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Abstract

Zank et al. developed models describing the transport of low-frequency incompressible and nearly incompressible
turbulence in inhomogeneous flows. The formalism was based on expressing the fluctuating variables in terms of
the Elsässar variables and then taking “moments” subject to various closure hypotheses. The turbulence transport
models are different according to whether the plasma beta regime is large, of order unity, or small. Here, we show
explicitly that the three sets of turbulence transport models admit a conservation representation that resembles the
well-known WKB transport equation for Alfvén wave energy density after introducing appropriate definitions of
the “pressure” associated with the turbulent fluctuations. This includes introducing a distinct turbulent pressure
tensor for 3D incompressible turbulence (the large plasma beta limit) and pressure tensors for quasi-2D and slab
turbulence (the plasma beta order-unity or small regimes) that generalize the form of the WKB pressure tensor.
Various limits of the different turbulent pressure tensors are discussed. However, the analogy between the
conservation form of the turbulence transport models and the WKB model is not close for multiple reasons,
including that the turbulence models express fully nonlinear physical processes unlike the strictly linear WKB
description. The analysis presented here both serves as a check on the validity and correctness of the turbulence
transport models and also provides greater transparency of the energy dissipation term and the “turbulent pressure”
in our models, which is important for many practical applications.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Interplanetary turbulence (830)

1. Introduction

The transport of incompressible MHD turbulence in inhomo-
geneous flows is a fundamentally important problem for both
space physics and astrophysics, particularly in the context of the
transport and acceleration of energetic particles such as solar
energetic particles and galactic cosmic rays. Historically, the
transport of incompressible fluctuations in a large-scale
inhomogeneous flow has been modeled on the basis of a linear
Alfvén wave description, colloquially known as the WKB model
(Parker 1965; Hollweg 1973), and has been popular due to its
tractability and simplicity. Being a linearized wave description,
the leading-order WKB model describes noninteracting propa-
gating waves and neglects possible mixing or coupling between
propagating modes (although see the higher-order corrections
discussed by Heinemann & Olbert (1980)). The need to
incorporate turbulence effects explicitly was recognized in the
1990s with the development of transport models that departed
from the assumption of linearized modes and incorporated mode
mixing and nonlinear dissipation via the energy cascade through
the inertial range (Zhou & Matthaeus 1989; Marsch & Tu 1990;
Zhou & Matthaeus 1990a, 1990b; Matthaeus et al. 1994a; Zank
et al. 1996; Breech et al. 2008; Oughton et al. 2011; Zank et al.
2012, 2017). Some discussion was presented by Matthaeus et al.
(1994b) about the connection of the earlier turbulence models to
the WKB description. However, the connection of the simpler
WKB description to the much more elaborate turbulence
transport models of Zank et al. (1996), Breech et al. (2008),
Oughton et al. (2011), Zank et al. (2012, 2017), and Adhikari
et al. (2017) has not been established. This paper addresses the

connection between detailed turbulence transport models, their
conservation form, and their relation to WKB models.
The application of the turbulence transport models devel-

