

Moisture Transport and Water Vapor Budget over the Sahara Desert

Li Zhuo¹ and Liming Zhou^{*1}

¹Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, NY 12222, USA

*Correspondence:

Liming Zhou

Department of Atmospheric and Environmental Sciences

University at Albany, State University of New York

1400 Washington Avenue, Albany, NY 12222

Tel: (518) 442-4446; Fax: (518) 442-5825

Email: lzhou@albany.edu

Received: 31 December 2021

Revised: 6 March 2022

Accepted: 15 March 2022

First published: 18 March 2022

Key words: Sahara Desert; Moisture transport; Water vapor budget

This work is funded by the National Science Foundation (NSF) AGS-1952745.

24

ABSTRACT

25 Previous studies documented that near surface temperatures over the Sahara and Arabian
26 deserts have been amplified in a warming climate, which is termed desert amplification (DA).
27 DA has been linked possibly to the large-scale greenhouse effects associated with increasing
28 water vapor. With very limited moisture availability over the driest desert, two key questions
29 unanswered are the desert moisture sources and the relative contributions of thermodynamic
30 and dynamic processes to the changes in moisture transport. In this study, the atmospheric
31 water vapor budget over the Sahara Desert from 1981-2020 is analyzed to address these two
32 questions. Results indicate that the water vapor content over the Sahara Desert has increased
33 significantly since 1981, primarily during the boreal summer and in the lower to middle
34 troposphere. The water vapor budget analysis indicates that in the boreal summer, most of the
35 added moisture is transported into the Sahara Desert through the intensifying northerly inflow
36 across the northern boundary of the desert, while the other boundaries are all export channels.
37 The northerly inward moisture transport is associated with the ridge in the lower troposphere
38 and the Saharan high above the lower troposphere. Further analysis indicates that both dynamic
39 and thermodynamic factors contribute to the increase of the inward moisture flux at the
40 northern boundary, while the associated interannual variability is dominated by the dynamic
41 component related to the circulation pattern changes. The changes of the circulation pattern in
42 the lower troposphere are manifested as the westward extension of the low over the Arabian
43 Peninsula and as the strengthening of the Saharan high above the lower troposphere, both
44 contributing to the increase of the northerly inward moisture transport.

45 **1. Introduction**

46 The Sahara and Arabian deserts, the largest and driest deserts on Earth, have been argued
47 to have experienced the largest warming rate in the low and middle latitudes (termed desert
48 amplification or DA) based on global-scale analyses of observational, reanalysis and climate
49 model datasets (Zhou et al., 2015; Zhou, 2016; Wei et al., 2017). Similar views were also
50 documented by regional-scale studies (Evan et al., 2015; Cook and Vizy, 2015; Vizy and Cook,
51 2017; Cook et al., 2021). For example, based on observational and reanalysis datasets, Cook
52 and Vizy (2015) reported that the warming rate of the surface temperature on the Sahara Desert
53 is much larger than that in the tropical regions. The Sahara Desert is also found to have
54 expanded significantly in the past century (Thomas and Nigam, 2018), which is consistent with
55 the concept of DA. The magnitude of DA is found to be strongest near the surface and decreases
56 gradually with height (Wei et al., 2017; Zhou, 2021).

57 Research on the potential mechanisms driving the DA is still in the early stages (Thomas
58 and Nigam, 2018; Zhou, 2021). Recent studies have attributed the DA likely to the enhanced
59 downward longwave radiation induced by the increasing amounts of greenhouse gases (Evan
60 et al., 2015; Cook and Vizy, 2015; Vizy and Cook, 2017; Zhou, 2016, 2021; Zhou et al., 2016,
61 2021). Among the greenhouse gases, water vapor is found to play a big role in enhancing the
62 downward longwave radiation over the deserts in response to a warmer and moister
63 atmosphere. For instance, based on the observational and reanalysis datasets, Zhou et al. (2016)
64 documented a negative logarithmic relationship between the total content of water vapor in the
65 atmospheric column and the ratio of downward longwave radiation trend to the total water
66 vapor content trend, indicating the largest efficiency in the greenhouse effect over the driest
67 regions like the Sahara Desert. Using a heat and water vapor budget analysis, Evan et al. (2015)
68 also attributed the increase of the temperature over the Sahara Desert to the enhanced

69 greenhouse warming by moisture. By separating the DA into dry and wet seasons, Vizy and
70 Cook (2017) found that during the wet season, it is the increased amounts of moisture over the
71 Sahara Desert that drives the fast warming of the near surface temperature.

72 The aforementioned studies, however, do not completely address one key question
73 regarding the remote moisture transport and its variability over the Sahara Desert where the
74 local moisture availability is very limited. Vizy and Cook (2017) qualitatively analyzed the
75 changes in circulation patterns over the Sahara Desert and found increased moisture transport
76 into the Sahara Desert via the strengthening of the Sahara low/Saharan high system (Figure 11
77 in their paper). However, a detailed quantitative analysis is still needed to examine the water
78 vapor transport over the Sahara Desert, because there may be multiple mechanisms through
79 which the moisture can be transported into the atmosphere over the desert. For example, it is
80 long established that the African monsoon plays a significant role in the rainfall in the Sahel
81 (Druryan, 2011; Monerie et al, 2016; Odoulami and Akinsanola, 2018; Akinsanola and Zhou,
82 2019a, 2019b) and the southern Sahara (Thomas and Nigam, 2018; Pausata et al., 2020). So
83 the possibility that variations in the African monsoon may also have modified the moisture
84 transported to the Sahara Desert cannot be ruled out. In addition, the change of the moisture
85 content over a specific region could be driven by the dynamic or thermodynamic factors
86 (Seager et al., 2010; Wang et al., 2017; Akinsanola and Zhou, 2019a, 2019b). Separating the
87 dynamic and thermodynamic contributions to the increase of the Sahara Desert moisture also
88 needs in-depth quantitative analysis.

89 Aiming at addressing the questions mentioned above and shedding some light on our
90 understanding of the DA, here we conduct the water vapor budget analysis to analyze the
91 moisture variability over the Sahara Desert. To our best knowledge, no such work has been

92 done before. The paper is organized as follows. In section 2 we will discuss the data and
93 methods used. The main results and discussion will be given in Section 3. Section 3.1 provides
94 an overview of the moisture trends over the Sahara Desert. Section 3.2 analyzes the results of
95 the water vapor budget. Section 3.3 quantifies the relative contributions of the dynamic and
96 thermodynamic processes to the inward moisture flux. Concluding remarks follow in section
97 4.

98 **2. Data and Methods**

99 In this paper, we define the Sahara Desert as the region located between 20°N to 30°N
100 and 10°W to 30°E, following previous studies (Harada et al., 2003; Cook and Vizy, 2015). We
101 use two reanalysis datasets, including the fifth major global reanalysis produced by European
102 Centre for Medium-Range Weather Forecasts (ERA5; Hersbach et al., 2020) and the Modern-
103 Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2; Gelaro et
104 al., 2017), for the period 1981-2020. To calculate the moisture budget components, here we
105 use 6-hourly fields of specific humidity (q), zonal and meridional winds (u, v) from ERA5 and
106 MERRA-2 at a horizontal resolution of $1^\circ \times 1^\circ$ and $0.5^\circ \times 0.625^\circ$, respectively. We have
107 also utilized the ERA5 data at the resolution of $0.25^\circ \times 0.25^\circ$ and find that the results are
108 similar. Monthly means quantities, such as horizontal winds, specific humidity and other
109 calculated variables like moisture flux ($\rho q \vec{V}$), and geopotential heights, are aggregated to create
110 the corresponding seasonal and annual mean variables. Here we classify June-August (JJA) as
111 the boreal summer and December-February (DJF) as the boreal winter. The linear trend is
112 calculated via least squares fitting and a two-tailed student's t test is used to test the significance
113 of the trend.

114 Following previous studies (Sun and Wang, 2014; Wang et al., 2015; Dai et al., 2020;

115 Mayer et al., 2021), the water vapor budget equation can be written as:

116
$$\frac{1}{g} \frac{\partial}{\partial t} \int_{p_t}^{p_s} q dp = -\frac{1}{g} \int_{p_t}^{p_s} \nabla \cdot (q \vec{V}) dp + E - P + R, \quad (1)$$

117 where g is the gravitational constant, q and \vec{V} are the specific humidity and the horizontal
118 wind vector, respectively, p_s and p_t are the pressure at the surface and top of the atmosphere,
119 respectively. Here we set $p_t=300$ hPa. The left term of equation (1) is the time change of the
120 total precipitable water (TPW) in a single atmospheric column. The first term on the right hand
121 of equation (1) is the vertically integrated moisture flux convergence (VIMFC). E and P are
122 the surface evaporation and precipitation rates, respectively. R is the residual term.

123 Using the 2D divergence theorem (Zangvil et al., 2004; Jin et al., 2011; Lamb et al., 2012;
124 Minallah and Steiner, 2021), VIMFC can be written as:

125
$$\text{VIMFC} = -\frac{1}{g} \int_{p_t}^{p_s} \nabla \cdot (q \vec{V}) dp = -\frac{1}{Ag} \iint q V_n dl dp, \quad (2)$$

126 where dl is the length of the grid along the latitude and longitude, V_n is the wind vector
127 projected to the normal direction of each boundary, A is the area of the integration region. The
128 right-hand term of equation (2) can be expressed in the form of the total net moisture fluxes
129 across the four boundaries of the Sahara Desert:

130
$$-\frac{1}{Ag} \iint q V_n dl dp = \frac{1}{A} (-\text{north flux} + \text{south flux} - \text{east flux} + \text{west flux}), \quad (3)$$

131 where the right-hand terms of equation (3) represent the moisture flux across the northern,
132 southern, eastern and western boundaries, respectively. For convenience, here we rewrite
133 equation (3) as:

134
$$-\frac{1}{Ag} \iint q V_n dl dp = F_{\text{north}} + F_{\text{south}} + F_{\text{east}} + F_{\text{west}}, \quad (4)$$

135 where F_{north} , F_{south} , F_{east} and F_{west} represent the moisture transport across the northern,
136 southern, eastern and western boundaries, respectively.

137 To further quantify the relative contributions of thermodynamic and dynamic processes to

138 the change of the moisture transports, here we decompose the moisture flux across a certain
139 boundary into anomalies due to changes of wind and specific humidity respectively, following
140 previous studies (Wang et al., 2017; Seager et al., 2010; Akinsanola and Zhou, 2019):

$$141 \frac{1}{g} \iint -q V_n dldp = \frac{1}{g} \iint -\bar{q} \bar{V}_n dldp + \frac{1}{g} \iint -q' \bar{V}_n dldp + \frac{1}{g} \iint -\bar{q} V'_n dldp + \frac{1}{g} \iint -q' V'_n dldp, \quad (5)$$

142 where \bar{V}_n and \bar{q} are the 40-year (1981-2020) climatology of the wind normal to a specific
143 boundary and specific humidity in a specific season or year, and V'_n and q' are the respective
144 deviations from the 40-year climatology of each year or season. The term on the left-hand of
145 equation (5) is the moisture flux across a certain boundary. The first term on the right hand of
146 equation (5) is the average term, which is constant within 40 years. The second term and third
147 term are the moisture flux anomalies caused by the thermodynamical (thermodynamic term)
148 and dynamical processes (dynamic term), respectively. The last term can be neglected for both
149 q' and V'_n are small deviations from the climatology (Wang et al., 2017).

150 **3. Results and discussion**

151 **3.1 Moisture trends in ERA5 and MERRA-2**

152 Figure 1 displays the spatial distribution of JJA, DJF and annual TPW climatology in
153 ERA5 (left) and MERRA-2 (right). The comparison between the left and right columns
154 highlights the great similarity in TPW between the two reanalysis datasets over the Sahara
155 Desert, especially for JJA and annual TPW. The differences in DJF TPW are relatively larger
156 than the differences in JJA and annual TPW. However, as shown later, the moistening over the
157 Sahara Desert mainly takes place in JJA and such differences in DJF will not matter much in
158 our study.

