FHDnn: Communication Efficient and Robust Federated Learning

for AloT Networks

Rishikanth Chandrasekaran®, Kazim Ergun®, Jihyun Lee, Dhanush Nanjunda, Jaeyoung Kang

Tajana Rosing
Department of Computer Science and Engineering, UC San Diego, La Jolla, CA 92093
{r3chandr, kergun, h0l003, dnanjund, j5kang, tajana}@ucsd.edu

Abstract

The advent of IoT and advances in edge computing inspired fed-
erated learning, a distributed algorithm to enable on device learn-
ing. Transmission costs, unreliable networks and limited compute
power all of which are typical characteristics of IoT networks pose
a severe bottleneck for federated learning. In this work we propose
FHDnn, a synergetic federated learning framework that combines the
salient aspects of CNNs and Hyperdimensional Computing. FHDnn
performs hyperdimensional learning on features extracted from a
self-supervised contrastive learning framework to accelerate train-
ing, lower communication costs, and increase robustness to network
errors by avoiding the transmission of the CNN and training only the
hyperdimensional component. Compared to CNNs, we show through
experiments that FHDnn reduces communication costs by 66X, local
client compute and energy consumption by 1.5 - 6X, while being
highly robust to network errors with minimal loss in accuracy.

CCS Concepts

« Computing methodologies — Machine learning.

Keywords
Hyperdimensional Computing, Federated Learning
ACM Reference Format:
Rishikanth Chandrasekaran®, Kazim Ergun®, Jihyun Lee, Dhanush Nanjunda,
Jaeyoung Kang, Tajana Rosing. 2022. FHDnn: Communication Efficient and
Robust Federated Learning for AIoT Networks. In Proceedings of the 59th
ACM/IEEE Design Automation Conference (DAC) (DAC °22), July 10-14, 2022,
San Francisco, CA, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3489517.3530394
1 Introduction

A group of distributed edge devices communicating with each
other and sharing data is loosely termed the Internet of Things (IoT).
These edge devices are privy to a rich source of data which when
leveraged can enable various smart applications such as smart cities
[15] [2] and Al-enabled farming [18]. However, often the private and
sensitive nature of the data coupled with high transmission costs
prevent the central aggregation of data to the cloud. Recent advances
in edge computing enabled the idea of distributed computing for
on device processing. One such distributed learning paradigm is
federated learning (FL) [17]. FL learns a machine learning model on
data distributed across various devices without having to aggregate
them centrally. FL works by training models locally on the device
with data visible to each device and then averages these models from
all participating devices.

"Both authors contributed equally to this research

(Cliol

This work is licensed under a Creative Commons Attribution International 4.0 License.

DAC 22, July 10-14, 2022, San Francisco, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9142-9/22/07.
https://doi.org/10.1145/3489517.3530394

37

loT Camera

’v‘%

Local Training
(client) :

Noisy loT A
Channel Server &3

Image
—> N
81%

Accuracy

FHDnn

Rl Packet Loss:

20%
Figure 1: FHDnn against CNNs for federated learning

Transmission costs, unreliable networks, and limited on device
computer power pose significant challenges for FL. Previous works
[4, 5] have explored model compression methods and dropout tech-
niques to reduce the communication cost by decreasing the size of
the model updates. However, these methods do not factor in the non-
ideality of IoT networks, assuming reliable lossless communication
and subsequently are neither robust to network errors nor provide
guarantees for convergence. Also, IoT often uses Low Power Wide
Area Networks (LP-WAN) to conserve energy of battery operated
edge devicesm but it has limited bandwidth, high packet loss and no
sophisticated coding scheme making FL vulnerable to errors.

We present FHDnn a novel synergetic federated learning frame-
work that combines 2 different learning paradigms of Deep Learning
and Hyperdimensional Computing (HDC) [11]. Deep learning excels
at learning a complex hierarchy of features and boasts high accu-
racy however at the cost of compute power often requiring GPUs
to train. HDC on the other hand features lightweight training using
simple operations on distributed low precision representations that
are inherently robust to errors. However, they don’t enjoy the same
accuracy as deep learning due to their inability to learn features
automatically. FHDnn combines the complimentary salient features
of both learning methodologies to enable a lightweight highly robust
FL framework that addresses each of the above challenges. In this
work, we limit ourselves to the problem of image classification, a
common application in IoT.

