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Abstract 

 
Cells mechanical properties such as stiffness can act as biomarkers to sort or detect cell 

functional properties, such as viability. In this study, we report the use of a microfluidic 

device as a high sensitivity sensor that transduces cell biomechanics to cell separation to 

accurately detect viability. Cell populations are flowed and deflected at a number of skew 

ridges such that deflection per ridge, cell-ridge interaction time, and cell size, can all be used 

as sensor inputs to accurately determine cell state. The angle of the ridges was evaluated to 

optimize the differences in cell translation between viable and non-viable cells while 

allowing continuous flow. In the first mode of operation, we flowed viable and non-viable 

cells through the device and conducted a sensitivity analysis by recording the cell’s total 

deflection as a binary classifier that differentiates viable from non-viable cells. The 

performance of the sensor was assessed using an area under the curve (AUC) analysis to be 

0.97. By including additional sensor inputs in the second mode of operation, we conducted a 

principal component analysis (PCA) to further improve the identification of cell state by 

clustering populations with little overlap between viable and non-viable cells. We therefore 

found microfluidic separation devices can be used to efficiently sort cells and accurately 

sense viability in a label-free manner. 

 

Keywords: cell viability sorting, optical sensing, microfluidics, cell mechanics, label-free 

separation 
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The knowledge of the cell viability is critical to understand and predict cell culture 

health (1, 2) and therapeutic responses to pharmacological agents (3). Yet, there exist few 

options for monitoring the viability and functional health of cells and cell products. 

Typically, technicians must periodically sample the culture to evaluate the cells manually 

using viability stains. This procedure is costly, risks contamination, and is not amenable to 

automation of decision making, i.e. whether to change culture conditions or when to harvest 

the culture. Furthermore, commonly used cell viability stains and conventional apoptosis 

assays can significantly underestimate the viability of cells (4, 5) and can lead to up to 40% 

false positive counts in both primary cells and cell lines (6), preventing accurate assessment 

of cell viability. The ability to detect changes in cell viability with single-cell resolution is 

also desired to detect early changes in culture health. Thus, there is a need for improved, 

label-free sensors to enable read out of cell viability. 

 

In addition to sensing, removing non-viable cells can purify a culture and reduce 

unwanted byproducts from apoptotic cells. For example, in the final stage of cell therapy 

manufacturing, products must meet release criteria for viability, yet occasionally do not, 

which may prohibit the sale and add a substantial cost to the cell therapy manufacturer (7, 8). 

New methods to maintain specifications of a product through a simple purifying step of 

removing nonviable cells, with minimal loss of cell product, could therefore enhance the 

production reliability of cell therapies. In addition, removal of non-viable cells may improve 

the capacity of a culture to proliferate by reduction of negative signaling from cytokine 

release (9). Therefore, alternatives for removal of nonviable cells with minimal loss of cell 

product may substantially benefit cell culture and cell therapy. 

 

To address the need to monitor and purify cells for viability, we highlight the use of 

physical changes that occur to cells after a loss of viability that could be leveraged in a label-

free manner to sense and sort viable cells to substantially benefit cell manufacturing. The 

biophysical science community has documented a number of changes to cell biomechanics 

(10-14), electrical properties (15-17), and ion permeability (18-20) that can all correlate with 

loss of viability. In this context, microfluidic platforms have been used to separate viable 

from non-viable cells based on these differences. For example, di-electrophoresis (15, 21) 

and acoustophoresis (22) were both reported to sort viable cells. These approaches use 

physical changes to the cell upon apoptosis and show a range of sensitivity, i.e. ability to 

detect changes to individual cells, dynamic range, i.e. able to measure large number of cells, 

and time response, and ability to detect early changes to apoptotic cells (15, 23). Microfluidic 

approaches have many advantages to sense the properties of single cells through changes in 

biophysical properties (12, 24-27). Microfluidic platforms have moreover been used as 

sensors to measure changes in cell electrical properties (28) or deformability (29, 30).  

 

In this study, we demonstrate a microfluidic technology that uses changes to cell 

biomechanics, including stiffness, to sense and enumerate cell viability in a manner that is 

label-free, accurate, continuously operating, and sensitive to individual cells at early time-

points of apoptosis. Cell viability transduction performed by our microfluidic platform refers 

to the conversion of viability states into distinct flow patterns (step 1, accomplished by 

device) and secondly to a readout platform (step 2, implemented with video microscopy and 

data analytics). The microfluidic channel features skew diagonal ridges which deform 

flowing cells and transduce resistance to deformation as a deflection to trajectory. The 
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microfluidic technology also has the capacity to enrich viable from non-viable cells by 

collection to separate outlets, which has initially been shown in prior studies (26). In this 

work, we modify the microfluidic separation for “high sensitivity” operation by investigating 

the device and process parameters that magnify differences between viable and non-viable 

cell trajectories. We also explore new sensing modalities in which we detect changes in cell 

trajectories using optical video microscopy and cell tracking algorithm to identify distinct 

biomechanical properties that correlate with a loss of cell viability. With this core technology, 

we introduce the use of our microfluidic platform as a flow-based viability sensor that 

operates by separating different cell populations. 

