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Abstract

Hyperdimensional Computing (HDC) mimics the brain’s basic
principles in performing cognitive tasks by encoding the data to
high-dimensional vectors and employing non-complex learning
techniques. Conventional processing platforms such as CPUs and
GPUs are incapable of taking full advantage of the highly-parallel
bit-level operations of HDC. On the other hand, existing HDC en-
coding techniques do not cover a broad range of applications to
make a custom design plausible. In this paper, we first propose a
novel encoding that achieves high accuracy for diverse applications.
Thereafter, we leverage the proposed encoding and design a highly
efficient and flexible ASIC accelerator, dubbed GENERIC, suited for
the edge domain. GENERIC supports both classification (train and
inference) and clustering for unsupervised learning on edge. Our
design is flexible in the input size (hence it can run various appli-
cations) and hypervectors dimensionality, allowing it to trade off
the accuracy and energy/performance on-demand. We augment
GENERIC with application-opportunistic power-gating and voltage
over-scaling (thanks to the notable error resiliency of HDC) for
further energy reduction. GENERIC encoding improves the predic-
tion accuracy over previous HDC and ML techniques by 3.5% and
6.5%, respectively. At 14 nm technology node, GENERIC occupies
an area of 0.30 mm?, and consumes 0.09 mW static and 1.97 mW
active power. Compared to the previous inference-only accelerator,
GENERIC reduces the energy consumption by 4.1x.
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1 Introduction

Hyperdimensional Computing (HDC) is a novel brain-inspired
learning paradigm based on the observation that brains perform
cognitive tasks by mapping sensory inputs to high-dimensional
neural representation [1-3]. It enables the brain to carry out sim-
ple, low-power, error-resilient, and parallelizable operations all in
the hyperspace. Such characteristics of HDC make it appealing
for a wide variety of applications such as IoT domain that gener-
ates an increasing amount of data with tight resource and energy
constraints [4, 5].
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HDC uses specific algorithms to encode raw inputs to a high-
dimensional representation of hypervectors with Dy,~2-5K di-
mensions. The encoding takes place by deterministically associating
each element of an input with a binary or bipolar (+1) hypervec-
tor and bundling (element-wise addition) the hypervectors of all
elements to create the encoded hypervector. Training is straightfor-
ward and involves bundling all encoded hypervectors of the same
category. For inference, the query input is encoded to a hypervector
in the same fashion and compared with all class hypervectors using
a simple similarity metric such as cosine.

The bit-level massively parallel operations of HDC do not accord
well with conventional CPUs/GPUs due to, e.g., memory latency
and data movement of large vectors and the fact that these devices
are over-provisioned for majorly binary operations of HDC. Pre-
vious works on custom HDC accelerators support a limited range
of applications or achieve low accuracy. The authors of [6] and [7]
propose custom HDC inference designs that are limited to a specific
application. More flexible HDC inference ASICs are proposed in
[8] and [9], but as we quantify in Section 3.2, the utilized encoding
techniques achieve poor accuracy for particular applications such
as time-series. The authors of [10] propose a trainable HDC acceler-
ator, which yields 9% lower accuracy than baseline ML algorithms.
An HDC-tailored processor is proposed in [11], but it consumes
~1-2 orders of magnitude more energy than ASIC counterparts.
The in-memory HDC platform of [12] uses low-leakage PCM cells
to store hypervectors, but its CMOS peripherals throttle the overall
efficiency.

In this paper, we propose GENERIC (highly efficient learning
engine on edge using hyperdimensional computing) for highl;/
efficient and accurate trainable classification and clustering. Our
primary goal is to make GENERIC compact and low-power to meet
year-long battery-powered operation, yet fast enough during train-
ing and burst inference, e.g., when it serves as an IoT gateway. To
this end, we make the following contributions.

(1) We propose a novel HDC encoding that yields high accuracy
in various benchmarks. Such a generic encoding is fundamental to
develop a custom yet flexible circuit.

(2) We perform a detailed comparison of HDC and various ML
techniques on conventional devices and point out the failure of
these devices in unleashing HDC advantages.