FHDnn uses a pre-trained Convolutional Neural Network (CNN)
as a feature extractor, the output of which are encoded into hypervec-
tors that are then used for training a federated HD learner. Specifically
we utilize a CNN trained using SimCLR [6] a contrastive learning
framework which learns informative representations of images in
a self-supervised manner that generalizes well to several datasets.
FHDnn avoids the transmission of the CNN and instead trains only
the HD classifier in a federated manner. This simple strategy accel-
erates learning, reduces transmission cost and utilizes the inherent
robustness of HDC to tackle network errors as shown in Figure 1.
In this work, we detail the architecture of FHDnn and systemati-
cally compare the performance of FHDnn with CNN under various
settings. We summarize our key contributions below:

e We propose FHDnn, a novel FL strategy that is robust to lossy
network transmission, is incredibly lightweight to train, and con-
verges faster.

DAC °22, July 10-14, 2022, San Francisco, CA, USA

i Encoded hypervector

: R
:]
HEncoder RS E imumnm R ES S
H 4 0 o
= = L vosu[TTTEe«s | §5
" : i 2R
Pixasos[TTF=e[]«" i 3
Conv-3 +
: Training
G-+ [T T e]
fony- L @=a- [TTT=]

Send Class Hypervectors
Image

Figure 2: FHDnn Model Architecture

o We empirically show through numerous experiments that FHDnn
is robust to lossy network conditions. Specifically we evaluate
FHDnn under three different unreliable network settings: packet
loss, noise injection, and bit errors.

e We show that our approach reduces the communication costs by
66x%, and reduces the local computations cost on the clients by up
to 6X while being robust to lossy transmissions.

2 Background and Motivation
2.1 IoT networks

IoT networks often involve a large number of battery operated
edge devices operating on a Low Power Wide Area Networks (LP-
WAN). LPWAN networks have limited bandwidth, narrow spectrum,
and often lack any advanced modulation schemes due to compute
cost and power constraints. Further, the network performance is
worse due to the presence of packet loss which is highly prevalent
in these networks [19, 20]. A study [16] shows that retransmission
is non ideal as it further increases energy consumption and reduces
network performance due to limited capacity. However, [9] shows
that tolerating a packet loss rate of 20% allows for increased energy
efficiency and network capacity.

2.2 Challenges in FL

Communication Efficiency: FL involves multiple rounds of com-
munication typically until a target test accuracy is achieved. Each
round, the participating clients send their models to the server. Com-
plex models, like CNNs, contain millions of parameters resulting in
large updates. FL typically takes several rounds to converge to the
optimum which further exacerbates the communication cost.
Lossy Transmission: As detailed above, IoT networks are often
unreliable which adds noise to the model updates causing conver-
gence issues. CNNs in particular are not robust to noise on weights
as shown in [3]. Failure to converge results in poor accuracy while
longer convergence times results in increased communication costs.
Resource constraints: Battery operated edge devices typical to
10T networks have limited power and computation budgets. CNN
based FL methods require edge devices to perform on-device back-
propogation during each round of training which is computationally
expensive incurring high resource usage.

3 Proposed Method: FHDnn

3.1 Model Architecture

Figure 2 shows the model architecture of FHDnn. In the following
subsections we detail the 2 components of FHDnn: i) a pre-trained
CNN as a feature extractor, ii) a federated HD learner, followed by
the training methodology.

38

Rishi and Kazim, et al.

Initial model deployed

\t: all clients

\Train only HD
Learner

./I
{

B
3

New HD Model

'J ; & - < |E|
Client
(Local training)

@m HD Learner T
&d}, Feature Extractor

=

A%
5 — Saa—@E@os
HD Model
Update

Models from each
participating client

Federated bundling
(class hypervectors)

Figure 3: FHDnn Federated Training

3.2 Feature extractor

While in theory any standard CNN can be used as a feature ex-
tractor, due to its salient characteristics we use a pre-trained SimCLR
Resnet model as our feature extractor. SimCLR [6] is a contrastive
learning framework which learns representations of images in a
self-supervised manner by maximizing the similarity between latent
space representations of different augmentations of a single image.
This class agnostic framework trained on a large image dataset al-
lows for transfer learning over multiple datasets, (as evaluated in
[6]) making it ideal for a generic feature extractor. Standard CNNs
learn representations that are fine-tuned to optimize the classification
performance of the dense classifier at the end of the network. Since
SimCLR focuses on learning general representations as opposed to
classification oriented representations, it is a better choice of fea-
ture extractor. Note that We choose the ResNet architecture due to
availability of pre-trained models. One could use other models such
as MobileNet, which are more ideal for edge devices with resource
constraints.

