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ABSTRACT

Mass spectrometry (MS) has been a key to proteomics andmetabolomics

due to its unique ability to identify and analyze protein structures.

Modern MS equipment generates massive amount of tandem mass

spectra with high redundancy, making spectral analysis the major

bottleneck in design of new medicines. Mass spectrum clustering is

one promising solution as it greatly reduces data redundancy and

boosts protein identification. However, state-of-the-art MS tools

take many hours to run spectrum clustering. Spectra loading and

preprocessing consumes average 82% execution time and energy

during clustering. We propose a near-storage framework, MSAS, to

speed up spectrum preprocessing. Instead of loading data into host

memory and CPU, MSAS processes spectra near storage, thus re-

ducing the expensive cost of data movement. We present two types

of accelerators that leverage internal bandwidth at two storage

levels: SSD and channel. The accelerators are optimized to match

the data rate at each storage level with negligible overhead. Our

results demonstrate that the channel-level design yields the best

performance improvement for preprocessing - it is up to 187× and

1.8× faster than the CPU and the state-of-the-art in-storage comput-

ing solution, INSIDER, respectively. After integrating channel-level

MSAS into existing MS clustering tools, we measure system level

improvements in speed of 3.5× to 9.8× with 2.8× to 11.9× better

energy efficiency.
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Figure 1: Execution time and energy breakdown for various

mass spectrum clustering tools, msCRUSH [29], MS-Cluster

[11], and MaRaCluster [26]. Preprocessing = Loading + Com-

puting.

1 INTRODUCTION

Four key "omics" disciplines drive precision medicine today: ge-

nomics, transcriptomics, proteomics, and metabolomics. While ge-

nomics and transcriptomics rely on sequence alignment (DNA and

RNA sequences), proteomics and metabolomics depend on mass

spectrometry (MS). Due to its powerful capabilities of identifying

molecular structures, an increasing number of fields exploit MS-

based proteomics and metabolomics to unravel the components

and structures underlying proteins and cells [10, 12, 18, 23].

A popular approach to obtain spectra data is shotgun proteomics

[18], where mass spectrometers analyze samples and acquire mil-

lions of fragment spectra in hours. Processing spectra data is the

most time-consuming part during experiments [26] since the same

molecules may be scanned by mass spectrometer many times, cre-

ating many similar and redundant spectra fragments. The high data

redundancy severely degrades the efficiency of the MS analysis

pipeline, such as open search [10]. Various clustering algorithms

and tools [11, 13, 26, 29] have been developed to reduce the data

redundancy through clustering similar spectra and selecting rep-

resentatives of each cluster for protein and peptide identification.

The clustering step not only decreases the overall analysis time but

also improves the identification quality [11, 29].

However, state-of-the-art MS clustering tools are too slow to

tackle the exponential growth of MS data. MS-Cluster [11] and

spectra-cluster [13] take nearly 30 hours to cluster a dataset with

25M spectra [6], far behind the over-gigabyte hourly data gener-

ation speed of modern mass spectrometers [26]. The number of

spectra data submission to one of the largest public mass spectra

datasets, PRIDE [20], has increased over 10× during the past ten

years. The MassIVE [27] database has stored 4 × 109 publicly ac-

cessible spectra with over 300 terabytes (TB). Due to the enormous

size of these datasets, clustering is done only a few times a year,

resulting in less accurate search results. To this end, new tools are

essential for both clustering and search of mass spectrometry data
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to accelerate the identification of proteins, which are critical for

the development of new medicines.