 

 
Figure 1: Cell sorting microfluidic device using diagonal ridges. (a) Schematic representation of cells 
compression under the ridge. (b) Optical micrograph of the fabricated device showing the first ridges. 
(c) Representative micrograph showing stiff and soft cells flowing towards different outlets. 
Horizontal arrows indicate the flow direction, the vertical arrow indicates the direction of positive 
deflection and dotted lines represent trajectory pathways within the device for stiff (red) and soft 
(blue) cells. 

 

The microfluidic channel with diagonal ridges is shown in Fig. 1. Cells, containing 

both viable and non-viable populations, are infused from the cell sample inlet and are focused 

by two sheath flows before reaching the channel region with diagonal ridges. Cells are 

deformed under the ridges due to the gap size being smaller than the cell diameter (Fig. 1a) 

and translate in the direction transverse to the fluid flow in a manner dependent on the 

cellular mechanical properties. The precise trajectory is primarily due to the balance of two 

competing forces: the elastic force resulting from a resistance to deformation when in contact 

with the ridge and the hydrodynamic drag force that lead to a net force with a transversal 

component directly correlated with the cell stiffness. In the last region, five outlets are 

designed to sort cell populations into distributed and fractionated subsets with different cell 

stiffness. The stiffest cells flow towards the “stiff” outlet 1 and the softest cells are directed 

towards the “soft” outlet 5, while cells of moderate stiffness will flow in a graduated manner 
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to the central outlets 2, 3, and 4 respectively (Fig. 1c). The serpentine patterns before each 

outlet are added to limit channel flow biasing by increasing the flow resistance between the 

inlet and the outlet of the channel. 

 

Materials and Methods 
Device fabrication 

The microfluidic device was fabricated using replica molding of 

polydimethylsiloxane (PDMS) on a SU-8 patterned silicon wafer (26, 31). The molds for the 

device were fabricated using a two-layer photolithography process in which SU-8 photoresist 

(SU-8 Microchem Corp.) was spin coated on a silicon wafer. The devices tested were 

designed using AutoCAD and the mold ridge gap size and other dimensions were measured 

after fabrication using optical microscopy and profilometry (Dektak 150 profilometer). The 

patterns were transferred from the mold using PDMS, mixed (10: 1 𝑤𝑡/𝑤𝑡) with Sylgard 184 

silicone elastomer curing agent (Dow Corning). The mixture was then degassed in a vacuum 

chamber, poured on the mold and cured at 80 ℃ for 1 hour. The PDMS device was then 

peeled off the wafer, the inlet and outlet holes were punched using a biopsy punch, and the 

chip bonded to a glass slide after an air plasma treatment (PDC-32G Harrick). In order to 

prevent non-specific cell adhesion to the microfluidic channel, the device was passivated by 

coating with Bovine Serum Albumin (BSA, Sigma Aldrich) at a concentration of 10 𝑚𝑔/𝑚𝑙 
and incubated overnight at 4 ℃. Alternatively, in some devices, we chose passivation by 

chemical vapor deposition of Triethoxysilane (3-Aminopropyl), purchased from Sigma–

Aldrich. In a fume hood, a petri dish was placed on a hot plate with the cap of an Eppendorf 

tube. Bonded PDMS devices were plasma cleaned for 1 𝑚𝑖𝑛 and placed in the dish. 40 𝜇𝑙 of 

Triethoxysilane was then added to the Eppendorf cap and the petri dish was covered. The 

petri dish was heated in an oven at 80 ℃ for 2 hours to complete the surface treatment. Silane 

passivation was specifically used in the experiments of Fig. 5a,b and some experiments used 

for PCA analysis in Fig. 9. 