3.3 HD learner

HDC is a computing paradigm based on biologically plausible
models of data representation [12]. HD works by encoding data
into low precision vectors of very large dimensions, referred to as
hyper vectors in literature. HD classifiers operate on these vectors
using binding and bundling operations which are simple and highly
parallelizable.

Here we are concerned with encoding the output of a neural
network. We use an encoding method proposed in [10] based on the
notion of random projection. This approach embeds the data into a
high-dimensional Euclidean space under a random linear map before
quantizing them. More formally, given a point x € X, the features
z C Z" are extracted using the feature extractor f : X — Z where f
is a pre-trained neural network. The HD embedding is constructed as
¢(z) = sign(®Pz) under the encoding function ¢ : Z — H the rows
of which ® € R%*" are generated by randomly sampling directions
from the n-dimensional unit sphere. sign(®z) is the element-wise
sign function returning +1 if ®z > 0 and —1 otherwise.

3.4 Federated Training

Figure 3 summarizes the federated training process for FHDnn.
3.4.1 Client Local Training: Each client initially starts with a feature
extractor f and an untrained HD learner. Once we get the encoded
hypervectors using the method described above, we create class
prototypes by bundling together hypervectors of the corresponding
class using ¢ = 3; hf . Inference is done by computing the cosine
similarity metric between a given encoded data point with each of
the prototypes, returning the class which has maximum similarity.
After this one-shot learning process we iteratively refine the class

FHDnn: Communication Efficient and Robust Federated Learning for AloT Networks

prototypes by subtracting the hypervectors from the mispredicted
class prototype and adding it to the correct prototype as shown in
Figure 2. We define the complete HD model C as the concatenation
of class hypervectors, i.e., C = [clT, cg, CZ],

3.4.2 Federated Bundling: In the federated bundling framework, each

client maintains its own HD model and participates to build a global

model in a distributed fashion. This is achieved via an iterative train-

ing procedure for which we describe one round (say t-th) of the

algorithm below.

(1) Broadcast: The central server broadcasts the latest global HD
model, CZ, to all clients.

(2) Local updates: Each participating client n € [N] sets its model
C}! = C; and then performs training for E epochs using local data
as described in 3.4.1

(3) Aggregation: The central server receives and aggregates the
local models to produce a new global model:

N
Crai=) Chy. (1)
n=1

After aggregation, the server moves on to the next round, ¢ + 1. This
procedure is carried out until sufficient convergence is achieved.

3.5 FL Over Unreliable Channels With FHDnn

Federated learning is often carried out over wireless channels
that attenuate the transmitted signal and introduce noise followed
by packet losses. The centralized server is assumed to be able to
broadcast the models reliably, error-free at arbitrary rates, which is
a common assumption in many recent works. For uplink commu-
nications, the channel capacity per client is more constrained and
unreliable due to shared wireless medium, even at very low rates.

The bandwidth allocated per client decreases with the number of
clients, so does the capacity. Accordingly, the volume of data that can
be conveyed reliably, i.e, throughput, scales by 1/N. This implies that
the data rates will be small, resulting in slow training speed unless
transmission power is increased, which is undesirable considering
energy consumption concerns.

Instead of limiting the rate to achieve error-free communication,
we admit errors for the channel output at the server as perturbations
in the client models can be tolerated to an extent by FHDnn. If the
model is robust to errors, then there is no need for perfectly reliable
transmissions. Thus, we analyze FHDnn assuming that the clients
communicate over unreliable channels and the transmitted models
are corrupted.

We consider three error models at different layers of the network
stack. All models are applicable in practice depending on the under-
lying protocol. We first explore the properties of HD computing that
makes the learning robust under the considered error models, then
introduce different techniques for further improvement.

3.5.1 Noisy Aggregation. Conventional systems use source and chan-
nel coding to ensure reliability which are often unavailable in LPWAN
networks. For noisy aggregation, as an alternative to the conventional
pipeline, we assume uncoded transmission. This scheme bypasses the
transformation of the model to a sequence of bits, which then need to
be mapped again to complex-valued channel inputs. Instead, the real
model parameter values are directly mapped to the complex-valued
samples transmitted over the channel. Leveraging the properties of
uncoded transmission, we can treat the channel as formulated in
Equation (2), where the additive noise is directly applied to model
parameters. The channel output received by the server for client k at
round t is given by

é]f = C]f + n];

@)

39

DAC °22, July 10-14, 2022, San Francisco, CA, USA

Original Image

Figure 4: Noise robustness of hyperdimensional encodings

Noisy Image

Retrieved Image

where n]tC ~ N(0, O'f k) is the d X n-dimensional additive noise. Then,
the signal-to-noise ratio (SNR) is:

ElICK|? Py -
tk= — 1.5~ 5
Elnk|2 of,

An immediate result of federated bundling is the improvement
in the SNR for the global model. When the class hypervectors from
different clients are bundled at the server, the signal power scales up
quadratically with the number of clients N, whereas the noise power
scales linearly. Assuming that the noise for each client is independent,
we have the following relation:

Bl SN, Ckl NP,
TEISN okl No? @

” Zk:l n[” No-t,k

Notice that the effect of noise is suppressed by N times due to
bundling. This claim can also be made for the FedAvg framework
over CNNs. However, even though the noise reduction factor is the
same, the impact of the small noise might be amplified by large acti-
vations of CNN layers. In FHDnn, we do not have such a problem
as the inference and training operations are purely linear. One other
difference of FHDnn from CNNs is its information dispersal prop-
erty. HD encoding produces hypervectors which have holographic
representations, meaning that the information content is spread over
all the dimensions of the high-dimensional space. Since the noise
in each dimension can also be assumed to be independent, we can
leverage the information spread to further eliminate noise.

Consider the random projection encoding described in Section
3.3. Let the encoding matrix ® € R%" expressed in terms of its
d row vectors, ie., ® = [®, D, ..., <I>d]T. Then, the hypervector
formed by encoding information x € X can be written as h =
[<I>1Tx, CIDgx, . <I>£x]T, where x = [x1,x2, ..., xn]T. As implied by this
expression, the information is dispersed over the hypervectors uni-
formly. Now consider additive noise over the same hypervector such
thath+n = [CD{x +n1, CI>2Tx +no, ..., dDZx + nd]T. We can reconstruct

. = N X SNR; 1

the encoded information from the noisy hypervector h = h + n as

follows:
1 d -1 d N 1 d -
X~ [E Z ®i1hi, - Z Cighi, - 5 Z ‘I’i,nhi]
i=1 i=1 i=1

where h; = CIJl.Tx + n; are the elements of the noisy hypervector. The
noise variance is then reduced by the averaging operation, similar
to the case in Equation (4). Therefore, in HD computing, the noise
is not only suppressed by bundling accross models from different
clients, but also by averaging over the dimensions within the same
hypervector. We demonstrate this over an example where we encode
a sample from the MNIST dataset, add Gaussian noise, then recon-
struct it. Figure 4 shows the original image, noisy image in the sample
space, and reconstructed image for which the noise was added in the
hyperdimensional space.

©)

3.5.2 Bit Errors. We use bit error rate (BER) in conventional coded
transmission as a figure of merit for system robustness. It is a measure
on how accurately the receiver is able to decode transmitted data.
The errors are bit flips in the received digital symbols, and are simply
evaluated by the difference (usually Hamming distance) between
the input bitstream of channel encoder and the output bitstream of
channel decoder. Let ¢ be the binary coded model parameters that

DAC °22, July 10-14, 2022, San Francisco, CA, USA

are communicated to the server. For the bit error model, we treat the
channel as a binary symmetric channel (BSC), which independently
flips each bit in ¢ with probability p. (e.g., 0 — 1). The received
bitstream output at the server for client k at round ¢ is then as follows:
éf =Croer (6)
where e]; is the binary error vector and @ denotes modulo 2 addition.
Given a specific vector v of Hamming weight wt(v), the probability
that e]f = v is given by
P(ef =v) = p¢" " (1= pe)m 1) ™
The bit error probability, pe, is a function of both the modulation
scheme and the channel coding technique (assuming lossless source
coding). To conclude the transmission, the corrupted bitstream in (6)

is finally reconstructed to a real-valued model, i.e., Ct — (Nllf .

Bit errors can have a detrimental effect on the training accuracy,
especially for CNNs. At worst case, a single bit error in one client in
one round can fail the whole training. We give an example of how
much difference a single bit error can make for the standard 32 bit
floating point CNN weights. In floating point notation, a number
consists of three parts: a sign bit, an exponent, and a fractional value.
In IEEE 754 floating point representation, the sign bit is the most sig-
nificant bit, bits 31 to 24 hold the exponent value, and the remaining
bits contain the fractional value. The exponent bits represent a power
of two ranging from -127 to 128. The fractional bits store a value
between 1 and 2, which is multiplied by 2¢*? to give the decimal
value. Our example shows that one bit error in the exponent can
change the weight value from 0.15625 to 5.31 x 107,

The bit errors are contagious because a parameter from one client
gets aggregated to the global model, then communicated back to all
clients. Furthermore, errors propagate through all communication
rounds because local training or aggregation does not completely
change the parameter value, but only apply small decrements. For
instance, assume a federated learning scenario with 100 clients and
one bit error in a client’s model as in the above example. After 10
rounds of training, the CNN weight for the global model will be on
the order of ~ % = 5.31 x 10'7, still completely failing the
whole model. Consider ResNet-50, which has 20 million parameters,
so training 100 clients even over a channel with p. = 107° BER
results in two errors per round on average, making model failure
inevitable.