oped by Zank et al. (2012, 2017) to solar wind has shown good
agreement with a large variety of observations (Adhikari et al.
2015, 2017; Shiota et al. 2017; Zank et al. 2018b; Adhikari
et al. 2020a, 2020b, 2020c; Zhao et al. 2020). The derivation of
the turbulence models is based on a two-scale separation
method, which is a common approach to obtain turbulence
transport models (Zhou & Matthaeus 1989, 1990a, 1990b;
Zank et al. 1996; Zank 2014; Zank et al. 2012, 2017). Since the
fluctuations are well-separated from the scale associated with
the large-scale inhomogeneities, the MHD variables can be
decomposed into small-scale rapidly varying fluctuations and
large-scale slowly varying mean values. The fluctuations are
random variables with zero mean but can have an arbitrarily
large amplitude. By applying an ensemble average operator
〈...〉 to the MHD equations, i.e., the mass continuity,
momentum, energy, and Faraday’s induction equations, we
can obtain a system of evolution equations for the mean fields
that are coupled to the fluctuating fields. On subtracting the
operator-averaged equations from the original MHD equations,
we obtain the evolution equations for the fluctuating fields. The
fluctuating fields can be combined and expressed in terms of
the fluctuating Elsässer variables, prº z u b 4 , and u,
b, and ρ are the fluctuating or turbulent velocity and magnetic
field, and the mean plasma mass density, respectively. The
dynamical equations for ∂z±/∂t are the basis for constructing a
turbulence transport model. By computing the second-order
moments of z± through the dynamical equations describing the
evolution of the Elsässer variables, we can derive systems of
equations describing the evolution of the moments á ñ+z 2 , á ñ-z 2 ,
and 〈z+ · z−〉. Such one-point closure schemes are utilized to
derive the dissipation terms and the corresponding evolution
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equations for the correlation lengths. The nonlinear terms that
arise in the evolution equations for both the turbulence
quantities and the correlation functions are simplified by using
a structural similarity hypothesis. The structural similarity
hypothesis is an approximation (essentially a closure hypoth-
esis) for the variance and covariance of the field components as
a fraction of the variance of the total, or equivalently relating
the off-diagonal elements of the variance or covariance tensor
to the corresponding trace. For more details, we refer the reader
to Zank et al. (2012, 2017).
Zank et al. (2012, 2017) derived a coupled system of equations

that describes the transport of the Elsässer energy in backward-
propagatingmodesá ñ+z 2 , forward-propagating modes á ñ-z 2 , the
cross helicity º á ñ - á ñ+ -( )z zE 2C

2 2 , the residual energy
ED≡ 〈z+ · z−〉, and correlation lengths corresponding to back-
ward-propagating modes λ+, forward-propagating modes λ−,
and the residual energy λD. Under an additional set of simplifying
assumptions, the large plasma beta model of Zank et al. (2012)
can be further reduced to a single transport equation in the
magnetic energy density as derived by Zank et al. (1996) (see
also Adhikari et al. 2020c), from which one can recover the well-
known WKB model after neglecting the dissipation and mixing
terms (Zank et al. 2012).
The focus of this work is to present a conservation form of

the three sets of turbulence transport equations that were
derived in the beta large or beta order-unity or small regimes.
This analysis serves both as a check on the validity and
correctness of the transport models and provides greater
transparency of the energy dissipation term and the “turbulent
pressure” in our models, which is important for many practical
applications. The importance of the dissipation of turbulence is
of course related to the heating of gas or plasma in numerous
space and astrophysical environments, especially in the heating
of the solar corona and the acceleration of the solar wind
(Matthaeus et al. 1999a; Dmitruk et al. 2001; Oughton et al.
2001; Dmitruk et al. 2002; Cranmer et al. 2007; Chandran &
Hollweg 2009; Verdini et al. 2010; Woolsey & Cranmer 2014;
van Ballegooijen & Asgari-Targhi 2016; Zank et al. 2018a;
Adhikari et al. 2020a, 2020c, 2021), and the heating of the
extended heliosphere (Matthaeus et al. 1999b; Smith et al.
2001; Isenberg et al. 2003; Isenberg 2005; Adhikari et al. 2017;
Montagud-Camps et al. 2018; Zank et al. 2018b; Adhikari et al.
2020b). Besides the effects of turbulent dissipation in heating
the thermal gas, turbulence can contribute to the dynamical
behavior of a gas via its contribution to the total pressure. This
has been of particular interest in the context of shock waves
mediated by cosmic rays, where the pressure contributed by the
turbulence excited by cosmic ray streaming decelerates the gas
flow, thereby changing the shock profile and modifying the
accelerated or energetic particle spectrum (McKenzie &
Völk 1982; Jones 1993; Ko 1995; Caprioli et al. 2009).