 

Cell preparation 
Jurkat cells (CRL-1990) were purchased from ATCC. The cells were cultured and 

maintained in RPMI-1640 medium (Sigma) supplemented with 10% FBS and incubated at 

37 ℃ with 5% 𝐶𝑂2. To prepare the non-viable cell samples, the cells were heated at 60 °C in 

a water bath for 1 hour. The viability of cell samples was measured using 7-AAD staining 

(Biolegend) a membrane impermeable dye generally excluded from viable intact cells. In 

damaged cells, however, the dye is able to permeate compromised membranes and shows 

strong fluorescence at 647 𝑛𝑚. Cells are resuspended in 0.5 mL of cell staining buffer where 

5 μL  of 7-AAD is added per million cells and incubated for 5-10 minutes in the dark before 

analysis. Flow cytometry was conducted to measure the frequencies of stained non-viable 

cells and non-stained viable cells. Heat treated cells showed more than 98% non-viable using 

7-AAD assay, which confirms the heat induced cell death. 

 

Experimental setup 
Heat-treated and untreated cells were suspended in a Phosphate Buffer Solution (PBS) 

at 1 − 1.5 × 106 cells/ml and infused into the device inlet at specified flow rates using a 

syringe pump. The microfluidic chip was mounted on an inverted bright-field microscope 

(Eclipse Ti, Nikon) and cell trajectories were observed and recorded using a high-speed 

camera (Phantom V7.3, Vision Research) at a frame rate of 3000 frames per second.  
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Cell tracking algorithm 

To enable high-throughput analysis of device sorting performance, a custom Python 

package was written to track cells in videos resulting from high-speed microscopy and 

convert collected tracks into a form suitable for quantitative comparison between experiments 

and videos. In order to accomplish this task, moving particles were first extracted from the 

stationary image background using standard background subtraction and thresholding 

methods and then joined into single cells ‘paths’ using a custom algorithm. This algorithm 

functions by considering detected moving objects as points in a three-dimensional space 

defined by the two in-plane dimensions and time as the third dimension. Points were linked 

into paths by linking points that are mutual nearest neighbors in this space and then cutting 

the longest links, which are most likely made up of points resulting from different cells. At 

this stage, these paths can give an overall impression of the trajectory of the cells but are not 

suitable for direct comparison between videos as the points on each path will be defined by 

their locations in an image rather than real-world dimensions relative to the device geometry. 

In order to address this point, the layout of the ridges was extracted from the video and 

compared to the known device geometry, allowing extracted paths to be related to their real 

location within the device. This step allowed paths and extracted metrics to be compared 

directly between experiments to directly compare experimental conditions and speed the 

process of sorting optimization. 

 

Analysis of cell tracking result using Principal Component Analysis 
Using custom Python software, we extracted cell trajectory data points from both 

viable and heat-treated non-viable cells moving through our microfluidic device, including 

amount of deflection at each ridge, duration of interaction at each ridge and the size of the 

cell while it is under the ridge and between ridges. The size of each tracked cell was recorded 

as a mean both under ridge and in between the ridges. If only one of the two size 

measurements was available, one value of cell size was recorded. Cells reach a maximum 

trajectory deflection when the gutter region is reached at the top channel wall shown in Fig. 

1b. For cells directed to the gutter, trajectory values after reaching the gutter were imputed by 

taking the average of deflection at each ridge. Additionally, because the cells deflected to the 

gutter could no longer interact with the subsequent ridges, the interaction time for those cells 

directed to the gutter region were assigned as a value of -100 s to distinguish from other 

recorded values. We performed a principal component analysis (PCA) using R using 

complete datasets that were centered and scaled. The biplot was created using the package 

ggbiplot, grouping cells by their status as viable and non-viable from each condition. 

 

 

AFM methodology  
Atomic Force Microscopy (AFM, MFP-3D, Asylum Research) with an integrated 

optical microscope (Nikon) on a vibration isolation table was used to measure cell 

mechanical properties. For better global stiffness measurements of the cell, a 7.3 μm 

polystyrene sphere was attached to tipless silica nitride cantilevers (Bruker Probes) using a 

two-part epoxy and cured for at least 24 hours. For each cell, force-indentation curves were 

obtained using force spectroscopy. Before measurements, the AFM was calibrated by taking 

a single force curve on a clean FluoroDish (World Precision Instruments) to determine the 

deflection inverse optical lever sensitivity, which relates the voltage read in the photodetector 

to the amount of cantilever deflection for the particular cantilever. Next, the Sader calibration 

(32) method was used to obtain cantilever spring constants based on the thermal vibration of 

the cantilever, with an approximate value of 30 pN/nm. Cells were attached to a Fluorodish 
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using 3.5 ug/cm2 CellTak Cell and Tissue Adhesive (Corning). For measurements, the 

cantilever probe was visually aligned with the cell center and moved with a velocity of 

2 μm/s to indent the cell with increasing compressive force until a force trigger of 5 nN was 

reached. The cantilever was held in position for 10 seconds, dwelling towards the surface, 

allowing for viscous relaxation of the cell before reversing the direction of its velocity. 
 

