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Resting state functional magnetic resonance imaging (rsfMRI) data exhibits complex but structured patterns.
However, the underlying origins are unclear and entangled in rsfMRI data. Here we establish a variational auto-
encoder, as a generative model trainable with unsupervised learning, to disentangle the unknown sources of
rsfMRI activity. After being trained with large data from the Human Connectome Project, the model has learned
to represent and generate patterns of cortical activity and connectivity using latent variables. The latent repre-

sentation and its trajectory represent the spatiotemporal characteristics of rsfMRI activity. The latent variables
reflect the principal gradients of the latent trajectory and drive activity changes in cortical networks. Representa-
tional geometry captured as covariance or correlation between latent variables, rather than cortical connectivity,
can be used as a more reliable feature to accurately identify subjects from a large group, even if only a short
period of data is available in each subject. Our results demonstrate that VAE is a valuable addition to existing
tools, particularly suited for unsupervised representation learning of resting state fMRI activity.

1. Introduction

The brain is active even at rest, showing complex activity patterns
measurable with resting state fMRI (rsfMRI) (Fox and Raichle, 2007).
It is widely recognized that rsfMRI activity is shaped by how the brain
is wired, or the brain connectome (Sporns et al., 2005). Inter-regional
correlations of rsfMRI activity are often used to report functional con-
nectivity (Biswal et al., 1995) and map brain networks for individuals
(Finn et al., 2015) or populations in various behavioral (Smith et al.,
2009) or disease states (Fox et al., 2014). However, it remains largely
unclear where rsfMRI activity comes from (Leopold and Maier, 2012;
Lu et al., 2019), whereas understanding its origins is critical to interpre-
tation of any rsfMRI pattern or dynamics (Winder et al., 2017).

Prior findings suggest a multitude of sources (or causes) for rsfMRI
activity (Bianciardi et al., 2009), including but not limited to fluctua-
tions in neurophysiology (Mantini et al., 2007), arousal (Chang et al.,
2016), unconstrained cognition (Chou et al., 2017), non-neuronal phys-
iology (Birn et al., 2008), head motion (Power et al., 2014) etc. These
sources only partially account for rsfMRI activity and may be entan-
gled not only among themselves but also with other sources that are
left out simply because they are hard to specify or probe in a task-free
state (Leopold and Maier, 2012). An inclusive study would benefit from
using a data-driven approach to uncover and disentangle all plausible
but hidden sources from rsfMRI data itself, without having to presume
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the sources to whatever are experimentally observable. To be effective,
such an approach should be able to infer sources from rsfMRI data and
generate new rsfMRI data from sources, while being able to account for
complex and nonlinear relationships between the sources and the data.

These requirements lead us to deep learning, or representation learn-
ing with deep neural networks (LeCun et al., 2015), as a nonlinear
method for blind source separation, in contrast to its linear counterparts,
e.g., independent component analyzes (Beckmann and Smith, 2004;
Calhoun et al., 2001; Smith et al., 2012). For brain research, deep learn-
ing models has provided testable models of the brain in terms of neu-
ral computation for sensory and language processing (Han et al., 2019;
Kell et al., 2018; Khaligh-Razavi and Kriegeskorte, 2014; Richards et al.,
2019; Wen et al., 2018; Yamins and DiCarlo, 2016; Zhang et al., 2020).
Deep learning has also been increasingly used as a generic family of ma-
chine learning tools to learn features from fMRI data. See Khosla et al.
(2019b) for a review. Most applications are in the regime of super-
vised learning. Typically, a neural network takes an fMRI-based input
data and is trained to generate an output that optimally matches the
ground truth for a task, such as individual identification (Chen and
Hu, 2018; Wang et al., 2019), prediction of gender, age, or intelligence
(Fan et al., 2020; Gadgil et al., 2020; Plis et al., 2014), disease classifi-
cation (Seo et al., 2019; Suk et al., 2016; Wang et al., 2020; Yang et al.,
2019; Zou et al., 2017). The labels required for supervised learning are
often orders of magnitude smaller in size than the fMRI data itself, which
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has a high dimension in both space and time. As a result, the prior studies
often limit the model capacity by using a shallow network and/or limit
the input data to activity at the region of interest (ROI) level (Chen and
Hu, 2018; Dvornek et al., 2018; Koppe et al., 2019; Matsubara et al.,
2019; Suk et al., 2016; Wang et al., 2019; Wang et al., 2020) or re-
duce it to functional connectivity (D’Souza et al., 2019; Fan et al., 2020;
Kawahara et al., 2017; Kim and Lee, 2016; Riaz et al., 2020; Seo et al.,
2019; Venkatesh et al., 2019; Yang et al., 2019; Zhao et al., 2018). It is
also uncertain to what extent representations learned for a specific task
would be generalizable to other tasks. It is further debatable whether
deep neural networks with supervised learning are currently superior to
more conventional and simpler methods (He et al., 2020).

For these considerations, unsupervised learning is more preferable
for uncovering the underlying causes that drive intrinsic brain activ-
ity regardless of any task or disease. We choose to use the Variational
Auto-Encoder (VAE) (Higgins et al., 2017; Kingma and Welling, 2013),
for unsupervised learning of the increasing “big data” in rsfMRI with-
out requiring any label or narrowly focusing on any downstream task.
Unlike auto-encoder, VAE is a generative model capable of synthesiz-
ing new data similar to the training data, and it regularizes the latent
space with a priori spherical Gaussian distributions. These properties
allow the representation learned to be expressed in terms of latent vari-
ables that encode the disentangled causes of the data. Our emphasis on
disentangling latent representations sets this work apart from several
prior work based on the auto-encoder implemented in various forms of
deep neural networks (Cui et al., 2019; Huang et al., 2017; Liu et al.,
2020a; Makkie et al., 2019; Suk et al., 2016; Zhao et al., 2018). Briefly
in this study, we designed and trained a VAE model to represent rsfMRI
data in terms of its latent sources and tested its ability to explain and
generate rsfMRI data. We characterized the time evolving trajectory
of latent representation and factorized its gradients by principal com-
ponents. We also analyzed the representational gradients and geome-
tries within and across individuals, as a way to characterize brain net-
works and their dynamic interactions. Lastly, we tested the use of this
model for characterizing individual variations and identifying individu-
als from their rsfMRI data (Finn et al., 2015), as a starting example of its
applications.
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2. Methods
2.1. Data

We used rsfMRI data from 650 healthy subjects randomly chosen
from the Q2 release by HCP (Van Essen et al., 2013). For each sub-
ject, we used two sessions of rsfMRI data acquired from different days
with either the right-to-left or left-to-right phase encoding. Each session
included 1,200 time points separated by 0.72 s. Following minimal pre-
processing (Glasser et al., 2013) and automatic denoising with ICA (or
the ICA-FIX) (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014), we
applied voxel-wise detrending (regressing out a 3rd-order polynomial
function), bandpass filtering (from 0.01 to 0.1 Hz), and normalization
(to zero mean and unitary variance). We further separated the data into
three sets, including 100, 50, or 500 subjects for training, validating, or
testing the VAE model, respectively. The validation dataset was used to
determine the hyper-parameters used in the VAE model. The testing data
were neither seen nor used by the model during training or validation.
This held-out data was used to test the generalizability of the model
across different datasets. For an exploratory analysis, we additionally
tested the model with rsfMRI data that did not go through denoising
with ICA-FIX to evaluate the model performance against presumably
noisier rsfMRI data.

