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ABSTRACT

Trajectory prediction is a critical part of many AI applications, for example, the
safe operation of autonomous vehicles. However, current methods are prone to
making inconsistent and physically unrealistic predictions. We leverage insights
from fluid dynamics to overcome this limitation by considering internal symme-
try in real-world trajectories. We propose a novel model, Equivariant Continous
COnvolution (ECCO) for improved trajectory prediction. ECCO uses rotationally-
equivariant continuous convolutions to embed the symmetries of the system. On
both vehicle and pedestrian trajectory datasets, ECCO attains competitive accu-
racy with significantly fewer parameters. It is also more sample efficient, gen-
eralizing automatically from few data points in any orientation. Lastly, ECCO

improves generalization with equivariance, resulting in more physically consis-
tent predictions. Our method provides a fresh perspective towards increasing trust
and transparency in deep learning models. Our code and data can be found at
https://github.com/Rose-STL-Lab/ECCO.

1 INTRODUCTION

Trajectory prediction is one of the core tasks in AI, from the movement of basketball players to
fluid particles to car traffic (Sanchez-Gonzalez et al., 2020; Gao et al., 2020; Shah & Romijnders,
2016). A common abstraction underlying these tasks is the movement of many interacting agents,
analogous to a many-particle system. Therefore, understanding the states of these particles, their
dynamics, and hidden interactions is critical to accurate and robust trajectory forecasting.

Figure 1: Car trajectories in two scenes. Though
the entire scenes are not related by a rotation, the
circled areas are. ECCO exploits this symmetry to
improve generalization and sample efficiency.

Even for purely physical systems such as in par-
ticle physics, the complex interactions among
a large number of particles makes this a dif-
ficult problem. For vehicle or pedestrian tra-
jectories, this challenge is further compounded
with latent factors such as human psychology.
Given these difficulties, current approaches re-
quire large amounts of training data and many
model parameters. State-of-the-art methods in
this domain such as Gao et al. (2020) are based
on graph neural networks. They do not ex-
ploit the physical properties of system and often
make predictions which are not self-consistent
or physically meaningful. Furthermore, they
predict a single agent trajectory at a time instead of multiple agents simultaneously.
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Our model is built upon a key insight of many-particle systems pertaining to intricate internal sym-
metry. Consider a model which predicts the trajectory of cars on a road. To be successful, such a
model must understand the physical behavior of vehicles together with human psychology. It should
distinguish left from right turns, and give consistent outputs for intersections rotated with different
orientation. As shown in Figure 1, a driver’s velocity rotates with the entire scene, whereas vehicle
interactions are invariant to such a rotation. Likewise, psychological factors such as reaction speed
or attention may be considered vectors with prescribed transformation properties. Data augmenta-
tion is a common practice to deal with rotational invariance, but it cannot guarantee invariance and
requires longer training. Since rotation is a continuous group, augmentation requires sampling from
infinitely many possible angles.

In this paper, we propose an equivariant continuous convolutional model, ECCO, for trajectory fore-
casting. Continuous convolution generalizes discrete convolution and is adapted to data in many-
particle systems with complex local interactions. Ummenhofer et al. (2019) designed a model using
continuous convolutions for particle-based fluid simulations. Meanwhile, equivariance to group
symmetries has proven to be a powerful tool to integrate physical intuition in physical science appli-
cations (Wang et al., 2020; Brown & Lunter, 2019; Kanwar et al., 2020). Here, we test the hypothesis
that an equivariant model can also capture internal symmetry in non-physical human behavior. Our
model utilizes a novel weight sharing scheme, torus kernels, and is rotationally equivariant.

We evaluate our model on two real-world trajectory datasets: Argoverse autonomous vehicle dataset
(Chang et al., 2019) and TrajNet++ pedestrian trajectory forecasting challenge (Kothari et al., 2020).
We demonstrate on par or better prediction accuracy to baseline models and data augmentation
with fewer parameters, better sample efficiency, and stronger generalization properties. Lastly, we
demonstrate theoretically and experimentally that our polar coordinate-indexed filters have lower
equivariance discretization error due to being better adapted to the symmetry group.

Our main contributions are as follows:

• We propose Equivariant Continous COnvolution (ECCO), a rotationally equivariant deep
neural network that can capture internal symmetry in trajectories.

• We design ECCO using a novel weight sharing scheme based on orbit decomposition and
polar coordinate-indexed filters. We implement equivariance for both the standard and
regular representation L2(SO(2)).

• On benchmark Argoverse and TrajNet++ datasets, ECCO demonstrates comparable accu-
racy while enjoying better generalization, fewer parameters, and better sample complexity.

2 RELATED WORK

Trajectory Forecasting For vehicle trajectories, classic models in transportation include the Car-
Following model (Pipes, 1966) and Intelligent Driver model (Kesting et al., 2010). Deep learning has
also received considerable attention; for example, Liang et al. (2020) and Gao et al. (2020) use graph
neural networks to predict vehicle trajectories. Djuric et al. (2018) use rasterizations of the scene
with CNN. See the review paper by Veres & Moussa (2019) for deep learning in transportation.
For human trajectory modeling, Alahi et al. (2016) propose Social LSTM to learn these human-
human interactions. TrajNet (Sadeghian et al., 2018) and TrajNet++ (Kothari et al., 2020) introduce
benchmarking for human trajectory forecasting. We refer readers to Rudenko et al. (2020) for a
comprehensive survey. Nevertheless, many deep learning models are data-driven. They require
large amounts of data, have many parameters, and can generate physically inconsistent predictions.