159 The spatial patterns of JJA, DJF and annual TPW trends in ERA5 and MERRA-2 are

160 shown in Figure 2. Comparing the left columns to the right columns, one can see that the two
161 datasets display similar moistening trends in both the spatial patterns and magnitude. In JJA,
162 both indicate positive TPW trends that are statistically significant at the 99% confidence level
163 over most areas in the Sahel and the Sahara Desert (depicted as the rectangle box in blue), with
164 the maximum of the magnitude located in the Sahel (Figure 2a, b). There is evidence of a
165 significant moistening trend around the west coastline of the African land at 16°N in MERRA-
166 2 (Figure 2b), which is absent in ERA5 (Figure 2a). However, this difference is out of the area
167 of our study domain and thus will not influence our further analysis over the Sahara Desert. In
168 DJF, neither ERA5 or MERRA-2 exhibits statistically significant moistening trends over the
169 Sahara Desert (Figure 2c-d). The annual trends of TPW in ERA5 also correspond well to the
170 trends in MERRA-2 in terms of the spatial patterns and magnitude, as both exhibit positive
171 TPW trends over the Sahara Desert and the Sahel (Figure 2e-f). It is noteworthy that the spatial
172 patterns of the annual TPW trends share great similarity with the JJA TPW trends in both ERA5
173 and MERRA-2 (Figure 2a-b; e-f). Such similarity indicates that the moistening over the Sahara
174 Desert mainly takes place in JJA, which is in agreement with Vizy and Cook (2017). We have
175 also examined the trends of TPW in boreal spring and autumn and find that TPW shows no
176 significant changes in the boreal spring, while in the boreal autumn TPW displays relatively
177 weaker positive trends over parts of the Sahara Desert (figures now shown). Overall, the
178 consistency in two datasets illustrates that the Sahara Desert has been indeed experiencing a
179 significant moistening in JJA since 1981 and bolsters our confidence in further analysis.

180 Since the increase of TPW mainly occurs in JJA, our subsequent analysis will focus only
181 on the boreal summer. Figure 3 shows the water vapor content trends at different layers from
182 two datasets. Similar to TPW, ERA5 and MERRA-2 are overall in good agreement with each

183 other in terms of the moisture content trends at different layers over the Sahara Desert. In the
184 lower troposphere below 900 hPa (Figure 3a-b), the trends of moisture content in ERA5 and
185 MERRA-2 are positive and statistically significant over most areas of the Sahara Desert, even
186 though the strongest moistening takes place south in the location of the monsoon trough
187 (Thorncroft et al., 2011; Cook and Vizy, 2015; Vizy and Cook, 2017). The water vapor content
188 between 900 and 700 hPa also displays statistically significant positive trends over the Sahara
189 Desert, with the associated magnitude even larger than that in the lower troposphere below 900
190 hPa (Figure 3a-d). For the layer between 700 and 500 hPa, the trends of the water vapor content
191 over the Sahara are still overall positive and statistically significant (Figure 3e-f). This suggests
192 that the increase of moisture over the Sahara Desert in JJA is not confined to the lower
193 troposphere but extends to the middle troposphere. In addition, the mechanism responsible for
194 the moistening in the lower troposphere may differ from that in the middle troposphere.

195 To further quantitatively assess the vertical profile of the moistening rates over the Sahara
196 Desert, here we calculate the area average q trends at different pressure levels over the Sahara
197 Desert in JJA from the two reanalysis datasets (Figure 4). One can see that the vertical profile
198 of the area average q trend over the Sahara Desert in ERA5 is similar to that in MERRA-2 to
199 some extent. Moistening statistically significant at the 99% confidence level extends upwards
200 to 400 hPa in ERA5 and 500 hPa in MERRA-2. This further testifies that the increase of water
201 vapor content over the Sahara Desert in JJA occurs from the lower to middle troposphere.

202 **3.2 Water vapor budget analysis for the Sahara Desert**

203 To quantify the contributions of different physical processes to the moistening of the
204 atmosphere over the Sahara Desert in JJA, in this section we will conduct the water vapor
205 budget analysis for the atmosphere over the desert. By combining with equations (2) and (4),

206 equation (1) can be written as:

$$207 \frac{1}{g} \frac{\partial}{\partial t} \int_{p_t}^{p_s} q dp = F_{\text{north}} + F_{\text{south}} + F_{\text{east}} + F_{\text{west}} + E - P + R, \quad (6)$$

208 The results of the water vapor budget and the trends of each term are listed in table 1.

209 ERA5 and MERRA-2 generally agree well with each other in both the values and trends of
210 each term. Table 1 highlights that the moisture transport across the northern boundary
211 dominates the contribution to the increase of the moisture content, as the values and trends of
212 F_{north} are largest in both ERA5 and MERRA-2. While the northern boundary is the import
213 channel, other boundaries are all the export channels, with only the eastern boundaries display
214 a statistically significant trend. It is noteworthy that the moisture transport across each
215 boundary is all of an order magnitude larger than the evaporation, precipitation and residual
216 terms, which is expected as the evaporation and precipitation are rather small over the hot dry
217 desert (Figure S1). Even though the evaporation and precipitation show statistically significant
218 trends, the trends are much smaller than those of the moisture transport across the four
219 boundaries. It is noteworthy that evaporation displays trends with different significance levels
220 in the two reanalysis datasets, possibly due to the different soil moisture in ERA5 and MERRA-
221 2. Exploring the relationship between the difference in soil moisture and evaporation is beyond
222 the scope of this paper and will be a potential subject of future studies. Since it is the moisture
223 transport across the four boundaries that dominate the moisture variability over the Sahara
224 Desert, we will focus on the water vapor transport next.

225 *3.2.1 Climatological moisture transport in JJA*

226 Figure 5 shows the moisture transport and geopotential height climatology in JJA over the
227 Sahara Desert for ERA5. We have examined the climatology in MERRA-2 as well and the
228 results are similar (figures not shown). In the lower troposphere in JJA, the northern African

229 land is characterized by a monsoon trough centered around the Sahel (Figure 5a). The trough
230 is converged by the northward moisture advection associated with the African monsoon to the
231 south and the southward moisture transport accompanying the weak ridge across the
232 Mediterranean Sea. The induced water vapor convergence can well explain the strong
233 moistening in the Sahel (Figure 2a-b; Figure 3). This climatological circulation pattern is
234 consistent with previous studies (Neupane and Cook, 2013; Vizy et al., 2013; Cook and Vizy,
235 2015; Thorncroft et al., 2015).

236 Figure 5a highlights two branches of inward moisture transport into the Sahara Desert in
237 the lower troposphere in JJA. One is the northerly moisture transport brought by the weak ridge
238 across the Mediterranean Sea, another branch is the southerly moisture transport related to the
239 African monsoon. However, the northward African monsoon seems to be only able to reach
240 around 18°N (Figure 5a), which agrees well with previous work (Lélé and Leslie, 2016). Even
241 though the climatology may mask some extreme cases, this climatological circulation pattern
242 implies to some extent that the contribution from the African monsoon to the increase of
243 moisture content over the Sahara Desert in JJA may be small, though it indeed plays an
244 important role in the Sahelian rainfall (Akinsanola and Zhou, 2019a, 2019b).

245 The circulation pattern mentioned above, with a monsoon trough to the south and a weak
246 ridge to the north, extends upwards to around 850 hPa, as the weak cyclonic circulation can
247 also be detected south of 20°N while the weak ridge to the north becomes a high with a closed
248 circulation (Figure 5b). Above 850 hPa, the circulation climatology over the northern African
249 land is characterized by an overwhelming Saharan high (Figure 5b-d). South of the Saharan
250 high is the African easterly jet (Cook, 1999), which strongly intensifies the magnitude of the
251 westward moisture transport over Sahel. The jet can also be detected at much higher levels on

252 500 hPa at the southern boundary of the subtropical high (Figure 5d).
253 Similar to the weak ridge at the lower troposphere (Figure 5a), the Saharan high at higher
254 levels consistently transports the moisture from the Mediterranean Sea southward into the
255 Sahara Desert via the northerly flow (Figure 5b-d). On the contrary, the northward moisture
256 flux related to the African monsoon gradually diminishes with height (Figure 5a-d), which
257 means that the moisture brought in by the monsoon is confined to the lower troposphere. The
258 comparison between these two types of moisture transport suggests that the southward moisture
259 transport associated with the Saharan high in the middle troposphere and weak ridge in the
260 lower troposphere may play a much more important role in the moistening of the atmosphere
261 over the Sahara Desert in JJA than the northward African monsoon does. This is consistent with
262 the results of the water vapor budget, which indicates that the increased moisture mainly comes
263 from the northern boundary while the southern boundary is an export channel (Table 1).

264 In summary, there are two branches of inward flow that transports water vapor into the
265 Sahara Desert in JJA. One is associated with the northward African monsoon at the southern
266 boundary in the lower troposphere, another is related to the ridge (Saharan high) at the northern
267 boundary. The contribution of the former is expected to be much smaller than the latter.

268 3.2.2 *Moisture flux across each boundary*

269 Figure 6 displays the climatology of the integrated water vapor transport (IVT) and the
270 moisture fluxes at each boundary for ERA5 (a) and MERRA-2 (b) in JJA. Here IVT is defined
271 following previous studies on atmospheric rivers (Mundhenk et al., 2016; Kamae et al., 2017;
272 Zavadoff et al., 2020; Zhou et al., 2021):

$$273 \text{IVT} = \frac{1}{g} \int_{p_t}^{p_s} q \vec{V} dp, \quad (7)$$

274 where g , p_s , p_t , \vec{V} , q are defined in section 2. The spatial pattern of IVT in ERA5 (Figure 6a)

275 is similar to that in MERRA-2 (Figure 6b), as both highlights a branch of northerly inward
276 moisture flux associated with the Saharan high at the northern boundary of the Sahara Desert
277 (Figure 5b-d; Figure 6a-b). It is also noteworthy that the signal of the northward African
278 monsoon at lower levels totally disappears in the spatial pattern of IVT south of the Sahara
279 Desert (Figure 5a; Figure 6a-b). This illustrates that the African easterly jet, the direction of
280 which is almost opposite to that of the low-level African monsoon (Figure 5), dominates the
281 moisture flux in JJA over the Sahel.

282 Following equation (3), here we calculate the moisture flux for each boundary of the
283 Sahara Desert for ERA5 (a) and MERRA-2 (b), the direction and intensity of the moisture
284 fluxes are also shown in Figure 6 (arrows and numbers in red). Again, ERA5 and MERRA-2
285 exhibit similar moisture flux across the four boundaries in terms of magnitude and direction,
286 except for the western boundary (Figure 6a-b). From Figure 6, one can see that for the Sahara
287 Desert, the incoming moisture channel is at the northern boundary, while the west, south and
288 east boundaries are all export channels, which is consistent with the results of the water vapor
289 budget (Table 1). Obviously, the intensity of the inward moisture fluxes at the northern
290 boundary is an order of magnitude larger than those outward moisture fluxes at other
291 boundaries (Figure 6a-b). This indicates that the southward moisture flux associated with the
292 Saharan high (weak ridge at lower levels) is the main contributor to the increased water vapor
293 content over the Sahara Desert in JJA, and the Mediterranean Sea is one of the most important
294 moisture supply sources for the increasing moisture over the Sahara Desert.

295 To test the robustness of our results, we have also moved the southern boundaries further
296 southward and found that the results are similar (figures not shown). Another feature of interest
297 is the difference of the moisture flux across the western boundary between ERA5 (Figure 6a)

298 and MERRA-2 (Figure 6b). This difference is related to the different West African westerly jet
299 (WAWJ) in the two reanalysis datasets. As shown in Figure 6b, MERRA-2 displays stronger
300 WAWJ and thus larger moisture flux at the western boundary than ERA5, which can well
301 explain the significant moistening trend around the west coastline of the African land in
302 MERRA-2 (Figure 2b, f). Previous studies indicated that WAWJ plays a key role in the moisture
303 transport and rainfall variability over West Africa during the boreal summer (Pu and Cook,
304 2012; Liu et al., 2020). It is meaningful to explore the differences of WAWJ in the two
305 reanalysis datasets, which, however, is beyond the scope of this paper and will be a subject of
306 future studies.