A similar problem exists with HD model parameters, but to a
lesser extent because the class prototypes use integer representa-
tions. Particularly, errors in the most significant bits (MSB) of integer
representation leads to higher accuracy drop. We propose a quantizer
solution to prevent this. Inspired by the classical quantization meth-
ods in communication systems, we leverage scaling up and scaling
down operations at the transmitter and the receiver respectively. This
can be implemented by the automatic gain control (AGC) module in
the wireless circuits. For a class hypervector ¢, k € {1,..., K}, the
quantizer output Q(cy) can be obtained via the following steps:

(1) Scale Up: Each dimension in the class hypervector, i.e. ¢y ;, is
amplified with a scaling factor denoted quantization gain G. We
adjust the gain such that the dimension with the largest abso-
lute value attains the maximum value attainable by the integer

%z;kl) where B is the bitwidth.

(2) Rounding: The scaled up values are truncated to only retain
their integer part.

(3) Scale Down: The receiver output is obtained by scaling down

with the same factor G.

representation. Thus, G =

40

Rishi and Kazim, et al.

08

S

Information

2000

[N

o

Class A

4000 6000
Number of Dimensions

0
2000 4000 6000 10000 0 8000 10000

Number of Dimensions

8000

Figure 5: Impact of partial information on similarity check
(left) and classification accuracy (right)

This way, bit errors are applied to the scaled up values. Intuitively,
we limit the impact of the bit error on the models. Remember, from
Section 3.4.1, that prediction is realized by a normalized dot-product
between the encoded query and class hypervectors. Therefore, the
ratio between the original parameter and the received (corrupted)
parameter determines the impact of the error on the dot-product.
Without our quantizer, this ratio can be very large whereas after
scaling up then later down, it is diminished.

3.5.3 Packet Loss. At the physical layer of the network stack, errors
are observed in the form of additive noise or bit flips directly on the
transmitted data. On the other hand, at the network and transport
layers, packet losses are introduced. The combination of network and
protocol specifications allows us to describe the error characteristics,
with which the data transmission process has to cope.

The form of allowed errors, either bit errors or packet losses,
are decided by the error control mechanism. For the previous error
model, we assumed that the bit errors are admitted to propagate
through the transport hierarchy. This assumption is valid for a family
of protocols used in error resilient applications that can cope with
such bit errors. In some protocols, the reaction of the system to any
number of bit errors is to drop the corrupted packets. These protocols
employ a cyclic redundancy check (CRC) or a checksum that allows
the detection of bit errors. In such a case, the communication could
assume bit-error free, but packet lossy link. We use the packet error
rate (PER) metric as a performance measure, whose expectation is
denoted packet error probability p,. For a packet length of N, bits,
this probability can be expressed as:

pp=1-(1—p)™r ®)

The common solution for dealing with packet losses and guarantee
successful delivery is to use a reliable transport layer communication
protocol, e.g., transmission control protocol (TCP), where various
mechanisms including acknowledgment messages, retransmissions,
and time-outs are employed. To detect and recover from transmis-
sion failures, these mechanisms incur considerable communication
overhead. Therefore, for our setup we adopt user datagram protocol
(UDP), another widely used transport layer protocol. UDP is unre-
liable and cannot guarantee packet delivery, but is low-latency and
has much less overhead compared to TCP.

HD computing’s information dispersal and holographic represen-
tation properties are also beneficial for packet losses. Another direct
result of these concepts is obtaining partial information on data from
any part of the encoded information. The intuition is that any portion
of holographic coded information represents a blurred image of the
entire data. Then, each transmitted symbol —packets in our case-
contains an encoded image of the entire model.