Continuous Convolution Continuous convolutions over point clouds (CtsConv) have been suc-
cessfully applied to classification and segmentation tasks (Wang et al., 2018; Lei et al., 2019; Xu
et al., 2018; Wu et al., 2019; Su et al., 2018; Li et al., 2018; Hermosilla et al., 2018; Atzmon et al.,
2018; Hua et al., 2018). More recently, a few works have used continuous convolution for mod-
eling trajectories or flows. For instance, Wang et al. (2018) uses CtsConv for inferring flow on
LIDAR data. Schenck & Fox (2018) and Ummenhofer et al. (2019) model fluid simulation using
CtsConv. Closely related to our work is Ummenhofer et al. (2019), who design a continuous con-
volution network for particle-based fluid simulations. However, they use a ball-to-sphere mapping
which is not well-adapted for rotational equivariance and only encode 3 frames of input. Graph
neural networks (GNNs) are a related strategy which have been used for modeling particle system

2



Published as a conference paper at ICLR 2021

dynamics (Sanchez-Gonzalez et al., 2020). GNNs are also permutation invariant, but they do not
natively encode relative positions and local interaction as a CtsConv-based network does.

Equivariant and Invariant Deep Learning Developing neural nets that preserve symmetries has
been a fundamental task in image recognition (Cohen et al., 2019b; Weiler & Cesa, 2019; Cohen
& Welling, 2016a; Chidester et al., 2018; Lenc & Vedaldi, 2015; Kondor & Trivedi, 2018; Bao &
Song, 2019; Worrall et al., 2017; Cohen & Welling, 2016b; Weiler et al., 2018; Dieleman et al.,
2016; Maron et al., 2020). Equivariant networks have also been used to predict dynamics: for
example, Wang et al. (2020) predicts fluid flow using Galilean equivariance but only for gridded data.
Fuchs et al. (2020) use SE(3)-equivariant transformers to predict trajectories for a small number of
particles as a regression task. As in this paper, both Bekkers (2020) and Finzi et al. (2020) address
the challenge of parameterizing a kernel over continuous Lie groups. Finzi et al. (2020) apply
their method to trajectory prediction on point clouds using a small number of points following strict
physical laws. Worrall et al. (2017) also parameterizes convolutional kernels using polar coordinates,
but maps these onto a rectilinear grid for application to image data. Weng et al. (2018) address
rotational equivariance by inferring a global canonicalization of the input. Similar to our work,
Esteves et al. (2018) use functions evenly sampled on the circle, however, their features are only at
a single point whereas we assign feature vectors to each point in a point cloud. Thomas et al. (2018)
introduce Tensor Field Networks which are SO(3)-equivariant continuous convolutions. Unlike
our work, both Worrall et al. (2017) and Thomas et al. (2018) define their kernels using harmonic
functions. Our weight sharing method using orbits and stabilizers is simpler as it does not require
harmonic functions or Clebsch-Gordon coefficients. Unlike previous work, we implement a regular
representation for the continuous rotation group SO(2) which is compatible with pointwise non-
linearities and enjoys an empirical advantage over irreducible representations.

3 BACKGROUND

We first review the necessary background of continuous convolution and rotational equivariance.

3.1 CONTINUOUS CONVOLUTION

Continuous convolution (CtsConv) generalizes the discrete convolution to point clouds. It provides

an efficient and spatially aware way to model the interactions of nearby particles. Let f (i) ∈ R
cin

denote the feature vector of particle i. Thus f is a vector field which assigns to the points x(i) a
vector in R

cin . The kernel of the convolution K : R2 → R
cout×cin is a matrix field: for each point

x ∈ R
2, K(x) is a cout × cin matrix. Let a be a radial local attention map with a(r) = 0 for r > R.

The output feature vector g(i) of particle i from the continous convolution is given by

g(i) = CtsConvK,R(x, f ;x
(i)) =

∑
j

a(‖x(j) − x(i)‖)K(x(j) − x(i)) · f (j). (1)

CtsConv is naturally equivariant to permutation of labels and is translation invariant. Equation 1 is
closely related to graph neural network (GNN) (Kipf & Welling, 2017; Battaglia et al., 2018), which

is also permutation invariant. Here the graph is dynamic and implicit with nodes x(i) and edges eij
if ‖x(i) − x(j)‖ < R. Unlike a GNN which applies the same weights to all neighbours, the kernel

K depends on the relative position vector x(i) − x(j).

3.2 ROTATIONAL EQUIVARIANCE

Continuous convolution is not naturally rotationally equivariant. Fortunately, we can translate the
technique of rotational equivariance on CNNs to continuous convolutions. We use the language of
Lie groups and their representations. For more background, see Hall (2015) and Knapp (2013).

More precisely, we denote the symmetry group of 2D rotations by SO(2) = {Rotθ : 0 ≤ θ <
2π}. As a Lie group, it has both a group structure Rotθ1 ◦ Rotθ2 = Rot(θ1+θ2)mod2π which a

continuous map with respect to the topological structure. As a manifold, SO(2) is homomeomorphic
to the circle S1 ∼= {x ∈ R

2 : ‖x‖ = 1}. The group SO(2) can act on a vector space R
c by

specifying a representation map ρ : SO(2) → GL(Rc) which assigns to each element of SO(2)
an element of the set of invertible c × c matrices GL(Rc). The map ρ must a be homomorphism
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ρ(Rotθ1)ρ(Rotθ1) = ρ(Rotθ1 ◦ Rotθ2). For example, the standard representation ρ1 on R
2 is by

2 × 2 rotation matrices. The regular representation ρreg on L2(SO(2)) = {ϕ : SO(2) → R :
|ϕ|2 is integrable} is ρreg(Rotφ)(ϕ) = ϕ◦Rot−φ. Given input f with representation ρin and output
with representation ρout, a map F is SO(2)-equivariant if

F (ρin(Rotθ)f) = ρout(Rotθ)F (f).