(3) We propose the GENERIC flexible architecture that implements
accurate HDC-based trainable classification and clustering.

(4) GENERIC benefits from extreme energy reduction techniques
such as application-opportunistic power gating, on-demand dimen-
sion reduction, and error-resilient voltage over-scaling.

(5) Comparison of GENERIC with the state-of-the-art HDC imple-
mentations reveals GENERIC improves the classification accuracy
by 3.5% over previous HDC techniques and 6.5% over ML tech-
niques. GENERIC improves energy consumption by 4.1x and 15.7X
compared to previous HDC accelerators [8] and [10], respectively.
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2 Hyperdimensional Computing
2.1 Learning with HDC

Figure 1 demonstrates the HDC training and inference. During
training, each input X is encoded to a hypervector H(X) and
added up to its class hypervector. In the inference, the query is
likewise encoded and compared with class hypervectors. The class
index with the highest similarity score is returned as the prediction
result. We use cosine distance of the query and class hypervectors
as the similarity metric. The accuracy of an HDC model can be
improved by retraining iterations where the encoded train data are
compared with the HDC model, and in case of misprediction, the
model is updated by subtracting the encoded hypervector from the
mispredicted class and adding it to the correct class.

The similarity of hypervectors indicates their proximity [1],
which can be used to cluster data in the hyperspace [13]. Initially,
k encoded hypervectors are selected as clusters centroids. At each
iteration, all encoded inputs are compared with the centroids and
added to the closest (highest score) centroid hypervector. In classi-
fication, the model is updated right away. However, in clustering,
the model is fixed and used for finding the similarities, and a new
model is created from scratch, which replaces the current model in
the next iteration.

2.2 Encoding

Encoding is the major step of HDC; hence, previous works have
proposed several encoding techniques to map the inputs to high-
dimensional space. Most encodings associate hypervectors with
the raw input features (elements), called level hypervector (see
Figure 2(a)), which are hyperspace representative of scalar elements.
Usually, inputs are quantized into bins to limit the number of levels.
If there is a meaningful distance between the input elements (as in
the values of white and black pixels), this distance is also preserved
when generating the levels.

Encoding of an input is accomplished by aggregation the level
hypervectors of its elements. To handle the positional order of
elements, which is essential in most datasets such as image or voice,
HDC uses variants of binding. The permutation encoding of Figure
2(b) carries out binding by circular shift of the level hypervectors;
the level hypervector of m® feature is permuted by m indexes.
Some other encodings such as random projection (RP), shown in
Figure 2(c), or level-id use id hypervectors for binding. In these
encodings, each input index has a random (but constant) binary id,
which is multiplied (XOR in the binary domain) with its level, and
the result vector is aggregated with that of other indexes.

3 Proposed HDC Encoding
3.1 GENERIC Encoding

The encoding techniques discussed in Section 2.2 achieve low
accuracy for certain datasets such as language identification which
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Figure 1: (a) HDC model training (initialization), (b) inference, and (c) retraining,.

generally need extracting local subsequences of consecutive fea-
tures, without considering the global order of these subsequences
(see subsection 3.2). Previous studies use ngram encoding for such
datasets [6, 7, 14]. Ngram encoding extracts all subsequences of
length n (usually ne{3-5}) in a given input, encodes all these subse-
quences and aggregates them to produce the encoded hypervector.
However, ngram encoding achieves very low accuracy for datasets
such as images or voices in which the spatio-temporal information
of should be taken into account.