2.2. Geometric reformatting

We converted the rsfMRI data from 3-D cortical surfaces to 2-D grids
in order to structure the rsfMRI pattern as an image to ease the appli-
cation of convolutional neural networks. As illustrated in Fig. 1.a, we
inflated each hemisphere to a sphere by using FreeSurfer (Fischl, 2012).
For each location on the spherical surface, we used cart2sph.m in MAT-
LAB to convert its cartesian coordinates (x, y, z) to spherical coor-
dinates (a, e), which reported the azimuth and elevation angles in a
range from —z to z and from - to %, respectively. We defined a
192 x 192 grid to resample the spherical surface with respect to az-
imuth and sin(elevation) such that the resampled locations were uni-
formly distributed at approximation (Supplementary Figure 1). We used

Fig. 1. Variational Auto-Encoder (VAE). (a)
Geometric reformatting. The cortical distri-
bution of fMRI activity is converted onto a
spherical surface and then to an image by
evenly resampling the spherical surface with
respect to sin(e) and a, where e and a are ele-
vation and azimuth, respectively. (b) Encoder-
decoder architecture. The encoder and the
decoder each contains 5 convolutional layers
connected in series. In the encoder, each layer
(numbered from 1 to 5) outputs a feature map
with the size of 96 x 96 x 64, 48 x 48 x 128,
24 % 24 x 128,12 x 12 X 256, or 6 X 6 X 256, re-
spectively. In layer 1, 32 kernels are applied to
192 x 192 flattened images of each hemisphere
separately, and output feature maps are con-
catenated along the kernel dimension, resulting
in a feature map with 64 channels. In the de-
coder, each layer (numbered from 8 to 12) out-
puts a feature map with a size of 12 x 12 x 256,
24 x 24 x 128, 48 x 48 x 128, 96 x 96 x 64,
or 192 x 192 x 2, respectively. The operation
at each layer is specified as follows. 1: convolu-
tion (kernel size=8, stride=2, padding=3) and
rectified nonlinearity; 2-5: convolution (kernel

—p xl

size=4, stride=2, padding=1) and rectified nonlinearity; 6: fully connected layer (yielding two 256-vectors as the mean and the standard deviation of 256 latent
variables) and re-parameterization; 7: fully connected layer and rectified nonlinearity (yielding a 6 x 6 x 256 feature map); 8-11: transposed convolution (kernel
size=4, stride=2, padding=1) and rectified nonlinearity; 12: transposed convolution (kernel size=8, stride=2, padding=3). The blue and red boundaries highlight

the input and output images for the left and right hemispheres, respectively.
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the nearest-neighbor interpolation to convert data from the 3-D surface
to the 2-D grid, and vice versa.

2.3. Variational autoencoder

We designed a g-VAE model (Higgins et al., 2017), a variation of VAE
(Kingma and Welling, 2013), to learn representations of rsfMRI spatial
patterns. This model included an encoder and a decoder (Fig. 1.b). The
encoder converted an fMRI map to a probabilistic distribution of 256
latent variables. Each latent variable was a Gaussian random variable
with a mean and a standard deviation. The decoder sampled the latent
distribution to reconstruct the input fMRI map or generate a new map,
which appeared similar to what would be observable with fMRI. The en-
coder stacked five convolutional layers and one fully connected layer.
Every convolutional layer applied linear convolution and rectified its
output (Nair and Hinton, 2010). The 1st layer applied 8 x 8 convolution
separately to the input from each hemisphere and concatenated its out-
put. To the feature maps concatenated across both hemispheres, the 2nd
through 5th layers applied 4 x 4 convolution. Since a spherical pattern
is circularly continuous with respect to the azimuth, we applied circular
padding to the boundaries of azimuth for the flattened 2-D map but ap-
plied zero padding to the boundaries of evaluation. Such padding was
intended to avoid artifacts when otherwise applying convolution near
those boundaries. The fully connected layer applied linear weighting
and yielded the mean and standard deviation that described the normal
distribution of each latent variable. The decoder used nearly the same
architecture as the encoder but connected the layers in the reverse order
for transformation from the latent space back to the input space. Fig. 1.b
illustrates the model architecture.

We trained the VAE model to reconstruct input while constraining
the distribution of every latent variable to be close to an independent
and standard normal distribution. Specifically, using the training data,
we optimized the encoding parameters, ¢, and the decoding parameters,
0, to minimize the loss function as below.

L(#,01x) = ||x = x||3 + B - Dgr[N(pz,0.)IIN (0, 1] %)

where x is the input data combined across the left and right hemispheres,
x' is the corresponding output from the model, N(u,,o,) is the poste-
rior normal distribution of the latent variables, z, with their mean and
standard deviation denoted as x, and o, N(0, I) is an independent and
standard normal distribution as the prior distribution of the latent vari-
ables, Dg; measures the Kullback-Leibler (K-L) divergence between the
posterior and prior distributions, and f is a hyperparameter balancing
the two terms in the loss function. Part of the medial cortical surface
that corresponds to corpus callosum (i.e., white matter) was excluded
from training such that the learned model was intended to merely rep-
resent the activity of cortical gray matter. To train the model, we used
f# =9 and stochastic gradient descent (batch size=128, initial learning
rate=10"%, and 100 epochs) and Adam optimizer (Kingma and Ba, 2014)
implemented in PyTorch (v1.2.0). The learning rate decayed by a factor
of 10 every 20 epochs. Note that the training samples included in each
batch were randomly selected from different subjects and time points.

