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Abstract
The advent of IoT and advances in edge computing inspired fed-

erated learning, a distributed algorithm to enable on device learn-

ing. Transmission costs, unreliable networks and limited compute

power all of which are typical characteristics of IoT networks pose

a severe bottleneck for federated learning. In this work we propose

FHDnn, a synergetic federated learning framework that combines the

salient aspects of CNNs and Hyperdimensional Computing. FHDnn

performs hyperdimensional learning on features extracted from a

self-supervised contrastive learning framework to accelerate train-

ing, lower communication costs, and increase robustness to network

errors by avoiding the transmission of the CNN and training only the

hyperdimensional component. Compared to CNNs, we show through

experiments that FHDnn reduces communication costs by 66×, local

client compute and energy consumption by 1.5 - 6×, while being

highly robust to network errors with minimal loss in accuracy.
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• Computing methodologies → Machine learning.
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1 Introduction
A group of distributed edge devices communicating with each

other and sharing data is loosely termed the Internet of Things (IoT).

These edge devices are privy to a rich source of data which when

leveraged can enable various smart applications such as smart cities

[15] [2] and AI-enabled farming [18]. However, often the private and

sensitive nature of the data coupled with high transmission costs

prevent the central aggregation of data to the cloud. Recent advances

in edge computing enabled the idea of distributed computing for

on device processing. One such distributed learning paradigm is

federated learning (FL) [17]. FL learns a machine learning model on

data distributed across various devices without having to aggregate

them centrally. FL works by training models locally on the device

with data visible to each device and then averages these models from

all participating devices.
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Figure 1: FHDnn against CNNs for federated learning

Transmission costs, unreliable networks, and limited on device

computer power pose significant challenges for FL. Previous works

[4, 5] have explored model compression methods and dropout tech-

niques to reduce the communication cost by decreasing the size of

the model updates. However, these methods do not factor in the non-

ideality of IoT networks, assuming reliable lossless communication

and subsequently are neither robust to network errors nor provide

guarantees for convergence. Also, IoT often uses Low Power Wide

Area Networks (LP-WAN) to conserve energy of battery operated

edge devicesm but it has limited bandwidth, high packet loss and no

sophisticated coding scheme making FL vulnerable to errors.

We present FHDnn a novel synergetic federated learning frame-

work that combines 2 different learning paradigms of Deep Learning

and Hyperdimensional Computing (HDC) [11]. Deep learning excels

at learning a complex hierarchy of features and boasts high accu-

racy however at the cost of compute power often requiring GPUs

to train. HDC on the other hand features lightweight training using

simple operations on distributed low precision representations that

are inherently robust to errors. However, they don’t enjoy the same

accuracy as deep learning due to their inability to learn features

automatically. FHDnn combines the complimentary salient features

of both learning methodologies to enable a lightweight highly robust

FL framework that addresses each of the above challenges. In this

work, we limit ourselves to the problem of image classification, a

common application in IoT.

FHDnn uses a pre-trained Convolutional Neural Network (CNN)

as a feature extractor, the output of which are encoded into hypervec-

tors that are then used for training a federated HD learner. Specifically

we utilize a CNN trained using SimCLR [6] a contrastive learning

framework which learns informative representations of images in

a self-supervised manner that generalizes well to several datasets.

FHDnn avoids the transmission of the CNN and instead trains only

the HD classifier in a federated manner. This simple strategy accel-

erates learning, reduces transmission cost and utilizes the inherent

robustness of HDC to tackle network errors as shown in Figure 1.

In this work, we detail the architecture of FHDnn and systemati-

cally compare the performance of FHDnn with CNN under various

settings. We summarize our key contributions below:

• We propose FHDnn, a novel FL strategy that is robust to lossy

network transmission, is incredibly lightweight to train, and con-

verges faster.
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Figure 2: FHDnn Model Architecture

• We empirically show through numerous experiments that FHDnn

is robust to lossy network conditions. Specifically we evaluate

FHDnn under three different unreliable network settings: packet

loss, noise injection, and bit errors.