We propose a new encoding, dubbed GENERIC, to cover a more
versatile set of applications. As shown in Figure 2(d), our encoding
processes sliding windows of length n by applying the permuta-
tion encoding. That is, for every window consisting of elements
{Xps Xp41> Xpqo} (for n=3), three level hypervectors are selected,
where £(x), £(x41), and £(xg,p) are permuted by 0, 1, and 2 in-
dexes, respectively. The permuted hypervectors are XORed element-
wise to create the window hypervector. The permutation accounts
for positional information within a window, e.g., to distinguish
“abc” and “bca”. To account for global order of features, we associate
a random but constant id hypervector with each window, which
is XORed with the window hypervector to perform binding. To
skip the global binding in certain applications, id hypervectors are
set to {0} Pho. Equation (1) formalizes our encoding, where p(j)
indicates permutation by j indexes, [ multiplies (XOR in binary)
the levels of i window, id; applies the binding id, and Y adds up
the window hypervector for all windows of d elements.

d—n+1 n—1
HX) = Y (idi- [ ] (exia))) M
i=1 j=0

We use n=3 as it achieved the highest accuracy (on average) for
our examined benchmarks (see subsection 3.2), however, GENERIC
architecture can adjust the value of n for every application.

3.2 Accuracy Comparison

We compiled eleven datasets from different domains, consisting
of the benchmarks described in [10], seizure detection by skull
surface EEG signals, and user activity recognition by motion sensors
(PAMAP?) [15]. We implemented the HDC algorithms using an
optimized Python implementation that leverages SIMD operations.
For ML techniques, we used Python scikit-learn library [16]. We
discarded the results of logistic regression and k-nearest neighbors
as they achieved lower accuracy. For DNN models of benchmarks,
we used AutoKeras library [17] for automated model exploration.

Table 1 summarizes the accuracy results (RP: random projec-
tion, MLP: multi-layer perceptron, SVM: support vector machine,
RF: random forest). The proposed GENERIC encoding achieves 3.5%
higher accuracy than the best baseline HDC (level-id), 6.5% higher
than best baseline ML (SVM), and 1.0% higher than DNN. The
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Figure 2: (a) Level hypervectors, (b) permutation encoding, (c) random projection encoding, (d) proposed GENERIC encoding.

Table 1: Accuracy of HDC and ML algorithms.

Dataset HDC Algorithms ‘ ML Algorithms

RP level-id ngram permute GENERICMLP SVM RF DNN
CARDIO83.0% 88.1% 88.1% 882% 91.8% 86.4% 86.4% 953% 90.1%
DNA 99.3% 99.3% 99.7%  99.3%  99.7% 99.5% 99.5% 99.5% 99.8%
EEG 46.8% 77.5% 83.1% 783% 831% 568% 754% 80.1% 60.2%
EMG 53.6% 90.9% 908% 91.1%  90.9% 91.0% 89.2% 83.6% 89.4%
FACE 953% 95.0% 733%  96.1%  95.7% 955% 97.3% 92.5% 96.7%
ISOLET 93.2% 93.5% 389% 935% 93.1% 95.0% 96.0% 92.2% 94.4%
LANG 82% 759% 100.0% 52.8%  100.0% 54% 30.8% 103% 99.9%
MNIST 94.6% 89.4% 53.0% 893% 94.0% 96.7% 97.9% 96.0% 99.1%
PAGE 96.1% 91.6% 91.7% 91.7% 91.8% 96.5% 96.9% 97.4% 95.8%
PAMAP283.0% 94.6% 60.9% 958%  93.8% 929% 91.9% 95.6% 96.1%
UCIHAR93.4% 94.6% 64.9% 94.7%  94.9% 94.6% 958% 95.6% 96.5%
Mean 77.0% 90.0% 76.8%  883%  93.5% 82.8% 87.0% 853% 92.5%
STDV ~ 27.5% 6.9% 192% 124% 44% 26.9% 19.0% 24.4% 10.8%

RP encoding fails in time-series datasets that require temporal in-
formation (e.g., EEG). As explained in subsection 3.1, the ngram
encoding [6, 14] do not capture the global relation of the features,
so it fails in datasets such as speech (ISOLET) and image recog-
nition (MNIST). Except for the ngram and the proposed GENERIC,
other HDC techniques fail in the LANG (text classification) as they
enforce capturing sequential information and ignore subsequences.