Our profiling in Fig. 1 shows that the spectra preprocessing step

(includes loading and computing) is the major bottlenecks that ac-

count on average 82% of execution time and energy of the clustering

pipeline. The speed of spectra loading and computing is restricted

by the costly data movement and limited bandwidth between host

memory and storage. MS tools need to fetch the bulky spectra data

from storage devices to the host memory before performing the

computing step on the CPU. Even with PCIe and NVMe [3] tech-

niques, the peak read speed of commercial SSD storage [1] (3.2GB/s)

is insufficient compared to spectra data over tens of GBs. The other

issue is that only a tiny portion of spectra are preserved after pre-

processing. The current pipeline still loads the entire unprocessed

dataset into memory, leading to unnecessary time and data move-

ment overhead. Unfortunately, existing DRAM-based accelerators,

such as MEDAL [15] and RAPID [14], are not suitable for MS pre-

processing because they are optimized for reducing data movement

cost near DRAM. They are unsuitable to efficiently process spectra

and remove the inherent redundancy before fetching data from the

storage without dramatically increasing the DRAM capacity and

cost. Thus, MS preprocessing should be accelerated in storage as it

has the low cost and high capacity needed to prepare the MS data.

In this work, we propose a near-storage architecture, MSAS, to

accelerate MS preprocessing. The key contributions in this work

can be summarized as follows:

• To the best of our knowledge, MSAS is the first near-storage

design to boost MS spectra preprocessing. We exploit the internal

bandwidth of SSD by conducting a design space exploration at

the SSD level and channel level. The results indicate that the

channel-level acceleration yields the best hardware and energy

efficiency.

• We develop a fully pipelined accelerator with scalable perfor-

mance for each storage level. We identify the top-k selector as the

bottleneck of MSAS and develop an efficient top-k selector based

on modified Bitonic algorithms to match the internal bandwidths.

• We extensively compare MSAS with state-of-the-art MS cluster-

ing tools on various datasets. We obtain up to 187× speedup on

spectra preprocessing tasks. Furthermore, as compared to the

state-of-the-art in-storage computing prototype [24], MSAS is

up to 1.8× faster. After integrating MSAS into state-of-the-art

clustering tools, 2.8× to 11.9× energy efficiency and 3.5× to 9.8×

speedup are achieved on clustering workloads.

2 BACKGROUND ON MS AND SSD

2.1 Mass Spectrometry

A wide variety of fields, such as analytical chemistry and large-

scale proteomics, have adopted MS as a powerful tool to identify

biological structures or chemical compounds. A mass spectrometer

is used to generate spectra data containing the mass-to-charge ratio

(m/z) and ion signal intensity of molecules. As depicted in Fig. 2 (b),

a mass spectrum can be considered as a plot of ion signal intensity

and mass-to-charge ratio [30], where the ion strength is expressed

as its intensity in y-axis against their m/z in the x-axis. Each peak

in a spectrum stands for a component with unique m/z in the

tested sample. Throughout this work, we adopt the commonly used

Mascot generic format (MGF) [22] as the storage format of spectra.

m/z

Intensity
BEGIN IONS
PEPMASS=482.565826
CHARGE=3+
TITLE=SARS-CoV-2
SCANS=9481
RTINSECONDS=1063.207

104.40397 804.910644
401.07154 2936.69824
602.05508 34657.82128
703.05452 160803.8906
904.05318 75956.40136
1310.0715 705.271258

END IONS

(b)

Reserved data after 
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Figure 2: (a) Pipeline of data analysis for MS, (b) A spectrum

example in MGF format.

MGF consists of metadata and spectra data, such that metadata

record the precursor m/z, peptide charge, query title, and other

information. In contrast, the spectra data we use consists of the

peak intensity and m/z pairs. Fig. 2 (b) shows a spectrum with total

six intensity and m/z pairs.

Fig. 2 (a) illustrates the data analysis pipeline for MS. Researchers

can leverage the spectra data to identify molecules and analyze in-

herent properties through matching the discovered spectra against

all the peptides in sequence databases using search engines, like

Mascot [22]. Preprocessing step, including filtering, intensity se-

lection, and data normalization, is essential for the subsequent

processes since it improves the quality of the results. The filtering

step filters the precursor-related peaks and peaks out of the target

range, thus reducing noise interference. After the filtration, the

intensity selection step finds and preserves the 𝑘 most intensive

peaks. It further reduces the impact of trivial peaks. The typical

𝑘 value is from 30 to 50 [11, 29]. Data normalization is the final

step to lessen the dominant effects of excessive values through

additional transformations. The spectra preprocessing is critical for

the final analysis quality as demonstrated in [32]. The above three

steps are widely used in clustering and search tools [11, 13, 29].

