning strategy for measurement angle selection and dose
allocation. We formulated the CT scanning process as a Markov Decision Process,
and used the PPO algorithm to solve it. After training on 250 real 2D CT images,
we validated the learned personalized scanning policy on another 350 CT images.
Our validation showed that the personalized scanning policy lead to better overall
reconstruction results in terms of PSNR values, and generalized well to be combined
with different reconstruction algorithms. We also demonstrated that the personalized
policy can indeed adjust its angle selection and dose allocations adaptively to
different subjects. One drawback of the proposed method is the long training time
(approximately 24 hours) even for 2D images, because RL algorithms usually need
lots of simulation samples to converge, and to compute the reward in our formulated
MDP requires running a reconstruction algorithm at each time step. This might
prohibits the application of our method to 3D cases.
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FI1GURE 6. The angle selection of the CT image in Figure 5. Top
row: RL-AD, bottom row: DS-ED. The lines show the selected
angles.

Acknowledgments. Bin Dong is supported in part by National Natural Science
Foundation of China (NSFC) grant No. 11831002, Beijing Natural Science Founda-
tion (No. 180001) and Beijing Academy of Artificial Intelligence (BAAI).

1

2]

3l
(4]
(5]
[6]

REFERENCES

W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. De
Beenhouwer, K. J. Batenburg and J. Sijbers, Fast and flexible x-ray tomography using the
astra toolbox, Optics Ezpress, 22 (2016), 25129-25147.

W. van Aarle, W. J. Palenstijn, J. D. Beenhouwer, T. Altantzis, S. Bals, K. J. Batenburg and
J. Sijbers, The astra toolbox: A platform for advanced algorithm development in electron
tomography, Ultramicroscopy, 24 (2015), 35-47.

J. Adler and O. Oktem, Learned primal-dual reconstruction, IEEE Transactions on Medical
Imaging, 37 (2018), 1322-1332.

K. J. Batenburg, W. J. Palenstijn, P. Balazs and J. Sijbers, Dynamic angle selection in binary
tomography, Computer Vision and Image Understanding, 117 (2013), 306-318.

I. Bello, H. Pham, Q. V Le, M. Norouzi and S. Bengio, Neural combinatorial optimization
with reinforcement learning, preprint, arXiv:1611.09940, 2016.

S. Boyd, N. Parikh, et al., Distributed optimization and statistical learning via the alternating
direction method of multipliers, Foundations and Trends in Machine Learning, 3 (2011),
1-122.

INVERSE PROBLEMS AND IMAGING VoLuME 16, No. 1 (2022), 179-195


http://arxiv.org/pdf/1611.09940

(7]
(8]
(9]
(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]
20]
[21]

[22]

23]

[24]

[25]

[26]
(27]

(28]

[29]

[30]

LEARNING TO sCAN FOR CT IMAGING 193

A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one,
in Multiscale Model. Simul., 2 (2005), 490-530.

J.-F. Cai, S. Osher and Z. Shen, Split bregman methods and frame based image restoration,
Multiscale Modeling and Stmulation, 8 (2009), 337-369.

J.-F. Cai, H. Ji, Z. Shen and G. B. Ye, Data-driven tight frame construction and image
denoising, Applied and Computational Harmonic Analysis, 37 (2014), 89-105.

E. J. Candes, Y. C. Eldar, et al., Compressed Sensing With Coherent and Redundant Dictio-
naries, 2010.

E. J. Candes, J. Romberg and T. Tao, Robust uncertainty principles: Exact signal recon-
struction from highly incomplete frequency information, IEEE Transactions on Information
Theory, 52 (2006), 489-509.

A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with
applications to imaging, Journal of Mathematical Imaging and Vision, 40 (2011), 120-145.
H. Chen, Y. Zhang, M. K. Kalra, F. Lin, Y. Chen, P. Liao, J. Zhou and G. Wang, Low-dose
CT with a residual encoder-decoder convolutional neural network, IEEE Transactions on
Medical Imaging, 36 (2017), 2524-2535.

K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, Image denoising by sparse 3-d transform-
domain collaborative filtering, IEEE Transactions on Image Processing, 16 (2007), 2080-2095.
A. Dabravolski, K. J. Batenburg and J. Sijbers, Dynamic angle selection in x-ray computed
tomography, Nuclear Instruments and Methods in Physics Research Section B: Beam Interac-
tions with Materials and Atoms, 324 (2014), 17-24.

I. Daubechies, Ten Lectures on Wawvelets, CBMS-NSF Regional Conference Series in Applied
Mathematics, 61. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
1992.