3.3 Efficiency on Conventional Hardware

HDC'’s operations are simple and highly parallelizable, however,
conventional processors are not optimized for binary operations
such as one-bit accumulation. Also, the size of hypervectors in most
settings becomes larger than the cache size of low-end edge proces-
sors, which may impose significant performance overhead. For a
detailed comparison, we implemented the HDC and ML algorithms
on the datasets of subsection 3.2 on a Raspberry Pi 3 embedded
processor and NVIDIA Jetson TX2 low-power edge GPU, and also
a desktop CPU (Intel Core i7-8700 at 3.2 GHz) with a larger cache.
We used Hioki 3334 power meter to measure the power of the
Raspberry Pi.

Figure 3 compares the training and inference (a) energy con-
sumption and (b) execution time of the algorithms, reported as
the geometric mean of all benchmarks (for eGPU, we omitted the
results of conventional ML as it performed worse than CPU for
a variety of libraries we examined). We can observe that (i) con-
ventional ML algorithms, including DNN, unanimously consume
smaller energy than HDC on all devices, (ii) GENERIC encoding, due
to processing multiple hypervectors per window;, is less efficient
than other HDC techniques, and (iii) our eGPU implementation, by
data packing (for parallel XOR) and memory reuse, significantly
improves the HDC execution time and energy consumption. For
instance, eGPU improves the energy usage and execution time of
GENERIC inference by 134X and 252X over running on low-end
Raspberry Pi (70x and 30x over CPU). However, GENERIC running
on eGPU still consumes 12X (3X) more inference (train) energy,
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Figure 3: (a) Energy consumption and (b) execution time of
HDC and ML algorithms on different devices.

with 27X (111x) higher execution time than the most efficient base-
line (random forest). Nonetheless, eGPU numbers imply substantial
energy and runtime reduction potential for HDC by effectively tak-
ing advantage of low-precision operations (achieved by bit-packing
in eGPU) and high parallelism.

4 GENERIC Architecture

4.1 Overview

Figure 4 shows the main components of GENERIC architecture.
The main inputs include (i) input port to read an input (including
the label in case of training) from the serial interface element by
element and store in the input memory before starting the encoding,
(ii) config port to load the level, id, and class hypervectors (in case
of offline training), and (iii) spec port to provide the application
characteristics to the controller, such as Dy, dimensionality, d
elements per input, n length of window, nc number of classes or
centroids, bw effective bit-width, and mode (training, inference, or
clustering). Output port returns the labels of inference or clustering.

The controller, by using spec data, handles the programmability
of GENERIC and orchestrates the operations. For instance, the en-
coder generates m=16 (architectural constant) partial dimensions
after each iteration over the stored input, where the variable Dy,
signals the end of encoding to finalize the search result, d denotes
the number of input memory rows to be proceeded to fetch fea-
tures (i.e., the exit condition for counter), n¢ indicates the number
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Figure 4: Overview of GENERIC architecture.

of class memory rows that need to be read for dot-product and
so on. The class memory layout of GENERIC also allows trade off
between the hypervectors length Dy, and supported classes nc. By
default, GENERIC class memories can store Dp,=4K for up to nc=32
classes. For an application with less than 32 classes, higher num-
ber of dimensions can be used (e.g., 8K dimensions for 16 classes).
We further discuss it in subsection 4.3. These application-specific
input parameters enable GENERIC the flexibility to implement var-
ious applications without requiring a complex instruction set or
reconfigurable logic.

4.2 Classification and Clustering

4.2.1 Encoding and Inference: Features are fetched one by one
from the input memory and quantized to obtain the level bin, and
accordingly, m (16) bits of the proper level hypervector are read.
The levels are stored as m-bit rows in the level memory. The stacked
registers (reg n to 1) facilitate storing and on-the-fly sliding of level
hypervectors of a window. Each pass over the input features gener-
ates m encoding dimensions, which are used for dot-product with
the classes. The class hypervectors are distributed into m memories
(CM 1 to CM m) to enable reading m consecutive dimensions at once.
The dot-product of partial encoding with each class is summed up
in the pipelined adder @, and accumulated with the dot-product
result of previous/next m dimensions in the score memory @.