We determined the hyperparameters by exploring and testing dif-
ferent parameter settings with the validation dataset. Specifically, we
explored seven values (1, 5, 6, 7, 8, 9, 10) for g and chose § =9 to bal-
ance the reconstruction performance vs. the disentanglement of latent
variables (Fig. 2), which corresponded to the two terms in the loss func-
tion shown in Eq. (1). We also explored several options for the number
of layers (e.g., 6, 8, 12) and the learning rate (e.g., 10=3, 10~4, 10~3),
and finalized those parameters based on the loss evaluated with the val-
idation dataset (Supplementary Fig. 2 and 3). Note that with the hyper-
parameters described above, only the VAE model with 12 layers were
able to reduce both reconstruction loss and Dg; when g =9.
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Fig. 2. Reconstruction vs. disentanglement for the VAE models trained
with different values for § in the loss function. g =9 shows a reasonable
trade-off between the reconstruction loss and the Kullback-Leibler divergence
on the validation dataset. Also see Supplementary Fig. 3 for related results with
VAE that include different numbers of layers.

2.4. Synthesizing rsfMRI functional connectivity

We used the trained VAE to synthesize rsfMRI data from random
samples of latent variables. To synthesize a vector in the latent space,
we drew a random sample of every latent variable independently from a
standard normal distribution. The synthesized vector passed through the
decoder in VAE, generating a cortical pattern. Repeating this process, we
synthesized 12,000 cortical patterns as data used for seed-based correla-
tion analysis. As examples, we explored three seed locations within V1,
IPS, and PCC and calculated the functional connectivity to each seed
based on the Pearson correlation coefficient. The MNI coordinates of
the seed in V1, IPS, and PCC were (7, -83, 2), (26, -66, 48), and (0, 57,
27), respectively, as previously described (Jarrett, 2009). In addition,
we performed a similar analysis without limiting to the seed locations.
Instead, we calculated the functional connectivity between each pair of
parcels as defined in a 360-parcel atlas of the whole cortex (Glasser et al.,
2016).

For comparison, we similarly calculated seed-based or parcel-to-
parcel functional connectivity (with the Fisher’s z-transform to convert
correlation coefficients to z scores) with experimental rsfMRI data con-
catenated across a varying number (1, 5, 10, 50, and 100) of subjects
in HCP. We compared the functional connectivity pattern observed with
synthesized and experimental data, and measured the spatial correlation
of the vectorized seed-based correlation map or parcel-to-parcel corre-
lation matrix (after z-transform). We repeated the comparison 20 times.
At each time, we randomly generated a different set of synthesized data
while using experimental data from a different and randomly selected
subset of subjects.

2.5. Defining a principal basis set of the latent space

By our design, the VAE model encodes the spatial pattern of fMRI
activity and does not represent the temporal dynamics explicitly. The
distribution of every latent variable is constrained to be close to a stan-
dard normal distribution independent of one another by minimizing the
K-L divergence term in the loss function in Eq. (1). This implies that the
latent variables in the VAE model are not unique. An arbitrary rotation
of a tentative set of latent variables would arrive at a new set of latent
variables that span the same latent space and satisfy the same learning
objective.

To identify a unique set of latent variables, we exploited the tra-
jectory of the latent representation. Specifically, for the fMRI data in
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the testing set (concatenated across 500 subjects), we encoded the fMRI
pattern observed at every time into a point (or vector) embedded in the
latent space. As time progressed, this point moved in the latent space
along a trajectory that represented the temporal dynamics of fMRI ac-
tivity.

In a first-order differential analysis, we evaluated the displacement
(or difference) of the latent representation from every time point to its
next and used this time-difference vector as a discrete approximate of
the latent gradient. To the latent gradient, we further applied singular
vector decomposition and used the singular vectors to identify a unique
basis set of the latent space. Each singular vector defined one latent vari-
able, while the corresponding singular value indicated the importance
of the latent variable in explaining the latent gradient of cortical activ-
ity. In other words, the trajectory was more likely to move along the
direction represented by a singular vector with a larger singular value
than one with a smaller singular value. The concepts of latent trajec-
tory, latent gradient, and principal components of latent gradients are
illustrated in Fig. 6.a.

The latent gradients are vectors in the latent space and can be de-
coded and visualized as spatial patterns on the cortex. We focused in-
terpretation on the top-9 latent variables defined as the singular vec-
tors with the largest 9 singular values. We passed each of these singular
vectors as the input to the VAE’s decoder and yielded a corresponding
cortical pattern for visualization. Since the polarity of each singular vec-
tor is arbitrary, the polarity of its cortical visualization should only be
interpreted in terms of the opposition between the positivity and the
negativity, while reversing positivity and negativity should not affect
its interpretation.

We further tested the reproducibility of the principal latent gradi-
ents. Specifically, we separated the data from 500 testing subjects into
two halves, each including data from 250 subjects. Separately for each
half of the dataset, we calculated the top-9 principal latent gradients and
decoded them to corresponding cortical patterns. Then we calculated a
matrix of pair-wise correlations between the principal gradients from
the first half and those from the second half. If the principal gradients
were highly reproducible, they should show up with similar patterns
and ordering for the first and second halves of the dataset, and the cor-
relation matrix should show high absolute values for diagonal elements
but low absolute values for off-diagonal elements.

Note that the latent gradients as well as their principal components
approximate the “temporal derivative” of brain-wide dynamics in the
latent space. They should not be interpreted as the “spatial gradients”
of either instantaneous activity patterns (Brown et al., 2021) or func-
tional connectivity patterns (Margulies et al., 2016). Instead, the latent
gradients described herein share a similar concept as the dynamic func-
tional connectivity previously described as the multivariate statistical
dependence of resting state fMRI data between successive time points
(Rogers et al., 2010; Liégeois et al., 2017, 2019). We will further elabo-
rate the similarity and distinction in the Discussion section.

2.6. Individual variation

To evaluate the individual variation, we compared the latent repre-
sentations of the fMRI data from different individuals. In an exploratory
analysis, we randomly selected a small (n=20) subset of subjects. We
chose 20 subjects to ease visualization and intuitive demonstration, be-
fore scaling up the analysis to 500 subjects. For each of the 20 subjects,
we converted the fMRI activities, instance by instance, to the represen-
tations in the latent space. To visualize and compare subject-wise rep-
resentations, we used the t-distributed Stochastic Neighbor Embedding
(t-SNE) method to visualize the 256-dimensional latent representations
(color-coded by subjects) in a two-dimensional space. The t-SNE method
attempted to maintain the relative distance between latent representa-
tions (regardless of subjects) embedded in the 2-D space to be as close
as possible to their distance in the latent space, where the distance was
measured as cosine dissimilarity. We calculated the Silhouette index to
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measure the cosine similarity of latent representation within the same
subject relative to the cosine similarity between different subjects.