B. Dong, J. Li and Z. Shen, X-ray CT image reconstruction via wavelet frame based regular-
ization and radon domain inpainting, Journal of Scientific Computing, 54 (2013), 333-349.
B. Dong, Z. Shen, et al., Mra based wavelet frames and applications, IAS Lecture Notes
Series, Summer Program on “The Mathematics of Image Processing”, Park City Mathematics
Institute, 19 (2010), 9-158.

D. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 52 (2006),
1289-1306.

J. M. Ede, Adaptive partial scanning transmission electron microscopy with reinforcement
learning, preprint, arXiv:2004.02786.

M. Elad and M. Aharon, Image denoising via sparse and redundant representations over
learned dictionaries, IEEE Transactions on Image processing, 15 (2006), 3736-3745.

E. Esser, X. Zhang, et al., A general framework for a class of first order primal-dual algorithms
for convex optimization in imaging science, SIAM Journal on Imaging Sciences, 3 (2010),
1015-1046.

M. Gies, W. A. Kalender, H. Wolf and C. Suess, Dose reduction in CT by anatomically adapted
tube current modulation. i. Simulation studies, Medical Physics, 26 (1999), 2235-2247.

G. D. Godaliyadda, M. A. Uchic, D. H. Ye, M. A. Groeber, G. T. Buzzard and C. A. Bouman,
A supervised learning approach for dynamic sampling, S& T Imaging. International Society
for Optics and Photonics, 2016.

G. M. D. P. Godaliyadda, D. H. Ye, M. D. Uchic, M. A. Groeber, G. T. Buzzard and C. A.
Bouman, A framework for dynamic image sampling based on supervised learning (slads),
IEEE Trans. Comput. Imaging, 4 (2018), 1-16.

T. Goldstein and S. Osher, The split bregman method for 11-regularized problems, SIAM
Journal Imaging Sciences, 2 (2009),323-343.

T. Goldstein and S. Osher, The split bregman method for [/;-regularized problems, SIAM
Journal on Imaging Sciences, 2 (2009), 323-343.

R. Gordon, R. Benderab and G. T. Herman, Algebraic Reconstruction Techniques (ART)
for Three-Dimensional Electron Microscopy and X-ray Photography, Journal of Theoretical
Biology, 1970.

S. Gu, L. Zhang, W. Zuo and X. Feng, Weighted nuclear norm minimization with application
to image denoising, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, (2014), 2862-2869.

A. Halimi, P. Ciuciu, A. Mccarthy, S. Mclaughlin and G. Buller, Fast adaptive scene sam-
pling for single-photon 3d lidar images, IEEE CAMSAP 2019 - International Workshop on
Computational Advances in Multi-Sensor Adaptive Processing, 2019.

INVERSE PROBLEMS AND IMAGING VoLuME 16, No. 1 (2022), 179-195


http://www.ams.org/mathscinet-getitem?mr=MR2162865&return=pdf
http://dx.doi.org/10.1137/040616024
http://www.ams.org/mathscinet-getitem?mr=MR2581025&return=pdf
http://dx.doi.org/10.1137/090753504
http://www.ams.org/mathscinet-getitem?mr=MR3202303&return=pdf
http://dx.doi.org/10.1016/j.acha.2013.10.001
http://dx.doi.org/10.1016/j.acha.2013.10.001
http://www.ams.org/mathscinet-getitem?mr=MR2236170&return=pdf
http://dx.doi.org/10.1109/TIT.2005.862083
http://dx.doi.org/10.1109/TIT.2005.862083
http://www.ams.org/mathscinet-getitem?mr=MR2782122&return=pdf
http://dx.doi.org/10.1007/s10851-010-0251-1
http://dx.doi.org/10.1007/s10851-010-0251-1
http://www.ams.org/mathscinet-getitem?mr=MR2460626&return=pdf
http://dx.doi.org/10.1109/TIP.2007.901238
http://dx.doi.org/10.1109/TIP.2007.901238
http://www.ams.org/mathscinet-getitem?mr=MR1162107&return=pdf
http://dx.doi.org/10.1137/1.9781611970104
http://www.ams.org/mathscinet-getitem?mr=MR3011362&return=pdf
http://dx.doi.org/10.1007/s10915-012-9579-6
http://dx.doi.org/10.1007/s10915-012-9579-6
http://www.ams.org/mathscinet-getitem?mr=MR3098080&return=pdf
http://dx.doi.org/10.1090/pcms/019/02
http://www.ams.org/mathscinet-getitem?mr=MR2241189&return=pdf
http://arxiv.org/pdf/2004.02786
http://www.ams.org/mathscinet-getitem?mr=MR2498043&return=pdf
http://dx.doi.org/10.1109/TIP.2006.881969
http://dx.doi.org/10.1109/TIP.2006.881969
http://www.ams.org/mathscinet-getitem?mr=MR2763706&return=pdf
http://dx.doi.org/10.1137/09076934X
http://dx.doi.org/10.1137/09076934X
http://www.ams.org/mathscinet-getitem?mr=MR3769516&return=pdf
http://dx.doi.org/10.1109/TCI.2017.2777482
http://www.ams.org/mathscinet-getitem?mr=MR2496060&return=pdf
http://dx.doi.org/10.1137/080725891
http://www.ams.org/mathscinet-getitem?mr=MR2496060&return=pdf
http://dx.doi.org/10.1137/080725891