After Dn';” iterations, all dimensions are generated, and the dot-

product scores are finalized. We use cosine similarity metric be-
tween the encoding vector H and class C;: §; = M’{%, hence,
2 2
we need to normalize the dot-product result with L2 norms. The
||H]|, can be removed from the denominator as it is a constant
and does not affect the rank of classes. In addition, to eliminate
(H-Ci)?
Ici3
without affecting the predictions. The norm2 memory of Figure 4@

stores the squared L2 norms of classes, and similarly, the squared

the square root of ||C;||,, we modify the metric to §; =
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score is passed to the divider @. We use an approximate log-based
division [18].

4.2.2 Training and Retraining: In the first round of training,
i.e., model initialization, encoded inputs of the same class/label
are accumulated. It is done through the adder @ and mux @
of all class memories. The controller uses the input label and the
iteration counter to activate the proper memory row. In the next
retraining epochs, the model is examined and updated in case of
misprediction (see Figure 1). Thus, during retraining, meanwhile
performing inference on the training data, the encoded hypervector
is stored in temporary rows of the class memories (through the
second input of mux @). If updating a class is required, the class
rows are read and latched in the adder @, followed by reading the
corresponding encoded dimensions from the temporary rows and
writing the new class dimensions back to the memory. Hence, each
update takes 3x Dhe cycles. Training also requires calculating the
squared L2 norm of classes in the norm2 memory @. As it can be
seen in Figure 4, the class memories are able to pass the output into
both ports of the multipliers (one direct and another through the
mux) to calculate and then accumulate the squared elements.

4.2.3 Clustering: GENERIC selects the first k encoded inputs as
the initial cluster centroids and initializes k centroids in the class
memories. It allocates two sets of memory rows for temporary data;
one for the incoming encoding generated in the encoding module
and another for the copy centroids (as mentioned in Section 2.1,
clustering generates a new copy instead of direct update). Similarity
checking of the encoding dimensions with the centroids is done
pipelined similar to inference, but the encoded dimensions are
stored to be added to the copy centroid after finalizing the similarity
checking. After finding the most similar centroid, the copy centroid
is updated by adding the stored hypervector (similar to retraining).
The copy centroids serve as the new centroids in the next epoch.

4.3 Energy Reduction

We take advantage of the properties of GENERIC architecture
and HDC for utmost energy efficiency. The following elaborates
energy-saving techniques that benefit GENERIC. These techniques
can also be applied to other HDC accelerators.

4.3.1 id Memory Compression: The id memory naturally needs
1Kx4K=512KB (for up to to 1K features per input, and Dy,=4K
dimensions) which occupies a large area and consumes huge power.
However, GENERIC generates ids on-the-fly using a seed id vector,
where k1 id is generated by permuting the seed id by k indexes.
Therefore, the id memory shrinks to 4 Kbit, i.e., 1024 reduction.
Permutation preserves the orthogonality. It is implemented by the
tmp register in Figure 4@, by which, for a new window, the reg id
is right-shifted and one bit of tmp is shifted in. The tmp register
helps to avoid frequent access to the id memory by reading m (16)
bits at once and feeding in the next m cycles.

4.3.2 Application-opportunistic Power Gating: For an appli-
cation with n¢ classes and using Dy, dimensions, GENERIC stripes
the dimensions 1 to m (16) of its 1% class vector in the 15t row of m
class memories, the 204 (lass vector in the 274 row, and so on (see
Figure 4). The next m dimensions of the 1% class vector are there-
fore written into nc + 1th row, followed by the other classes. Thus,

GENERIC always uses the first ng;;?é”’ portion of class memories.
The applications of Section 3.2, on average, fill 28% of the class
memories (minimum 6% for EEG/FACE, and maximum 81% for ISO-

LET) using Dp,,=4K dimensions. Accordingly, GENERIC partitions
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Figure 5: Accuracy with constant and updated L2 norm.
each class memory into four banks and power gates the unused
banks. With four banks, 1.6 out of four banks are activated on av-
erage, leading to 59% power saving. With more fine-grained eight
banks, 2.7 banks (out of eight) become active, saving 66% power.
However, eight banks impose 55% area overhead compared to 20%
of four banks (see Section 5.1 for setup). We concluded that the four-
bank configuration yields the minimum areaXpower cost. Since the
power gating is static (permanent) for an application, no wake-up
latency or energy is involved.