307 Figure 7 displays the interannual variability of the moisture fluxes across each boundary.
308 The two reanalysis datasets exhibit similar interannual variability and comparable trends of the
309 moisture fluxes except for the western boundary (Figure 7a-d). Figure 7 highlights the
310 statistically significant ($p < 0.01$) moisture inflow and outflow transport at the northern and
311 eastern boundary respectively, while the trends of the moisture flux at the southern and western
312 boundaries are statistically insignificant (Figure 7a-b). It is also noteworthy that the magnitudes
313 of the inward moisture flux trends at the northern boundary in both reanalysis datasets are larger
314 than the corresponding magnitudes of the outward moisture flux trend at the eastern boundary
315 (Figure 7a-b). This demonstrates that the moisture content transported inward via the northerly
316 inflow across the northern boundary is increasing at a much faster rate than the moisture content
317 transported outward across the eastern boundary, which is responsible for the moistening of the
318 atmosphere over the Sahara Desert in JJA and consistent with the results of the water vapor
319 budget (Table 1).

320 To further elucidate the relationships between the moisture fluxes with the large-scale

systems, here we study the vertical profiles of the climatological moisture transport (contours) and the associated trends (shadings) at each boundary (Figure 8). Similar to previous analyses, ERA5 and MERRA-2 exhibit similar vertical profile patterns of the climatological moisture transport and the associated trends except for the western boundary, where below 600 hPa the moisture transport trends in MERRA-2 and ERA5 are opposite (Figure 8d, h). However, both the trends in MERRA-2 and ERA5 below 600 hPa at the western boundary are statistically insignificant and thus will not matter that much in our study (Figure 8d, h).

Figure 8a, e highlights that the northern boundary is dominated by the northerly inward moisture fluxes from the prime meridian to 20°E, while the part west of prime meridian is characterized by the southerly outward moisture flux, which is related to the southerly flow of the Saharan high and the ridge (Figure 5). The dominant northerly moisture transport at the northern boundary is associated with the ridge and Saharan high to the north (Figure 5). Of particular importance is that the northerly inward moisture transport at the northern boundary is mostly characterized by a statistically significant negative (intensifying) trend (Figure 8a, e). The negative trend of the northerly moisture transport is characterized by two local maximums, with one in the lower troposphere at about 20°E and another in the middle troposphere (700 hPa) at the prime meridian (Figure 8a, e). This suggests that the northerly inward moisture transport associated with the ridge and the Saharan high above are both intensifying, contributing to the increase of the water vapor content over the Sahara Desert (Figure 5). Another fact of interest is that the maximum of the northerly moisture transport tilts westward with the height (Figure 8a, e), indicating a displacement between the ridge at lower levels and the Saharan high above. The displacement can also be slightly detected in Figure 5, as the closed Saharan high above the lower troposphere is located west of the ridge in the lower

344 troposphere.

345 The vertical profiles of the moisture fluxes at other boundaries are also consistent with the
346 circulation patterns shown in Figure 5. At the southern boundary (Figure 8b, f), one can see the
347 shallow northward moisture transport related to the African monsoon in the lower troposphere,
348 which may contribute some amounts of moisture in the atmosphere over the Sahara Desert.
349 However, such moisture transport is confined to the lower troposphere. Above this shallow
350 northward moisture transport related to the African monsoon, the southern boundary is overall
351 characterized by the northerly moisture flux associated with the Saharan high, which also
352 features an increasing trend in the middle troposphere (Figure 8b, f). As a result, the overall
353 moisture flux across the whole southern boundary is still southward (Figure 6a, b), which
354 further testifies that the contribution of the southerly moisture flux associated with the
355 northward monsoon to the moistening of the atmosphere over the Sahara Desert is relatively
356 small. The eastern boundary is characterized by the increasing outward westerly moisture flux
357 related to the northwest flow circulating the Saharan high (Figure 5b-d), while the prominent
358 feature in the western boundary is the increasing easterly moisture flux related to the easterly
359 jet at about 20°N (Figure 5c-d). The intensifying easterly moisture flux signifies a strengthening
360 African easterly jet, which is consistent with previous studies (Vizy and Cook, 2017).

361 In summary, the water vapor budget analysis demonstrates that most of the added moisture
362 in JJA is transported into the Sahara Desert through the northern boundary via the northerly
363 flow related to the Saharan high and the weak ridge, while the contribution from the African
364 monsoon in the lower troposphere is relatively small. In addition, the northerly inward moisture
365 transport is characterized by a statistically significant increasing trend, which drives the
366 moistening of the atmosphere over the Sahara Desert in JJA.

367 **3.3. Dynamic and thermodynamic contributions to the increase and variability of the**
368 **inward moisture transport across the northern boundary**

369 As shown in the previous section, the moisture flux across the northern boundary is
370 increasing since 1981, which is the key contributor to the moistening of the atmosphere in JJA
371 over the Sahara Desert. The reason for such increase can be either attributable to the
372 intensification of the wind or the increase of q at the northern boundary. To further investigate
373 which dominates the increase of the inward moisture flux at the northern boundary, here we
374 decompose the moisture flux at the northern boundary into dynamic and thermodynamic terms
375 following equation (5). In addition, the interannual variability of the inward moisture flux is
376 also examined.

377 The interannual variations in the decomposition of the moisture flux across the northern
378 boundary for ERA5 (a) and MERRA-2 (b) are given in Figure 9. From Figure 9a, b, one can
379 see that dynamic term (blue) exhibits larger variability than the thermodynamic term (red) does.
380 Of particular importance is that the variability of the dynamic term is very close to that of the
381 northern moisture flux (Figure 7a). For ERA5, the correlation coefficient between the dynamic
382 term and the total moisture flux at the northern boundary is 0.91, which is statistically
383 significant ($p<0.0001$). On the contrary, the correlation coefficient between the thermodynamic
384 term and the total moisture flux at the northern boundary is only about -0.2 and not statistically
385 significant. The corresponding correlation coefficients in MERRA-2 is 0.87 ($p<0.0001$) and -
386 0.06 ($p>0.1$), respectively (Figure 9b). This indicates that the interannual variability of the
387 moisture flux at the northern boundary is mainly controlled by the dynamic term. In other
388 words, the changes of the circulation patterns dominate the variability of the inward moisture
389 flux at the northern boundary.

Another consensus between the two datasets highlighted in Figure 9 is that both the thermodynamic and dynamic terms have shown a tendency towards negative since 1981, and the trends of the dynamic terms are larger than those of thermodynamic terms, even though the trend of the dynamic term in MERA2 is not statistically significant. This indicates that both the dynamic and thermodynamic processes contribute to the increase of the inward moisture transport at the northern boundary. Note that the values of the inward moisture flux at the northern boundary are negative as the inward flux flows from north to south (Figure 7a). The thermodynamic process involves the increase of specific humidity against fixed circulation patterns. Seager et al. (2010) attributes such increase primarily to the water vapor feedback in a warming climate under a fixed relative humidity. Here we examined the specific humidity and relative humidity at 925 hPa and found that the relative humidity at the northern boundary indeed exhibits no significant changes (figure not shown), which is expected considering the large warming associated with the DA and the lack of local moisture availability. The little change in RH and the increase in specific humidity over the desert is primarily a result of moisture advection remotely from surrounding oceans. These results again indicate that the thermodynamic process may be dominated by the large-scale increasing specific humidity in a warming climate associated with the positive water vapor feedback, which is consistent with previous studies (Zhou et al., 2016).

Since the dynamic term also exhibits large contributions to the positive trend of the inward moisture flux at the northern boundary, here the changes of the circulation patterns from 1981 to 2020 over the Sahara Desert in JJA are examined. In the middle troposphere, the positive trends extending from the northeast African land to the Atlantic indicates a westward shift and expansion of the mid-level ridge and an intensifying Saharan high (Figure 10a-d). The

413 intensification can also be detected via the trends of the moisture transport, with the enhanced
414 northerly wind anomalies in both ERA5 and MERRA-2 in the northwest corner of the African
415 land (Figure 10b, d). The increasing southward inward moisture transport accompanying the
416 strengthening Saharan high at the northern boundary of the African land corresponds well to
417 the midlevel maximum of the positive moisture flux trends in Figure 8a, e, which transports an
418 increasing amount of water vapor into the atmosphere over the Sahara Desert.

419 To further testify the intensification of the Saharan High, we evaluate the intensity of the
420 Saharan High quantitatively. Following Sun et al. (2017), here the intensity is defined as the
421 maximum 700 hPa geopotential height over the area from 15°N to 40°N and -15°W to 30°E.
422 The interannual variation of the intensity is given in Figure 11. Both ERA5 and MERRA-2
423 display statistically significant positive trends, indicating that the Saharan High has been
424 strengthening from 1981 to 2020. We also examined the position and size of the Saharan High.
425 The position is defined as the location of the geopotential height maximum. Following Sun et
426 al. (2017), we scale the geopotential height and then choose 38 gpm anomalies to define the
427 extent of the Saharan High (Figure S2). We found that the Saharan High has not moved (figure
428 not shown) but indeed expanded significantly from 1981 to 2020 (Figure S3).

429 In the lower troposphere, MERRA-2 exhibits positive geopotential height trends south of
430 20°N and negative trends north of 20°N over the African land, pointing to a northward shift of
431 the monsoon trough over the Sahel (Figure 12c-d), which is in agreement with previous studies
432 (Shekhar and Boos, 2017; Vizy and Cook, 2017). Such a dipole pattern and the shift of the
433 monsoon trough can also be detected in ERA5 (Figure 12a-b). Over the Mediterranean Sea,
434 both ERA5 (Figure 12b) and MERRA-2 (Figure 12d) display statistically significant ($p < 0.05$)
435 negative trends of geopotential heights. This is consistent with the results shown in Vizy and

436 Cook (2017) and Skinner et al. (2012). These changes may reflect the westward extension of
437 the low over the Arabian Peninsula (Figure 12a-b), which intensifies the magnitude of the
438 accompanied northerly winds and thus brings more moisture from the Mediterranean Sea into
439 the lower troposphere over the Sahara Desert. The area of the intensifying northerly moisture
440 transport due to the westward extension of the low corresponds well spatially to the negative
441 trends of moisture transport in the lower troposphere shown in Figure 8a, e, which constitutes
442 the water vapor transport channel at lower levels. This suggests that the circulation change over
443 the Arabian Peninsula may impact the Sahara Desert as well.

444 **4. Conclusions**

445 Previous studies suggest that the Sahara Desert is experiencing a fast rate of warming
446 (Zhou et al., 2015; Cook and Vizy, 2015; Zhou, 2016; Wei et al., 2017). Many studies have
447 linked this warming to the enhanced downward longwave radiation associated with increasing
448 amounts of water vapor over the desert (Evan et al., 2015; Zhou et al., 2016; Vizy and Cook,
449 2017). Aiming at answering two questions as to where the increased moisture over the Sahara
450 Desert comes from and how do the thermodynamic and dynamic processes contribute relatively
451 to the changes of the moisture transport, here we use two reanalysis datasets (ERA5 and
452 MERRA-2) to do the moisture budget over the Sahara Desert from 1981 to 2020. We find that
453 the atmosphere over the Sahara Desert has been experiencing a significant moistening since
454 1981, and such increase of moisture mainly takes place in JJA. The moistening is not confined
455 to the lower troposphere, but extends upwards to the middle troposphere.