Discrete CNNs are equivariant to a group G if the input, output, and hidden layers carry a G-action
and the linear layers and activation functions are all equivariant (Kondor & Trivedi, 2018). One
method for constructing equivariant discrete CNNs is steerable CNN (Cohen & Welling, 2016b).
Cohen et al. (2019a) derive a general constraint for when a convolutional kernelK : Rb → R

cout×cin

is G-equivariant. Assume G acts on R
b and that Rcout and R

cin are G-representations ρout and ρin
respectively, then K is G-equivariant if for all g ∈ G,x ∈ R

2,

K(gx) = ρout(g)K(x)ρin(g
−1). (2)

For the group SO(2), Weiler & Cesa (2019) solve this constraint using circular harmonic functions
to give a basis of discrete equivariant kernels. In contrast, our method is much simpler and uses
orbits and stabilizers to create continuous convolution kernels.

4 ECCO: TRAJECTORY PREDICTION USING ROTATIONALLY EQUIVARIANT

CONTINUOUS CONVOLUTION

In trajectory prediction, given historical position and velocity data of n particles over tin timesteps,
we want to predict their positions over the next tout timesteps. Denote the ground truth dynamics
as ξ, which maps ξ(xt−tin:t,vt−tin:t) = xt:t+tout

. Motivated by the observation in Figure 1, we
wish to learn a model f that approximates the underlying dynamics while preserving the internal
symmetry in the data, specifically rotational equivariance.

We introduce ECCO, a model for trajectory prediction based on rotationally equivariant continuous
convolution. We implement rotationally equivariant continuous convolutions using a weight sharing
scheme based on orbit decomposition. We also describe equivariant per-particle linear layers which
are a special case of continuous convolution with radius R = 0 analogous to 1x1 convolutions in
CNNs. Such layers are useful for passing information between layers from each particle to itself.

4.1 ECCO MODEL OVERVIEW

Figure 2: Overview of model architecture. Past velocities are aggregated by an encoder Enc. To-
gether with map information this is then encoded by 3 CtsConvs into ρreg features. Then l + 1
CtsConv layers are used to predict Δx̃. The predicted position x̂t+1 = Δx̃+x̃where x̃ is a numer-
ically extrapolated using velocity and accleration. Since Δx̃ is translation invariant, x̂ is equivariant.

The high-level architecture of ECCO is illustrated in Figure 2. It is important to remember that the
input, output, and hidden layers are all vector fields over the particles. Oftentimes, there is also
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environmental information available in the form of road lane markers. Denote marker positions by
xmap and direction vectors by vmap. This data is thus also a particle field, but static.

To design an equivariant network, one must choose the group representation. This choice plays an
important role in shaping the learned hidden states. We focus on two representations of SO(2): ρ1
and ρreg. The representation ρ1 is that of our input features, and ρreg is for the hidden layers. For ρ1,
we constrain the kernel in Equation 1. For ρreg, we further introduce a new operator, convolution
with torus kernels.

In order to make continuous convolution rotationally equivariant, we translate the general condition
for discrete CNNs developed in Weiler & Cesa (2019) to continuous convolution. We define the
convolution kernel K in polar coordinates K(θ, r). Let Rcout and R

cin be SO(2)-representations
ρout and ρin respectively, then the equivariance condition requires the kernel to satisfy

K(θ + φ, r) = ρout(Rotθ)K(φ, r)ρin(Rot
−1
θ ). (3)

Imposing such a constraint for continuous convolution requires us to develop an efficient weight
sharing scheme for the kernels, which solve Equation 3.

4.2 WEIGHT SHARING BY ORBITS AND STABILIZERS.

Given a point x ∈ R
2 and a group G, the set Ox = {gx : g ∈ G} is the orbit of the point x. The

set of orbits gives a partition of R2 into the origin and circles of radius r > 0. The set of group
elements Gx = {g : gx = x} fixing x is called the stabilizer of the point x. We use the orbits and
stabilizers to constrain the weights of K. Simply put, we share weights across orbits and constrain
weights according to stabilizers, as shown in Figure 3-Left.

The ray D = {(0, r) : r ≥ 0} is a fundamental domain for the action of G = SO(2) on base
space R

2. That is, D contains exactly one point from each orbit. We first define K(0, r) for each
(0, r) ∈ D. Then we compute K(θ, r) from K(0, r) by setting φ = 0 in Equation 3 as such

K(θ, r) = ρout(Rotθ)K(0, r)ρin(Rot
−1
θ ). (4)

For r > 0, the group acts freely on (0, r), i.e. the stabilizer contains only the identity. This means
that Equation 3 imposes no additional constraints on K(0, r). Thus K(0, r) ∈ R

cout×cin is a matrix
of freely learnable weights.

For r = 0, however, the orbit O(0,0) is only one point. The stabilizer of (0, 0) is all of G, which
requires

K(0, 0) = ρout(Rotθ)K(0, 0)ρin(Rot
−1
θ ) for all θ. (5)

Thus K(0, 0) is an equivariant per-particle linear map ρin → ρout.

Table 1: Equivariant linear maps for K(0, 0). Trainable weights are
c ∈ R and κ : S1 → R, where S1 is the manifold underlying SO(2).

ρin ρout = ρ1 ρout = ρreg

ρ1 (a, b) 	→ (ca, cb) ca cos(θ) + cb sin(θ)

ρreg f 	→ c

( ∫
S1 f(θ) cos(θ)dθ∫
S1 f(θ) sin(θ)dθ)

) ∫
S1 κ(θ − φ)f(φ)dφ

We can analytically solve
Equation 5 for K(0, 0)
using representation the-
ory. Table 1 shows the
unique solutions for dif-
ferent combinations of ρ1
and ρreg. For details see
subsection A.3.