2.7. Individual identification

After the exploratory analysis above, we evaluated the individual
variation across n=500 subjects in the testing set. For the distribution
of subject-wise latent representation, the first moment was the mean
and the second moment was the covariance. These two statistics report
distinct geometrical features of subject-wise latent representations: the
mean reports the location, and the covariance reports the geometry.

We tested the use of the first moment (mean) or the second moment
(covariance) as the subject-identifying feature. In the testing data set,
every individual had rsfMRI data acquired for two separate sessions.
From the first session, we extracted the feature from every subject and
stored it as the subject-identifying “key” in a database that included
a population of 500 subjects. Given this database, we tested the accu-
racy of retrieving any subject’s identity by using the feature extracted
from the second session as a “query” to match against all keys in the
database. The match was evaluated as the cosine similarity or the Pear-
son correlation coefficient when the query and the key were based on
either the mean or covariance of subject-wise latent representation. The
accuracy of individual identification was evaluated as the percentage
by which the correct identity was retrieved as one of the best 1, 5, or
10 matches, yielding the namely top-1, 5, or 10 accuracy. In addition,
we also evaluated the difference in the key-query similarity when the
key and the query were from the same subject (within-subject) vs. when
they were from different subjects (between-subject). To test the statisti-
cal significance of this difference, we ran a permutation test by shuffling
the subject identities for all keys and queries for 10,000 times to obtain
the null distributions of both within-subject and between-subject sim-
ilarity. The randomly shuffled subject identities reduced the matching
between the two fMRI sessions of the same subject to a chance level.

For comparison, we compared the performance of individual iden-
tification based on the above latent-space feature vs. the similar fea-
ture evaluated in the cortical space. The cortical-space features were
extracted with a similar method as previously reported in Finn et al.
(2015). Specifically, the functional connectivity (FC) between brain re-
gions (or connectome) was calculated as features for individual iden-
tification. Note that the cortical connectome and covariance of latent
representation, although they are nominally different terms, can both
be viewed as the representational geometry of brain activity in the cor-
tical space (for the functional connectome) or the latent space (for the
covariance of latent representation). In addition, we may also cast both
notions as the functional connectivity profile in the cortical space or
the latent space. Given such conceptual connections, we evaluated the
FC between every pair of 360 cortical parcels defined in an established
atlas (Glasser et al., 2016) and used the FC-based connectome as the
feature for individual identification (Finn et al., 2015). We compared
the connectome-based identification accuracy with that based on the
FC profile (or representational geometry) in the latent space for a vary-
ing population size (from n=5 to 500 subjects) or a varying length of
data per subject (from 9 to 180 s). We repeated the above analysis 100
times, each time with a different subset of the testing data and averaged
the identification accuracy across the repeated tests.

2.8. Comparison with linear latent space

The VAE model described herein provided nonlinear mapping
from the cortical space to the latent space (through the encoder)
and in reverse (through the decoder). Such reversible mapping could
be conventionally done through linear matrix operations, such as
the principal component analysis (PCA) and independent compo-
nent analysis (ICA). Hence, we compared the distribution and ge-
ometry of the rsfMRI representation in the nonlinear latent space
obtained with VAE vs. the linear latent space obtained with PCA
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or ICA as implemented in Group ICA of fMRI Toolbox (GIFT)
(Calhoun et al., 2001) (https://trendscenter.org/software/gift) or the
software of Multivariate Exploratory Linear Optimized Decomposition
into Independent Components (MELODIC) (Beckmann et al., 2004)
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC). For PCA, we applied
PCA to the training data (concatenated across 100 subjects) and used
the resulting 256 principal components to represent the testing data
(concatenated across 500 subjects). Similarly for ICA, we applied the
publicly available tool (GIFT or MELODIC) to the training data and
used the resulting 256 spatially independent components to represent
the testing data. We compared the performance of reconstructing fMRI
spatial patterns in the testing dataset based on their representations in
the nonlinear (VAE) vs. linear (PCA or ICA) latent space. In addition, we
compared PCA, ICA vs. VAE for characterizing individual variation or
performing individual identification by using the representation in the
PCA or ICA-derived linear latent space for the same analyses as used for
the representation in the VAE-based nonlinear latent space.

3. Results
3.1. VAE compressed rsfMRI maps

Inspired by its success in artificial intelligence (Higgins et al., 2017;
Kingma and Welling, 2013), we designed a VAE model in order to dis-
entangle the generative factors underlying rsfMRI activity. The model
was trained to represent and reconstruct rsfMRI data with a set of latent
variables that were constrained to be as independent as possible. The
hyper-parameter, f, which expressed the weighting of independence
among latent variables relative to the error of data reconstruction from
the latent variables, was initially explored for different values (1, 5, 6,
7, 8, 9, 10) and tested with the validation dataset. As shown in Fig. 2,
the model’s ability to represent the data with its posterior distribution
of the latent variables was reduced slightly while g increased from 1 to
9. At p = 9, the model reached a reasonable trade-off between its ability
to represent the input data and the independence of latent variables.
However, at # = 10 (or higher), data reconstruction collapsed while the
variational posterior distribution was further forced to match the prior
— a phenomenon known as the posterior collapse observed in other ap-
plications of VAE (Lucas et al., 2019). To avoid the posterior collapse,
we set # =9 as the final setting for training and testing the VAE with
rsfMRI data.

The model used a pair of convolutional and deconvolutional neu-
ral networks in an encoder-decoder architecture (Fig. 1.b). The encoder
transformed any rsfMRI pattern, formatted as an image on a regular 2D
grid (Fig. 1.a), to the posterior distributions of 256 latent variables. The
decoder used samples of the latent variables to reconstruct or generate
an fMRI map. Using data from HCP (WU-Minn HCP Quarter 2) (Van Es-
sen et al., 2013), we first trained the model with rsfMRI maps from 100
subjects and then tested it with rsfMRI data from 500 different subjects.

After being trained, the model could compress any fMRI map to a
low-dimensional latent space and restore the map from the latent rep-
resentation separately for every time point (Fig. 3). The compression
resulted in spatial blurring comparable to the effect of spatial smooth-
ing with 4-6 mm full width at half maximum (FWHM) (Fig. 4). Given
fMRI data spatially smoothed to a varying extent (FWHM from 1 to 10
mm), VAE showed either comparable or better performance in repre-
senting and reconstructing data than its linear counterparts (PCA or ICA
obtained with GIFT or MELODIC), when they used the same dimension
(256) for their latent spaces (Fig. 4.a). The difference in the reconstruc-
tion performance among VAE, PCA or ICA (GIFT or MELODIC) was sta-
tistically significant (repeated measures ANOVA followed by post-hoc
paired t-test, false discovery rate g<0.05), for all levels of spatial smooth-
ing tested in this study (Fig. 4.b). These results suggest that the posterior
latent representation obtained with VAE preserved the spatial and tem-
poral characteristics of rsfMRI, despite a modest but acceptable loss in
spatial resolution and specificity.
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3.2. VAE synthesized correlated fMRI activity

We asked whether the decoder in the VAE, as a generative model
of fMRI activity, had learned the putative mechanisms by which rsfMRI
activity patterns arise from brain networks. To address this question,
we randomly sampled every latent variable from its prior probability
distribution (i.e., the standard normal distribution) and used the decoder
to synthesize 12,000 rsfMRI maps (equivalent to time samples from 10
subjects at 1,200 time points per subject).