• We show that our approach reduces the communication costs by

66×, and reduces the local computations cost on the clients by up

to 6× while being robust to lossy transmissions.

2 Background and Motivation

2.1 IoT networks
IoT networks often involve a large number of battery operated

edge devices operating on a Low Power Wide Area Networks (LP-

WAN). LPWAN networks have limited bandwidth, narrow spectrum,

and often lack any advanced modulation schemes due to compute

cost and power constraints. Further, the network performance is

worse due to the presence of packet loss which is highly prevalent

in these networks [19, 20]. A study [16] shows that retransmission

is non ideal as it further increases energy consumption and reduces

network performance due to limited capacity. However, [9] shows

that tolerating a packet loss rate of 20% allows for increased energy

efficiency and network capacity.

2.2 Challenges in FL

Communication Efficiency: FL involves multiple rounds of com-

munication typically until a target test accuracy is achieved. Each

round, the participating clients send their models to the server. Com-

plex models, like CNNs, contain millions of parameters resulting in

large updates. FL typically takes several rounds to converge to the

optimum which further exacerbates the communication cost.

Lossy Transmission: As detailed above, IoT networks are often

unreliable which adds noise to the model updates causing conver-

gence issues. CNNs in particular are not robust to noise on weights

as shown in [3]. Failure to converge results in poor accuracy while

longer convergence times results in increased communication costs.

Resource constraints: Battery operated edge devices typical to

IoT networks have limited power and computation budgets. CNN

based FL methods require edge devices to perform on-device back-

propogation during each round of training which is computationally

expensive incurring high resource usage.

3 Proposed Method: FHDnn

3.1 Model Architecture

Figure 2 shows the model architecture of FHDnn. In the following

subsections we detail the 2 components of FHDnn: i) a pre-trained

CNN as a feature extractor, ii) a federated HD learner, followed by

the training methodology.

Figure 3: FHDnn Federated Training

3.2 Feature extractor

While in theory any standard CNN can be used as a feature ex-

tractor, due to its salient characteristics we use a pre-trained SimCLR

Resnet model as our feature extractor. SimCLR [6] is a contrastive

learning framework which learns representations of images in a

self-supervised manner by maximizing the similarity between latent

space representations of different augmentations of a single image.

This class agnostic framework trained on a large image dataset al-

lows for transfer learning over multiple datasets, (as evaluated in

[6]) making it ideal for a generic feature extractor. Standard CNNs

learn representations that are fine-tuned to optimize the classification

performance of the dense classifier at the end of the network. Since

SimCLR focuses on learning general representations as opposed to

classification oriented representations, it is a better choice of fea-

ture extractor. Note that We choose the ResNet architecture due to

availability of pre-trained models. One could use other models such

as MobileNet, which are more ideal for edge devices with resource

constraints.

3.3 HD learner
HDC is a computing paradigm based on biologically plausible

models of data representation [12]. HD works by encoding data

into low precision vectors of very large dimensions, referred to as

hyper vectors in literature. HD classifiers operate on these vectors

using binding and bundling operations which are simple and highly

parallelizable.

Here we are concerned with encoding the output of a neural

network. We use an encoding method proposed in [10] based on the

notion of random projection. This approach embeds the data into a

high-dimensional Euclidean space under a random linear map before

quantizing them. More formally, given a point 𝑥 ∈ X, the features

𝑧 ⊂ Z𝑛 are extracted using the feature extractor 𝑓 : X → Z where 𝑓
is a pre-trained neural network. The HD embedding is constructed as

𝜙 (𝑧) = sign(Φ𝑧) under the encoding function 𝜙 : Z→ H the rows

of which Φ ∈ R𝑑×𝑛 are generated by randomly sampling directions

from the 𝑛-dimensional unit sphere. sign(Φ𝑧) is the element-wise

sign function returning +1 if Φ𝑧 ≥ 0 and −1 otherwise.

3.4 Federated Training

Figure 3 summarizes the federated training process for FHDnn.