Note that 2D and 3D rota-
tion equivariant continuous convolutions are implemented in Worrall et al. (2017) and Thomas et al.
(2018) respectively. They both use harmonic functions which require expensive evaluation of ana-
lytic functions at each point. Instead, we provide a simpler solution. We require only knowledge
of the orbits, stabilizers, and input/output representations. Additionally, we bypass Clebsch-Gordon
decomposition used in Thomas et al. (2018) by mapping directly between the representations in our
network. Next, we describe an efficient implementation of equivariant continuous convolution.

4.3 POLAR COORDINATE KERNELS

Rotational equivariance informs our kernel discretization and implementation. We store the kernel
K of continuous convolution as a 4-dimensional tensor by discretizing the domain. Specifically, we
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Figure 3: Left: A torus kernel field K from a ρreg-field to a ρreg-field. The kernel is itself a field:
at each point x in space the kernel K(x) yields a different matrix. We denote the (φ2, φ1) entry of
the matrix at x = (θ, r) by K(θ, r)(φ2, φ1). The matrices along the red sector are freely trainable.
The matrices at all white sectors are determined by those in the red sector according to the circular
shifting rule illustrated above. The matrix at the red bullseye is trainable but constrained to be
circulant, i.e. preserved by the circular shifting rule. Right: The torus kernel acts on features which
are functions on the circle. By cutting open the torus and features along the reg and orange lines we
can identify the operation at each point with matrix multiplication.

discretize R2 using polar coordinates with kθ angular slices and kr radial steps. We then evaluate K
at any (θ, r) using bilinear interpolation from four closest polar grid points. This method accelerates
computation since we do not need to use Equation 4 to repeatedly compute K(θ, r) from K(0, r).
The special case of K(0, 0) results in a polar grid with a “bullseye” at the center (see Figure 3-Left).

We discretize angles finely and radii more coarsely. This choice is inspired by real-world observation
that drivers tend to be more sensitive to the angle of an incoming car than its exact distance, Our
equivariant kernels are computationally efficient and have very few parameters. Moreover, we will
discuss later in Section 4.5 that despite discretization, the use of polar coordinates allows for very
low equivariance error.

4.4 HIDDEN LAYERS AS REGULAR REPRESENTATIONS

Regular representation ρreg has shown better performance than ρ1 for finite groups (Cohen et al.,
2019a; Weiler & Cesa, 2019). But the naive ρreg = {ϕ : G→ R} for an infinite groupG is too large

to work with. We choose the space of square-integrable functions L2(G). It contains all irreducible
representations of G and is compatible with pointwise non-linearities.

Discretization. However, L2(SO(2)) is still infinite-dimensional. We resolve this by discretizing
the manifold S1 underlying SO(2) into kreg even intervals. We represent functions f ∈ L2(SO(2))
by the vector of values [f(Rot2πi/kreg

)]0≤i<kreg
. We then evaluate f(Rotθ) using interpolation.

We separate the number of angular slices kθ and the size of the kernel kreg. If we tie them together
and set kθ = kreg, this is equivalent to implementing cyclic group Ckreg

symmetry with the regular
representation. Then increasing kθ would also increases kreg, which incurs more parameters.

Convolution with Torus Kernel. In addition to constraining the kernel K of Equation 1 as in ρ1,
ρreg poses an additional challenge as it is a function on a circle. We introduce a new operator from
functions on the circle to functions on the circle called a torus kernel.

First, we replace input feature vectors in f ∈ R
c with elements of L2(SO(2)). The input feature f

becomes a ρreg-field, that is, for each x ∈ R
2, f (x) is a real-value function on the circle S1 → R.

For the kernel K, we replace the matrix field with a map K : R2 → ρreg ⊗ ρreg. Instead of a matrix,

K(x) is a map S1 × S1 → R. Here (φ1, φ2) ∈ S1 × S1 plays the role of continuous matrix indices
and we may consider K(x)(φ1, φ2) ∈ R analogous to a matrix entry. Topologically, S1 × S1 is a

torus and hence we call K(x) a torus kernel. The matrix multiplication K(x) · f (x) in Equation 1
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must be replaced by the integral transform

K(x)� f (x)(φ2) =

∫
φ1∈S1

K(x)(φ2, φ1)f
(x)(φ1)dφ1, (6)

which is a linear transformation L2(SO(2)) → L2(SO(2)). K(θ, r)(φ2, φ1) denotes the (φ2, φ1)
entry of the matrix at point x = (θ, r), see the illustration in Figure 3-Right. We compute Equation 3
for ρreg → ρreg as K(Rotθ(x))(φ2, φ1) = K(x)(φ2 − θ, φ1 − θ). We can use the same weight
sharing scheme as in Section 4.2.

4.5 ANALYSIS: EQUIVARIANCE ERROR

Figure 4: Experimentally, we find kθ
and expected equivariance error are in-
versely proportional.

The practical value of equivariant neural networks has
been demonstrated in a variety of domains. However, the-
oretical analysis (Kondor & Trivedi, 2018; Cohen et al.,
2019a; Maron et al., 2020) of continuous Lie group sym-
metries is usually performed assuming continuous func-
tions and using the integral representation of the convo-
lution operator. In practice, discretization can cause the
model f to be not exactly equivariant, with some equiv-
ariance error (EE)

EE = ‖f(T (x))− T ′(f(x))‖
with respect to group transformations T and T ′ of input
and output respectively (Wang et al., 2020, A6). Rect-
angular grids are well-suited to translations, but poorly-
suited to rotations. The resulting equivariance error can
be so large to practically undermine the advantages of a
theoretically equivariant network.

Our polar-coordinate indexed circular filters are designed specifically to adapt well to the rotational
symmetry. In Figure 4, we demonstrate experimentally that expected EE is inversely proportional
to the number of angular slices kθ. For example, choosing kθ ≥ 16 gives very low EE and does not
increase the number of parameters. We also prove for ρ1 features that the equivariance error is low
in expectation. See Appendix A.6 for the precise statement and proof.