456 The climatology of the moisture transport shows that in the lower troposphere over the
457 Sahara Desert in JJA, there are two branches of inward water vapor flux, one is associated with
458 the northward African monsoon and the other is related to the weak ridge across the

459 Mediterranean Sea to the north. In the middle troposphere, the main water vapor channel is the
460 northerly moisture transport related to the Saharan high, while the northward African monsoon
461 is confined to the lower troposphere and is absent in the middle troposphere. The water vapor
462 budget analysis indicates that the northern boundary is the main channel through which the
463 moisture is transported into the Sahara Desert via the northerly inward moisture flux
464 accompanying the weak ridge in the lower troposphere and Saharan high in the middle
465 troposphere, while the other boundaries are the export channels. Additionally, the northerly
466 moisture flux across the northern boundary is increasing at a faster rate than the outward
467 moisture flux at other boundaries, driving the net increase of moisture over the Sahara Desert
468 in JJA.

469 The decomposition of the northerly moisture flux shows that the interannual variability of
470 the increasing inward moisture flux at the northern boundary is dominated by the dynamic
471 process. However, both dynamic and thermodynamic processes contribute to the increasing
472 trend of the inward water vapor transport at the northern boundary. The thermodynamic process
473 is attributed to the overall large-scale increase of specific humidity in a warming climate
474 associated with the positive water vapor feedback, while the dynamic process is linked to the
475 circulation pattern changes that intensify the northerly moisture flux at the northern boundary.
476 Further trend analysis shows that in the middle troposphere, the increasing northerly moisture
477 transport is associated with the intensifying Saharan high. In the lower troposphere, the
478 increased northerly water vapor transport is linked to the westward extension of the low over
479 the Arabian Peninsula. These two changes all strengthen the northerly winds and thus favor the
480 increase of the inward moisture transport at the northern boundary. This indicates that the
481 Mediterranean Sea may be an important source of moisture for the Sahara Desert.

482 However, it is still possible that the moisture comes from the Atlantic Ocean, or the Indian
483 Ocean. Further analysis of the origin of the increased moisture over the Sahara Desert needs to
484 trace the path of the water vapor, which involves the use of models and will be a subject of
485 future work. In addition, previous studies have shown that in the boreal summer, there exist
486 some remote influences on the Sahara Desert, such as the Indian monsoon (Rodwell and
487 Hoskins, 1996). Such remote control on the moisture and its transport is not clear and still
488 needs further research. It is also possible that the moisture content change in the middle
489 troposphere over the Sahara Desert may be related to the change of cloud cover over the desert.
490 Given the uncertainty of the cloud cover in the data and models, this relationship still needs
491 further in-depth research. Additionally, significant regional variability in moisture transport
492 may also exist in the Sahara Desert, which will also be the potential subject of future studies.

493

494 *Acknowledgments.* This research is supported by the National Science Foundation (NSF) AGS-
495 1952745. We thank Dr. Samar Minallah for sharing the code on the water vapor budget.
496 Gratitude is also extended to Dr. Edward K. Vizy for the help on calculating the moisture
497 transport trends. We sincerely thank Dr. Brian Rose for the insightful discussions and
498 comments that helped improve the quality of our work.

499

500

REFERENCES

501 Akinsanola, A. A., and Zhou, W., 2019a: Dynamic and thermodynamic factors controlling
502 increasing summer monsoon rainfall over the West African Sahel. *Climate Dynamics*, 52,
503 4501–4514. <https://doi.org/10.1007/s00382-018-4394-x>.

504 Akinsanola, A. A., and Zhou, W., 2019b: Projections of West African summer monsoon

505 rainfall extremes from two CORDEX models. *Climate Dynamics*, 52, 2017–2028.

506 <https://doi.org/10.1007/s00382-018-4238-8>.

507 Cook, K. H., 1999: Generation of the African easterly jet and its role in determining West
508 African precipitation. *Journal of Climate*, 12, 1165–1184. [https://doi.org/10.1175/1520-0442\(1999\)012<1165:GOTAEJ>2.0.CO;2](https://doi.org/10.1175/1520-0442(1999)012<1165:GOTAEJ>2.0.CO;2).

509

510 Cook, K. H., and Vizy, E. K., 2015: Detection and analysis of an amplified warming of the
511 Sahara Desert. *Journal of Climate*, 28, 6560–6580. <https://doi.org/10.1175/JCLI-D-14-00230.1>.

512 Cook, K. H., E. K. Vizy, Y. Liu, and W. Liu, 2021: Greenhouse-gas induced warming
513 amplification over the Arabian Peninsula with implications for Ethiopian rainfall. *Climate
514 Dynamics*, 57, 3113–3133. <https://doi.org/10.1007/s00382-021-05858-x>.

515 Dai, L., Wright, J. S., and Fu, R., 2020: Moisture and energy budget perspectives on summer
516 drought in north China. *Journal of Climate*, 33, 10149–10167. <https://doi.org/10.1175/JCLI-D-20-0176.1>.

517

518 Druyan, L. M., 2011: Studies of 21st-century precipitation trends over West Africa.
519 *International Journal of Climatology*, 31, 1415–1424. <https://doi.org/10.1002/joc.2180>.

520 Evan, A. T., Flamant, C., Lavaysse, C., Kocha, C., and Saci, A., 2015: Water vapor-forced
521 greenhouse warming over the Sahara Desert and the recent recovery from the Sahelian drought.
522 *Journal of Climate*, 28, 108–123. <https://doi.org/10.1175/JCLI-D-14-00039.1>.

523 Gelaro, R., and Coauthors, 2017: The modern-era retrospective analysis for research and
524 applications, version 2 (MERRA-2). *Journal of Climate*, 30, 5419–5454.
525 <https://doi.org/10.1175/JCLI-D-16-0758.1>.

526 Harada, C., Sumi, A., and Ohmori, H., 2003: Seasonal and year-to-year variations of rainfall
527 in the Sahara desert region based on TRMM PR data. *Geophysical Research Letters*, 30, 6–9.

528 <https://doi.org/10.1029/2002GL016695>.

529 Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. *Quarterly Journal of the*
530 *Royal Meteorological Society*, 146, 1999–2049. <https://doi.org/10.1002/qj.3803>.

531 Jin, F., Kitoh, A., and Alpert, P., 2011: Climatological relationships among the moisture budget
532 components and rainfall amounts over the Mediterranean based on a super-high-resolution
533 climate model. *Journal of Geophysical Research Atmospheres*, 116, 1–13.
534 <https://doi.org/10.1029/2010JD014021>.

535 Lamb, P. J., Portis, and D. H., Zangvil, A., 2012: Investigation of large-scale atmospheric
536 moisture budget and land surface interactions over U.S. Southern great plains including for
537 CLASIC (June 2007). *Journal of Hydrometeorology*, 13, 1719–1738.
538 <https://doi.org/10.1175/JHM-D-12-01.1>.

539 Liu, W., Cook, K. H., and Vizy, E. K., 2020: Role of the West African westerly jet in the
540 seasonal and diurnal cycles of precipitation over West Africa. *Climate Dynamics*, 54, 843–861.
541 <https://doi.org/10.1007/s00382-019-05035-1>.

542 Mayer, J., Mayer, M., and Haimberger, L., 2021: Consistency and homogeneity of atmospheric
543 energy, moisture, and mass budgets in ERA5. *Journal of Climate*, 34, 3955–3974.
544 <https://doi.org/10.1175/JCLI-D-20-0676.1>.

545 Minallah, S., and Steiner, A. L., 2021: Role of the atmospheric moisture budget in defining the
546 precipitation seasonality of the great lakes region. *Journal of Climate*, 34, 643–657.
547 <https://doi.org/10.1175/JCLI-D-19-0952.1>.

548 Monerie, P. A., Biasutti, and M., Roucou, P., 2016: On the projected increase of Sahel rainfall
549 during the late rainy season. *International Journal of Climatology*, 36, 4373–4383.
550 <https://doi.org/10.1002/joc.4638>.

551 Mundhenk, B. D., Barnes, E. A., Maloney, E. D., and Nardi, K. M., 2016: Modulation of
552 atmospheric rivers near Alaska and the U.S. west coast by Northeast Pacific height anomalies.
553 *Journal of Geophysical Research Atmospheres*, 121, 12,751-12,765.
554 <https://doi.org/10.1002/2016JD025350>.

555 Neupane, N., and Cook, K. H., 2013: A nonlinear response of Sahel rainfall to Atlantic
556 warming. *Journal of Climate*, 26, 7080–7096. <https://doi.org/10.1175/JCLI-D-12-00475.1>.

557 Odoulami, R. C., and Akinsanola, A. A., 2018: Recent assessment of West African summer
558 monsoon daily rainfall trends. *Weather*, 73, 283–287. <https://doi.org/10.1002/wea.2965>.

559 Pausata, F. S. R., Gaetani, M., Messori, G., Berg, A., Maia de Souza, D., Sage, R. F., and
560 deMenocal, P. B., 2020: The Greening of the Sahara: Past Changes and Future Implications.
561 *One Earth*, 2, 235–250. <https://doi.org/10.1016/j.oneear.2020.03.002>.

562 Pu, B., and Cook, K. H., 2012: Role of the west African westerly jet in sahel rainfall variations.
563 *Journal of Climate*, 25, 2880–2896. <https://doi.org/10.1175/JCLI-D-11-00394.1>.

564 Rodwell, M. J., and Hoskins, B. J., 1996: Monsoons and the dynamics of deserts. *Quarterly
565 Journal of the Royal Meteorological Society*, 122, 1385–1404.
566 <https://doi.org/10.1002/qj.49712253408>.

567 Seager, R., Naik, N., Vecchi, and G. A., 2010: Thermodynamic and dynamic mechanisms for
568 large-scale changes in the hydrological cycle in response to global warming. *Journal of Climate*,
569 23, 4651–4668. <https://doi.org/10.1175/2010JCLI3655.1>.

570 Shekhar, R., and Boos, W. R., 2017: Weakening and shifting of the Saharan shallow meridional
571 circulation during wet years of the West African monsoon. *Journal of Climate*, 30, 7399–7422.
572 <https://doi.org/10.1175/JCLI-D-16-0696.1>.

573 Skinner, C. B., Ashfaq, M., and Diffenbaugh, N. S., 2012: Influence of twenty-first-century

574 atmospheric and sea surface temperature forcing on West African climate. *Journal of Climate*,
575 25, 527–542. <https://doi.org/10.1175/2011JCLI4183.1>.

576 Sun, B., and Wang, H., 2014: Moisture sources of semiarid grassland in China using the
577 lagrangian particle model FLEXPART. *Journal of Climate*, 27, 2457–2474.
578 <https://doi.org/10.1175/JCLI-D-13-00517.1>.

579 Sun, X., Cook, K. H., and Vizy, E. K., 2017: The South Atlantic subtropical high: Climatology
580 and interannual variability. *Journal of Climate*, 30, 3279–3296. <https://doi.org/10.1175/JCLI-D-16-0705.1>

582 Thomas, N., and Nigam, S., 2018: Twentieth-century climate change over Africa: Seasonal
583 hydroclimate trends and Sahara Desert expansion. *Journal of Climate*, 31, 3349–3370.
584 <https://doi.org/10.1175/JCLI-D-17-0187.1>.

585 Thorncroft, C. D., Nguyen, H., Zhang, C., and Peyrille, P., 2011: Annual cycle of the West
586 African monsoon: Regional circulations and associated water vapour transport. *Quarterly
587 Journal of the Royal Meteorological Society*, 137, 129–147. <https://doi.org/10.1002/qj.728>.

588 Vizy, E. K., Cook, K. H., Crétat, J., and Neupane, N., 2013: Projections of a wetter sahel in the
589 twenty-first century from global and regional models. *Journal of Climate*, 26, 4664–4687.
590 <https://doi.org/10.1175/JCLI-D-12-00533.1>.

591 Vizy, E. K., and Cook, K. H., 2017: Seasonality of the observed amplified Sahara warming
592 trend and implications for Sahel rainfall. *Journal of Climate*, 30, 3073–3094.
593 <https://doi.org/10.1175/JCLI-D-16-0687.1>.