3.4.1 Client Local Training: Each client initially starts with a feature

extractor 𝑓 and an untrained HD learner. Once we get the encoded

hypervectors using the method described above, we create class

prototypes by bundling together hypervectors of the corresponding

class using c𝑘 =
∑
𝑖 h

𝑘
𝑖 . Inference is done by computing the cosine

similarity metric between a given encoded data point with each of

the prototypes, returning the class which has maximum similarity.

After this one-shot learning process we iteratively refine the class
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prototypes by subtracting the hypervectors from the mispredicted

class prototype and adding it to the correct prototype as shown in

Figure 2. We define the complete HD model C as the concatenation

of class hypervectors, i.e., C = [c𝑇1 , c
𝑇
2 , ..., c

𝑇
𝑛 ].

3.4.2 Federated Bundling: In the federated bundling framework, each

client maintains its own HD model and participates to build a global

model in a distributed fashion. This is achieved via an iterative train-

ing procedure for which we describe one round (say 𝑡-th) of the
algorithm below.

(1) Broadcast: The central server broadcasts the latest global HD

model, C𝑡 , to all clients.

(2) Local updates: Each participating client 𝑛 ∈ [𝑁 ] sets its model

C
𝑛
𝑡 = C𝑡 and then performs training for 𝐸 epochs using local data

as described in 3.4.1

(3) Aggregation: The central server receives and aggregates the

local models to produce a new global model:

C𝑡+1 =
𝑁∑
𝑛=1

C
𝑛
𝑡+1 . (1)

After aggregation, the server moves on to the next round, 𝑡 + 1. This

procedure is carried out until sufficient convergence is achieved.

3.5 FL Over Unreliable Channels With FHDnn
Federated learning is often carried out over wireless channels

that attenuate the transmitted signal and introduce noise followed

by packet losses. The centralized server is assumed to be able to

broadcast the models reliably, error-free at arbitrary rates, which is

a common assumption in many recent works. For uplink commu-

nications, the channel capacity per client is more constrained and

unreliable due to shared wireless medium, even at very low rates.

The bandwidth allocated per client decreases with the number of

clients, so does the capacity. Accordingly, the volume of data that can

be conveyed reliably, i.e, throughput, scales by 1/𝑁 . This implies that

the data rates will be small, resulting in slow training speed unless

transmission power is increased, which is undesirable considering

energy consumption concerns.

Instead of limiting the rate to achieve error-free communication,

we admit errors for the channel output at the server as perturbations

in the client models can be tolerated to an extent by FHDnn. If the

model is robust to errors, then there is no need for perfectly reliable

transmissions. Thus, we analyze FHDnn assuming that the clients

communicate over unreliable channels and the transmitted models

are corrupted.

We consider three error models at different layers of the network

stack. All models are applicable in practice depending on the under-

lying protocol. We first explore the properties of HD computing that

makes the learning robust under the considered error models, then

introduce different techniques for further improvement.

3.5.1 Noisy Aggregation. Conventional systems use source and chan-

nel coding to ensure reliability which are often unavailable in LPWAN

networks. For noisy aggregation, as an alternative to the conventional

pipeline, we assume uncoded transmission. This scheme bypasses the

transformation of the model to a sequence of bits, which then need to

be mapped again to complex-valued channel inputs. Instead, the real

model parameter values are directly mapped to the complex-valued

samples transmitted over the channel. Leveraging the properties of

uncoded transmission, we can treat the channel as formulated in

Equation (2), where the additive noise is directly applied to model

parameters. The channel output received by the server for client 𝑘 at

round 𝑡 is given by

C̃
𝑘
𝑡 = C

𝑘
𝑡 + n

𝑘
𝑡 (2)

Figure 4: Noise robustness of hyperdimensional encodings

where n𝑘𝑡 ∼ N(0, 𝜎2
𝑡,𝑘

) is the 𝑑 ×𝑛-dimensional additive noise. Then,

the signal-to-noise ratio (SNR) is:

𝑆𝑁𝑅𝑡,𝑘 =
E‖C𝑘

𝑡 ‖
2

E‖n𝑘𝑡 ‖
2
=
𝑃𝑡,𝑘

𝜎2
𝑡,𝑘

(3)

An immediate result of federated bundling is the improvement

in the SNR for the global model. When the class hypervectors from

different clients are bundled at the server, the signal power scales up

quadratically with the number of clients 𝑁 , whereas the noise power

scales linearly. Assuming that the noise for each client is independent,

we have the following relation:

𝑆𝑁𝑅𝑡 =
E‖

∑𝑁
𝑘=1 C

𝑘
𝑡 ‖

E‖
∑𝑁
𝑘=1 n

𝑘
𝑡 ‖

≈
𝑁 2𝑃𝑡,𝑘

𝑁𝜎2
𝑡,𝑘

= 𝑁 × 𝑆𝑁𝑅𝑡,𝑘 (4)

Notice that the effect of noise is suppressed by 𝑁 times due to

bundling. This claim can also be made for the FedAvg framework

over CNNs. However, even though the noise reduction factor is the

same, the impact of the small noise might be amplified by large acti-

vations of CNN layers. In FHDnn, we do not have such a problem

as the inference and training operations are purely linear. One other

difference of FHDnn from CNNs is its information dispersal prop-

erty. HD encoding produces hypervectors which have holographic

representations, meaning that the information content is spread over

all the dimensions of the high-dimensional space. Since the noise

in each dimension can also be assumed to be independent, we can

leverage the information spread to further eliminate noise.

Consider the random projection encoding described in Section

3.3. Let the encoding matrix Φ ∈ R𝑑×𝑛 expressed in terms of its

𝑑 row vectors, i.e., Φ = [Φ1,Φ2, ...,Φ𝑑 ]
𝑇 . Then, the hypervector

formed by encoding information 𝑥 ∈ X can be written as h =
[Φ𝑇1 𝑥,Φ

𝑇
2 𝑥, ...,Φ

𝑇
𝑑
𝑥]𝑇 , where 𝑥 = [𝑥1, 𝑥2, ..., 𝑥𝑛]

𝑇 . As implied by this

expression, the information is dispersed over the hypervectors uni-

formly. Now consider additive noise over the same hypervector such

that h + n = [Φ𝑇1 𝑥 +𝑛1,Φ
𝑇
2 𝑥 +𝑛2, ...,Φ

𝑇
𝑑
𝑥 +𝑛𝑑 ]

𝑇 . We can reconstruct

the encoded information from the noisy hypervector h̃ = h + n as

follows:

𝑥 ≈
[ 1
𝑑

𝑑∑
𝑖=1

Φ𝑖,1h̃𝑖 ,
1

𝑑

𝑑∑
𝑖=1

Φ𝑖,2h̃𝑖 , ...,
1

𝑑

𝑑∑
𝑖=1

Φ𝑖,𝑛 h̃𝑖
]

(5)

where h̃𝑖 = Φ𝑇𝑖 𝑥 + 𝑛𝑖 are the elements of the noisy hypervector. The

noise variance is then reduced by the averaging operation, similar

to the case in Equation (4). Therefore, in HD computing, the noise

is not only suppressed by bundling accross models from different

clients, but also by averaging over the dimensions within the same

hypervector. We demonstrate this over an example where we encode

a sample from the MNIST dataset, add Gaussian noise, then recon-

struct it. Figure 4 shows the original image, noisy image in the sample

space, and reconstructed image for which the noise was added in the

hyperdimensional space.

3.5.2 Bit Errors. We use bit error rate (BER) in conventional coded

transmission as a figure of merit for system robustness. It is a measure

on how accurately the receiver is able to decode transmitted data.