Proposition. Let α = 2π/kθ, and θ̄ be θ rounded to nearest value in Zα, and θ̂ = |θ − θ̄|. Let
F = CtsConvK,R and T = ρ1(Rotθ). For some constant C, the expected EE is bounded

EK,f ,x[T (F (f ,x))− F (T (f), T (x))] ≤ | sin(θ̂)|C ≤ 2πC/kθ.

5 EXPERIMENTS

In this section, we present experiments in two different domains, traffic and pedestrian trajectory
prediction, where interactions among agents are frequent and influential. We first introduce the
statistics of the datasets and the evaluation metrics. Secondly, we compare different feature encoders
and hidden feature representation types. Lastly, we compare our model with baselines.

5.1 EXPERIMENTAL SET UP

Dataset We discuss the performances of our models on (1) Argoverse autonomous vehicle motion
forecasting (Chang et al., 2019), a recently released vehicle trajectory prediction benchmark, and
(2) TrajNet++ pedestrian trajectory forecasting challenge (Kothari et al., 2020). For Argoverse, the
task is to predict three-second trajectories based on all vehicles history in the past 2 seconds. We
split 32K samples from the validation set as our test set.

Baselines We compare against several state-of-the-art baselines used in Argoverse and TrajNet++.
We use three original baselines from (Chang et al., 2019): Constant velocity, Nearest Neighbour,
and Long Short Term Memory (LSTM). We also compare with a non-equivariant continuous con-
volutional model, CtsConv (Ummenhofer et al., 2019) and a hierarchical GNN model VectorNet
(Gao et al., 2020). Note that VectorNet only predicts a single agent at a time, which is not directly
comparable with ours. We include VectorNet as a reference nevertheless.
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Evaluation Metrics We use domain standard metrics to evaluate the trajectory prediction perfor-
mance, including (1) Average Displacement Error (ADE): the average L2 displacement error for
the whole 30 timestamps between prediction and ground truth, (2) Displacement Error at t sec-
onds (DE@ts): the L2 displacement error at a given timestep t. DE@ts for the last timestamp is also
called Final Displacement Error (FDE). For Argoverse, we report ADE and DE@ts for t ∈ {1, 2, 3}.
For TrajNet++, we report ADE and FDE.

5.2 PREDICTION PERFORMANCE COMPARISON

We evaluate the performance of different models from multiple aspects: forecasting accuracy, pa-
rameter efficiency and the physical consistency of the predictions. The goal is to provide a compre-
hensive view of various characteristics of our model to guide practical deployment. See Appendix
A.9 for an additional ablative study.

Forecasting Accuracy We compare the trajectory prediction accuracy across different models on
Argoverse and TrajNet++. Table 2 displays the prediction ADE and FDE comparision. We can
see that ECCO with the regular representation ρreg achieves on par or better forecasting accuracy
on both datasets. Comparing ECCO and a non-equivariant counterpart of our model CtsConv, we
observe a significant 14.8% improvement in forecasting accuracy. Compare with data augmentation,
we also observe a 9% improvement over the non-equivariant CtsConv trained on random-rotation-
augmented dataset. These results demonstrate the benefits of incorporating equivariance principles
into deep learning models.

Model
Argoverse TrajNet++ #Param

ADE DE@1s DE@2s DE@3s ADE FDE

Constant Velocity 3.86 2.43 5.10 7.91 1.39 2.86 -
Nearest Neighbor 3.49 2.02 4.98 7.84 1.38 2.79 -
LSTM 2.13 1.16 2.81 4.83 1.11 2.03 50.6K
CtsConv 1.85 0.99 2.42 4.32 0.86 1.79 1078.1K
CtsConv (Aug.) 1.77 0.96 2.31 4.05 - - 1078.1K
ρ1-ECCO 1.70 0.93 2.22 3.89 0.88 1.83 51.4K
ρreg-ECCO 1.62 0.89 2.12 3.68 0.84 1.76 129.8K

VectorNet 1.66 0.92 2.06 3.67 - - 72K + Decoder

Table 2: Parameter efficiency and accuracy comparison. Number of parameters for each model
and their detailed forecasting accuracy at DE@ts. CtsConv(Aug.) is CtsConv trained with rotation
augmented data.

Parameter Efficiency Another important feature in deploying deep learning models to embedded
systems such as autonomous vehicles is parameter efficiency. We report the number of parameters
in each of the models in Table 2. Compare with LSTM, our forecasting performance is significantly
better. CtsConv and VectorNet have competitive forecasting performance, but uses much more
parameters than ECCO. By encoding equivariance into CtsConv, we drastically reduce the number
of the parameters needed in our model. For VectorNet, Gao et al. (2020) only provided the number of
parameters for their encoder; a fair decoder size can be estimated based on MLP using 59 polygraphs
with each 64 dimensions as input, predicting 30 timestamps, that is 113K.

Runtime and Memory Efficiency We compare the runtime and memory usage with VectorNet
Gao et al. (2020). Since VectorNet is not open-sourced, we compare with a version of VectorNet
that we implement. Firstly, we compare floating point operations (FLOPs). VectorNet reported
n × 0.041 GFLOPs for the encoder part of their model alone, where n is the number of predicted
vehicles. We tested ECCO on a scene with 30 vehicles and approximately 180 lane marker nodes,
which is similar to the test conditions used to compute FLOPs in Gao et al. (2020). Our full model
used 1.03 GFLOPs versus 1.23 GFLOPs for VectorNet’s encoder. For runtimes on the same test
machine, ECCO runs 684ms versus 1103ms for VectorNet. Another disadvantage of VectorNet is
needing to reprocess the scene for each agent, whereas ECCO predicts all agents simultaneously. For
memory usage in the same test ECCO uses 296 MB and VectorNet uses 171 MB.
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Figure 6: The x,y-axes are the position (m). The dashed line represents the 2s past trajectory. The
solid line represents the 3s prediction. Red represents the agent. Top row: The predictions are made
on the original data. Bottom row: We rotate the whole scene by 160◦ and make predictions on
rotated data. From left to right are visualizations of ground truth, CtsConv, ρ1-ECCO, ρreg-ECCO.