Moreover, the preprocessing compresses spectra size and reduces

data redundancy.

2.2 Modern SSD

The architecture of modern SSDs is shown in Fig. 3 [1, 8, 19]. The

internal SSD is organized into multiple-level hierarchies, such as

channels, chips, planes, to name a few. The most frequently used

non-volatile storage elements in SSDs are NAND flash memory [31].

The NAND flash chips are organized into 4 to 32 channels, and each

channel operates independently and simultaneously [8]. The flash

memory controller (FMC) is implemented to perform dedicated

data access and error correction for each channel. Several NAND

flash chips share one channel, and these NAND flash chips can issue

I/O requests independently. Normally 4 to 8 chips are connected

to single-channel [19]. Each NAND chip consists of multiple dies,

where each die contains multiple planes, blocks, and pages [8].
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Figure 3: Overall diagram of MSAS accelerators embedded

in regular SSD, including two types of designs in different

storage levels: (a) SSD-level design, (b) Channel-level design

in the buffer manager.

Page with 4 to 16KB size is the smallest unit that can be accessed

and indexed in SSDs. The embedded cores are responsible for SSD

control, including issuing I/O commands from the external interface

and data scheduling. Modern SSDs normally adopt the high-speed

NVMe [3] interface to ensure over GB/s external data rate. However,

the internal multiple-level hierarchy provides significantly higher

data parallelism [4, 8].

3 MSAS ARCHITECTURE

3.1 Overview

Fig. 3 illustrates the overall architecture of MSAS in generic SSDs.

MSAS-enabled SSD storage preserves the regular SSD datapath and

can additionally boost MS data processing. The limited external

bandwidth of SSD may become the bottleneck for data-intensive

workloads. However, the highly parallelized SSD internal architec-

ture provides opportunities to alleviate the bandwidth bottleneck

[8]. To this end, we create and evaluate two independent designs,

namely SSD-level and channel-level MSAS accelerators, to exploit

the internal bandwidth of SSD. Accelerators in different storage

levels use scalable hardware configurations to provide sufficient

throughput at the cost of reasonable overhead. For the two designs

in Fig. 3, they follow a similar execution flow: the raw spectra are

fetched from NAND flash through the input datapath and then

computed in MSAS accelerators. The preprocessed spectra results

are temporarily cached in the buffers. When the buffers are full or

ready, the output datapath transfers processed spectra in buffers

through the regular SSD read datapath to host memory. The dif-

ference between the two designs is they are exposed to different

internal bandwidths and physical address space.

SSD-level Design: Fig. 3 (a) shows the topmost SSD-level MSAS

accelerator that resides in the SSD. The SSD-level accelerator is

implemented using CMOS technology on the same die of SSD’s em-

bedded cores. It is connected to the global on-chip bus and fetches

data from the NAND flashes through the regular SSD datapath.
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Figure 4: (a) Architectures of MSAS accelerator, 1 : regular

SSD read datapath, 2 : metadata loading, 3 datapath form/z

and intensity preprocessing, (b) Spectra filter, (c) Scale and

normalization module, (d) Processing element (PE).

Thus it can access the entire physical address space of back-end

NAND flashes and enjoy a peak bandwidth that equals to the ex-

ternal SSD bandwidth (e.g. 3.2GB/s [1]). The SSD-level accelerator

helps to save over 95% SSD’s external bandwidth through the NVMe

interface; over 95% of data after preprocessing step are discarded

due to the redundancy of spectra data.