594 Wang, S., Sobel, A. H., Zhang, F., Qiang Sun, Y., Yue, Y., and Zhou, L., 2015: Regional
595 simulation of the October and November MJO events observed during the CINDY/DYNAMO
596 field campaign at gray zone resolution. *Journal of Climate*, 28, 2097–2119.

597 <https://doi.org/10.1175/JCLI-D-14-00294.1>.

598 Wang, Z., Duan, A., Yang, S., and Ullah, K., 2017: Atmospheric moisture budget and its
599 regulation on the variability of summer precipitation over the 27ibetan plateau. *Journal of*
600 *Geophysical Research Atmospheres*, 122, 614–630. <https://doi.org/10.1002/2016JD025515>.

601 Wei, N., Zhou, L., Dai, Y., Xia, G., and Hua, W., 2017: Observational Evidence for Desert
602 Amplification Using Multiple Satellite Datasets. *Scientific Reports*, 7, 1–15.
603 <https://doi.org/10.1038/s41598-017-02064-w>.

604 Zangvil, A., Portis, D. H., and Lamb, P. J., 2001: Investigation of the large-scale atmospheric
605 moisture field over the midwestern United States in relation to summer precipitation. Part I:
606 Relationships between moisture budget components on different timescales. *Journal of Climate*,
607 14, 582–597. [https://doi.org/10.1175/1520-0442\(2001\)014<0582:IOTLSA>2.0.CO;2](https://doi.org/10.1175/1520-0442(2001)014<0582:IOTLSA>2.0.CO;2).

608 Zangvil, A., Portis, D. H., and Lamb, P. J., 2004: Investigation of the large-scale atmospheric
609 moisture field over the midwestern United States in relation to summer precipitation. Part II:
610 Recycling of local evapotranspiration and association with soil moisture and crop yields.
611 *Journal of Climate*, 17, 3283–3301. [https://doi.org/10.1175/1520-0442\(2004\)017<3283:IOTLAM>2.0.CO;2](https://doi.org/10.1175/1520-0442(2004)017<3283:IOTLAM>2.0.CO;2).

613 Zavadoff, B. L., and Kirtman, B. P., 2020: Dynamic and thermodynamic modulators of
614 European atmospheric rivers. *Journal of Climate*, 33, 4167–4185.
615 <https://doi.org/10.1175/JCLI-D-19-0601.1>.

616 Zhou, L., Chen, H., and Dai, Y., 2015: Stronger warming amplification over drier ecoregions
617 observed since 1979. *Environmental Research Letters*, 10, 64012.
618 <https://doi.org/10.1088/1748-9326/10/6/064012>.

619 Zhou, L., 2016: Desert Amplification in a Warming Climate. *Scientific Reports*, 6, 1–13.

620 <https://doi.org/10.1038/srep31065>.

621 Zhou, L., Chen, H., Hua, W., Dai, Y., and Wei, N., 2016: Mechanisms for stronger warming

622 over drier ecoregions observed since 1979. *Climate Dynamics*, 47, 2955–2974.

623 <https://doi.org/10.1007/s00382-016-3007-9>.

624 Zhou, L., 2021: Diurnal asymmetry of desert amplification and its possible connections to

625 planetary boundary layer height: a case study for the Arabian Peninsula. *Climate Dynamics*,

626 56, 3131–3156. <https://doi.org/10.1007/s00382-021-05634-x>.

627 Zhou, L., Tian, Y., Wei, N., Ho, S. P., and Li, J., 2021: Rising planetary boundary layer height

628 over the Sahara Desert and arabian peninsula in a warming climate. *Journal of Climate*, 34,

629 4043–4068. <https://doi.org/10.1175/JCLI-D-20-0645.1>.

630 Zhou, Y., Kim, H., and Waliser, D. E., 2021: Atmospheric River Lifecycle Responses to the

631 Madden-Julian Oscillation. *Geophysical Research Letters*, 48, 1–10.

632 <https://doi.org/10.1029/2020GL090983>.