Figure 5: The learning curves on the validation
set. Equivariant models converge faster using
fewer samples than the non-equivariant models.

Sample Efficiency A major benefit of incor-
porating the inductive bias of equivariance is
to improve the sample efficiency of learning.
For each sample which an equivariant model
is trained on, it learns as if it were trained on
all transformations of that sample by the sym-
metry group (Wang et al., 2020, Prop 3). Thus
ECCO requires far fewer samples to learn from.
In Figure 5, we plot a comparison of validation
FDE over number of training samples and show
the equivariant models converge faster.

Physical Consistency We also visualize the
predictions from ECCO and non-equivariant
CtsConv, as shown in Figure 6. Top row visualizes the predictions on the original data. In the
bottom row, we rotate the whole scene by 160◦ and make predictions on rotated data. This mimics
the covariate shift in the real world. Note that CtsConv predicts inconsistently: a right turn in the
top row but a left turn after the scene has been rotated. We see similar results for TrajNet++ (see
Figure 8 in Appendix A.10).

6 CONCLUSION

We propose Equivariant Continuous Convolution (ECCO), a novel model for trajectory prediction
by imposing symmetries as inductive biases. On two real-world vehicle and pedestrians trajectory
datasets, ECCO attains competitive accuracy with significantly fewer parameters. It is also more
sample efficient; generalizing automatically from few data points in any orientation. Lastly, equiv-
ariance gives ECCO improved generalization performance. Our method provides a fresh perspective
towards increasing trust in deep learning models through guaranteed properties. Future directions
include applying equivariance to probabilistic predictions with many possible trajectories, or devel-
oping a faster version of ECCO which does not require autoregressive computation. Moreover, our
methods may be generalized from 2-dimensional space to R

n. The orbit-stabilizer weight sharing
scheme and discretized regular representation may be generalized by replacing SO(2) with SO(n),
and polar coordinate kernels may be generalized using spherical coordinates.
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A APPENDIX

A.1 CONTINUOUS CONVOLUTION INVOLVING ρreg

This section is a more detailed version of Section 4.4.

Define the input f to be ρreg-field, that is, a distribution over R2 valued in ρreg. Define K : R2 →
ρreg ⊗ ρreg. After identifying SO(2) with its underlying manifold S1, we can identify K(x) as a

map S1 × S1 → R and f (x) : S1 → R. Define the integral transform

K(x)� f (x)(φ2) =

∫
φ1∈S1

K(x)(φ2, φ1)f
(x)(φ1)dφ1.

For y ∈ R
2, define the convolution g = K 
 f by

g(y) =

∫
x∈R2

K(x)� f(x+ y)dx.

The �-operation parameterizes linear maps ρreg → ρreg and is thus analogous to matrix multiplica-

tion. If we chose to restrict our choice of κ to κ(φ2, φ1) = κ̃(φ2−φ1) for some function κ̃ : S1 → R

then this becomes the circular convolution operation.

The SO(2)-action on ρreg by Rotθ(f)(φ) = f(φ− θ) induces an action on κ : S1 × S1 → R by

Rotθ(κ)(φ2, φ1) = κ(φ2 − θ, φ1 − θ).

This, in turn, gives an action on the torus-field K by

Rotθ(K)(x)(φ2, φ1) = K(Rot−θ(x))(φ2 − θ, φ1 − θ).

Thus Equation 3, the convolutional kernel constraint, implies that K is equivariant if and only if

K(Rotθ(x))(φ2, φ1) = K(x)(φ2 − θ, φ1 − θ).

We use this to define a weight sharing scheme as described in Section 3.2. The cases of continuous
convolution ρ1 → ρreg and ρreg → ρ1 may be derived similarly.

A.2 COMPLEXITY OF CONVOLUTION WITH TORUS KERNEL

The complexity class of the convolution with torus kernel is O(n · k2reg · cout · cin), where n is
the number of particles, the regular representation is discretized into kreg pieces, and the input and
output contain cin and cout copies of the regular representation respectively. We are not counting
the complexity of the interpolation operation for looking up K(θ, r).

A.3 EQUIVARIANT PER-PARTICLE LINEAR LAYERS

Since this operation is pointwise, unlike positive radius continuous convolution, we cannot map
between different irreducible representations of SO(2). Consider as input a ρin-field I and output a

ρout-field O where ρin and ρout are finite-dimensional representations of SO(2). We define O(i) =
WI(i) using the same W , an equivariant linear map, for each particle 1 ≤ i ≤ N . Denote the

decomposition of ρin and ρout into irreducible representations of SO(2) as ρin ∼= ρi11 ⊕ . . .⊕ρinn and

ρout ∼= ρj11 ⊕ . . .⊕ ρjnn respectively. By Schur’s lemma, the equivariant linear map W : ρin → ρout
is defined by a block diagonal matrix with blocks {Wk}nk=1 where Wk is an ik × jk matrix. That
is, maps between different irreducible representations are zero and each map ρk → ρk is given by a
single scalar.