We demonstrate the property of obtaining partial information as
an example using a speech recognition dataset [1]. In Figure 5(a),
after training the model, we increasingly remove the dimensions of
a certain class hypervector in a random fashion. Then we perform
a similarity check to figure out what portion of the original dot-
product value is retrieved. The same figure shows that the amount
of information retained scales linearly with number of remaining

FHDnn: Communication Efficient and Robust Federated Learning for AloT Networks

CIFAR IID

GIFAR Non-IID

I o

Test Accuracy
Test Accuracy

0 25 50 75 100 0 25 50 75 100
Communication Rounds Communication Rounds

Figure 6: Accuracy and Number of communication rounds for
various hyperparameters

dimensions. Figure 5(b) further clarifies our observation. We compare
the dot-product values across all classes and find the class hypervector
with the highest similarity. Only the relative dot-product values are
important for classification. So, it is enough to have the highest
dot-product value for the correct class, which holds true with ~ 90%
accuracy even when 80% of the hypervector dimensions are removed.

3.6 Convergence Performance of FHDnn

It is commonly preferred to have smooth, strongly-convex, differ-
entiable models to maintain a provable, analytically tractable conver-
gence analysis for federated learning. Such models also provide faster
convergence properties than the others. The learning computations
in FHDnn are linear, demand low-complexity operations, and thus
are favourable for resource-constrained, low-power client devices.
However, in many learning tasks, linear federated learning models
perform sub-optimally compared to their counterpart, CNN-based
approaches. FHDnn diverges from traditional linear methods in this
respect. It enjoys both the superior performance properties of non-
linear models and low computational complexity of linear models.
This is a direct result of HD computing, which embeds data into
a high-dimensional space where the geometry is such that simple
learning methods are effective. The linearity in HD training benefits
convergence, and at the same time the performance does not degrade
due to the properties of non-linear hyperdimensional embeddings.

FHDnn, when posed as a distributed optimization solution, has
the following properties: L-smoothness, strong convexity, bounded
variance, and uniformly bounded gradient. It was shown previously
that the methods which satisfy these conditions converge to the
global optimum solution of the learning task at a rate of O(%) [14].
Such claims cannot be made for CNNs due to non-convexity and
non-linearity.
4 Experimental Analysis

We demonstrate through systematic experiments the performance
of FHDnn under various settings. We briefly discuss the datasets and
setup for evaluating FHDnn before presenting results for FHDnn
for various data distributions for reliable communication. We also
compare the resource usage of FHDnn against CNNs. Finally we
show evaluation for various unreliable network scenarios.

4.1 Dataset and Platforms

We evaluate FHDnn on 3 different real world datasets: MNIST[7],
FashionMNIST[21], CIFAR10 [13]. For performance evaluation we
test FHDnn on Raspberry Pi Model 3b and NVIDIA Jetson mobile
GPU. We use python and PyTorch for implementing all models. For
MNIST, we use a simple network consisting of 2 convolution layers
and 2 fully connected layers. For CIFAR10 and FashionMNIST we
use the ResNet-18 model [8].

4.2 Accuracy and Compute
We first tune the hyperparameters for both FHDnn and CNNs
and analyze their impact by experimenting with E, B, C where E is

41

DAC °22, July 10-14, 2022, San Francisco, CA, USA

N
NN

;a

,/¢

Test Accuracy
[
(=]

CIFAR10

FashionMNIST
Dataset

Distrioution | | 10 £/ Nanio Modets || FHonn [] Restet
Figure 7: Accuracy of FHDnn and ResNet on different datasets

MNIST

Table 1: Performance on Edge Devices

Device Training Time (Sec) Energy (J)
FHDnn ResNet FHDnn | ResNet
Raspberry Pi | 858.72 1328.04 4418.4 6742.8
Nvidia Jetson 15.96 90.55 96.17 497.572

the number of local epochs, B the local batch size and C the fraction
of clients participating in each round. For all experiments we use
100 clients and 100 rounds of communication in order to keep our
experiments tractable. We select the best parameters for ResNet and
use the same for FHDnn for all experiments in order to allow for a
direct comparison.

4.2.1 Accuracy. Figure 7 compares the accuracy of FHDnn with
ResNet on 3 different datasets for 100 rounds of communication. We
observe that for the same number of rounds, FHDnn achieves almost
the same accuracy as ResNet and converges faster. Figure 6 shows
the smoothed conditional mean across all different hyperparameters
for both the models for iid and non-iid distributions. FHDnn reaches
an accuracy of 82% in less than 25 rounds of communication whereas
ResNet takes 75 rounds for both iid and non-iid data distributions.
Moreover the hyperparameters do not have a big influence for FHDnn
as seen by the narrow spread (gray region) in Figure 6. Note that
the local batch size B doesn’t impact FHDnn due to the nature of its
training methodology. This allows us to use higher batch sizes up to
the constraints of the device, allowing for faster processing whereas
B affects the convergence of CNNs.