We used custom code written in R implementing a Hertzian contact model to 

calculate the cellular Young's modulus (33) from the force curves. The Hertz model describes 

non-adhesive elastic contact between two bodies under a load. The contact point was 

estimated by the intersection of the flat, undeformed region of the force curve with a line fit 

to the force curve region where the cantilever was in contact with the cell. Next, we identified 

the true contact point by iteratively testing the points in proximity to the estimated contact 

point with the minimal residual difference between the measured force curve and a nonlinear 

fit described by the governing Hertz equation used to describe the contact between an elastic 

sphere and an elastic half space. Next, we used custom R code to fit the dwell region of the 

force curve to a biexponential decay curve to identify the fast and slow viscous time 

constants (34). We additionally used custom R code to determine the adhesion force 

between the probe and the cell of interest by subtracting the minimum measured force after 

retraction from the force measured at the cantilever's undeformed state. For every cell 

mechanically probed, we additionally captured an optical microscopy image to analyze size 

using ImageJ software by outlining each cell with an ellipse to record an area.  

 

Results and Discussion 
 
Characterization of viable and non-viable cells 

 
AFM analysis of both viable and non-viable cells populations was conducted to 

quantify the biomechanical properties. The average Young’s modulus was found to be 

0.2 kPa for viable cells and 1.92 kPa for non-viable cells (p <  10−11 where p is the 

probability value of the null hypothesis for a conducted student t-test), indicating a significant 

increase of nearly one order of magnitude as shown in Fig. 2a. The dramatic increase in cell 

stiffness with cell death is a result of several structural changes to the cell, including to 

dynamic changes of actin fibers, the presence of stress fibers, cell wall modification, and 

changes of cortical actin organization under the cell membrane (12, 24, 25, 27). 

 

We conducted an analysis of the viscoelastic properties of viable and non-viable cells 

by calculating viscoelastic time constants using Maxwell-Wiechert model (35) as shown in 

Fig. 2b. To best fit the data, two Maxwell elements were chosen: the slow and the fast 

relaxation time constant. The slow viscous time constant was found to be 0.41 s−1 for viable 

cells and 0.31 s−1 for non-viable cells (p <  10−11), and the fast time constant was 5.75 s−1 

for viable cells and 6.10 s−1 for non-viable cells (p <  0.24, data not shown). This result 

shows that the slow viscosity time constant of viable and non-viable Jurkat cells is also 

significantly different and thus, it can be considered as a viability marker. 

 

We also measured the adhesion force of both viable and non-viable cells populations 

by examining the attraction between the cell and the AFM probe upon cell contact. The 

magnitude of the adhesion force was found to be 0.22 nN for viable cells and 1.05 nN for 

non-viable cells (p <  0.0001), as presented in Fig. 2c. This result shows that non-viable 

cells are more adhesive to the silica bead of the AFM tip than viable cells. Furthermore, the 
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same observation is noticeable during the experiments in which non-viable cells interact with 

the PDMS and glass surfaces of the microfluidic channel. The increased attractive interaction 

of the non-viable cells in comparison to viable cells could lead to adhesion to the ridges, an 

inhibition of continuous flow or a modification to the trajectory of flow (36).  

 

 
Figure 2: Mechanical properties of viable and non-viable Jurkat cells from AFM measurement. (a) 
Young’s modulus (p-value < e-11). (b) Slow viscous time constant (p-value < e-11). (c) Adhesion force 
(p-value < 0.0001). (d) Cell apparent surface (p-value < e-7). Number of cells n=268. 

 

The cell size was the final biomechanical property that we evaluated from analysis of 

optical images taken during AFM measurements. The average diameter was found to be 

15.5 μm for viable cells and 13.83 μm for non-viable cells (p <  10−7). As shown in Fig. 

2d, non-viable cells were found to be slightly smaller than viable cells at the time points 

recorded, which is in agreement with what was reported as a change in cell size during 

apoptosis and necrosis (24, 37), though we note that cell size can vary over the course of 

apoptosis. Overall, both stiffness and adhesion properties provide opportunities for viability 

markers due to the large differences between viable and non-viable cells. Thus, the 
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enrichment and separation between the two cells populations in microfluidic separation 

device likely rely on difference in these properties. 