The errors are bit flips in the received digital symbols, and are simply

evaluated by the difference (usually Hamming distance) between

the input bitstream of channel encoder and the output bitstream of

channel decoder. Let ĉ be the binary coded model parameters that
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are communicated to the server. For the bit error model, we treat the

channel as a binary symmetric channel (BSC), which independently

flips each bit in ĉ with probability 𝑝𝑒 (e.g., 0 → 1). The received

bitstream output at the server for client 𝑘 at round 𝑡 is then as follows:

˜̂
C
𝑘

𝑡 = Ĉ
𝑘
𝑡 ⊕ e

𝑘
𝑡 (6)

where e𝑘𝑡 is the binary error vector and ⊕ denotes modulo 2 addition.

Given a specific vector v of Hamming weight wt(v), the probability

that e𝑘𝑡 = v is given by

P(e𝑘𝑡 = v) = 𝑝
wt(v)
𝑒 (1 − 𝑝𝑒 )

𝑚−wt(v) (7)

The bit error probability, 𝑝𝑒 , is a function of both the modulation

scheme and the channel coding technique (assuming lossless source

coding). To conclude the transmission, the corrupted bitstream in (6)

is finally reconstructed to a real-valued model, i.e., ˜̂C
𝑘

𝑡 → C̃
𝑘
𝑡 .

Bit errors can have a detrimental effect on the training accuracy,

especially for CNNs. At worst case, a single bit error in one client in

one round can fail the whole training. We give an example of how

much difference a single bit error can make for the standard 32 bit

floating point CNN weights. In floating point notation, a number

consists of three parts: a sign bit, an exponent, and a fractional value.

In IEEE 754 floating point representation, the sign bit is the most sig-

nificant bit, bits 31 to 24 hold the exponent value, and the remaining

bits contain the fractional value. The exponent bits represent a power

of two ranging from -127 to 128. The fractional bits store a value

between 1 and 2, which is multiplied by 2𝑒𝑥𝑝 to give the decimal

value. Our example shows that one bit error in the exponent can

change the weight value from 0.15625 to 5.31 × 1037.

The bit errors are contagious because a parameter from one client

gets aggregated to the global model, then communicated back to all

clients. Furthermore, errors propagate through all communication

rounds because local training or aggregation does not completely

change the parameter value, but only apply small decrements. For

instance, assume a federated learning scenario with 100 clients and

one bit error in a client’s model as in the above example. After 10

rounds of training, the CNN weight for the global model will be on

the order of ∼ 5.31×1037

10010
= 5.31 × 1017, still completely failing the

whole model. Consider ResNet-50, which has 20 million parameters,

so training 100 clients even over a channel with 𝑝𝑒 = 10−9 BER

results in two errors per round on average, making model failure

inevitable.

A similar problem exists with HD model parameters, but to a

lesser extent because the class prototypes use integer representa-

tions. Particularly, errors in the most significant bits (MSB) of integer

representation leads to higher accuracy drop. We propose a quantizer

solution to prevent this. Inspired by the classical quantization meth-

ods in communication systems, we leverage scaling up and scaling

down operations at the transmitter and the receiver respectively. This

can be implemented by the automatic gain control (AGC) module in

the wireless circuits. For a class hypervector c𝑘 , 𝑘 ∈ {1, ..., 𝐾}, the

quantizer output 𝑄 (c𝑘 ) can be obtained via the following steps:

(1) Scale Up: Each dimension in the class hypervector, i.e. 𝑐𝑘,𝑖 , is
amplified with a scaling factor denoted quantization gain 𝐺 . We

adjust the gain such that the dimension with the largest abso-

lute value attains the maximum value attainable by the integer

representation. Thus, 𝐺 = 2𝐵−1−1
max(𝑐𝑘 )

where 𝐵 is the bitwidth.

(2) Rounding: The scaled up values are truncated to only retain

their integer part.

(3) Scale Down: The receiver output is obtained by scaling down

with the same factor 𝐺 .

Figure 5: Impact of partial information on similarity check

(left) and classification accuracy (right)

This way, bit errors are applied to the scaled up values. Intuitively,

we limit the impact of the bit error on the models. Remember, from

Section 3.4.1, that prediction is realized by a normalized dot-product

between the encoded query and class hypervectors. Therefore, the

ratio between the original parameter and the received (corrupted)

parameter determines the impact of the error on the dot-product.