Channel-level Design: To improve the overall efficiency, the

channel-level accelerator in MSAS aggregates the bandwidth of

multiple channels as shown in Fig. 3 (b). In contrast, DeepStore [19]

extends the internal bandwidth by implementing accelerators in

each channel. However, this approach has two defects. First, only

800MB/s rate can be exposed to the accelerator in each channel.

Second, implementing accelerators in every channel incurs a large

hardware overhead. Our channel-level design resides between FMC

and DMA engine, where each channel has 800MB/s bandwidth [2].

In generic SSD architecture, the buffer manager is connected to

all 𝑁ch channels, and it is responsible for transporting data from

channel bus to DRAM buffer [4]. We add a channel splitter [9]

between FMC and DMA engine to multiplex the channel data bus.

The channel-level MSAS accelerator is implemented within the

buffer manager, and it receives data from the channel splitter and

sends processed results to DMA. We can tune the internal band-

width exposed to the channel-level design by choosing different

splitting factors of the channel splitter. Assume each accelerator

shares𝐶share channel buses, the highest available bandwidth to each

accelerator is (800 · 𝐶share)MB/s. In this case, total (𝑁ch/𝐶share)

channel-level accelerators need to be implemented. Meanwhile, the

physical address space of shared 𝐶share channels is accessible for

each accelerator. Section 4.1 gives the chosen parameter 𝐶share.

3.2 MSAS Accelerator

Fig. 4 (a) gives the architecture of MSAS accelerator for performing

spectra loading and preprocessing. Throughout this work, we use

32-bit single floating-point as the spectra data format processed by

MSAS accelerators. The original data reading of SSD is preserved

in datapath 1 . Datapath 2 and datapath 3 are used for spectra

loading and preprocessing. When a new spectrum is coming, the
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metadata is first cached into the data buffer through datapath 2 .

The processing for m/z and intensity are performed in datapath 3

after the metadata loading is finished. Three processing modules,

including spectra filter, top-k selector, and scale and normalization

module, are implemented over 3 . These modules are executed in

a fully pipelined manner to ensure high throughput.

Data Buffer: Multiple data buffers are implemented in each MSAS

accelerator, and each data buffer has the same size as SSD’s page

(8KB). After the preprocessing steps, data buffers work as plane

registers to transfer data to SSD DRAM. The page-size data buffers

align with SSD’s physical addresses since the page is the minimum

data chunk that can be indexed. Moreover, we implement double

data buffers and interleave the data access of data buffers to avoid

clock stalls caused by pipelining.

Spectra Filter: m/z and intensity pairs are fed into the spectra

filter in Fig. 4(b). The spectra filter requires only a single clock cycle

to perform a total of five comparisons. The first two comparators

determine whether the given m/z value is located within the range

of m/z threshold. The third and fourth comparisons with the pre-

cursor threshold are performed to discard those spectra near the

precursor peptide. The last comparison is for filtering the spectra

with peak intensity less than the intensity threshold. Finally, the

m/z and intensity pairs that satisfy all the comparison criteria are

allowed to pass to the top-k selector.

Top-k Selector: The top-k selector finds the 𝑘 most intensive peaks

of the streaming m/z and intensity pairs from the spectra filter.

Classic sorting algorithms like Bitonic sort and quick sort can solve

the top-k problem by (1) sorting all the data and then (2) selecting

the 𝑘 largest values. However, the straightforward Bitonic or quick

sort is inefficient and superfluous in practical use since the top-k

selector does not require strict sorting. Moreover, the number of

streaming intensities could be over hundreds, thus finding the top-k

values in such data volume would incur huge hardware overhead.

We simplify the original Bitonic algorithms for efficient top-k

selection. Fig. 5(a) illustrates an example of 8-point Bitonic sorting

network composed of log2 𝑁 phases where the 𝑖-th phase contains

𝑖 stages. The last phase is called merge phase. There are 𝑁 /2 com-

pare and swap (CS) in each stage. The required number of CS units

is O(𝑁 log2 𝑁 ) with O(log2 𝑁 ) latency. We would obtain sorted

results after the data pass through the whole network. The original

Bitonic network can be simplified to efficiently support top-k selec-

tion [25] as shown in Fig. 5(b). The basic idea is the remove those

CS units in the merge phase that will not impact the top-k results.