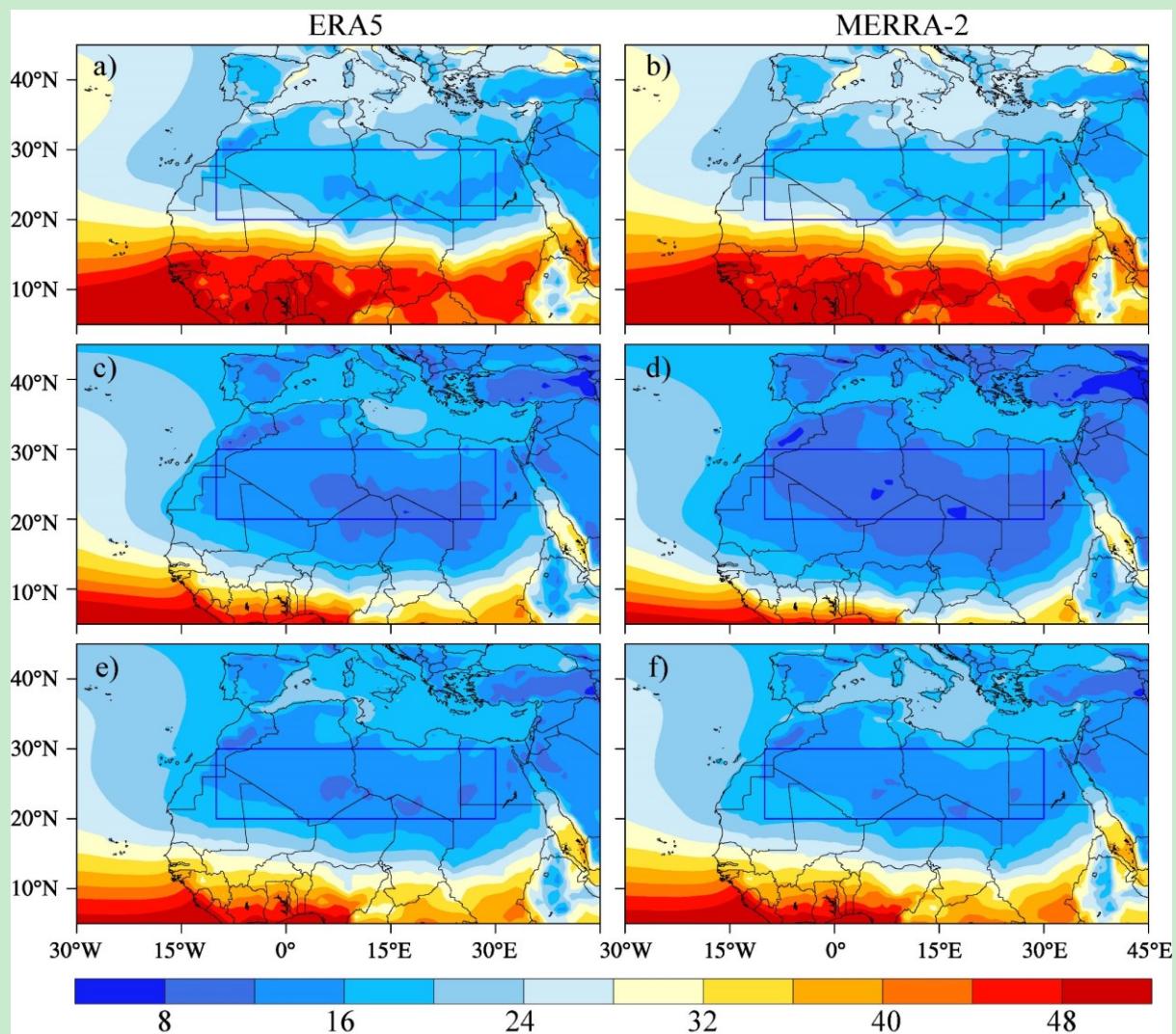
633

634

635

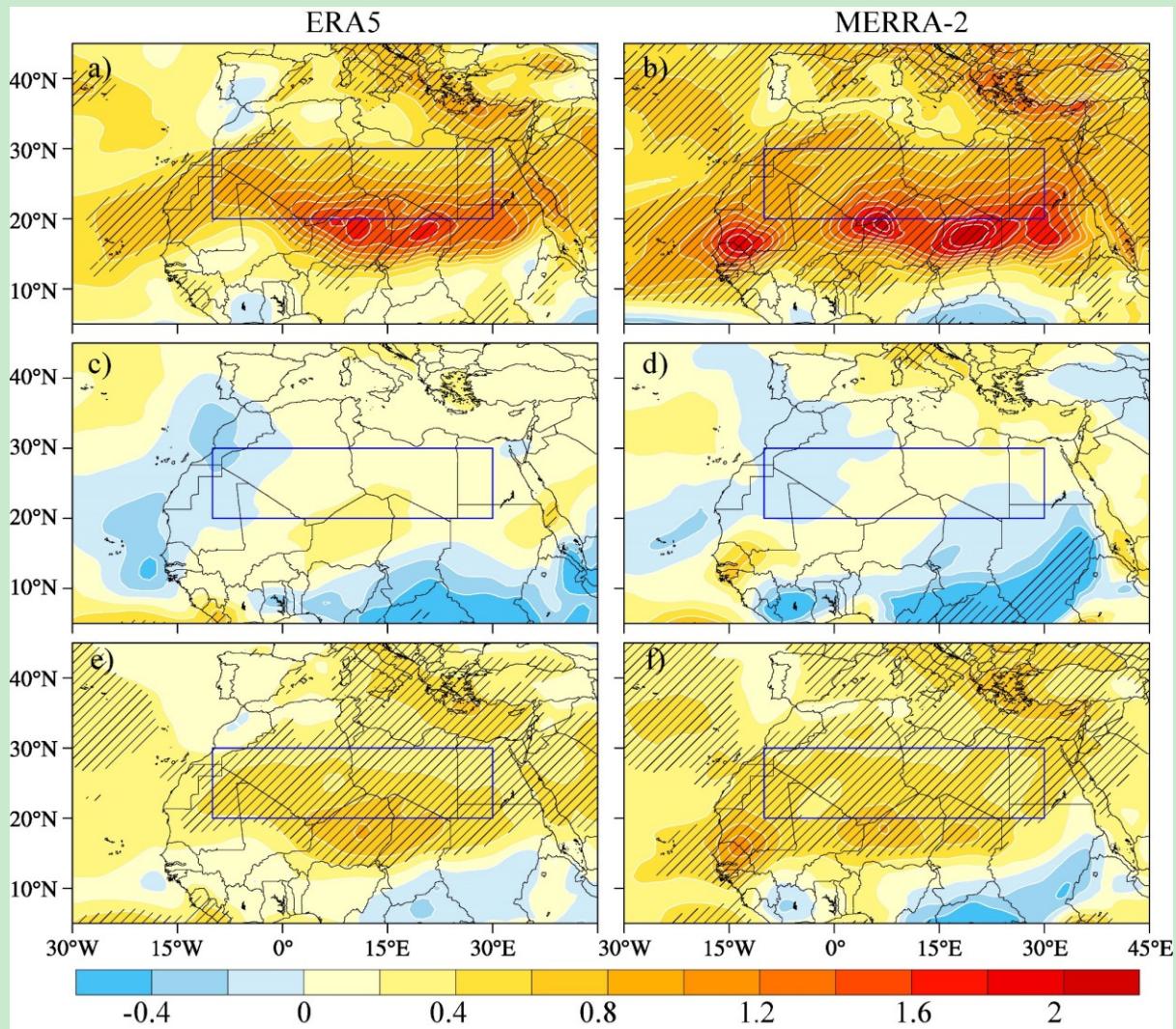
636

637

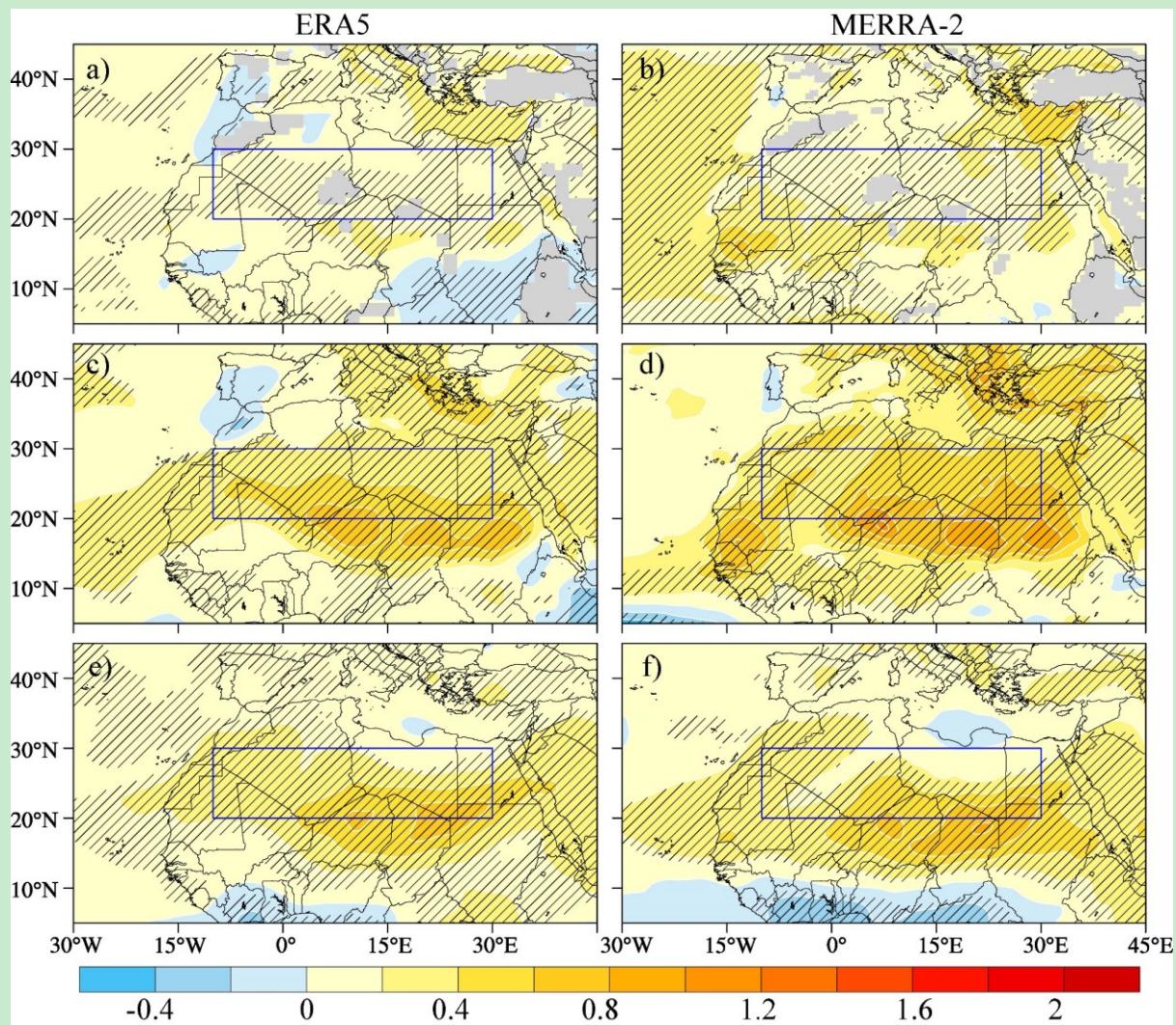

638

639

640


641

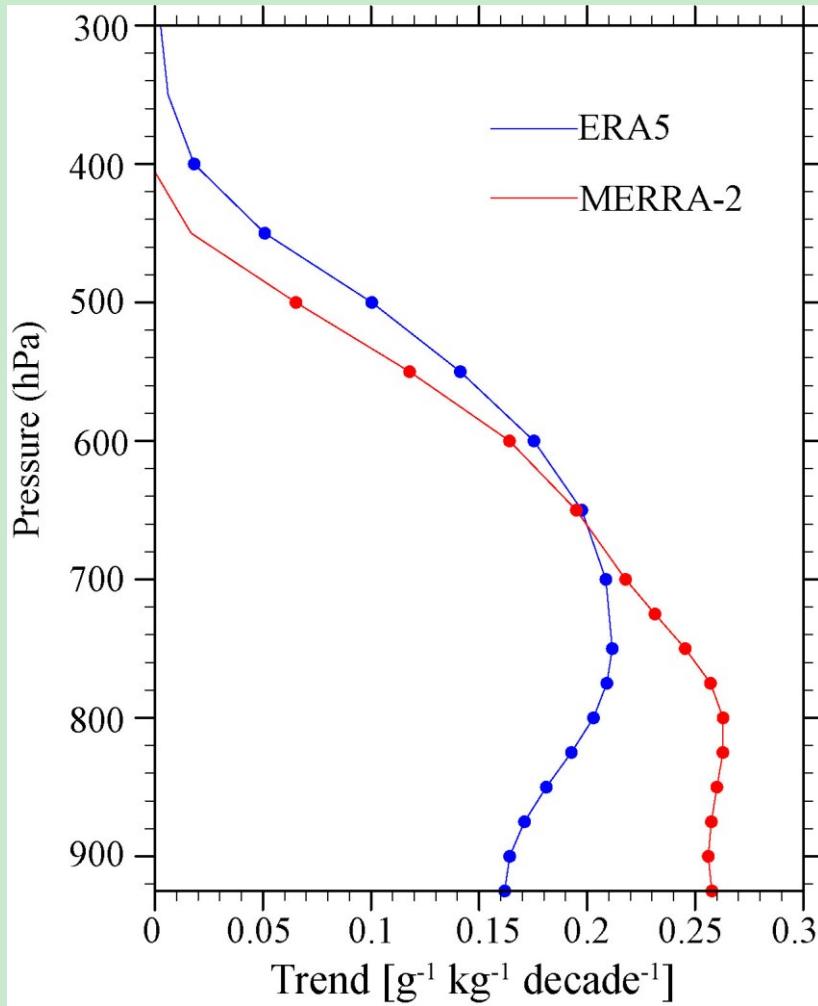
642



643

644 **FIGURE 1** Climatological JJA (a, b), DJF (c, d) and annual (e, f) TPW (kg m^{-2}) for ERA5 (left) and
 645 MERRA-2 (right). The rectangle boxes in blue (20°N to 30°N and 10°W to 30°E) represents the boundaries
 646 of the Sahara Desert.

647 **FIGURE 2** JJA (a, b), DJF (c, d) and annual (e, f) trends of TPW ($\text{kg m}^{-2} \text{ decade}^{-1}$) for ERA5 (left) and
 648 MERRA-2 (right). The area slashed denotes the region with significance of TPW trends at the 99% level of
 649 confidence. The rectangle boxes in blue (20°N to 30°N and 10°W to 30°E) represents the boundaries of the
 650 Sahara Desert.
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667



668

669 **FIGURE 3** JJA trends of TPW ($\text{kg m}^{-2} \text{ decade}^{-1}$) from the surface to 900 hPa (a, b), 900-700 hPa (c, d) and
670 700-500 hPa (e, f) for ERA5 (left) and MERRA-2 (right). The area slashed denotes the region with
671 significant TPW trends at the 90% level of confidence. The rectangle boxes in blue (20°N to 30°N and 10°W
672 to 30°E) represents the boundaries of the Sahara Desert.

673

674

675

676 **FIGURE 4** The vertical profile of the area average JJA q trend ($\text{g}^{-1} \text{ kg}^{-1} \text{ decade}^{-1}$) over the Sahara Desert.
677 The dots denote significance of q trends at the 99% level of confidence.