Per-particle linear mapping ρ1 → ρreg and ρ1 → ρreg. Since the input and output features are
ρ1-fields, but the hidden features may be represented by ρreg, we need mappings between ρ1 and
ρreg. In all cases we pair continuous convolutions with dense per-particle mappings, this we must
describe per-particle mappings between ρ1 and ρreg.
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By the Peter-Weyl theorem, L2(SO(2)) ∼= ⊕∞
i=0 ρi. In the case of SO(2), this decomposition is

also called the Fourier decomposition or decomposition into circular harmonics. Most importantly,
there is one copy of ρ1 inside of L2(SO(2)). Hence, up to scalar, there is a unique linear map
i1 : ρ1 → L2(SO(2)) given by (a, b) 	→ a cos(θ) + b sin(θ).

The reverse mapping pr1 : L
2(SO(2)) → ρ1 is projection onto the ρ1 summand and is given by the

Fourier transform pri(f) = (
∫
S1 f(θ) cos(θ)dθ,

∫
S1 f(θ) sin(θ)dθ).

Per-particle linear mapping ρreg → ρreg. Though ρreg is not finite-dimensional, the fact that it
decomposes into a direct sum of irreducible representations means that we may take ρin = ρout =
ρreg above. Practically, however, it is easier to realize the linear equivariant map ρireg → ρjreg as a

convolution over S1,

O(θ) =

∫
φ∈S1

κ(θ − φ)I(φ)

where κ(θ) is an i× j matrix of trainable weights, independent for each θ.

A.4 ENCODING INDIVIDUAL PARTICLE PAST BEHAVIOR

We can encode these individual attributes using a per vehicle LSTM (Hochreiter & Schmidhuber,

1997). Let X
(i)
t denote the position of car i at time t. Denote a fully connected LSTM cell by

ht, ct = LSTM(X
(i)
t , ht−1, ct−1). Define h0 = c0 = 0. We then use the concatenation of the hidden

states [h
(1)
tin . . . h

(n)
tin ] of all particles as Z ∈ R

N ⊗ R
k as the encoded per-vehicle latent features.

A.5 ENCODING PAST INTERACTIONS

In addition, we also encode past interactions of particles by introducing a continuous convolution
LSTM. Similar to convLSTM we replace the fully connected layers of the original LSTM above with
another operation Xingjian et al. (2015). While convLSTM is well-suited for capturing spatially
local interactions over time, it requires gridded information. Since the particle system we consider
are distributed in continuous space, we replace the standard convolution with rotation-equivariant
continuous convolutions.

We can now define Ht, Ct = CtsConvLSTM(Xt, Ht−1, Ct−1) which is an LSTM cell using equiv-
ariant continuous convolutions throughout. Note that in this case Xt, Ht−1, Ct−1 are all particle
feature fields, that is, functions {1, . . . , n} → R

k.

Define CtsConvLSTM by

it = σ(Wix 
cts X
(i)
t +Wih 
cts ht−1 +Wic ◦ ct−1 + bi)

ft = σ(Wfx 
cts X
(i)
t +Wfh 
cts ht−1 +Wfc ◦ ct−1 + bi)

ct = ft ◦ ct−1 + it ◦ tanh(Wcx 
cts X
(i)
t +Wch 
cts ht−1 + bc)

ot = σ(Wox 
cts X
(i)
t +Woh 
cts ht−1 +Woc ◦ ct + bo)

ht = ot ◦ tanh(ct),
where 
cts denotes CtsConv. We then can use Htin as input feature for the prediction network.

A.6 EQUIVARIANCE ERROR

We prove the proposition in Section 4.5.

Proposition. Let α = 2π/kθ. Let θ̄ be θ rounded to nearest value in Zα. Set θ̂ = |θ − θ̄|. Assume
n particles samples uniformly in a ball of radius R with features f ∈ ρc1. Let f and K have entries
sampled uniformly in [−a, a]. Let the bullseye have radius 0 < Re < R. Let F = CtsConvK,R

and Tθ = ρ1(Rotθ). Then the expected EE is bounded

EK,f ,x[T (F (f ,x))− F (T (f), T (x))] ≤ | sin(θ̂)|C ≤ 2πC/kθ

where C = 4cna2(1−R2
e/R

2).
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Proof. We may compute for a single particle x = (ψ, r) and multiply our result by n by linearity.
We separate two cases: x in bullseye with probability R2

e/R
2 and x in angular slice with probability

1−R2
e/R

2. If x is in the bullseye, then there is no equivariance error since K(x) is a scalar matrix.
Assume x is an angular sector.

For nearest interpolation, the equivariance error is then

‖ρ1(θ̄)K(x)ρ1(−θ̄)ρ1(θ)f − ρ1(θ)K(x)f‖.
Since ρ1(θ) is length preserving, this is

‖ρ1(−θ)ρ1(θ̄)K(x)ρ1(−θ̄)ρ1(θ)f −K(x)f‖
=‖ρ1(β)K(x)ρ1(−β)f −K(x)f‖ (7)

where β = ±θ̂. We consider only a single factor of ρ1 in f . The result will then be multiplied by c.
Let

K(x) =

(
k11 k12
k21 k22

)
, f =

(
f1
f2

)
.

We can factor out an a from K(x) and an a from f and assume kij , fi samples from
Uniform([−1, 1]). One may then directly compute that Equation 7 equals√

((k21 + k12)2 + (k11 − k22)2)(f21 + f22 ) sin
2(β)

This is bounded above by 4| sin(β)| = 4| sin(θ̂)|. Collecting the above factors, this proves the bound
C| sin(β)|.
The further bound follows by the first order bound,

| sin(θ̂)| ≤ |θ̂| ≤ 2π/kθ.

The relationship EE ≈ 2πC/kθ is visible in Figure 4. We can also see clearly the significance of

the term | sin(θ̂)| by plotting equivariance error against θ as in Figure 7.