Assuming a top-k problem 𝑘 = 6 with Bitonic network 𝑁 = 8, the

last stage together with the upper part of the second stage in the

merge phase can be removed to obtain correct top-k results. In this

case, the latency is reduced from 6 to 5 and the required CS units

decrease from 24 to 18.

Using a fully parallel Bitonic network would introduce prohib-

itive hardware overhead. Instead, we construct a stage-folded it-

erative Top-k selector in Fig. 5(c). A single Bitonic stage is reused,

and the top-k results are computed iteratively. Specifically, the gen-

erated top-k results will be latched in the output pipeline register.

Then 𝑘 inputs are reserved for the last top-k results while the rest

𝑁 − 𝑘 inputs are used to receive new input from the spectra fil-

ter. The last top-k results and the new data from the spectra filter

are sent to the next round of selection. During the period of top-k

computation, the serial to parallel register (S/P) is continuously

caching newm/z and intensity pairs. The new top-k results are sent

to the next computation with new cached data in the S/P register.

Considering the typical 𝑘 value is 30 up to 100 for MS preprocess-

ing [6, 11], we choose 𝑁 = 128 for channel-level and SSD-level

accelerators to support these 𝑘 values. This configuration delivers

a peak throughput of 5.8GB/s for 𝑘 = 100.

Scale and Normalization Module: The 𝑘 most intensive peaks

from the top-k selector need to be scaled and normalized to elimi-

nate the dominant effect of large intensity. The scale and normal-

ization module supports three commonly used functions, including

log scaling, square root scaling, and unit normalization. For unit

normalization, the 𝑘 peak intensities are scaled to (0, 1] with the

accumulation value of peaks. The accumulation of all 𝑘 intensi-

ties are computed in the stage-pipelined adder tree in Fig. 4(c). In

turn, the normalized values are computed by the divider in the

processing elements (PE). The log and square root normalizations

are computed by the PE in Fig. 4(d).

3.3 Data Mapping Scheme in MSAS

The available physical address space varies for different MSAS

accelerators. There are two basic requirements for spectra data

mapping to maximize bandwidth and hardware utilization. First,

they need to be stored in a page-aligned manner. Second, the data

of continuous spectrum should be stored in continuous space. For

the SSD-level accelerator, the entire SSD address space is accessible.

Thus, the generic SSD page allocation scheme can work as the SSD-

level data mapping scheme. Each channel-level design is exposed to

the address space of continuous 𝐶share channels. Thus, the spectra

data should be evenly allocated to each channel group composed

of 𝐶share channels.

4 EVALUATION

4.1 Methodology

Baselines: We evaluate four state-of-the-art spectrum clustering

tools, including MS-Cluster [11], spectra-cluster [13], MaRaCluster

[26] andmsCRUSH [29]. The fragmentmass tolerance and precursor

mass tolerance are set to 0.05 Da and 20 ppm, respectively. The

most 50 intensive peaks are preserved. We filter those peaks whose
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Table 1: Spectra Datasets for Evaluation

MS Spectra Datasets

Class Sample Type PRIDE ID # Spectra Avg. Len. Size

PXD-Tiny Kidney cell[10] PXD001468 1.1 × 106 ≈181 5.6GB

PXD-Small Kidney cell[23] PXD001197 1.1 × 106 ≈816 25GB

PXD-Medium HeLa proteins[7] PXD003258 4.1 × 106 ≈509 54GB

PXD-Large HEK293 cell[12] PXD001511 4.2 × 106 ≈798 87GB

m/z is out of range 200 to 2000. MS-Cluster is set to run three

rounds of clustering and uses the integrated LTQ_TRYP model.

spectra-cluster is tested under its fast mode. The other options and

parameters are set to default. On top of the comparison to the CPU-

based implementation, we show the performance improvement

of MSAS over the state-of-the-art in-storage computing solution

INSIDER [24].