4.3.3 On-demand Dimension Reduction: GENERIC can trade
the energy consumption and performance with accuracy. Recall that
GENERIC generates m dimensions of the encoding per iteration over
the features. By feeding a new Dy, value as input, GENERIC can
seamlessly use the new dimension count by updating the counter
exit condition, so smaller hypervectors of the encoding and class hy-
pervectors will be used. Nevertheless, GENERIC stores the squared
(H-Ci)* )
Ic:13
while for arbitrary reduced encoding dimensions, only the corre-
sponding elements (and their L2 norms) of the classes are needed.
As Figure 5 shows, using the old (Constant) L2 values causes signif-
icant accuracy loss compared to using the recomputed (Updated)
L2 norm of sub-hypervectors. The difference is up to 20.1% for EEG
and 8.5% for ISOLET. To address this issue, when calculating the
squared L2 norms during the training, GENERIC stores the L2 norms
of every 128'-dimension sub-class in a different row of the norm2
memory @ Thus, dimensions can be reduced with a granularity of
128 while keeping the norm2 memory small (2 KB for 32 classes).

L2 norms of the whole classes for similarity metric (§; =

4.3.4 Voltage Over-scaling: GENERIC has to use 16-bit class di-
mensions to support training. As a result, the large class memories
consume ~80% of the total power. HDC exhibits notable tolerance
to the bit-flip of vectors [19], which can be leveraged to over-scale
the memory voltage without performance loss. Figure 6 shows the
accuracy of select benchmarks (ISOLET and FACE) with respect
to the class memory error. The static (s) and dynamic (dyn) power
saving as a result of corresponding voltage scaling (without re-
ducing clock cycle) is also shown in the right axis (based on the
measured data of [20]). The figure shows the result of the HDC
models with different bit-width (bw input parameter of GENERIC)
of classes by loading a quantized HDC model (the mask unit @ in
the architecture masks out the unused bits). As it can be seen, error
tolerance not only depends on application but also on the bit-width.
1-bit FACE model shows a high degree of error tolerance (hence,
power saving) by up to 7% bit-flip error rate, while ISOLET pro-
vides acceptable accuracy by up to 4% bit-flip using a 4-bit model.
Quantized elements also reduce the dynamic power of dot-product.

Voltage over-scaling also depends on the application’s sensitivity
to dimension reduction and its workload. For instance, FACE has a
higher tolerance to voltage scaling than dimension reduction (see
Figure 5). On the other hand, ISOLET is more sensitive to voltage re-
duction but achieves good accuracy down to 1K dimensions (Figure
5), which means 4X energy reduction compared to 4K dimensions.
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Figure 6: Accuracy and power reduction wrt memory error.
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Figure 7: Accuracy and power reduction wrt memory error.

Thus, voltage over-scaling for ISOLET is only preferred in work-
loads with a higher idle time where the static power dominates
(voltage scaling reduces the static power more significantly).

5 Results

5.1 Setup

We implemented GENERIC at the RTL level in SystemVerilog
and verified the functionality in Modelsim. We used Synopsys De-
sign Compiler to synthesize GENERIC targeting 500 MHz clock with
14 nm Standard Cell Library of GlobalFoundries. We used Artisan
memory compiler to generate the SRAM memories. The level mem-
ory has a total size of 64x4K = 32KB for 64 bins, the feature memory
is 1024x8b, and class memories are 8Kx16b (16 KB each). We ob-
tained the power consumption using Synopsys Power Compiler.
GENERIC occupies an area of 0.30 mm? and consumes a worst-case
static power of 0.25 mW when all memory banks are active. For
datasets of Section 3.2, GENERIC consumes a static and dynamic
power of 0.09 mW, and 1.79 mW, respectively (without voltage scal-
ing). Figure 7 shows the area and power breakdown. Note that the
level memory contributes to less than 10% of area and power. Hence,
using more levels does not considerably affect the area or power.