 
Microfluidic device design optimization 

 
There are several device and process parameters that affect cell trajectories in the 

microfluidic channel, including the ridge gap, the ridge angle and the flow rate. The ridge 

gap, which is the distance between the ridge and the bottom channel surface, should depend 

on the target cell size. The gap size should be small enough to sufficiently compress cells, 

which have an average diameter of 15 μm. On the other hand, the gap should be large enough 

to prevent channel occlusion. In this work, the ridge gap was chosen to be 8 μm based on 

previous studies that suggest an optimal strain of 45% (31, 38) for cell sorting.   

 

The ridge angle relative to the channel axis was tested as a parameter that can 

significantly increase the sensitivity of the cell separation by the microfluidic device. In 

previous studies (31, 38), we tested 45° and 30° ridge angles and found that they both lead to 

a small gradual displacement of stiff cells at each ridge, which adds up through the multiple 

ridges and results in the separation. However, at a smaller angle, i.e. more aligned with the 

channel axis, we observed a different type of stiff cell trajectories, in which cells primarily 

slide along the leading edge of a ridge to significantly enhance the separation (see Video S1, 

Video S2, and Video S3). 

 

To better understand the effect of ridge angle and flow rate, we performed numerical 

simulations using our inhouse fluid-structure interaction model. To model particle compliance, 

we used the capillary number Ca = μU/ED, which describes the relative importance of viscous 

forces with respect to elastic compliance, where 𝜇 is the viscosity,  𝑈 is the average fluid 

velocity, 𝐸 is the cell Young’s modulus and D is the cell diameter. 

 

Fig. 3 shows a channel top view where fluid streamlines are plotted in red and cell 

trajectories in blue for (a) 40° and (b) 20° ridge angle devices. We observe that the stiff particle 

(solid blue line) deflects along the ridge in both devices whereas the softer particle (dashed 

blue line) only deflects in the 20° ridge angle device. In fact, for smaller ridge angles, the 

transverse component of the elastic force increases, leading to more displacement along the 

ridge. Thus, ridge angle can be tuned to deflect non-viable cells with a wider range of capillary 

numbers, which leads to a greater sorting sensitivity. 

 
We also probe the effect of flow rate by modeling the motion of cells using three 

different flow rates in a 40° ridge angle device. As shown in Fig. 3c, increasing the flow rate 

drives the cell to squeeze under the ridge due to an increase in the hydrodynamic drag force. 

We therefore conclude that the flow rate is a critical parameter that should be controlled to 

enhance the separation. 
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Figure 3: Channel top view. Fluid streamlines (red) and cell trajectories (blue) in (a) 40°and , (b) 20° 
ridge angle devices at the same flow rate and (c) 40° ridge angle at three different flow rates. 

 
 

Experimentally, we investigated smaller ridge angles of 20°, 15°, and 10° to separate 

viable and non-viable cells. For non-viable cells, the three angles act similarly with 80% of 

the cells dispersed towards the stiff outlet 1, as shown in Fig. 4a. For viable cells, more than 

70% of the cells are directed to the soft outlets 4 and 5 when using 20° and 15° ridge angles, 

whereas for 10° angle, less than 45% of the cells end up in the soft outlets and around 25% 

of cells were directed towards the stiff outlet 1, overlapping with non-viable cells, as shown 

in Fig. 4b. We conclude then that 10° ridge angle results in an excessive cell displacement 

due to the elastic force leading to the translation of the soft cell population along the ridges, 

which lowers the separation resolution. The best separation occurred using the 20° and 15° 

ridge angle. 

 

 

 

 

 

(a) 

(b) 

(c) 
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Figure 4: (a) Non-viable and (b) viable Jurkat cells distribution at the five different outlets after 
sorting. Cells were flown at 35μl/min in three different ridge angle devices: 20°, 15° and 10°. 

 

 

Next, we analyzed the effect of the flow rate on the trajectories of different cell types 

in a device with the ridge angle equal to 20°. Non-viable and viable Jurkat and SUDHL cells 

were flowed separately at different flow rates: 35μl/min, 65μl/min and 115μl/min. The 

distributions of these cells at the outlets are shown in Fig. 5. We find that at a lower flow rate 

of 35 μl/min, more than 80% of non-viable cells were translated towards the stiff outlet 1, 

whereas at a higher flow rate of 65μl/min, only around 47% of non-viable cells migrate 

towards outlet 1 and the rest of these cells are directed to the softer outlets, overlapping with 

viable cells. At the highest flow rate of 115 μl/min, only 20% of non-viable cells translate 

towards the stiff outlet 1 leading to a poor cell separation.  
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Figure 5: Non-viable (a) and Viable (b) Jurkat cells distribution at the five different outlets after 
sorting. Cells were flown at three different flow rates: 35 μl/min, 65 μl/min, and 115 μl/min in a 
device with 20° ridge angle. Non-viable (c) and Viable (d) SUDHL cells distribution at the five different 
outlets after sorting, at two different flow rate ranges: 20-35 μl/min and 50-65 μl/min. 
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The displacement of viable cells is not sensitive to these ranges of flow rate as shown 

in Fig. 5b and Fig. 5d. In fact, by increasing the flow rate, the hydrodynamic force on the 

cells increases, increasing the number of cells that migrate toward the soft outlets and 

resulting in a weaker separation. Note that it may be possible to increase the recovery of non-

viable cells at higher flow rates by using smaller ridge angles (not evaluated in this study). 