Without our quantizer, this ratio can be very large whereas after

scaling up then later down, it is diminished.

3.5.3 Packet Loss. At the physical layer of the network stack, errors

are observed in the form of additive noise or bit flips directly on the

transmitted data. On the other hand, at the network and transport

layers, packet losses are introduced. The combination of network and

protocol specifications allows us to describe the error characteristics,

with which the data transmission process has to cope.

The form of allowed errors, either bit errors or packet losses,

are decided by the error control mechanism. For the previous error

model, we assumed that the bit errors are admitted to propagate

through the transport hierarchy. This assumption is valid for a family

of protocols used in error resilient applications that can cope with

such bit errors. In some protocols, the reaction of the system to any

number of bit errors is to drop the corrupted packets. These protocols

employ a cyclic redundancy check (CRC) or a checksum that allows

the detection of bit errors. In such a case, the communication could

assume bit-error free, but packet lossy link. We use the packet error

rate (PER) metric as a performance measure, whose expectation is

denoted packet error probability 𝑝𝑝 . For a packet length of 𝑁𝑝 bits,

this probability can be expressed as:

𝑝𝑝 = 1 − (1 − 𝑝𝑒 )
𝑁𝑝 (8)

The common solution for dealing with packet losses and guarantee

successful delivery is to use a reliable transport layer communication

protocol, e.g., transmission control protocol (TCP), where various

mechanisms including acknowledgment messages, retransmissions,

and time-outs are employed. To detect and recover from transmis-

sion failures, these mechanisms incur considerable communication

overhead. Therefore, for our setup we adopt user datagram protocol

(UDP), another widely used transport layer protocol. UDP is unre-

liable and cannot guarantee packet delivery, but is low-latency and

has much less overhead compared to TCP.

HD computing’s information dispersal and holographic represen-

tation properties are also beneficial for packet losses. Another direct

result of these concepts is obtaining partial information on data from

any part of the encoded information. The intuition is that any portion

of holographic coded information represents a blurred image of the

entire data. Then, each transmitted symbol –packets in our case–

contains an encoded image of the entire model.

We demonstrate the property of obtaining partial information as

an example using a speech recognition dataset [1]. In Figure 5(a),

after training the model, we increasingly remove the dimensions of

a certain class hypervector in a random fashion. Then we perform

a similarity check to figure out what portion of the original dot-

product value is retrieved. The same figure shows that the amount

of information retained scales linearly with number of remaining
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Figure 6: Accuracy and Number of communication rounds for

various hyperparameters

dimensions. Figure 5(b) further clarifies our observation. We compare

the dot-product values across all classes and find the class hypervector

with the highest similarity. Only the relative dot-product values are

important for classification. So, it is enough to have the highest

dot-product value for the correct class, which holds true with ∼ 90%

accuracy even when 80% of the hypervector dimensions are removed.

3.6 Convergence Performance of FHDnn
It is commonly preferred to have smooth, strongly-convex, differ-

entiable models to maintain a provable, analytically tractable conver-

gence analysis for federated learning. Such models also provide faster

convergence properties than the others. The learning computations

in FHDnn are linear, demand low-complexity operations, and thus

are favourable for resource-constrained, low-power client devices.

However, in many learning tasks, linear federated learning models

perform sub-optimally compared to their counterpart, CNN-based

approaches. FHDnn diverges from traditional linear methods in this

respect. It enjoys both the superior performance properties of non-

linear models and low computational complexity of linear models.

This is a direct result of HD computing, which embeds data into

a high-dimensional space where the geometry is such that simple

learning methods are effective. The linearity in HD training benefits

convergence, and at the same time the performance does not degrade

due to the properties of non-linear hyperdimensional embeddings.