5.2 Classification Evaluation

5.2.1 Training: Since previous HDC ASICs have not reported
training energy and performance, we compare the per-input energy
and execution time of GENERIC training with RF (random forest,
most efficient baseline) and SVM (most accurate conventional ML)
on CPU, and DNN and HDC on eGPU. Figure 8 shows the average
energy and execution time for the datasets of Section 3.2. GENERIC
improves the energy consumption by 528 over RF, 1257x over
DNN, and 694x over HDC on eGPU (which, as discussed in Section
3.3, is the most efficient baseline device for HDC). GENERIC con-
sumes an average 2.06 mW of training power. It also has 11x faster
train time than DNN and 3.7 than HDC on eGPU. RF has 12x
smaller train time than GENERIC, but as we mentioned, the overall
energy consumption of GENERIC is significantly (528x) smaller than
RF. Also, we used constant 20 epochs for GENERIC training while
the accuracy of most datasets saturates after a few epochs.

5.2.2 Inference: We compare the energy consumption of GENERIC
inference with previous HDC platforms from Datta et al. [10], and
tiny-HD [8]. We scale their report numbers to 14 nm according to
[21] for a fair comparison. We also include the RF (most efficient
ML), SVM (most-accurate ML) and DNN on HDC on eGPU (most-
efficient HDC baseline). Figure 9 compares the energy consumption
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Figure 9: Inference energy of GENERIC vs baselines.

Table 2: Mutual information score of K-means and HDC.

Hepta Tetra TwoDiamonds WingNut Iris
K-means 1.0 0.637 1.0 0.774 0.758
HDC 0.904  0.589 0.981 0.781 0.760

of GENERIC and aforementioned baselines. Since GENERIC achieves
significantly higher accuracy than previous work (e.g., 10.3% over
[10]), GENERIC—LP applies the low-power techniques of Section
4.3 to leverage this accuracy benefit. GENERIC—LP improves the
baseline GENERIC energy by 15.5X through dimension reduction
and voltage over-scaling. GENERIC—LP consumes 15.7X and 4.1x
less energy compared to [10] and tiny-HD [8], respectively. Note
that despite tiny-HD [8], GENERIC supports training which makes
it to use larger memories. GENERIC is is 1593%X and 8796X more
energy-efficient than the most-efficient ML (RF) and eGPU-HDC,
respectively.

5.3 Clustering Evaluation

Table 2 compares the normalized mutual information score of the
K-means and HDC for the FCPS [22] benchmarks and the Iris flower
dataset. On average, K-means achieves slightly (0.031) higher score,
but for datasets with more features, the proposed GENERIC can
better benefit from using windows (windows become less effective
in a smaller number of features).

Figure 10 compares the per-input energy consumption of GENERIC
with K-means clustering running on CPU and Raspberry Pi. GENERIC
consumes only 0.068 iJ per input, which is 17,523x and 61,400x
more efficient than K-means on Raspberry Pi and CPU. The average
per-input execution time of Raspberry Pi and CPU is, respectively,
394 uSec and 248 uSec, while GENERIC achieves 9.6 uSec (41X and
26X faster than R-Pi and CPU, respectively).

6 Conclusion

We proposed GENERIC, a highly-efficient HDC accelerator that
supports classification (inference and training) and clustering using
anovel encoding technique that achieves 3.5% (6.5%) better accuracy
compared to other HDC (ML) algorithms. GENERIC benefits from
power-gating, voltage over-scaling, and dimension reduction for
utmost energy saving. Our results showed that GENERIC improves
the classification energy by 15.1X over a previous trainable HDC
accelerator, and 4.1X over an inference-only accelerator. GENERIC
HDC-based clustering consumes 17,523% lower energy with 41x
higher performance than Raspberry Pi running K-means with simi-
lar accuracy, facilitating ultra-efficient continuous learning on edge.
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