On the other hand, using too low flow rates (e.g. less than 20 μl/min) can lead to slow 

passage of cells through the ridge region. Thus, the most efficient separation of viable and 

non-viable cells occurs at a total flow rate of 35 μl/min, which is used in the rest of the 

experiments, unless specified otherwise. The cell sample was infused at 5 μl/min, whereas 

the flow buffer was infused at 20 and 10 μl/min respectively into the left and the right sheath 

inlets (top and bottom in Fig. 1) to position the focused cells off-center in the channel.  

 

Transient adhesion between cells and microchannel surfaces can affect cell trajectory (39). 

The magnitude of the adhesion can be modified by using surface treatments. In occasional 

events, we observed adhesion of non-viable cells to the microfluidic channel surface that 

caused an increased ridge interaction time and a pile up of the cells near the ridges. Such 

events can negatively affect the separation outcomes and can lead to channel occlusion. To 

minimize non-specific cell binding, we passivated the microchannel interior with chemical 

vapor deposition of Triethoxysilane (3-Aminopropyl) instead of the BSA passivation. Silanes 

are generally known to form self-assembled monolayers when deposited onto a glass surface 

(40) and thus offer a simple way to change the surface properties through display of specific 

functional groups (41). It was found that APTES preserves the viability and proliferation of 

human dermal fibroblast (42) and does not deteriorate the potency of mesenchymal stem cells 

(43). To validate this surface treatment, we flow non-viable cells through a device with a 

ridge angle of 15° with and without the Triethoxysilane treatment. We noticed that the 

minimum flow rate that can be sustained in the silanized device is half the flow rate of the 

non-silanized. To quantitatively compare both passivation conditions, we evaluated the cell 

interaction time with the ridges. In the non-silanized device, the median value of interaction 

time is found to be 25 ms, whereas for the silanized device, it decreases to 5 ms, as shown in 

Fig. 6. Lower interaction times indicate the cells flow more easily through the constrictions 

leading to lower variability and enhanced separation. 
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Figure 6: Interaction time of non-viable Jurkat cells with ridges in two 15° ridge angle devices, with 
and without Triethoxysilane passivation at the minimum flow rate that prevents channel clogging. 

Cell separation and enrichment in the microfluidic device 
 

A mixture of viable and non-viable cells at a 1: 1 ratio was flowed through the device 

and cells were collected from the five outlets and analyzed using flow cytometry. Based on 

the results of our optimization study, we use a flow rate of 35 μl/min in a channel with 15° 

ridges. The separation is quantified in terms of the enrichment factor defined as the ratio of 

viable and non-viable cells at each outlet and at the inlet: 

 

 

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 =  

  (
% 𝑜𝑓 𝑇𝑎𝑟𝑔𝑒𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠

% 𝑜𝑓 𝑁𝑜𝑛 𝑇𝑎𝑟𝑔𝑒𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠
)

𝑜𝑢𝑡𝑙𝑒𝑡

 (
% 𝑜𝑓 𝑇𝑎𝑟𝑔𝑒𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠

% 𝑜𝑓 𝑁𝑜𝑛 𝑇𝑎𝑟𝑔𝑒𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠
)

𝑖𝑛𝑙𝑒𝑡
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Figure 7: Sorted cells distribution (scatter line) and enrichment factor (histograms) of viable and non-
viable cells populations, flowed at 35 μl/min flow rate and in a device with a 15° ridge angle. 