2. Transport of Turbulent Energy

It is convenient to represent turbulence quantities by a set of
one-point moments of the Elsässer variables,

prº á + ñ =
á ñ + á ñ+ -

( ) ( )u b
z z

E 4
2

; 1T
2 2

2 2

prº á ñ =
á ñ - á ñ+ -

· ( ) ( )u b
z z

E 2 4
2

; 2C

2 2

prº á - ñ = á ñ+ -( ) · ( )u b z zE 4 , 3D
2 2

where ET is twice the total turbulent kinetic and magnetic energy
per unit mass, EC is the cross helicity measuring the correlation
between the fluctuating velocity and magnetic fields, and ED is
the residual energy representing the difference between (twice)
the turbulent kinetic and magnetic energies per unit mass. The
normalized cross helicity and residual energy are defined as
σC= EC/ET and σD= ED/ET, respectively. Our focus here is on
the turbulence energy density Ew, which is defined as the sum of
the turbulence kinetic and magnetic energy densities,

r
p

r
º á ñ +

á ñ
= ( )u

b
E E

2 8 2
. 4w T

2
2

2.1. Transport of Incompressible Turbulence in the Plasma
Beta Large Regime

Consider first the turbulence transport equations derived
from the 3D incompressible MHD equations. As discussed in
Zank & Matthaeus (1993), the 3D incompressible MHD
equations represent the leading-order description of nearly
incompressible MHD in the limit of large plasma beta, and can
be derived from the Elsässer variables representation intro-
duced by Zhou & Matthaeus (1989, 1990a, 1990b) and Marsch
& Tu (1989). The 3D time-dependent turbulence transport
model is then given by Zank et al. (2012),

⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦

l

l

¶
¶

+  +  - 

+  + - - 

= -
+ -

-
- +

+

-

· · ·

·

( )( )

( )( ) ( )

U V V

U U

E

t
E E E

E
a E aE

E E E E

E E E E

nn
2

2
1

2
2 :

; 5

T
T A C A C

T
D D

T C T C

T C T C

1 2

1 2

pr

l

l

¶
¶

+  +  - 

+  -  - 

= -
+ -

+
- +

+

-

· · ·

· ·
( )( )

( )( ) ( )

U U V

V V B

E

t
E E E

E E bE

E E E E

E E E E

nn

1

2
2 : 4

; 6

C
C C A T

A T A D D

T C T C

T C T C

1 2

1 2

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

pr

l l

¶
¶

+  +  + - 

+
 - 

-

+  -  - 

= -
+

+
-

- +

· · ·

· ·

· ( )
( ) ( ) ( )

U U U

V V

V U B

E

t
E E a E

E E E E

E E

E aE bE

E
E E E E

nn

1

2
2

1

2

2 : 4

; 7

D
D D T

C A T T A C

T C

A C T C

D
T C T C

2 2

1 2 1 2

⎡
⎣
⎛
⎝

⎞
⎠

⎤
⎦

l
l

pr

l l

¶
¶

+  +


- 

 

-  - =






( ) · ·

·

( ) ( ) ( )

/



 



U V U

V B

U

t

E

E E
a

b

a E E

nn

nn

1

4
1

2
: 4

: 2 2 ; 8

A
D

T C

A

D T C
1 2

2

The Astrophysical Journal, 928:176 (10pp), 2022 April 1 Wang et al.