We calculated the seed-based correlations by using the VAE-
synthesized data and compared the resulting FC maps with the corre-
sponding maps obtained with rsfMRI data concatenated across a differ-
ent number of subjects. Fig. 5.a shows three examples with the seed
region in the primary visual cortex (V1), the intraparietal sulcus (IPS),
or the posterior cingulate cortex (PCC). For each of the three seed lo-
cations, the synthesized fMRI data showed a similar seeded FC map as
that based on length-matched rsfMRI data obtained from 10 subjects
(Fig. 5.a). The FC patterns were consistent with the literature (Yeo et al.,
2011). The measured FC patterns were more similar to the synthesized
FC patterns, when the measured FC was based on data from increasingly
more subjects, regardless of whether the FC was evaluated with respect
to a specific seed location (Fig. 5.b) or all cortical parcels (Fig. 5.c).
These results suggest that the VAE provided a computational account
for the generative process of resting state activity and could synthesize
realistic rsfMRI spatial patterns and preserve inter-regional correlations
as are experimentally observable at a group or population level. When
this generative process utilizes the latent variables sampled from their
prior distributions (i.e., a standard Gaussian distribution), the generated
FC patterns reflect the population average, rather than individualized
features. However, it is worth mentioning that the temporal ordering of
the synthesized data is not meaningful, since the VAE model does not
explicitly model the temporal dynamics. In this comparison, temporal
ordering is irrelevant to calculation of the temporal correlation coeffi-
cient, which ends up with the same measure of temporal dependency
after random shuffling in time.

3.3. Latent variables reflected network dynamics

We also examined the time-evolving trajectory of the latent repre-
sentation and re-defined the latent variables such that they reflected
the dynamic changes of fMRI activity. As illustrated in Fig. 6.a, we first
evaluated the displacement of the latent representation from every time
point to its next and used the resulting time-wise displacement vector
as an approximate of the latent gradient at each time point for all 500
subjects in the testing dataset. Then we applied singular value decom-
position and used the resulting singular vectors to redefine the latent
variables as the unique basis set that spanned the latent space. Such la-
tent variables, ranked in a descending order by their singular values,
represented the directions in which the latent representation tended to
move along its time-evolving trajectory.

We focused on the top-9 latent variables as the first nine principal
latent gradients that explained the latent dynamics of brain network ac-
tivity in a descending order (Fig. 6.b). Each principal gradient was a
vector in the latent space and thus could be visualized by passing itself
through the decoder in the VAE, resulting in a corresponding cortical
pattern (Fig. 6.c). The 1st latent variable highlighted sensorimotor ar-
eas, including primary visual, auditory and motor cortices, in opposite
polarity with the lateral intraparietal cortex. The 2nd latent variable was
visualized as a pattern of anti-correlation between the dorsal attention
network and the default mode network, similar to a finding reported by
Fox and colleagues (Fox et al., 2005) but without using the confounding
procedure of global signal regression (Murphy et al., 2009). The 3rd la-
tent variable corresponded to a largely unipolar pattern, likely reflecting
the cortical signature of the global signal. The 4th latent variable showed
the opposition between the motor cortex and the cognitive control net-
work. The 5th latent variable showed the opposition between a part of
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Fig. 3. Image reconstruction using VAE. A series of cortical patterns are reconstructed through the VAE model given the posterior latent distributions learned from
the original data from rsfMRI experiments. Among them, five original cortical patterns (upper panel) and their corresponding reconstruction through VAE (bottom
panel) are visualized for comparison. For an example region (green circle), the time series of the original activity (black line) and the reconstructed activity (red
line) are plotted for comparison (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

the default mode network and the frontoparietal control network. The
6th to 9th latent variables were more complex and less straightforward
to interpret in terms of heuristic resting state networks.

Nevertheless, the principal latent gradients were highly reproducible
given test and retest. We split the 500 subjects randomly into two groups
(250 subjects per group) and obtained the top-9 principal latent gradi-
ents and their cortical visualization separately for each group. The ma-
trix of the pair-wise correlations between the principal latent gradients
from the first half and those from the second half were very high for the
diagonal elements (the sign of correlation was arbitrary) (Fig. 6.d, top),
except that the 3rd and 4th gradients switched their order for the first
vs. second half of the dataset. The test-retest correlations in the corti-
cal pattern decoded from the principal latent gradients showed gener-
ally higher correlations for the diagonal elements than the off-diagonal
elements. However, the off-diagonal correlations were not necessarily
zeros. This is reasonable, because the VAE is nonlinear and the orthogo-
nality in the latent space does not imply the orthogonality in the cortical
space.

3.4. Individual variation of latent representation

Whereas the aforementioned analyses focused on the group-level
characteristics of the latent representations, we further asked how the
distribution and geometry of latent representation varied across indi-
viduals. Only for the sake of demonstration, we randomly selected 20
subjects in the testing dataset and visualized their individual representa-
tions in the latent space after reducing its dimension from 256 to 2 by us-
ing t-SNE (Fig. 7.a). Strikingly, the latent representations were grouped
by and separable across individuals. The clustering by individuals was
noticeable in the nonlinear latent space obtained with VAE (Fig. 7.a),
but not in the linear latent space obtained with PCA or ICA (Fig. 7.b).
Such distinctions were quantitatively confirmed (Fig. 7.c) by using the
Silhouette index to measure the degree of clustering by individuals. The
Silhouette value for VAE (mean =+ std: s=0.057+0.003) was significantly
higher (two sample t-test, p<0.001) than that for PCA (s=—0.020+0.015)

or ICA (s=—0.009+0.009). Using the center of latent representation as
the subject-identifying feature, we found that subject identity could be
retrieved with a reasonably high accuracy when the latent representa-
tion was extracted by VAE, whereas the linear representation by PCA
or ICA failed the same task nearly entirely (Fig. 7.d). These results sug-
gest the feasibility of using VAE to characterize and reveal individual
variations of resting state activity in a non-linear latent space.