 

 

Sorting performance can also be assessed by cells recovery and purity defined as: 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =  
  (# 𝑜𝑓 𝑇𝑎𝑟𝑔𝑒𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠)𝑜𝑢𝑡𝑙𝑒𝑡

 ∑ (# 𝑜𝑓 𝑇𝑎𝑟𝑔𝑒𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠)𝑎𝑙𝑙 𝑂𝑢𝑡𝑙𝑒𝑡𝑠 𝑜𝑢𝑡𝑙𝑒𝑡

 

 
 

𝑃𝑢𝑟𝑖𝑡𝑦 =  
  (# 𝑜𝑓 𝑇𝑎𝑟𝑔𝑒𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠)𝑜𝑢𝑡𝑙𝑒𝑡

 (∑ # 𝑜𝑓 𝑎𝑙𝑙 𝑐𝑒𝑙𝑙𝑠)𝑜𝑢𝑡𝑙𝑒𝑡
 

 

We quantified the sensitivity of the sorting to viability by examining the sorting 

distribution of viable and heat-treated cell populations. The metrics are plotted in Fig. 7 as an 
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average from three repeated experiments and presented in Table 1. From the cell distribution, 

81.78% of the non-viable cells translated towards the stiff outlet 1 and 62.48% of viable 

cells translated to the soft outlet 4 with a purity of 82.8%. Combining the cells from the two 

soft outlets 4 and 5 leads to a viable cell recovery of 72.4% with a purity of 78.7%. By 

including cells from the middle outlet 3, viable cell recovery can be increased to 87.8% with 

a purity of 74.1%. The average enrichment for viable and non-viable cells is 7.6 and 25.2 in 

outlets 4 and 1, respectively.  

 
Table 1: Sorted cells distribution of viable and non-viable Jurkat cell populations at a flow rate of 
35μl/min and in a device with 15° ridge angle. 

Sorted cells distribution (%) 

Ports Non-viable Viable 

Outlet 1 81.78 6.20 

Outlet 2 3.70 6.01 

Outlet 3 5.26 15.37 

Outlet 4 4.66 62.48 

Outlet 5 4.60 9.94 

               

 

 

Viability sensing mode through cell tracking 

 

The microfluidic device can separate a mixed stream of viable and non-viable cells using the 

differences in their mechanical properties. An additional mode of sensing can use the 

information contained in trajectories of individual cells to differentiate cell populations while 

they flow through the channel. We used a tracking algorithm to follow cell motion in videos 

obtained using a high-speed camera. We extracted the cell deflection per ridge and the 

interaction time for each ridge in the channel for populations of viable cells and non-viable 

cells flown separately through the device. The cumulative deflection of each cell population 

is shown in Fig. 8a. The average cumulative deflection of viable cells is −53.3 𝜇𝑚 indicating 

a negative migration to the soft outlets, whereas the non-viable cells resulted in an average 

cumulative deflection of 105.1 𝜇𝑚 and a translation in the positive direction towards the stiff 

outlets (𝑝 <  10−11 where p is the probability value of the null hypothesis for a conducted 

student t-test, n=156).  
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Figure 8: (a) Cumulative deflection of viable and non-viable Jurkat cells, calculated by summing the 
deflection of the cells at each ridge using the tracking algorithm. Cells were flowed at 35 μl/min in a 
device with 15° ridge angle. (b) Receiver Operator Characteristic (ROC) curves for the Jurkat cells 
deflection as a binary test classifier for two study cases. The black line is when viable cells are taken 
for positive, whereas the grey line is when non-viable cells are considered positive. (c) Contingency 
table used to separate test subjects into TPs, FPs, FNs, TNs based on cells deflection as a binary 
classifier. (d) ROC curve for SUDHL cells deflection as a binary test classifier for TP=Live. 

 

 

 

 

We analyzed the cumulative deflection of cells to assess the utility of a single sensor 

output to differentiate viable and non-viable cells. The True-Positive Fraction (TPF) and 

False-Positive Fraction (FPF) were used to evaluate the binary classification of cells based on 

their deflection. Two case studies with different definitions of positive state were considered 

to illustrate the possible applications. The first case considered viable cells as positive and 

non-viable cells as negative (TP=viable), whereas the second case considered non-viable cells 

as positive and viable cells as negative (TP=non-viable). For the first case, a test outcome 

was considered positive if the cell deflection was below the threshold value, and for the 

second case, it was positive if the cell deflection was above the threshold value, for the full 

range of the deflection threshold values.  
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ROC curves were plotted by determining the true and false positive rates for the two 

study cases, as shown in Fig. 8b. The area under the Receiver Operator Characteristic (ROC) 

curve was used to calculate an area under the curve (AUC) to indicate the utility of the test, in 

which a perfect test has an AUC of 1. For the cumulative cell deflection used as a binary 

classifier, the AUC value was 0.97 for the first case (TP= viable) and 0.98 for the second 

case (TP=non-viable). Depending on the application, different outlets can be collected and 

combined to get the required sensitivity and specificity. For example, by collecting outlets 3, 

4, and 5 in the first case (TP= viable), we can obtain a sensitivity of 96% and a specificity of 

95%.  