4.2.2 Compute Resources. The most computationally expensive oper-
ation on the client is training. CNN training involves backpropagation
for each round which is very expensive. HD on the other hand is very
lightweight as featured in Table 1 which quantitatively compares the
computation time of FHDnn and ResNet on 2 edge devices for client
training. FHDnn is 35% faster and energy efficient than ResNet on
RPi and 80% faster and energy efficient on the Jetson mobile GPU.

4.3 Unreliable Communication

In this section we analyze the performance of FHDnn and ResNet
under unreliable network conditions as described in Section 3.5. Fig-
ure 8 shows the performance of models under each of these network
conditions. In order to maintain a direct comparison between CNN
and FHDnn we use the same hyperparameters for both models and
all experiments. We use E = 2,C = 0.2,B = 10 and evaluate the
performance on the CIFAR10 dataset. From our experiments we ob-
serve that even with fewer clients C = 0.1 and for other datasets, the
performance of FHDnn is better than ResNet. Due to page constraints
we present only the results for the settings mentioned earlier.

4.3.1
below 1e~2, ResNet has very minimal accuracy loss. However for
more realistic packet loss rates such as 20% the CNN model fails to
converge. A 20% packet loss rate implies 20% of the weights are zero.
Moreover, this loss is accumulative as the models are averaged during
each round of communication thereby giving the CNNs no chance

Packet Loss. When the packet loss rate is extremely small,

DAC °22, July 10-14, 2022, San Francisco, CA, USA

Packet Loss

Gaussian Noise

Rishi and Kazim, et al.

Bit Errors

0.0 0.2 0.4

Packet Loss Rate

0.6 -10

—— IID -=+- Non-lID

SNR

—— ResNet

10 20 2 o M a2

Bit Error Rate (log scale)
—=— FHDnn

Figure 8: Accuracy comparison of FHDnn with ResNet under unreliable network conditions

of recovery. In contrast, FHDnn is highly robust to packet loss with
almost no loss in accuracy. For FHDnn, since the data is distributed
uniformly across the entire hypervector, a small amount of missing
data is tolerable. However, since CNNs have a more structured repre-
sentation of data with interconnections between neurons, the loss
of weights affects the performance of subsequent layers which is
detrimental to its performance.

4.3.2 Gaussian Noise. We experiment with different Signal-to-Noise
Ratios (SNR) to simulate noisy links. Even for lower SNRs like 25dB
the accuracy of ResNet drops by 8%. However it’s more likely that
IoT networks operating on low power wireless networks will incur
higher SNRs. For such scenarios FHDnn outperforms ResNet as the
latter fails to perform better than random. The accuracy of FHDnn
only reduces by 3% which is negligible compared to ResNet.

4.3.3 Bit Errors. Figure 8 shows that CNNs achieve the equivalent
of random accuracy even for small bit errors. Since the weights of
CNNss are floating point, a single bit flip can significantly change the
value of the weights. This compounded with federated averaging
hinders convergence. We observe FHDnn incurs an accuracy loss
as well, achieving 72% for iid and 69% for non-iid. FHDnn uses an
integer representation which is again susceptible to large changes
from bit errors. However, our scaling method described in Section
3.5.2 assuages the error to some extent.

4.4 Communication Efficiency

So far we have benchmarked the accuracy of FHDnn for various
network conditions. In this section we demonstrate the communica-
tion efficiency of FHDnn compared to ResNet.

We compare the amount of data transmitted for federated learn-
ing to reach a target accuracy of 80%. We calculate the amount of
data transmitted by one client using the formula data; qnsmitted =
Nyrounds X updatesize, where n,o,,qs is the number of rounds re-
quired for convergence by each model. The update size for ResNet
with 11M parameters is 22MB while that of FHDnn is 1MB making it
22x smaller. From Section 4.2.1 we know that FHDnn converges 3x
faster than ResNet bringing its total communication cost to 25MB.
ResNet on the other hand uses up 1.65GB of data to reach the target
accuracy.