678

679

680

681

682

683

684

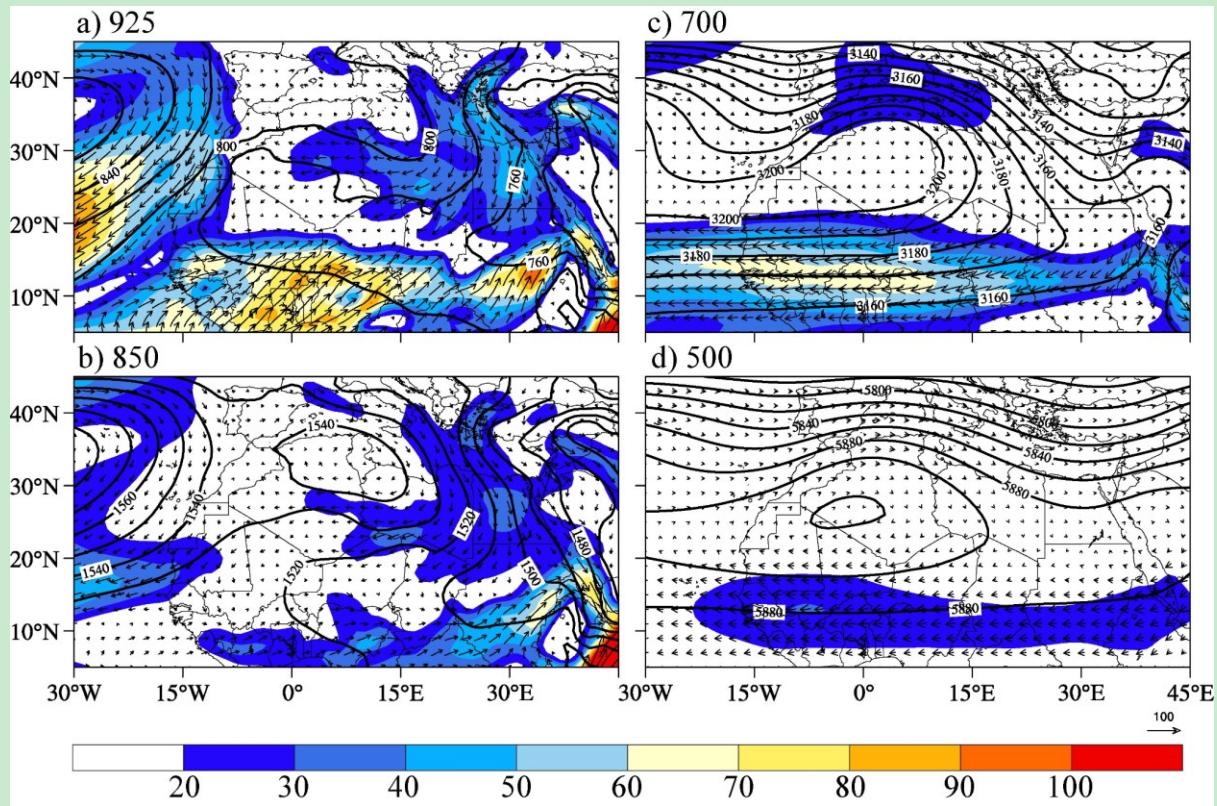
685

686

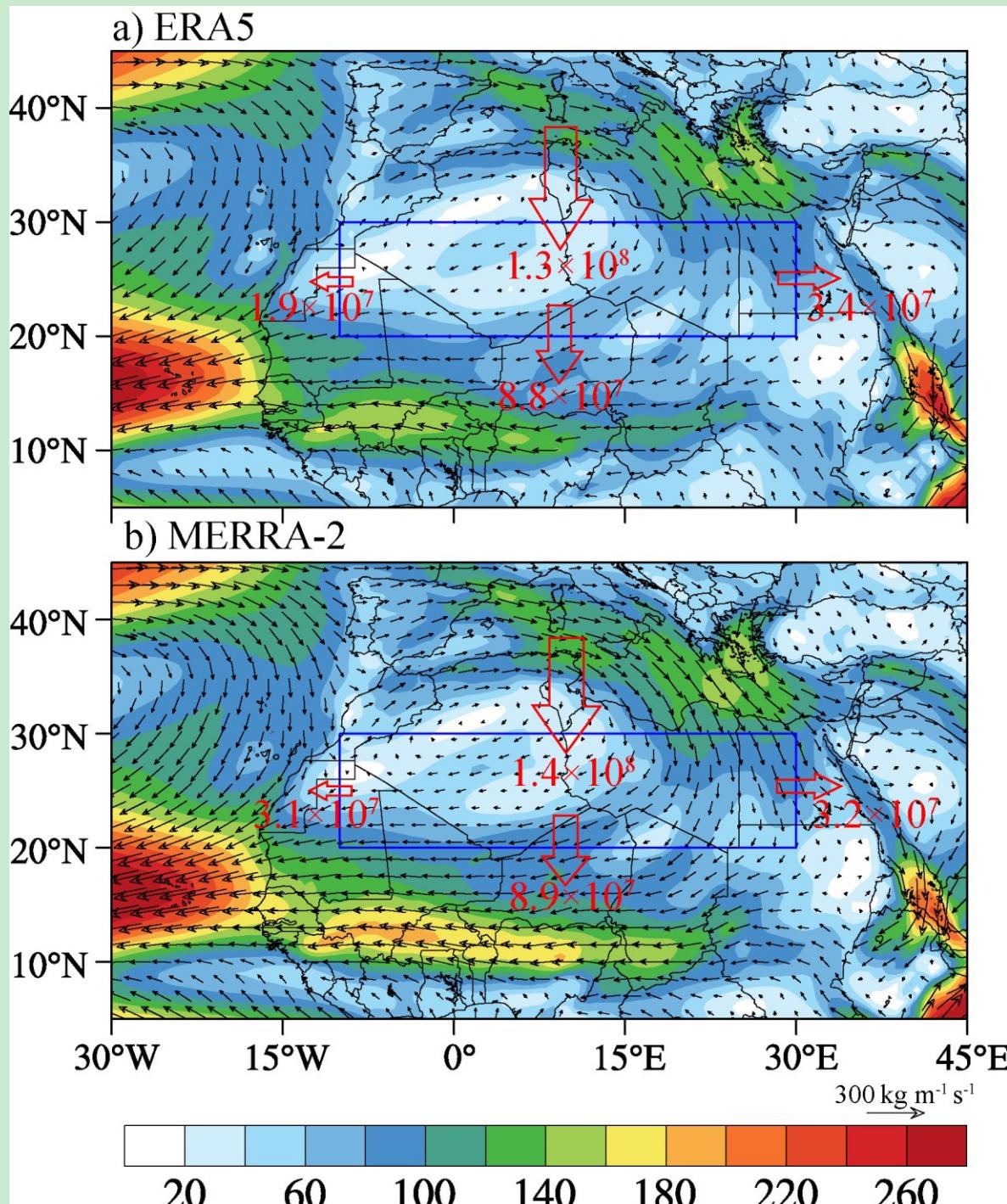
687

688

689

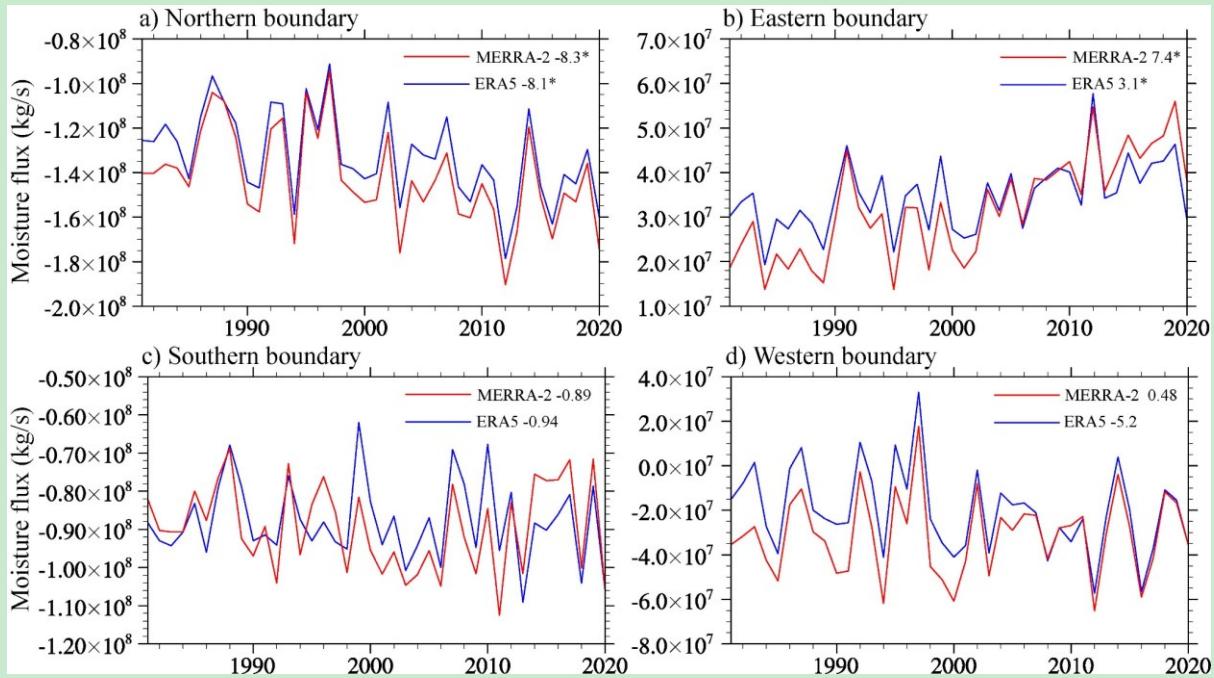

690

691


692

693

694



695 **FIGURE 5** Climatological moisture transport $q\vec{V}$ (vectors; $(\text{g/kg}) * (\text{m/s})$), its magnitude (shading), and
696 geopotential height (black contours; m) for 925 hPa (a), 850 hPa (b), 700 hPa (c) and 500 hPa (d) over JJA
697 from 1981-2020 for ERA5.
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

721

722 **FIGURE 6** Climatology of IVT (vectors; $\text{kg m}^{-1} \text{s}^{-1}$) and its magnitude (shading) in summer for ERA5 (a)
 723 and MERRA-2 (b) from 1981-2020. The arrows and values represent the direction and magnitude of
 724 moisture flux for each boundary (kg s^{-1}).
 725
 726
 727
 728
 729
 730
 731
 732

733

734 **FIGURE 7** Interannual variation of summer moisture fluxes across (a) Northern, (b) Eastern, (c) Southern
 735 and (d) Western boundary from ERA5 (blue) and MERRA-2 (red). The associated numbers in the figure
 736 legend denote the trends ($10^6 \text{ kg s}^{-1} \text{ decade}^{-1}$). Trends statistically significant at the 99% level of confidence
 737 are labeled with '*'.

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

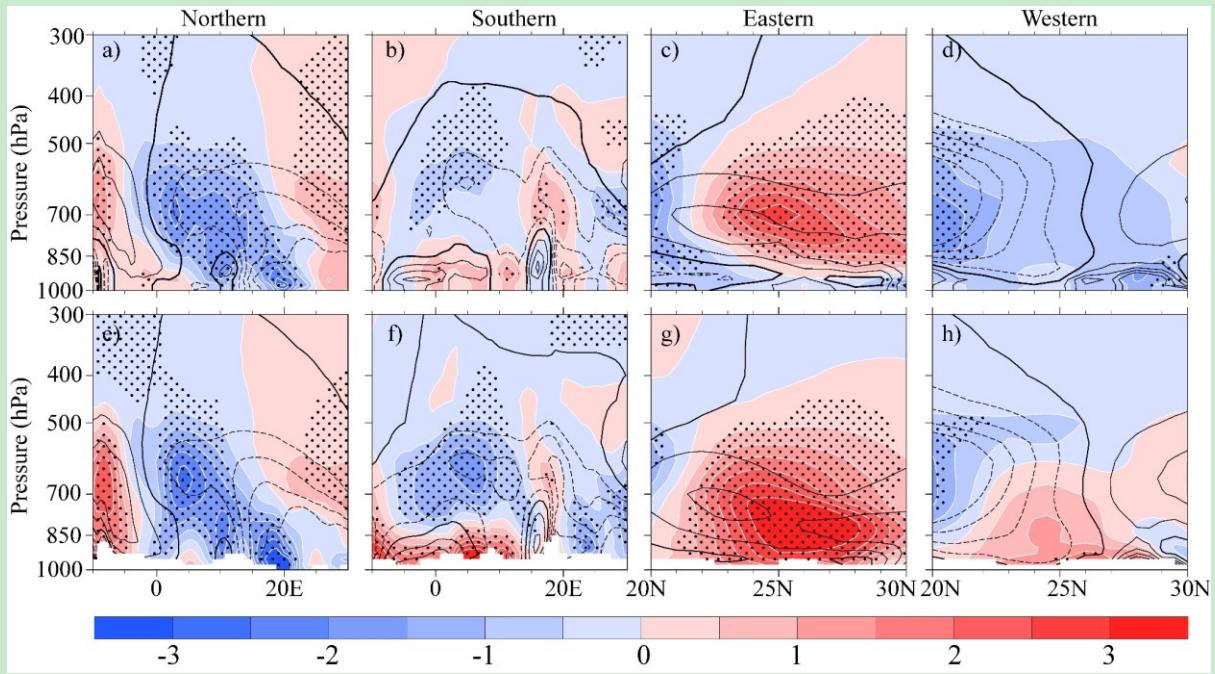
753

754

755

756

757


758

759

760

761

762

763

764 **FIGURE 8** Vertical cross section of the trends of moisture transport (shading; $(\text{g/kg}) * (\text{m/s}) * \text{decade}^{-1}$) and
765 climatology moisture transport (blank contours; positive values denoted by solid lines and negative values
766 denoted by dashed lines; $(\text{g/kg}) * (\text{m/s})$) for the Northern (a, e), Southern (b, f), Eastern (c, g) and Western (d,
767 h) boundary from ERA5 (a-d) and MERRA-2 (e-h). In the Northern (a, e) and Southern (b, f) boundaries,
768 solid (positive) lines represent southerly moisture flux. In the Eastern (c, g) and Western (d, h) boundaries,
769 solid (positive) lines represent westerly moisture flux. Stippling denotes significance of the moisture flux
770 trends at the 95% level of confidence.