⎡
⎣
⎛
⎝

⎞
⎠

⎤
⎦

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣

⎤
⎦

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

l
l

l l
l

pr

l l
l

l l l

l
l

l

l
l

l

l
l l

¶
¶

+  + -  - 

´
+ + -

-

- -  - 

´
+ - -

-

+
 - 

-
-

+
-



- 

=
+

+
-

+ -

+ -

+ -

+

-
-

-

+
+

- +

· ·

( ) ( )

·

( ) ( )

· · ( )

·

·

( ) ( )

( )

U U U

V B

V V

V

V

t

E

E
a a

E E E E

E

E

E
b

E E E E

E

E E E E

E E E

E E

E

E E E E

nn

nn

2 1

4
:

2 1

2
: 4

2

,

9

D
D

T

D

T C T C

T
D

C

D
A

T C T C

C
D

C A T T A C

D T C

D

T C

D
A

A

D
T C T C

2 2

2 2 1 2

1 2

1 2 1 2

where U is the large-scale fluid velocity, VA the large-scale
Alfvén velocity, λ± is the correlation length for backward/
forward-propagating modes, and n corresponds to a specified
direction for axisymmetric turbulence (typically the imposed
mean magnetic field direction). The parameters a and b are
structural similarity parameters, and their origin in the context
of the transport model above is a little subtle (Zank et al. 2012).
Specifically, a is a closure that relates the off-diagonal elements
of the second-order tensors 〈zizj〉 (where we deliberately leave
the superscripts± off to indicate generality) to the trace
through a (or b)〈z2〉. Since 〈zizj〉 occurs in conjunction with
the gradient of either the large-scale flow velocity U or the
Alfvén velocity VA, a is associated with gradients in the large-
scale flow U whereas the structural similarity parameter b is
associated specifically with gradients in VA. The choice of
a= b= 1/2 or a= 1/3 corresponds to either the 2D or the 3D
mixing tensor in the Matthaeus et al. (1994a) and Zank et al.
(1996) turbulence transport models. For 3D isotropic turbu-
lence, the axisymmetric direction vector n should be a zero
vector and disappears together with parameter b.

In deriving the energy-conservation equation, we need some
essential vector and tensor relations,

a a a =  + · ( ) · · ( )A A A; 10

 =  ( )T A A T: : ; 11

 = · ( )A A I: ; 12

a a a =  + ( ) · · ( )T T T; 13

 =  + · ( · ) · · ( )A T A T T A: , 14

where α is a scalar, A is a vector, T is a tensor, and I is an
identity tensor.

On neglecting the dissipation terms in Equation (5), the
transport equation for ET can be written as
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Using Equation (10) on the second and third terms of (15) and
adding the fourth term yields
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By using Equations (12) and (11), the fifth and the last terms on
the left-hand side of Equation (15) become
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where we have introduced the turbulence pressure tensor Pw,
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Equation (15) can therefore be expressed as
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After substituting EC= σcET, ED= σDET, and ET= ρ/2Ew into
Equation (18), and multiplying by ρ/2, we obtain
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Since ∇ · VA=− VA ·∇ρ/(2ρ), the last four terms can be
eliminated as follows:
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thanks to conservation of mass. Finally, using Equation (14),
we can express the transport equation for the total turbulence
energy in a conservative form resembling that of a WKB
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model,
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The term in square brackets is the energy density flux vector,
which is the amount of turbulence energy passing in unit time
through a unit area perpendicular to the direction of the velocity
(Landau & Lifshitz 1987). Within the square brackets, the first
term is the energy transported through the unit surface area in
unit time, and the second term is the work done by the turbulent
“pressure” force on the plasma within the surface. The right-
hand term is the rate of work of the turbulence pressure
gradient on the background plasma flow. For the present, we
remind the reader that we have neglected the dissipation term in
deriving Equation (21)—this term is given below.