Figure 7: The above plot is generated from random input and kernels. We can clearly see the

dependence of of EE on | sin(θ̂)|

A.7 DATA DETAILS

Argoverse dataset includes 324K samples, which are split into 206K training data, 39K validation
and 78K test set. All the samples are real data extracted from Miami and Seattle, and the dataset
provides HD maps of lanes in each city. Every sample contains data for 5 seconds long, and is
sampled in 10Hz frequency.
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TrajNet++ Real dataset contains 200K samples. All the tracking in this dataset is captured in both
indoor and outdoor locations, for example, university, hotel, Zara, and train stations. Every sample
in this dataset contains 21 timestamps, and the goal is to predict the 2D spatial positions for each
pedestrain in the future 12 timestamps.

A.8 IMPLEMENTATION DETAILS

Argoverse dataset is not fully observed, so we only use cars with complete observation as our input.
Since every sample doesn’t include the same number of cars, we only choose those scenes with less
than or equal to 60 cars and insert dummy cars into them to achieve consistent car numbers. Tra-
jNet++ Real dataset is also not fully observed. And here we keep our pedestrain number consistent
to 160.

Moreover, for each car, we use the average velocity in the past 0.1 second as an approximate to the
current instant velocity, i.e. vt = (pt − pt−1)/2. As for map information, we only include center
lanes with lane directions as features. Also, we introduce dummy lane node into each scene to make
lane numbers consistently equal to 650.

In TrajNet++ task, no map information is included. And since pedestrians don’t have a speedometers
to tell them exactly how fast they are moving as drivers, instead they depends more on the relative
velocities and relative positions to other pedestrians, we tried different combination of features in
ablative study besides only using history velocities.

Our models are all trained by Adam optimizer with base learning rate 0.001, and the gamma rate for
linear rate scheduler is set to be 0.95. All our models without map information are trained for 15K
iterations with batch size 16 and learning rate is updated every 300 iterations; for models with map
information, we train them for 30K iterations with batch size 16 and learning rate is updated every
600 iterations.

For CtsConv, we set the layer sizes to be 32, 64, 64, 64, and kernel size 4× 4× 4; for ρ1-ECCO, the
layer sizes are 16, 32, 32, 32, kθ is 16, kr is 3; for ρreg-ECCO, we choose layer size 8, 16, 8, 8, kθ
16, kr 3, and regular feature dimension is set to be 8. For Argoverse task, we set the CtsConv radius
to be 40, and for TrajNet++ task we set it to be 6.

A.9 ABLATIVE STUDY

We perform ablative study for ECCO to further diagnose different encoders, usage of HD maps and
other model design choices.

Choice of encoders Unlike fluid simulations (Ummenhofer et al., 2019) where the dynamics are
Markovian, human behavior exhibit long-term dependency. We experiment with three different en-
coders refered to as Enc to model such long-term dependency: (1) concatenating the velocities from
the past m frames as input feature, (2) passing the past velocities of each particle to the same LSTM
to encode individual behavior of each particle, and (3) implementing continuous convolution LSTM
to encode past particle interactions. Our continuous convolution LSTM is similar to convLSTM
(Xingjian et al., 2015) but uses continuous convolutions instead of discrete gridded convolutions.

We use different encoders to time-aggregate features and compare their performances (Table 3).

Use of HD Maps In Table 4, we compare performance with and without map input features.

Choice of features for pedestrian Unlike vehicles, people do not have a velocity meter to tell
him how fast they actually walk. We realize that people actually tend to adjust their velocities based
on others’ relative velocity and relative position. We experiment different combination of features
(Table 5), finding using relative velocities and relative positions as feature has the best performance.

A.10 QUALITATIVE RESULTS FOR TRAJNET++

Figure 8 show qualitative results for TrajNet++. Note that the non-equivariant baseline (2nd column)
depends highly on the global orientation whereas the ground truth and equivariant models do not.
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Encoder
Argoverse TrajNet++

ADE DE@1s DE@2s DE@3s ADE FDE

Markovian 4.67 - - 9.84 0.969 1.952
LSTM 2.05 1.06 2.51 4.71 0.909 1.909
CtsConvLSTM 3.98 2.02 5.11 8.40 0.962 1.941
CtsConvDLSTM 2.02 1.03 2.46 4.58 0.910 1.916
D-Concat(20t feats) 1.87 1.01 2.43 4.22 0.895 1.872

Table 3: Ablation study on encoders for Argoverse and TrajNet++. Markovian: Use the velocity
from the most recent time step as input feature. LSTM: Used LSTM to encode velocities of 20
timestamps. CtsConvLSTM: Instead of dense layer, the gate functions in LSTM are replaced by
CtsConv. CtsConvDLSTM: Replaced gate functions by CtsConv + Dense. D-Concat (20t feats):
Stacked velocities of 20 time steps as input.

Model
w/o Map w/ Map

ADE DE@1s DE@2s DE@3s ADE DE@1s DE@2s DE@3s

CtsConv 1.87 1.01 2.43 4.22 1.85 0.99 2.42 4.32
ρ1-ECCO 1.81 1.02 2.42 4.14 1.70 0.93 2.22 3.89
ρreg-ECCO 1.81 1.00 2.38 4.12 1.62 0.89 2.12 3.68

Table 4: Ablative study on HD maps for Argoverse. Prediction accuracy comparison with and
without HD Maps.

Velocity Relative Position Acceleration ADE FDE

Absolute × × 0.92 1.95
Absolute × � 0.90 1.87
Relative × � 0.89 1.86
Relative � � 0.86 1.79

Table 5: Ablative study on features for Traj++. Acceleration means whether we used acceleration to
make numerically extrapolated position.

Figure 8: The x,y-axes are the position (m). The dashed line represents the 2s past trajectory. The
solid line represents the 3s prediction. Red represents the agent. Top row: The predictions are made
on the original data. Bottom row: We rotate the whole scene by 160◦ and make predictions on
rotated data. From left to right are visualizations of ground truth, CtsConv, ρ1-ECCO, ρreg-ECCO.
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