3.5. Individual identification

From the t-SNE based visualization (Fig. 7.a), it was noticeable
that subject-wise representations exhibited different geometries. Some
were more elongated or scattered than others. This observation moti-
vated us to ask whether the representational geometry (Kriegeskorte and
Kievit, 2013) could be an individual-specific feature (or “fingerprint”) to
allow for more accurate individual identification. Specifically, we calcu-
lated the covariance between every pair of latent variables and assem-
bled the pair-wise covariance into a vector as the feature of the represen-
tational geometry and evaluated the similarity in this feature between
two sessions within or between subjects. The representational geometry
evaluated in this way could be interpreted as the functional connectivity
(FC) between latent variables. This interpretation related this approach
to a conceptually similar approach: the “connectome-based fingerprint-
ing” (Finn et al., 2015; Venkatesh et al., 2020), in which the functional
connectivity was evaluated between cortical parcels. So, we evaluated
the use of either the latent-space or cortical-space FC for individual iden-
tification in comparison.

As shown in Fig. 8.a, FC between any pair of cortical areas was
mostly positive (mean =+ std of z-transformed correlation: 2=0.26+0.3)
and highly reproducible not only within the same subject (r=0.66) but
also between different subjects (r=0.45). On the other hand, FC between
latent variables had both positive and negative values (mean + std of
covariance: 62=0.00+0.13) and its reproducibility was high only within
the same subject (r=0.41) but not between different subjects (r=0.07).
The FC profile was more distinctive across subjects when it was eval-
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Fig. 4. RsfMRI data compression and reconstruction with VAE vs. PCA and ICA. (a) For illustration, three example maps of fMRI activity, before (1st row) and
after (2nd row) spatial smoothing (FWHM=6mm), are shown in comparison with the corresponding maps reconstructed with VAE (3rd row), PCA (4th row), ICA by
GIFT (5th row) and MELODIC (6th row) with 256 nonlinear latent variables or linear components. (b) For quantitative comparison, the reconstruction performance,
in terms of the percentage of variance in the fMRI images explained by the model reconstruction, is shown for VAE, PCA, GIFT, and MELODIC a function of the
FWHM (from 1 to 10 mm) used for spatial smoothing of fMRI images. The error bar stands for the standard error of mean.

uated between latent variables rather than cortical areas (Fig. 8.b). In
the latent space, the FC profile was significantly more consistent within
a subject than between subjects (permutation test, p<0.001). The distri-
bution of within-subject correlations was in nearly complete separation
from that of between-subject correlations (Fig. 8.b, bottom).

Then we compared the performance of individual identification on
the basis of the FC profile in the latent vs. cortical space. To identify
1 out of 500 subjects, we compared a target subject’s FC profile in the
1st session (as a query) against every subject’s FC profile in the 2nd ses-
sion (as a key) and chose the best match between the query and the key
in terms of the Pearson correlation coefficient. As such, the choice was
correct if the correlation with the target subject was higher than the
largest correlation with any non-target subject. We found that the FC
profile in the cortical space could support 69.3% top-1 accuracy while
identification was often made with marginal confidence relative to the
decision boundary (Fig. 8.c). Using the FC in the latent space allowed us
to reach 98.6% top-1 accuracy. The evidence for correct identification
was apparent with a large margin from the decision boundary (Fig. 8.d).
The use of FC in the latent space supported reliable and robust perfor-
mance in top-1 identification given an increasingly larger population
(Fig. 8.e) or when the data were limited to a short duration (Fig. 8.f),
being notably superior to the use of FC in the cortical space.

We further tested to what extent the performance of individual iden-
tification relied on the use of ICA-FIX to preprocess and denoise the
rsfMRI data. For this purpose, we applied ICA-FIX to one or both of the

Table 1

The accuracies of subject identification when ICA-FIX based denoising
was applied to the rsfMRI data for both sessions, only one session, and
neither sessions for each subject.

Session 1
Clean(%) Noisy(%)
Session Latent Clean 98.6 90.7
2 Space Noisy 91.5 94.1
Cortical Clean 69.3 47.2
Space Noisy 47.5 76.9

two sessions in every subject and then tested the individual identifica-
tion with n=500 subjects. As shown in Table 1, when the FC profile
in the latent space was derived from the (ICA-FIX denoised) clean data
for both the keys and queries, the identification has the highest accu-
racy (98.6%). When the key and the query were both based on noisy
data (without denoising), the accuracy dropped to 94.1%. When the
key and the query were unpaired as denoising applied to one but not
the other, the accuracy further dropped to about 91%. Nevertheless, this
performance obtained with the latent-space FC was still notably higher
than the performance based on the cortical-space FC. For the latter, the
use of unpaired preprocessing for the query and the key significantly
dropped the identification performance from 69.3% to 47.5%. Counter-
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Fig. 5. VAE synthesizes correlated fMRI activity. (a) Seed-based correlations of VAE-synthesized fMRI data (top row) vs. experimental fMRI data (bottom row)
with the seed location (green circle) at V1 (left), IPS (middle), or PCC (right). (b) Spatial correlations between the seed-based functional connectivity based on
VAE-synthesized data and those based on measured fMRI data concatenated across 1, 5, 10, 50, or 100 subjects. The colors indicate different seed locations (V1:
black; IPS: red; PCC: blue). Similarly, (c) shows the spatial correlation between the synthesized vs. measured functional connectivity among 360 cortical parcels. The
error bar indicates the standard error of the mean averaged across 20 repeated trials (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.).

intuitively, when no denoising was applied to either the query or the
key, the identification accuracy with the cortical-space FC increased to
76.9%, but still significantly lower than the accuracy of 94.1% obtained
with the latent-space FC.

Lastly, we explored whether the representational geometry (based
on the profile of the covariance between latent variables) would yield
a similar level of distinction across individuals for a linear latent space
obtained with PCA, GIFT, or MELODIC. As shown in Fig. 9, PCA or ICA
(either GIFT or MELODIC) was not as effective as VAE. The top-1 ac-
curacy of individual identification was 61.1% for PCA, 50.2% for GIFT,
64.8% for MELODIC in contrast to 98.6% for VAE. The within-subject
vs. between-subject similarity in the geometry of linear representation
obtained with PCA or ICA (GIFT or MELODIC) exhibited largely overlap-
ping distributions, whereas the corresponding distributions were sepa-
rated nearly completely for the nonlinear representations obtained with
VAE.