Spectra Datasets: Table 1 summarizes the used datasets at differ-

ent data scales and average lengths. We classify the datasets into

four categories based on their size. The data are publicly available

and downloaded from the PRIDE repository [28]. All raw data are

converted into MGF format using ThermoRawFileParser [16] with

release version 1.3.4.

Area and Power Modeling: The baseline MS clustering tools were

evaluated on a server with Intel Xeon E5-2680 CPU, 64GB DDR4-

2133MHz memory, and a 2TB commercial PCIe-based SSD. The

maximum read speed is 3.2GB/s. The energy consumption of CPU

baselines is measured using CPU Energy Meter [5]. MSAS accelera-

tors are implemented using Verilog and synthesized by Synopsys

Design Compiler on TSMC 28nm process. The clock frequency is set

to 800MHz. The area and energy consumption of FIFO and buffer

are estimated using CACTI [21].

Table 2: MSAS Implementation and Area Breakdown
Design SSD-Level Channel-Level

Frequency 800MHz

Bitonic Top-K 𝑁 = 128 (0.09mm2)

Norm. Scale 0.27mm2 0.27mm2

FIFO 32b×64

Buffer 256KB (0.36mm2) 64KB (0.09mm2)

Area 0.72mm2 0.45mm2

Number 1 4

Total Area 0.72mm2 1.81mm2

Average Power 2.22W 8.06W

MSAS is evaluated on 1TB Intel DC P4500 SSD, providing a se-

quential read bandwidth of 3.2GB/s and sequential write bandwidth

of 600MB/s [1]. The active power under sequential access mode is

11W and 9.6W for write and read, respectively. We assume each

flash array has a read latency of 64us, 16 channels, 4 flash chips

per channel, 2 dies per chip, 2 planes per die, 512 blocks per plane,

and 1024 pages per block. Each flash page is 8KB, and each channel

using ONFI [2] has a bandwidth of 800MB/s. We combine perfor-

mance data obtained via SSD simulation with the SSD power model

in [17] to estimate the energy consumption. The configurations

and area breakdown of MSAS accelerator in three storage levels are

summarized in Table 2. We let each channel-level accelerator share

𝐶share = 4 channels, requiring 16/4 = 4 channel-level accelerators.

The flash-level design contains a total of 16 × 4 = 64 accelerators.

4.2 Performance and Energy Evaluation

Comparison of SSD and channel-level designsWe first com-

pare the preprocessing speed of MSAS accelerators at different

storage levels. The configurations of SSD-level and channel-level

3.3

1.0

3.8

1.0

3.7

1.0

3.8

1.0

0

1

2

3

4

SSD Channel SSD Channel SSD Channel SSD Channel
PXD-Tiny PXD-Small PXD-Medium PXD-LargeN

or
m

al
iz

ed
 E

xe
cu

tio
n 

Ti
m

e

Compute Data Transfer

Figure 6: Execution time comparison for SSD-level and

channel-level designs.

91

165

100

183

111

187

108

182

0

50

100

150

200

INSIDER MSAS INSIDER MSAS INSIDER MSAS INSIDER MSAS
PXD-Tiny PXD-Small PXD-Medium PXD-Large

Sp
ee

du
p
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over CPU baselines.

designs are shown in Table 2. The spectra data are pre-stored in

SSD before the preprocessing starts. Fig. 6 illustrates the execution

time on four MS datasets, where the channel-level execution time

is normalized to 1. Channel-level design is 3.3× to 3.8× faster vs.

SSD-level design. The gain comes from two aspects. First, spectra

preprocessing is data-intensive rather than computation-intensive

workload. In this case, higher bandwidth brings about more signifi-

cant speedup. Second, each channel-level accelerator is connected

to 4 channel buses and enjoys 3.2GB/s bandwidth. As discussed

in Section 3.2, each fully pipelined channel-level accelerator can

fulfill 4.8GB/s data rate. The four channel-level accelerators are able

to fully exploit the aggregate 12.8GB/s internal bandwidth of 16

channels. In comparison, the performance of SSD-level design is

restricted by the limited 3.2GB/s bandwidth of the on-chip bus.