FHDnn, when posed as a distributed optimization solution, has

the following properties: L-smoothness, strong convexity, bounded

variance, and uniformly bounded gradient. It was shown previously

that the methods which satisfy these conditions converge to the

global optimum solution of the learning task at a rate of O( 1𝑇 ) [14].

Such claims cannot be made for CNNs due to non-convexity and

non-linearity.

4 Experimental Analysis
We demonstrate through systematic experiments the performance

of FHDnn under various settings. We briefly discuss the datasets and

setup for evaluating FHDnn before presenting results for FHDnn

for various data distributions for reliable communication. We also

compare the resource usage of FHDnn against CNNs. Finally we

show evaluation for various unreliable network scenarios.

4.1 Dataset and Platforms
We evaluate FHDnn on 3 different real world datasets: MNIST[7],

FashionMNIST[21], CIFAR10 [13]. For performance evaluation we

test FHDnn on Raspberry Pi Model 3b and NVIDIA Jetson mobile

GPU. We use python and PyTorch for implementing all models. For

MNIST, we use a simple network consisting of 2 convolution layers

and 2 fully connected layers. For CIFAR10 and FashionMNIST we

use the ResNet-18 model [8].

4.2 Accuracy and Compute
We first tune the hyperparameters for both FHDnn and CNNs

and analyze their impact by experimenting with 𝐸, 𝐵,𝐶 where 𝐸 is

Figure 7: Accuracy of FHDnn and ResNet on different datasets

Table 1: Performance on Edge Devices

Device
Training Time (Sec) Energy (J)

FHDnn ResNet FHDnn ResNet

Raspberry Pi 858.72 1328.04 4418.4 6742.8

Nvidia Jetson 15.96 90.55 96.17 497.572

the number of local epochs, 𝐵 the local batch size and 𝐶 the fraction

of clients participating in each round. For all experiments we use

100 clients and 100 rounds of communication in order to keep our

experiments tractable. We select the best parameters for ResNet and

use the same for FHDnn for all experiments in order to allow for a

direct comparison.

4.2.1 Accuracy. Figure 7 compares the accuracy of FHDnn with

ResNet on 3 different datasets for 100 rounds of communication. We

observe that for the same number of rounds, FHDnn achieves almost

the same accuracy as ResNet and converges faster. Figure 6 shows

the smoothed conditional mean across all different hyperparameters

for both the models for iid and non-iid distributions. FHDnn reaches

an accuracy of 82% in less than 25 rounds of communication whereas

ResNet takes 75 rounds for both iid and non-iid data distributions.

Moreover the hyperparameters do not have a big influence for FHDnn

as seen by the narrow spread (gray region) in Figure 6. Note that

the local batch size 𝐵 doesn’t impact FHDnn due to the nature of its

training methodology. This allows us to use higher batch sizes up to

the constraints of the device, allowing for faster processing whereas

𝐵 affects the convergence of CNNs.

4.2.2 Compute Resources.Themost computationally expensive oper-

ation on the client is training. CNN training involves backpropagation

for each round which is very expensive. HD on the other hand is very

lightweight as featured in Table 1 which quantitatively compares the

computation time of FHDnn and ResNet on 2 edge devices for client

training. FHDnn is 35% faster and energy efficient than ResNet on

RPi and 80% faster and energy efficient on the Jetson mobile GPU.

4.3 Unreliable Communication
In this section we analyze the performance of FHDnn and ResNet

under unreliable network conditions as described in Section 3.5. Fig-

ure 8 shows the performance of models under each of these network

conditions. In order to maintain a direct comparison between CNN

and FHDnn we use the same hyperparameters for both models and

all experiments. We use 𝐸 = 2,𝐶 = 0.2, 𝐵 = 10 and evaluate the

performance on the CIFAR10 dataset. From our experiments we ob-

serve that even with fewer clients 𝐶 = 0.1 and for other datasets, the

performance of FHDnn is better than ResNet. Due to page constraints

we present only the results for the settings mentioned earlier.