4. Discussion

Here, we present a method for unsupervised representation learning
of cortical rsfMRI activity. Our results suggest that this method is able to
capture and disentangle the generative factors underlying resting state
activity, characterize individual variation, and support accurate indi-
vidual identification. We expect this method to be a valuable addition
to the existing tools for characterizing resting state networks and their
dynamics. Next, we discuss our findings from the joint perspective of
methodology, neuroscience, and applications.

For representation learning of brain activity, we vision that a gener-
alizable system should consist of a base model plus add-on modules. The
base model should be trained with self-supervised learning or unsuper-
vised learning and task-free resting state fMRI. Thus, the base model is
independent of any specific goals, e.g., behavior or disease prediction,
or any specific tasks relevant to perception, action and cognition. After
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it is trained, the base model is expected to be applicable to fMRI data in
different task conditions and to be able to support different goals, not di-
rectly by itself, but through add-on extensions. Each add-on should use
the representation learned by the based model and be trained to meet a
target goal by supervised learning. It is desirable to design and train the
base model with a deep architecture to leverage a large amount of un-
labeled data, whereas add-ons can be relatively shallow and learnable
with fewer labeled data. This strategy would perhaps make the system
more scalable, because unlabeled data are much more abundant than la-
beled data. To support a new goal or condition, the base model should
not necessarily have to be retrained or redesigned from scratch but need
to pair itself with a new add-on learnable with relatively limited sam-
ples.

In the context of this perspective, VAE is a well-suited model to
serve as an initial part of the base model described above. It is trainable
with unsupervised learning (without any label) (Higgins et al., 2017;
Kingma and Welling, 2013). Since rsfMRI measures spontaneous brain
activity unconstrained by any task, labels as required for supervised
learning are either unavailable or far fewer than the data itself. Un-

supervised learning with VAE can leverage the ever-increasing amount
of rsfMRI data (Van Essen et al., 2013). The latent representations ex-
tracted from VAE can serve as the input to other add-on models or al-
gorithms to further support more specific goals such as classification of
brain disorders and prediction of their phenotypes (Garrity et al., 2007;
Moradi et al., 2015; Shen et al., 2010; Zhang et al., 2011). The design
and training of add-on models should be driven by the specific goal of
interest and thus be variable across different goals. We intend to con-
fine the scope of this paper to unsupervised learning of the VAE-based
base model, while leaving the design and supervised learning of various
adds-on models to future studies.

The method herein can be extended in multiple ways. Although it
is trained with rsfMRI data, we hypothesize that the VAE model can
encode and decode both rsfMRI and task-fMRI data but with different
latent distributions. If this is true, one may use this model to classify
different perceptual, behavioral, or cognitive states and to reveal the
distinctive network interactions underlying various states (Gonzalez-
Castillo et al., 2015). The fact that the VAE can synthesize new data
(Fig. 5) is also appealing. It can be used as a post-processing strategy for
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data augmentation and interpolation, when data is short or corrupted,
which are of interest for evaluation of dynamic functional connectivity
(Allen et al., 2014; Chang and Glover, 2010) and correction for head
motion (Power et al., 2014). It also supports the notion that the learned
latent space captures the origins of rsfMRI and the VAE decoder captures
the computational account for how rsfMRI arises from its plausible ori-
gins.

It is worth mentioning two limitations of the VAE model in its cur-
rent form. First, the model focuses on cortical patterns but excludes sub-
cortical and white-matter voxels. This design is not only for the ease of
model implementation but also for the predominant role of the neocor-
tex in brain functions (Rakic, 2009). However, this precludes the model
from accounting for subcortical networks or their interactions with the
cortex. Addressing this limitation awaits future studies to redesign the
model as a 3-D neural network that takes volumetric fMRI data as the in-
put. Second, the VAE model only represents spatial patterns but ignores
temporal dynamics inherent to rsfMRI data. Modeling the temporal dy-
namics is desirable but non-trivial, since it is highly irregular, complex
and variable. To fill this gap, we direct future studies to designing a re-
current neural network (Chen and Hu, 2018; Cui et al., 2019; Shi et al.,
2018; Sutskever et al., 2014; Zhao et al., 2019), as an add-on to VAE, to
further learn sequence representation, e.g., with a self-supervised pre-
dictive learning strategy (Kashyap and Keilholz, 2020; Khosla et al.,
2019a).

Although VAE does not explicitly model the temporal dynamics, the
representation obtained with VAE largely preserves the temporal dy-
namics (Fig. 3). The trajectory of the latent representation describes
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the temporal behavior of brain networks, as opposed to the behavior
of individual voxels or regions. This trajectory is amenable to the use
of many methods previously described for voxel-wise or region-wise
analysis. To note a few examples explored in this study, the first-order
temporal derivative in the latent representation captures the gradient
of latent trajectory that drives the brain to change its activity pattern
from one time point to the next. The latent gradient is also represented
as a vector in the latent space. The length of this vector measures the
displacement in the latent space and presumably the magnitude of the
instantaneous transition in network activity. The direction of this vector
encodes a pattern of network interaction that drives the instantaneous
change of network activity. The principal components of the latent gra-
dients uncover the hidden factors that drive the temporal dynamics of
brain networks (Fig. 6).

The use of temporal derivative has been exploited in multivari-
ate auto-regressive modeling of voxel-wise fMRI signals. For example,
Rogers and colleagues used a first-order auto-regressive (AR-1) model
to describe the relationship between signals at successive time points
(Rogers et al., 2010). This AR-1 model is a matrix that describes the
multivariate dynamics of brain activity — how the signals at present can
tell us about the signals upcoming at next. As such, the AR-1 matrix it-
self provides a dynamic measure of functional connectivity (or namely
dynamic functional connectivity), in contrast to static functional con-
nectivity (Biswal et al., 1995; Yeo et al., 2011) or time-varying func-
tional connectivity (Chang and Glover, 2010; Hutchison et al., 2013), as
discussed in depth by Liégeois and colleagues (Liégeois et al., 2017). In
light of these prior work, the temporal gradients discussed herein can be
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similarly described by the AR-1 model (or dynamic functional connec-
tivity matrix) minus an identity matrix. It discounts a trivial effect that
a voxel-wise signal simply copies itself from one time to its next. In this
sense, the temporal gradients describe the temporal dynamics. When
evaluated in the latent space, such temporal gradients report dynamics
of networks, rather than voxels or regions of interest (Liégeois et al.,
2019).