The turbulence propagation velocity is the energy-averaged
Alfvén velocity,
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which resembles the mean local velocity of Alfvénic
turbulence. Since the turbulence consists of structures that
move in all directions, the mean local velocity of the Alfvén
turbulence is the energy-averaged Alfvén velocity weighted by
the ratio of the forward or backward wave energy to the total
energy (Bell & Lucek 2001).
We can express the turbulent pressure tensor in terms of the

turbulence energy and the fluctuating fields as
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It is worth noting that, if a> 1/2, it is possible for the isotropic
part of the pressure tensor to be negative. For Alfvén-like
turbulence with ED= 0= σD, the turbulence pressure is the
familiar isotropic Alfvén wave pressure b2/(8π)I. For 3D
isotropic turbulence, a= 1/3 and n= 0, the reduced turbulence
pressure tensor is
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Note that the turbulence pressure, including the “ram pressure”
(i.e., the kinetic or fluctuating Reynold’s pressure) and the
fluctuating magnetic stress, is (McKee & Zweibel 1995)
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In the case of 3D isotropic turbulence, the local average
fluctuating ram pressure r rá ñ = á ñu u ui j i

2 is ρ〈u2〉/3 because
the average of uiuj= 0 for i≠ j. This is true also for the
fluctuating magnetic stress, and is given by 〈b2〉/(8π)−
(〈b2〉/(4π))/3= (〈b2〉/(8π))/3.

For turbulence that is axisymmetric with respect to the
directional vector n, and has a= 1/2, the turbulence pressure
tensor is given by
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This results from our structural similarity assumptions for 2D
turbulence (Zank et al. 2012),
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which, when substituted into the turbulence pressure
Equation (25), yields Equation (26).
The dissipation of turbulence energy Ediss is easily found to

be given by Zank et al. (2012):
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The complete energy transport equation, including the dissipa-
tion term, is therefore given by
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2.2. Transport of Nearly Incompressible 2D Turbulence in an
Inhomogeneous β∼ 1 Plasma

From the perspective of nearly incompressible MHD, the
incompressible MHD description is valid only for a plasma
beta regime much large than unity; for a plasma beta of order
unity or less, the turbulence is a superposition of a dominant
2D incompressible component and a minority slab component
(Zank & Matthaeus 1992, 1993; Zank et al. 2017, 2020). The
equations governing the evolution of 2D incompressible
turbulence in the plasma beta order-unity limit are (Zank
et al. 2017)
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where the subscript “∞ ” denotes MHD variables that satisfy
the incompressible equations, and “∗” denotes the higher-order
corrections. We assume that the structural similarity parameter
for the fluctuating velocity and magnetic fields are the same and
denoted by a. Note that, in this (and the next) subsection, nz∞
is the weight-averaged direction vector of z∞± modeled in the
local coordinate system with the z-axis along the large-scale
magnetic field.

Here, ¥
L and l̂ are the correlation function and correlation

length corresponding to the backward/forward propagating
modes, respectively, and ¥LD and l¥D are the correlation
function and correlation length corresponding to the residual
energy. The correlation functions and correlation lengths are
related by

ò l= á ñ = á ñ¥
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^
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ò l= á + ñ =¥ ¥+ ¥-¢ ¥+¢ ¥- ¥ ¥· · ( )z z z zL dr E , 36D D D

where º +¥¢ ¥( )z z x r indicates the lagged Elsässer
variable at location r from x.
Were we to neglect the terms containing VA and nn:∇U on

the left-hand side of Equation (5), we would obtain the same as
the left-hand side of Equation (30). Thus, the conservation form
of the evolution equation for the 2D turbulence energy is given
immediately by
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The turbulence pressure tensor is now defined as
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where u∞ and b∞ are the 2D turbulent velocity and magnetic
fields, respectively. This was first noted by Le Roux et al.
(2018). The properties are similar to those for the incompres-
sible turbulence case discussed in Section 2.1.