In Figure 6, we illustrated that FHDnn can converge to the optimal
accuracy in much fewer communication rounds. However, this im-
provement is even more in terms of the actual clock time of training.
We assume that federated learning takes places over LTE networks
where SNR is 5dB for the wireless channel. Each client occupies 1
LTE frame of 5MHz bandwidth and duration 10ms in a time division
duplexing manner. For error-free communication, the traditional
FL system using ResNet can support up to 1.6 Mbits/sec data rate,
whereas we admit errors and communicate at a rate of 5.0 Mbits/sec.
Under this setting and for the same experiment as in Section 4.2,
FHDnn converges in 1.1 hours for CIFAR IID and 3.3 hours for CIFAR
Non-IID on average. On the other hand, ResNet converges in 374.3
hours for both CIFAR IID and CIFAR Non-IID on average.

42

5 Conclusion

In this work, we presented FHDnn a federated learning framework
combining Deep Learning and Hyperdimensional Computing to im-
prove the communication efficiency and reduce the computation
costs on edge devices. We detalil the architecture, training method-
ology and evaluate FHDnn through numerous experiments in both
reliable and unreliable communication settings and compare its per-
formance with standard CNN. Our experiments show that FHDnn
is 66X more communication efficient and lowers client computation
costs by 6x while being robust to network errors.
Acknowledgements

This work was supported in part by CRISP, one of six centers
in JUMP (an SRC program sponsored by DARPA), SRC Global Re-
search Collaboration (GRC) grant, and NSF grants #1911095, #1826967,
#2100237, and #2112167.

References

[1]
[2]

[n.d.]. UCI machine learning repository. http://archive.ics.uci.edu/ml/datasets/
ISOLET.

Ganesh Ananthanarayanan et al. 2017. Real-time video analytics: The killer app
for edge computing. computer 50, 10 (2017), 58—67.

Austin P Arechiga et al. 2018. The robustness of modern deep learning architectures
against single event upset errors. In 2018 IEEE High Performance extreme Computing
Conference (HPEC). IEEE, 1-6.

Nader Bouacida et al. 2021. Adaptive Federated Dropout: Improving Communica-
tion Efficiency and Generalization for Federated Learning. In INFOCOM WKSHPS.
IEEE, 1-6.

Sebastian Caldas et al. 2019. Expanding the Reach of Federated Learning by Reduc-
ing Client Resource Requirements. arXiv:1812.07210 (Jan 2019).

Ting Chen et al. 2020. A simple framework for contrastive learning of visual
representations. In International conference on machine learning. PMLR, 1597-1607.
Li Deng. 2012. The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine 29, 6 (2012), 141-142.

Kaiming He et al. 2016. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 770-778.

Pan Hu et al. 2020. Starfish: Resilient Image Compression for AIoT Cameras. ACM,
New York, NY, USA, 395-408.

Mohsen Imani et al. [n. d.]. Bric: Locality-based encoding for energy-efficient brain-
inspired hyperdimensional computing. In Proceedings of the 56th Annual Design
Automation Conference 2019.

Pentti Kanerva. 2009. Hyperdimensional Computing: An Introduction to Com-
puting in Distributed Representation with High-Dimensional Random Vectors.
Cognitive Computation 1, 2 (Jun 2009), 139-159.

Pentti Kanerva. 2009. Hyperdimensional computing: An introduction to computing
in distributed representation with high-dimensional random vectors. Cognitive
computation 1, 2 (2009), 139-159.

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

Xiang Li et al. 2019. On the convergence of fedavg on non-iid data. arXiv preprint
arXiv:1907.02189 (2019).

Franz Loewenherz et al. 2017. Video analytics towards vision zero. Institute of
Transportation Engineers. ITE Journal 87, 3 (2017), 25.

Paul J. Marcelis et al. 2017. DaRe: Data Recovery through Application Layer Coding
for LoRaWAN. In IoTDI 97-108.

H Brendan McMahan et al. 2016. Communication-Efficient Learning of Deep
Networks from Decentralized Data. (2016), 10.

Shadi A Noghabi et al. 2020. The emerging landscape of edge computing. GetMobile:
Mobile Computing and Communications 23, 4 (2020), 11-20.

[19] Juha Petdjajirvi et al. 2016. Evaluation of LoRa LPWAN technology for remote
health and wellbeing monitoring. In ISMICT.

Shuai Tong et al. 2020. Combating packet collisions using non-stationary signal
scaling in LPWANS. In Proceedings of the 18th International Conference on Mobile
Systems, Applications, and Services. 234-246.

Han Xiao et al. 2017. Fashion-MNIST: a Novel Image Dataset for Benchmarking
Machine Learning Algorithms. arXiv:cs.LG/1708.07747 [cs.LG]

[12]

[13]
[14]
[15]
[16]
[17]

[18]

[20]

[21]