194

[31]
132
[33]
[34]
[35]
[36]
1371

(38]
39]

[40]
[41]

[42]
[43]
[44]

[45]

[46]

[47]
(48]
[49]
[50]
[51]

52]

(53]

[54]
[55]
[56]
[57]

(58]

Z1yu SHEN, YUFElI WaNG, DuraNn Wu, Xu YaNc aND Bin Donc

S. Ji, Y. Xue and L. Carin, Bayesian compressive sensing, IEEE Transactions on Signal
Processing, 56 (2008), 2346-2356.

K. H. Jin, M. T. McCann, E. Froustey and M. Unser, Deep convolutional neural network for
inverse problems in imaging, IEEE Transactions on Image Processing, 26 (2017), 4509-4522.
W. A. Kalender, H. Wolf and C. Suess, Dose reduction in CT by anatomically adapted tube
current modulation. ii. Phantom measurements, Medical Physics, 26 (1999), 2248-2253.

E. Kang, J. Min and J. C. Ye, A deep conversational neural network using directional wavelets
for low-dose x-ray ct reconstruction, Medical Physics, 44 (2017), e360—e375.

A. Katsevich, Theoretically exact filtered backprojection-type inversion algorithm for spiral
CT, SIAM Journal on Applied Mathematics, 62 (2002), 2012-2026.

D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv:1412.6980,
2014.

W. Kool, H. V. Hoof and M. Welling, Attention, learn to solve routing problems!, preprint,
arXiv:1803.08475, 2018.

Y. Li, Deep Reinforcement Learning: An overview, arXiv:1701.07274, 2017.

L. Ly and Y.-H. R. Tsai, Autonomous exploration, reconstruction, and surveillance of 3d
environments aided by deep learning, arXiv:1809.06025, 2018.

S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, Inc., San Diego, CA, 1998.
M. T. McCann, K. H. Jin and M. Unser, Convolutional neural networks for inverse problems
in imaging: A review, IEEE Signal Processing Magazine, 34 (2017), 85-95.

C. McCollough, Tu-fg-207a-04: Overview of the low dose ct grand challenge, Medical Physics,
43 (2016), 3760-3760.

A. Mittal, A. Dhawan, S. Manchanda, S. Medya, S. Ranu and A. Singh, Learning heuristics
over large graphs via deep reinforcement learning, preprint, arXiv:1903.03332, 2019.

V. Mnih, K. Kavukcuoglu and D. Silver, Human-level control through deep reinforcement
learning, Nature, 518 (2015).

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al, Human-level control through deep
reinforcement learning, Nature, 518 (2015), 529-533.

K. A. Mohan, S. V. Venkatakrishnan, E. B. Gulsoy, J. W. Gibbs, X. Xiao, M. D. Graef, P. W.
Voorhees and C. A. Bouman, Timbir: A method for time-space reconstruction from interlaced
views, IEEE Transactions on Computational Imaging, 1 (2015), 96-111.

E. Monier, N. Brun, T. Oberlin, X. Li, M. Tenc and N. Dobigeon, Fast reconstruction of
atomic-scale stem-eels images from sparse sampling, Ultramicroscopy, 2020.

K. Mueller, Selection of optimal views for computed tomography reconstruction, Patent WO,
Jan, 28 (2011).

K. Mueller, R. Yagel and J. J. Wheller, Anti-aliased three-dimensional cone-beam reconstruction
of low-contrast objects with algebraic methods, IEEE Transactions On Medical Imaging, 6
(1999), 519-537.

R. Ohbuchi and M. Aono, Quasi-Monte Carlo Rendering With Adaptive Sampling, 1996.

S. Osher, Z. Shi and W. Zhu, Low dimensional manifold model for image processing, SIAM
Journal on Imaging Sciences, 10 (2017),1669-1690.