2.3. Transport of Nearly Incompressible Slab Turbulence in an
Inhomogeneous β∼ 1 Plasma

The transport equations that describe the evolution of slab
turbulence expressed in terms of the nearly incompressible
corrections to the incompressible MHD variables are given by
Zank et al. (2017),
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where s denotes the large-scale magnetic field direction. To
distinguish the structural similarity parameter a for 2D
incompressible turbulence from that of slab turbulence, we
introduce the notation b. As for 2D incompressible turbulence
(Section 2.1), the correlation lengths for slab turbulence are
defined as
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The transport equation for *ET in Equation (39) is similar to
Equation (5), and thus Equation (39) can be expressed as
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Here, the turbulence pressure tensor is defined as
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where u1 and b
*

are the fluctuating velocity and magnetic field
for slab turbulence, respectively. It is worth noting that, if
σD≠ 0 and b> 1/2, it is possible for the isotropic part of the
turbulence pressure tensor to become negative. To avoid these
unphysical situations, it is necessary that care be exercised in
choosing the value of the structural similarity parameter.
We illustrate different forms of the turbulence pressure

tensor under different assumptions. In the case that s =* 0D , the
slab turbulence pressure tensor, Equation (47), is given by

p
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which is isotropic and corresponds to the pressure exerted by
Alfvén waves. For the case of b= 1/2, the slab turbulence
pressure tensor can be expressed as
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2.4. Transport of Nearly Incompressible 2D and Slab
Turbulence in an Inhomogeneous β= 1 Plasma

The transport equations that describe the evolution of the
leading-order 2D turbulence in the β= 1 plasma are the same
as the equations (in Section 2.2) for β∼ 1. However, for the
minor slab turbulence, the transport equations are different in
the β= 1 and β∼ 1 plasma. The transport equations for slab
turbulence in the β= 1 regimes can be expressed as (see
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where η= 1, and nu∞ indicates the averaged direction of
turbulent velocity u∞ weighted by the associated terms. For an
isotropic 2D turbulent velocity u∞ or a weak dependence
between u∞ and *z , the terms associated with nu∞ ·∇ρ are
zero. Similarly, the terms associated with nz∞ ·∇ρ can also be
eliminated from the turbulence transport equations for β∼ 1. In
this case, the only differences between the transport equations
for β∼ 1 and β= 1 result from the additional dissipation terms
in the β= 1 equations. On setting η= 0, we recover the β∼ 1
turbulence transport equations. To generalize the transport
equations for a plasma in which β lies between these two limits,
we can parameterize η using β such that η(β∼ 1)= 0 and
η(β= 1)= 1.
The transport equation for *ET in Equation (50) is similar to

Equations (39) and (5), thus the conservative form of the
transport equation for *ET is

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

s

r

r
l

l

h
r

l l

¶
¶

+  - +

= 

+


+ -

-
- +

+
+ -

+
-

-
+

¥ ¥ ¥

¥ ¥

^
+

¥ ¥

^
-

¥ ¥

^
+

¥ ¥

^
-

· [( ) · )]

· ·
· ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

*
* * *

*

* *

* *

* *

*

U V U P

U P
n

E

t
E

E E E E

E E E E

E E E E

E E E E E

4 2

2

4
, 55

w
A c w w

w

u
T D T D

T C T C

T C T C

C T C T C

1 2

1 2

1 2

1 2 1 2

where the turbulence pressure tensor *Pw is identical to
Equation (47).