771

772

773

774

775

776

777

778

779

780

781

782

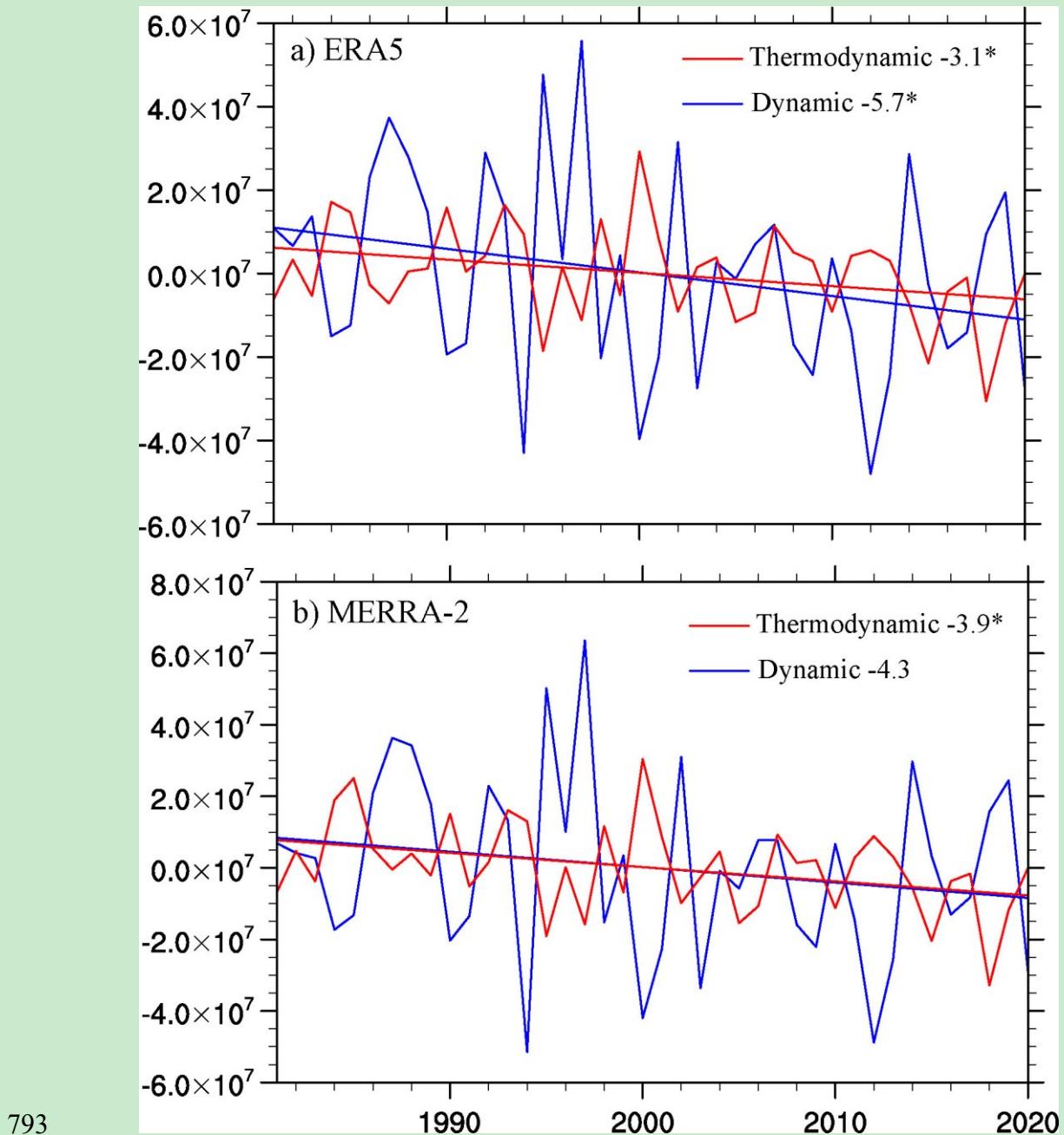
783

784

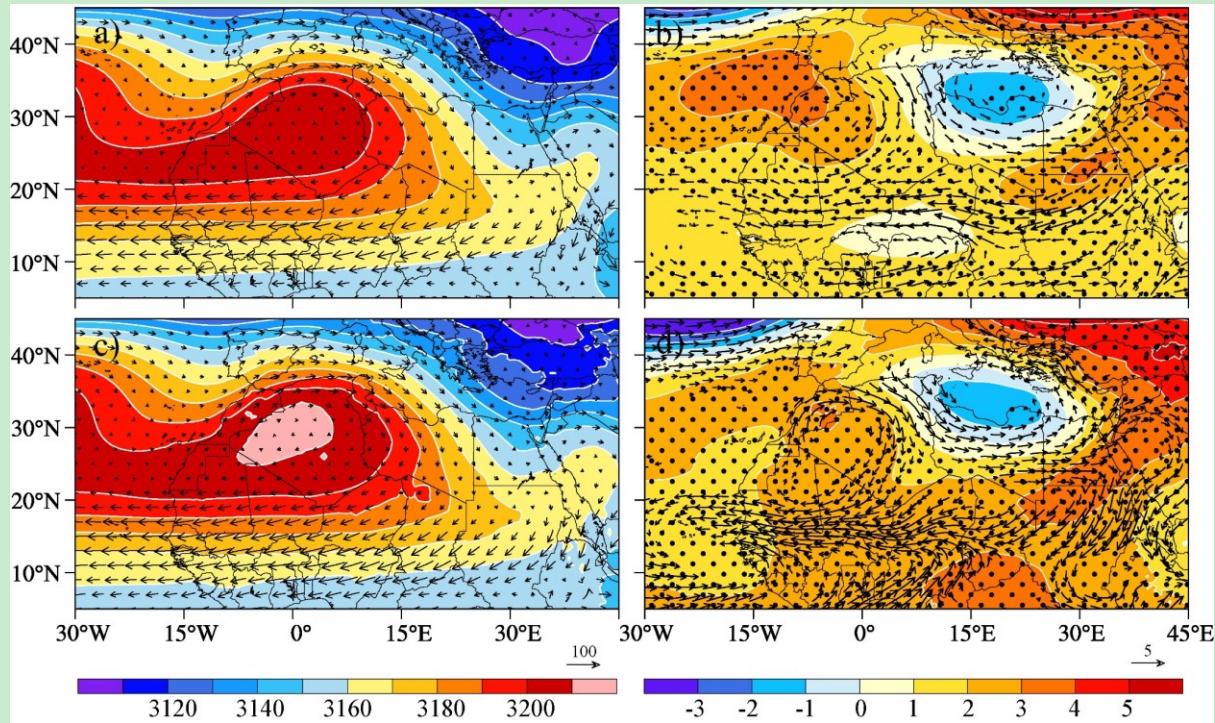
785

786

787

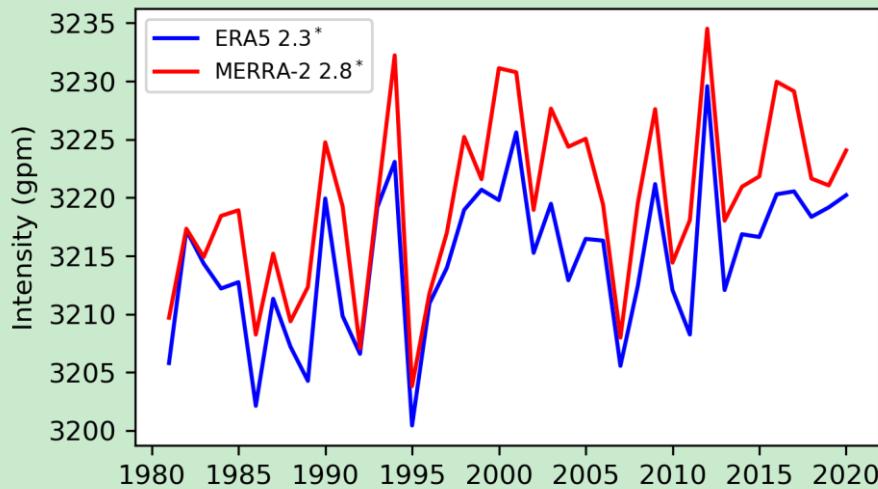

788

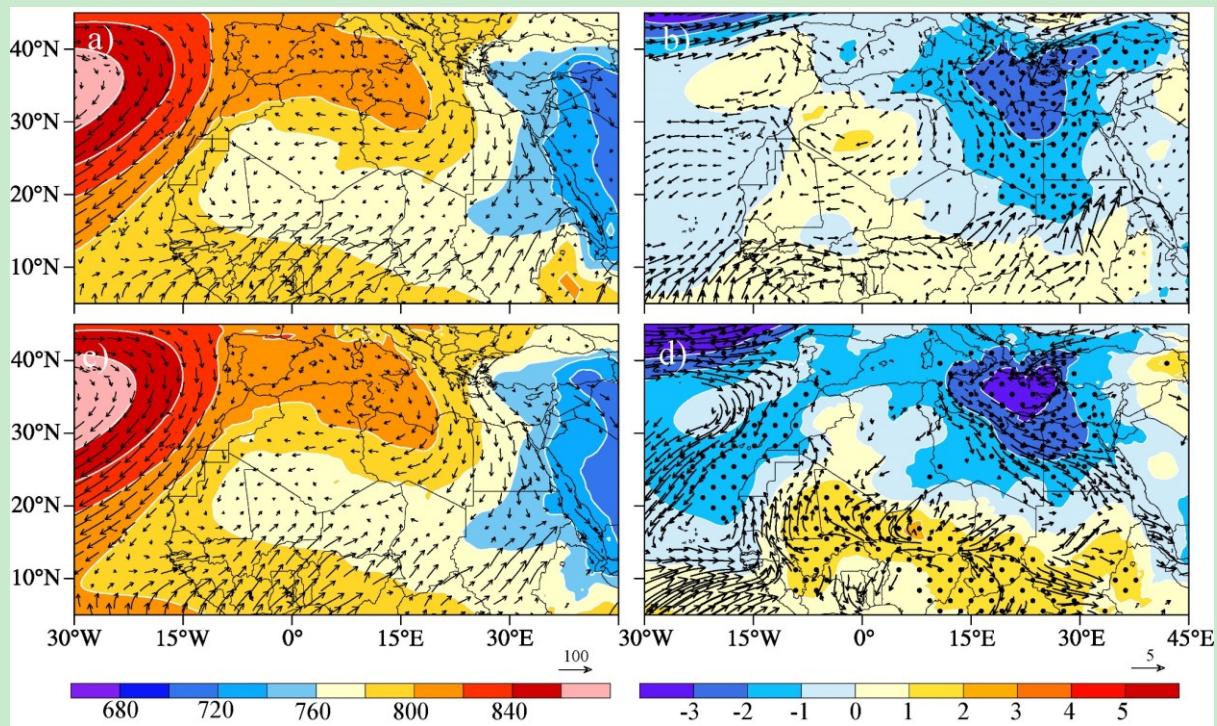
789


790

791

792


793
 794 **FIGURE 9** Interannual variation of the moisture flux at the northern boundary caused by dynamic (blue)
 795 and thermodynamic term (red) from (a) ERA5 and (b) MERRA-2. The associated numbers in the figure
 796 legend denote the trends ($10^6 \text{ kg s}^{-1} \text{ decade}^{-1}$). Trends statistically significant at the 90% level of confidence
 797 are labeled with $*$.
 798
 799
 800
 801
 802


803

804 **FIGURE 10** 700 hPa summer climatological geopotential heights (shading; m) and moisture transport
 805 (vectors; $(\text{g/kg}) * (\text{m/s})$) for (a) ERA5, (c) MERRA-2. Also shown are the 700 hPa summer geopotential
 806 heights trend (shading; m decade^{-1}) and moisture transport trend (vectors; $(\text{g/kg}) * (\text{m/s}) * \text{decade}^{-1}$) significant
 807 at 90% level of confidence for (b) ERA5, (d) MERRA-2. Stippling denotes significance of geopotential
 808 heights trends at the 95% level of confidence.

809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831

832
833 **FIGURE 11** Interannual variation of the Saharan High intensity for ERA5 (blue) and MERRA-2 (red). The
834 associated numbers in the figure legend denote the trends (gpm decade⁻¹). Trends statistically significant at
835 the 95% level of confidence are labeled with ‘**’.
836
837
838
839
840
841
842
843
844
845
846
847
848
849

850

851 **FIGURE 12** As in Figure 10 but for 925 hPa.

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866 **TABLE 1** Climatological water vapor budget values (mm day⁻¹) and trends (mm day⁻¹ decade⁻¹; in
 867 parentheses) for ERA5 (column 2) and MERRA-2 (column 3). Statistically significant values at the 99%
 868 confidence level are italicized and boldfaced.

	ERA5	MERRA-2
F_{north}	2.31 (<i>0.141</i>)	2.49 (<i>0.145</i>)
F_{south}	-1.54 (-0.016)	-1.56 (-0.0155)
F_{east}	-0.6 (<i>-0.055</i>)	-0.56 (<i>-0.129</i>)
F_{west}	-0.35 (-0.091)	-0.55 (-0.008)
E	0.093 (<i>0.004</i>)	0.08 (0.002)
P	0.032 (<i>0.006</i>)	0.036 (<i>0.01</i>)
R	0.09 (0.008)	0.14 (0.005)

869