J. Park, J. Jung, A. P. Gupta, J. Soh, C. Jeong, J. Ahn, S. Cho, K. -H. Yoon, D. Kim, M.
Mativenga, et al. Multi-beam x-ray source based on carbon nanotube emitters for tomosynthesis
system, in Medical Imaging 2020: Physics of Medical Imaging, International Society for Optics
and Photonics, 11312 (2020), 113122.

G. Placidi, M. Alecci and A. Sotgiu, Theory of adaptive acquisition method for image
reconstruction from projections and application to epr image, Journal of Magnetic Resonance,
(1995), 50-57.

S. RL, Fast calculation of the exact radiological path for a three-dimensional CT array, Medical
Physics, 2 (1985), 252-5.

A. Ron and Z. Shen, Affine systems in Lo(R%): The analysis of the analysis operator, Journal
of Functional Analysis, 148 (1997), 408-447.

L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,
Physical D: Nonlinear Phenomena, 60 (1992), 259-268.

J. Schulman and F. Wolski, Proximal policy optimization algorithms, arXiv:1707.06347v2,
2017.

M. W. Seeger and H. Nickisch, Compressed sensing and bayesian experimental design, in
Proceedings of the 25th International Conference on Machine Learning, (2008), 912-919.

INVERSE PROBLEMS AND IMAGING VoLuME 16, No. 1 (2022), 179-195


http://www.ams.org/mathscinet-getitem?mr=MR2516638&return=pdf
http://dx.doi.org/10.1109/TSP.2007.914345
http://www.ams.org/mathscinet-getitem?mr=MR3670561&return=pdf
http://dx.doi.org/10.1109/TIP.2017.2713099
http://dx.doi.org/10.1109/TIP.2017.2713099
http://dx.doi.org/10.1002/mp.12344
http://dx.doi.org/10.1002/mp.12344
http://www.ams.org/mathscinet-getitem?mr=MR1918304&return=pdf
http://dx.doi.org/10.1137/S0036139901387186
http://dx.doi.org/10.1137/S0036139901387186
http://arxiv.org/pdf/1412.6980
http://arxiv.org/pdf/1803.08475
http://arxiv.org/pdf/1701.07274
http://arxiv.org/pdf/1809.06025
http://www.ams.org/mathscinet-getitem?mr=MR1614527&return=pdf
http://dx.doi.org/10.1118/1.4957556
http://arxiv.org/pdf/1903.03332
http://www.ams.org/mathscinet-getitem?mr=MR3412685&return=pdf
http://dx.doi.org/10.1109/TCI.2015.2431913
http://dx.doi.org/10.1109/TCI.2015.2431913
http://www.ams.org/mathscinet-getitem?mr=MR3709885&return=pdf
http://dx.doi.org/10.1137/16M1058686
http://www.ams.org/mathscinet-getitem?mr=MR1469348&return=pdf
http://dx.doi.org/10.1006/jfan.1996.3079
http://www.ams.org/mathscinet-getitem?mr=MR3363401&return=pdf
http://dx.doi.org/10.1016/0167-2789(92)90242-F
http://arxiv.org/pdf/1707.06347v2

[59]

(60]

[61]
[62]
[63]

(64]

(65]

LEARNING TO sCAN FOR CT IMAGING 195

B. Settles, Active Iearning Literature Survey, Technical report, University of Wisconsin-
Madison Department of Computer Sciences, 2009.

C. Shen, Y. Gonzalez, L. Chen, S. B. Jiang and X. Jia, Intelligent parameter tuning in
optimization-based iterative CT reconstruction via deep reinforcement learning, IEEE Trans-
actions on Medical Imaging, 37 (2018), 1430-1439.

E. Y. Sidky and X. Pan, Image reconstruction in circular cone-beam computed tomography
by constrained, total-variation minimization, Physics in medicine and biology, 4777, 2008.
D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra and M. Riedmiller, Deterministic policy
gradient algorithms, In International Conference on Machine Learning, (2014), 387-395.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, MIT Press, Cam-
bridge, MA, 2018.

R. S. Sutton, D. A. McAllester, S. P. Singh and Y. Mansour, Policy gradient methods for
reinforcement learning with function approximation, In Advances in Neural Information
Processing Systems, (2000), 1057-1063.

C. Tai and E. Weinan, Multiscale adaptive representation of signals: I. The basic framework,
The Journal of Machine Learning Research, 17 (2016), 4875-4912.