 

As another example of monitoring cell viability, SUDHL cells were heat-treated to 

induce cell death and a ROC curve produced from the separation data is shown in Fig. 8d. 

The AUC value was 0.95. Thus, the technology is able to sort and sense viable cells in a 

label-free and accurate manner comparable to commonly used cell viability stains and 

conventional apoptosis assays, for example propidium iodide (PI) which has been reported to 

significantly underestimate the viability of different types of cells (4-6). 

 

 

Since the cumulative deflection reduces several cell-specific variables to a single 

parameter, there could be even more benefit in examining the trajectories of cells with more 

detail to determine the cell viability. We therefore used the cell size, deflection (Dx), and 

interaction time (Tx) at each ridge (x) as input variables to perform a dimensionality 

reduction using a principal component analysis (PCA) to further explore the clustering of 

viable and non-viable cells populations. We reduce the 11 variables to two dimensions as 

shown in Fig. 9. A clustering of the viable cell population with the PCA showed no overlap 

with the clustering from the non-viable cell population, suggesting that the detection could be 

even more accurate. The principal components PC1 and PC2 respectively explain 23% and 

19.8% of the total variance. From the loading of each of the variables in the reduced data 

space, we notice that the interaction time with a ridge correlates with the deflection on the 

next ridge, for example T1 correlates with D2 and T2 correlates with D3. It is also observed 

that viable cells cluster to a single location while the non-viable cells cluster to three regions 

of the plot by the ridge where they deflect. It should be noted that all three clusters of the 

non-viable cells ended at the same outlet. However, PCA can be used to identify different 

routes of cell translation and possibly subsets of non-viable cells that are not distinguished by 

collecting from outlets. 

 

 

 



18 
 

 
Figure 9: PCA analysis of non-viable and viable (a) Jurkat and (b) SUDHL cells using different features: 
cells deflection at each ridge, cells interaction time with each ridge and cells size. A total of 489 
Jurkat cells and 650 SUDHL cells were analyzed. 

 
As a comparison to other microfluidic-based systems, our work achieves high sorting  

accuracy for detection of cell viability (AUC of 0.97). In terms of comparison to the 

Guzniczak et al. study (44), they reported a recovery value of 60%, whereas our study can 

achieve up to 88% by combining outlets. Thus the multi-outlet device design we present in 

this study can lead to greater accuracy in separation. In terms of throughput, Islamzada et al. 

(45) reported a sorting  throughput of 600 enucleated cells/min, whereas Guzniczak et al. (44) 

performed sorting at a capacity for high throughput of 3 106 cells/min at a concentration of 

 106 cells/mL. The separation and detection presented in this study is optimized for accuracy, 

not throughput. In this study, the throughput is 7.5  104 cells/min per channel at a 

concentration of 1 − 1.5 106 cells/mL. The sorting throughput can be increased by accepting 

a lower accuracy (e.g. AUC<0.97), or through channel multiplexing. In terms of device 

operation, our microfluidic platform can operate continuously over the course of several 

hours. However, the video readout and processing is currently limited to record several 

videos at different timepoints, thus limiting the number of data collection points. 
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Conclusion 
 

We find that viable cells have distinct differences of biomechanical properties from 

non-viable cells that can be used for continuous cell separation and sensing. We demonstrate 

how a microfluidic cell separation device can be optimized for high sensitivity to 

biomechanical differences to detect viable and non-viable cells. We demonstrate two modes 

of sensing to transduce signals while cells are continuously flow through the device. We 

demonstrate that additional sensor outputs can be extracted and used to sense cell viability. 

We show in a sensitivity analysis that a single sensor output of “cumulative separation” 

produces an AUC of 0.97. Alternatively, a plethora of individual variables, including 

deflection per ridge, interaction time at each ridge, and cell size, can all be used in a PCA to 

provide a greater capacity to cluster cells with no overlap between viable and non-viable 

subpopulations. This approach can thus be used as a new type of label-free sensor for 

monitoring of cell viability and functional health of cell cultures. 

 

Supporting Information 
Supporting Information Available: The following files are available free of charge. 

 

- S1_viable_Jurkat_15deg.mp4: Video of viable Jurkat cells in a 15° ridge angle device.  

- S2_nonViable_Jurkat_15deg.mp4: Video of non-viable Jurkat cells in a 15° ridge angle 

device.   

- S3_nonViable_Jurkat_30deg .mp4: Video of non-viable Jurkat cells in a 30° ridge angle 

device showing the cell gradual displacement mode.  
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