4.3.1 Packet Loss. When the packet loss rate is extremely small,

below 1𝑒−2, ResNet has very minimal accuracy loss. However for

more realistic packet loss rates such as 20% the CNN model fails to

converge. A 20% packet loss rate implies 20% of the weights are zero.

Moreover, this loss is accumulative as the models are averaged during

each round of communication thereby giving the CNNs no chance
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Figure 8: Accuracy comparison of FHDnn with ResNet under unreliable network conditions

of recovery. In contrast, FHDnn is highly robust to packet loss with

almost no loss in accuracy. For FHDnn, since the data is distributed

uniformly across the entire hypervector, a small amount of missing

data is tolerable. However, since CNNs have a more structured repre-

sentation of data with interconnections between neurons, the loss

of weights affects the performance of subsequent layers which is

detrimental to its performance.

4.3.2 Gaussian Noise. We experiment with different Signal-to-Noise

Ratios (SNR) to simulate noisy links. Even for lower SNRs like 25dB

the accuracy of ResNet drops by 8%. However it’s more likely that

IoT networks operating on low power wireless networks will incur

higher SNRs. For such scenarios FHDnn outperforms ResNet as the

latter fails to perform better than random. The accuracy of FHDnn

only reduces by 3% which is negligible compared to ResNet.

4.3.3 Bit Errors. Figure 8 shows that CNNs achieve the equivalent

of random accuracy even for small bit errors. Since the weights of

CNNs are floating point, a single bit flip can significantly change the

value of the weights. This compounded with federated averaging

hinders convergence. We observe FHDnn incurs an accuracy loss

as well, achieving 72% for iid and 69% for non-iid. FHDnn uses an

integer representation which is again susceptible to large changes

from bit errors. However, our scaling method described in Section

3.5.2 assuages the error to some extent.

4.4 Communication Efficiency

So far we have benchmarked the accuracy of FHDnn for various

network conditions. In this section we demonstrate the communica-

tion efficiency of FHDnn compared to ResNet.

We compare the amount of data transmitted for federated learn-

ing to reach a target accuracy of 80%. We calculate the amount of

data transmitted by one client using the formula 𝑑𝑎𝑡𝑎𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 =
𝑛𝑟𝑜𝑢𝑛𝑑𝑠 × 𝑢𝑝𝑑𝑎𝑡𝑒𝑠𝑖𝑧𝑒 , where 𝑛𝑟𝑜𝑢𝑛𝑑𝑠 is the number of rounds re-

quired for convergence by each model. The update size for ResNet

with 11M parameters is 22MB while that of FHDnn is 1MB making it

22× smaller. From Section 4.2.1 we know that FHDnn converges 3×

faster than ResNet bringing its total communication cost to 25MB.

ResNet on the other hand uses up 1.65GB of data to reach the target

accuracy.

In Figure 6, we illustrated that FHDnn can converge to the optimal

accuracy in much fewer communication rounds. However, this im-

provement is even more in terms of the actual clock time of training.

We assume that federated learning takes places over LTE networks

where SNR is 5dB for the wireless channel. Each client occupies 1

LTE frame of 5MHz bandwidth and duration 10ms in a time division

duplexing manner. For error-free communication, the traditional

FL system using ResNet can support up to 1.6 Mbits/sec data rate,

whereas we admit errors and communicate at a rate of 5.0 Mbits/sec.

Under this setting and for the same experiment as in Section 4.2,

FHDnn converges in 1.1 hours for CIFAR IID and 3.3 hours for CIFAR

Non-IID on average. On the other hand, ResNet converges in 374.3

hours for both CIFAR IID and CIFAR Non-IID on average.

5 Conclusion
In this work, we presented FHDnn a federated learning framework

combining Deep Learning and Hyperdimensional Computing to im-

prove the communication efficiency and reduce the computation

costs on edge devices. We detail the architecture, training method-

ology and evaluate FHDnn through numerous experiments in both

reliable and unreliable communication settings and compare its per-

formance with standard CNN. Our experiments show that FHDnn

is 66× more communication efficient and lowers client computation

costs by 6× while being robust to network errors.
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