[66] G. Wang, A perspective on deep imaging, IEEE Access, 4 (2016), 8914-8924.
[67] Z. Wang and G. R. Arce, Variable density compressed image sampling, Image Processing,

IEEFE Transactions, 19 (2010), 264-270.

[68] G. Wang, M. Kalra and C. G.Orton, Machine learning will transform radiology significantly

within the next 5 years, Medical Physics, 44 (2017), 2041-2044.

[69] G. Wang, J. Chu Ye, K. Mueller and J. A Fessler, Image reconstruction is a new frontier of

machine learning, IEEE Transactions on Medical Imaging, 37 (2018), 1289-1296.

[70] G. Wang and H. Yu, A scheme for multisource interior tomography, Medical physics, 36 (2009),

3575-3581.

[71] C. J. Watkins and P. Dayan, Q-learning, Machine learning, 8 (1992), 279-292.
[72] Q. Yang, P. Yan, Y. Zhang, H. Yu, Y. Shi, X. Mou, M. K. Kalra, Y. Zhang, L. Sun and

G. Wang, Low-dose CT image denoising using a generative adversarial network with wasserstein
distance and perceptual loss, IEEE Transactions on Medical Imaging, 37 (2018) 1348-1357.

[73] L. Yu, M. Shiung, D. Jondal and C. H. McCollough, Development and validation of a practical

lower-dose-simulation tool for optimizing computed tomography scan protocols, Journal of
Computer Assisted Tomography, 36 (20124), 477-487.

[74] J. Zhang, G. Yang, Y. Lee, Y. Cheng, B. Gao, Q. Qiu, J. Lu and O. Zhou, A multi-beam x-ray

imaging system based on carbon nanotube field emitters, in Medical Imaging 2006: Physics
of Medical Imaging, International Society for Optics and Photonics, 6142 (2006), 614204.

[75] S. Zhang, Z. Song, G. D. P. Godaliyadda, D. H. Ye, A. U. Chowdhury, A. Sengupta, G. T.

Buzzard, C. A. Bouman and G. J. Simpson, Dynamic sparse sampling for confocal raman
microscopy, Analytical Chemistry, 90 (2018), 4461-4469.

[76] Y. Zhang, G. M. D. Godaliyadda, N. Ferrier, E. B. Gulsoy, C. A. Bouman and C. Phatak,

Slads-Net: Supervised Learning Approach for Dynamic Sampling Using Deep Neural Networks,
Electronic Imaging, Computational Imaging XVI, 2018.

[77] H.-M. Zhang and B. Dong, A review on deep learning in medical image reconstruction, Journal

of the Operations Research Society of China, 8 (2020) 311-340.

|78] Z. Zhang, X. Liang, X. Dong, Y. Xie and G. Cao, A sparse-view CT reconstruction method

based on combination of DenseNet and deconvolution, IEEE Transactions on Medical Imaging,
37 (2018), 1407-1417.

[79] M. Zhu and T. Chan, An efficient primal-dual hybrid gradient algorithm for total variation

Inv

image restoration, UCLA CAM Report, 34 (2008), 8-34.

Received October 2020; revised April 2021. Early access July 2021.

E-mail address: zjshen@pku.edu.cn
E-mail address: yufeiw2@andrew.cmu.edu
E-mail address: dwu6@mgh.harvard.edu
E-mail address: xuyang@math.ucsb.edu
E-mail address: dongbin@math.pku.edu.cn

ERSE PROBLEMS AND IMAGING VoLuME 16, No. 1 (2022), 179-195


http://www.ams.org/mathscinet-getitem?mr=MR3889951&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3555031&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2744470&return=pdf
http://dx.doi.org/10.1109/TIP.2009.2032889
http://www.ams.org/mathscinet-getitem?mr=MR4114367&return=pdf
http://dx.doi.org/10.1007/s40305-019-00287-4
mailto:zjshen@pku.edu.cn
mailto:yufeiw2@andrew.cmu.edu
mailto:dwu6@mgh.harvard.edu
mailto:xuyang@math.ucsb.edu
mailto:dongbin@math.pku.edu.cn

	1. Introduction
	1.1. Related works

	2. Preliminaries
	2.1. A brief review on MDP and reinforcement learning sutton2018reinforcement
	2.2. CT reconstruction
	2.3. Relationship between measurement noise and dose
	2.4. Some further discussions

	3. Method
	3.1. MDP formulation of personalized scanning
	3.2. Policy network architecture

	4. Experiments
	4.1. Experiment setup
	4.2. Results

	5. Conclusion
	Acknowledgments
	REFERENCES