3. Conclusions

In a formal sense, when considering the relationship of the
ideal incompressible MHD equations to the ideal compressible
MHD equations that results in the theory of nearly incompres-
sible MHD (Zank & Matthaeus 1993), essentially the three
limits of large plasma beta, plasma beta of order unity, or small
plasma beta are relevant. Based on this ordering, Zank et al.
(2012) (large beta), Zank et al. (2017) (beta ∼1), and this work
(beta =1) derived three sets of equations describing the
evolution of incompressible and nearly incompressible MHD
turbulence in inhomogeneous flows as expressed through
“moments” of the fluctuating Elsässer variables. The large beta
limit yields a transport formalism that is at leading order based
on the fully 3D incompressible MHD equations whereas the
beta ∼1 or =1 limit yields a superposition of quasi-2D MHD
as the leading-order or dominant component and a minority
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slab component. Each set of transport equations includes the
nonlinear interaction between forward and backward modes,
introduces the cross helicity and residual energy, and is
applicable to sub-Alfvénic as well as super-Alfvénic flows.
Each set of equations consists of six coupled equations to
model the evolution of turbulence energy, cross helicity,
residual energy, and associated correlation lengths. The
advanced transport equations are likely more realistic and
provide much more information about the evolution of
turbulence than earlier turbulence transport models that made
a number of quite severe approximations, including the
standard WKB description (e.g., Parker 1965; Hollweg 1973;
Zank et al. 1996; Breech et al. 2008). Depending on the plasma
beta, we should choose an appropriate set of turbulence
transport equations. For example, to investigate the evolution
of solar wind turbulence, different choices for turbulence
transport models must be made carefully for different regions.
Neither Zank et al. (2012) nor Zank et al. (2017) derived a
conservation form of the transport equations for the energy in
the fluctuations. Expressing the fluctuating energy in the form
of a conservation law is an important check on the physical and
mathematical consistency of the turbulence transport formal-
ism. Of course, the results based on the application of our non-
conservation form of the turbulence transport equations to the
solar wind should remain unchanged (Adhikari et al. 2021;
Zank et al. 2021). Despite the evident complexity of the
underlying turbulence transport equations, we show here that,
in both limits, the transport equations for the turbulence energy
can be expressed in conservative form through the introduction
of generalized forms of the pressure tensor for the fluctuating
velocity and magnetic field components. The generalized
turbulence pressure tensor is quite different from the simple
isotropic Alfvén turbulence pressure that is present in the WKB
description and is quite unlike the typical concept of a
“pressure” derived from the fluctuating magnetic and velocity
fields. Under some symmetries or configurations, the turbu-
lence pressure tensor is degenerate and resembles the Alfvén
turbulence pressure. It would be of great interest to determine
the various forms of the turbulence pressure tensor Pw and
turbulence energy density Ew from direct numerical simulations
(Lugones et al. 2019).

Our principal results are Equations (29) (beta ?1), (37)
(quasi-2D turbulence, beta ∼1, or beta =1), (46) (slab
turbulence, beta ∼1), and (55) (slab turbulence, beta =1)
together with the respective definitions of the turbulence
pressure (23), (38), and (47). The fluctuating energy
conservation laws for the beta ?1 and the slab turbulence
beta order ∼1 or =1 cases resemble formally the well-known
WKB transport equations for the energy density of linear
Alfvén waves in an inhomogeneous flow. However, the
analogy is not close for multiple reasons: (i) The turbulence
transport formalism does not assume that the fluctuations are
small-amplitude or linear. (ii) The turbulence pressure tensor
Pw is significantly different from the wave pressure tensor of
WKB models, containing typically both the energy densities
of the fluctuating velocity and magnetic fields. The relevant
anisotropies of the underlying turbulence are also contained in
the turbulence pressure tensors, as expressed through the
structural similarity parameters that represent a closure
relation between the trace and the covariance terms in the
one-point Elsässer energy tensor terms. (iii) The energy
density flux in the turbulence conservation laws is similar to

the WKB formalism in that the turbulence form contains the
cross helicity, although in the turbulence case, the cross
helicity is governed by an independent turbulence transport
equation that must be solved in conjunction with the energy
transport equation. (iv) Finally, the role of dissipation is
properly incorporated in the conservation laws and is based on
a Kolmogorov formalism (equally, the dissipation terms can
be treated using an Iroshnikov–Kraichnan formalism (Ng
et al. 2010) provided one is not modeling quasi-2D turbulence
(Zank et al. 2020)). The conservation form of the
dominant quasi-2D turbulence case (beta ∼1 or beta =1),
Equation (38), also resembles the WKB formalism in some
terms, but is quite different in that the Alfvén velocity term is
absent entirely. This of course is because the fluctuations are
quasi-2D structures such as flux ropes and not Alfvén waves.
The differences (i)–(iv) above also apply to the quasi-2D
turbulence conservation law. For the beta ∼1 or =1 case, the
separation into dominant and minority components means that
the quasi-2D turbulence energy density ¥Ew and pressure ¥Pw
and the slab turbulence energy density *Ew and pressure *Pw
can be combined to obtain the total turbulence energy density
and pressure tensor contribution.
The conservation forms of the turbulence energy density