Spectra preprocessing speedup In Fig. 7, we compare the per-

formance of channel-level design and the in-storage computing

prototype, INSIDER [24], over CPU on spectra preprocessing work-

load. We use msCRUSH as the CPU baselines as it yields the fastest

speed. INSIDER uses 8-lane PCIe, which delivers 8GB/s peak band-

width, and the spectra preprocessing is computed using FPGA in

SSD. The channel-level MSAS achieves 165× to 187× speedup over

CPU. Moreover, MSAS is 1.7× to 1.8× faster than INSIDER. The

speedup is derived from two aspects. First, INSIDER needs to load

raw spectrum data from SSD into FPGA and then transfer processed

data back to SSD, incurring redundant data movement. MSAS only

fetches data from NAND flash once. Second, the internal bandwidth

of MSAS is 60% higher than INSIDER’s PCIe bandwidth.

System-level improvements after integrationWe integrate the

channel-level design into the existingMS clustering tools (msCRUSH,

MS-Cluster, and MaRaCluster) by replacing the preprocessing part

with MSAS framework. This offloads the preprocessing into MSAS-

enabled SSD. The clustering part is executed on the CPU. For CPU

baselines, the entire preprocessing and clustering process is com-

puted by CPU. Fig. 8 gives the speedup and energy efficiency of

MSAS over CPU baselines after integration. The channel-level
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Figure 8: Speedup and energy efficiency over CPU after inte-

grating MSAS into clustering tools.

MSAS achieves 3.5× to 9.8× speedup and 2.8× to 11.9× energy

efficiency on four datasets. The preprocessing steps are dominant

the runtime and energy of clustering workloads, as shown in Fig.

1. Accelerating preprocessing provides significant overall speedup

for clustering tools.

Comparing the performance gain within each clustering tool,

we observe that the gain is more significant on datasets with longer

average spectrum length (e.g. PXD-Small and PXD-Large). This is

due to the fact that the average spectra length of PXD-Tiny is close

to the top-k value (𝑘 = 50). The data size of preprocessed spectra is

not greatly reduced compared to the raw spectra, leading to 3.5× to

6.7× with 2.8× to 8.0× lower energy consumption. The difference

in performance gain between the three clustering tools is mainly

benefitted from the code optimization.
4.3 Overhead Analysis

The channel-level design consumes the largest area among the

proposed designs. Considering that the TLC NAND flash chip [31]

has a die size over 100mm2, the largest channel-level design only

incurs 0.03% area overhead, which is negligible. SSD’s 50W power

budget [19] is more than sufficient for the added MSAS accelerators.

The channel-level design, with the highest 8.06W power dissipation,

meets the power supply constraints.

5 CONCLUSION

In this work, we propose MSAS , the near-storage computing frame-

work that efficiently accelerates the mass spectrum data preprocess-

ing. Based on the observation that preprocessing takes nearly 82%

of the overall execution time and energy consumption for MS anal-

ysis, MSAS tackles the challenge by performing the preprocessing

in SSD. We present two types of accelerator designs to exploit the

internal storage bandwidth at different levels of the storage hierar-

chy. Then we design scalable and energy-efficient accelerators to

satisfy the data rate for each storage level. The channel-level MSAS

generates the best efficiency with 1.81mm2 area and 8.06W power.

The experiments show that the channel-level MSAS is able to boost

spectra preprocessing by up to 187× compared to the fastest MS

analysis tool. Moreover, MSAS reduces the execution time up to

1.8× compared to in-storage computing prototype, INSIDER. We

show that the proposed solution can improve the clustering speed

and energy efficiency of the overall MS clustering pipeline by 3.5×

to 9.8× and 2.8× to 11.9×, respectively.
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