A related analysis or notion has been explored in two independent
studies reported in two recent preprints, which we became aware of dur-
ing the peer review of our paper (Brown et al., 2021; Liu et al., 2020b).
Unlike these related studies, it is worth noting that the latent gradi-
ents and their principal components discussed in this paper are tempo-
ral gradients of latent trajectory, rather than spatial gradients. It reflects
changes of network activity patterns, as opposed to the spatial pattern
of network activity itself. Further, the temporal gradient of network ac-
tivity should also be set apart from the spatial gradient of functional
connectivity (Margulies et al., 2016). Nevertheless, the conceptually dis-
tinctive gradient measures appear to share partly similar patterns — an
intriguing observation that remains to be interpreted either mathemat-
ically or in terms of brain structure.

Central to this study is the efficacy of using VAE to disentangle what
causes resting state activity. In the VAE model, the sources are the la-
tent variables that compress the spatial patterns of brain activity and
explain temporal gradients in brain dynamics. The decoder describes
how the sources generate the observed activity. The encoder models
the inverse inference of the sources from the activity. Since the latent
variables are discovered in a data-driven manner, it is currently unclear
how to interpret them as specific physiological processes, many of which
are not observable. Visualizing each latent variable as a cortical pattern
through the VAE’s decoder is helpful for heuristic interpretation of the
latent variable in terms of resting state networks (Yeo et al., 2011). For
example, it is perhaps intuitive to interpret the 3rd latent variable as a
major contributor to the global signal (Fox et al., 2005; Murphy et al.,
2009), potentially reflecting the arousal fluctuation (Chang et al., 2016).
Several latent variables correspond to various patterns of opposition be-
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tween networks, e.g., cortical areas involved in sensorimotor vs. cogni-
tive functions, attention vs. default-mode. However, such heuristic and
post-hoc interpretation should be taken with caution. More mechanistic
interpretation awaits future studies to test the causal relationships be-
tween the latent variables learned from data and their cortical or behav-
ioral correlates. Nevertheless, we expect the latent variables extracted
by VAE to provide the computational basis for understanding the ori-
gins of resting state activity. We do not suggest that the latent variables
should be interpreted with any dichotomy such as signals vs. noise, neu-
ronal vs. non-neuronal, and brain vs. body. Increasingly evidence sug-
gests that such cases of dichotomy are either overly simplified or ques-
tionable (Bright and Murphy, 2015; Azzalini et al., 2019). We also do
not necessarily expect one-to-one correspondence between latent vari-
ables and observable physiological sources, because those sources are
likely entangled. For example, systemic fluctuations, such as changes in
cardiac, respiratory, or gastric rhythms, may arise from sympathetic or
parasympathetic neuromodulation mediated by neural pathways rang-
ing from the brainstem to the cortex (Ozbay et al., 2019; Rebollo et al.,
2018). Instead, it is more reasonable to expect many-to-one correspon-
dence such that physiological sources, e.g., arousal or respiration, may
be predicted from the latent variables up to linear and sparse projection.

It is worth noting that the VAE is trained with data from a popula-
tion of subjects, instead of a single subject. Every training example is
a spatial pattern of cortical activity. Different training examples may
reflect different brain states or different subjects. Hence, the learned
latent variables may reflect some sources that explain individual vari-
ation and those that explain the characteristics of the brain common
across individuals. It is likely and desirable that the latent space might
be further separated into two sub-spaces: one characterizes individual
variation, whereas the other reports population characteristics of the
brain. Although we are unable to separate the individual vs. population
characteristics, the VAE is not biased by individual variation in terms of
its architecture, learning objective, or training strategy. During training,
each batch uses training examples randomly drawn from different sub-
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jects. Thus, embeddings in the latent space should reflect the intrinsic
structure of resting state fMRI data, as opposed to any analysis artifact.

The VAE model used in this study learns to compress high-
dimensional data into much lower-dimensional space spanned by or-
thogonal basis. In this sense, VAE is similar to temporal ICA (Smith et al.,
2012) but allows for nonlinear relationships between the latent variables
and the input data they represent (Khemakhem et al., 2019). Similar
to the notion of “learn to compress and compress to learn” (Yu et al.,
2020), the VAE pushes for disentanglement to maximize the degree of
compression. If the latent variables were not independent of one an-
other, the low-dimensional representations expressed in terms of the
latent variables could be further compressed. In practice, this objective
is measured by using the K-L divergence between the latent variables’
prior and posterior distributions. The latter is dependent on the input
data, whereas the former does not. When the K-L divergence is given
a high weight (p) relative to the reconstruction loss, the model forces
the posterior distribution to match the prior and thus tends to ignore
the input data. We have observed this phenomenon when g was set to
10 or higher with our current model. This phenomenon, also known
as the posterior collapse (Lucas et al., 2019), is a dilemma for training
the VAE. Since disentanglement is not perfect (to avoid the posterior
collapse), the posterior is not exactly a spherical Gaussian distribution.
When VAE represents data from a large population of subjects, the rep-
resentations follow a distribution close to, but not exactly, a spherical
Gaussian distribution. However, given input data from a single subject
(or a few subjects) or a short period of time, the VAE-obtained repre-
sentations do not necessarily follow a spherical Gaussian distribution, as
demonstrated in Fig. 7. In this study, we used a fixed g during training.
It might be of interest to vary f dynamically during learning to mitigate
the dilemma of reconstruction vs. disentanglement (Shao et al., 2020).
In addition, the architecture of the VAE model also has room for im-
provement, including its depth, the number of channels or the kernel
size in each layer.

In the latent space, functional connectivity between latent variables
describes the geometry of the latent representation of rsfMRI activ-
ity. This is a new perspective different from the functional connectiv-
ity among observable voxels, regions or networks (Biswal et al., 1995;
Yeo et al., 2011). If the VAE model has fully disentangled the sources
in a population level, functional connectivity should be near zero be-
tween different latent variables and thus reflect a spherical geometry.
In other words, the model sets a nearly null population-level baseline,
against which individual variation stands out. The latent-space func-
tional connectivity given data from a single subject becomes a unique
feature of that subject. Supporting this notion, the use of functional con-
nectivity in the latent space allows for a significantly improved accu-
racy, robustness, and efficiency in individual identification, compared
to the use of functional connectivity among cortical parcels (Amico and
Goiii, 2018; Byrge and Kennedy, 2019; Finn et al., 2015; Mejia et al.,
2018; Venkatesh et al., 2020).

Note that our main purpose is not to push for a higher identification
accuracy but to understand the distribution and geometry of data rep-
resentations in the feature space. Therefore, we opt for minimal prepro-
cessing and the simplest strategy for individual identification. There is
still room for methodological development to further improve the iden-
tification accuracy or to extend it for many other tasks, including clas-
sification of the gender or disease states, prediction of behavioral and
cognitive performances, to name a few examples. We expect such appli-
cations would be fruitful and potentially impactful to cognitive sciences
and clinical applications.
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