equations cannot be solved in isolation, since they are coupled
to the evolution of the cross helicity, the residual energy, and
the various correlation lengths. Nonetheless, the conservation
form can be used in place of the total energy transport equation
formalism used in Zank et al. (2012) and Zank et al. (2017) and
applications thereof. If one chooses to impose certain
constraints on, e.g., the cross helicity or residual energy (Zank
et al. 1996, 2012), the conservation form is particularly useful
in deriving simplified forms of the turbulence transport
equation, many of which are readily amenable to analytic
solution (Zank et al. 1996).
In conclusion, we have derived conservation forms of the

turbulence energy transport equations, and shown explicitly the
dissipation terms and derived generalized forms of the
turbulence pressure tensor. We anticipate that our results will
be useful for a range of important and interesting problems in
solar, stellar, and other large-scale astrophysical winds, cosmic
ray physics, shock waves, and especially the heating of the
solar corona and solar wind.

We acknowledge the partial support of an NSF EPSCoR RII-
Track-1 Cooperative Agreement OIA-1655280, partial support
from a NASA Parker Solar Probe contract SV4-84017, partial
support from a NASA LWS grant 80NSSC20K1783, and
partial support from a NASA IMAP subaward under NASA
contract 80GSFC19C0027. G.P.Z. was partially supported by
an NSF CDS&E Award 2009871.

Appendix
Derive the Transport Equations for the Slab Turbulence in

the β= 1 Plasma

Following Hunana & Zank (2010), but assuming the ratio of
the typical length scale for fluctuations and the typical length
scale for the large-scale inhomogeneous background is not as
small as the expansion parameter, the evolution equation for
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the slab turbulent velocity and magnetic field are given by
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where ρ∞ denotes the leading-order correction for the gas
density and p

*

is the high-order correction for the gas thermal
pressure.

The fluctuating nearly incompressible Elsässer variables are
defined as
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We restrict attention to the incompressible modes ∇ · u1= 0,
and neglect the source term for ρ∞.

Following Zank et al. (2012, 2017), by taking the dot
product of Equation (A5) with respect to *z ( *z ) and
constructing the ensemble average, we can derive the evolution
equations for á ñ*z 2 ( *ED). The following assumptions are
made. The nonlinear terms are modeled as
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We introduce an approximation for the variance of the
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where b is the structural similarity parameter. The resulting
evolution equations for á ñ*z 2 are
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where = á ñ+ -·* * *z zED . Note that = á ñ + á+ -( )* * *E z z 2T
2 2

and = á ñ - á+ -( )* * *E z z 2C
2 2 , such that the evolution

Equations (50) and (51) are obtained by combining
Equations (A7) and (A8).
The evolution equation for *ED is given by Equation (52).

The correlation functions and correlation lengths are related
through

ò l= á ¢ñ = á ñ    · ( )* * * * *z zL dr z ; A92

ò l= á ¢ + ¢ ñ = · · ( ) * * * * * * *z z z zL dr E , A10D D D

where r is the spatial lag between fluctuations, and
¢ = + ( )* *z z x r denotes the lagged Elsässer variable at a

location r from x. The evolution equation for the correlation
functions can be obtained by applying the same procedure used
in Zank et al. (2012, 2017). Taking appropriate moments of
Equation (A4) and using the assumptions (A5) and (A6), we
obtain Equations (53) and (54).
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