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ABSTRACT

For a subring R of the rational numbers, we study R-localization functors in the local
homotopy theory of simplicial presheaves on a small site and then in A'-homotopy
theory. To this end, we introduce and analyze two notions of nilpotence for spaces in
A'-homotopy theory, paying attention to future applications for vector bundles. We
show that R-localization behaves in a controlled fashion for the nilpotent spaces we
consider. We show that the classifying space BGL, is A'-nilpotent when n is odd,
and analyze the (more complicated) situation where n is even as well. We establish
analogs of various classical results about rationalization in the context of A'-homotopy
theory: if —1 is a sum of squares in the base field, A™ \ 0 is rationally equivalent to a
suitable motivic Eilenberg—Mac Lane space, and the special linear group decomposes
as a product of motivic spheres.
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1. Introduction

In this paper we build some foundations for localization with respect to a set of primes in
the Morel-Voevodsky unstable A!-homotopy theory [MV99] and study some applications. Our
approach proceeds largely by analogy with the classical topological story [Qui69, BK72, Sul05].

The Morel-Voevodsky approach to the construction of the Al-homotopy category is a two-
stage localization. One begins with a category of spaces: we choose the model of simplicial
presheaves on the category of smooth schemes. At the first stage, one formally inverts ‘Nisnevich
local’ weak equivalences to obtain a ‘local homotopy category’. At the second stage, one formally
inverts projection maps with one factor the affine line to obtain the unstable A'-homotopy
category.

If R is a subring of the rational numbers, then our goal will be to further localize the
A'-homotopy category to obtain an R-local Al-homotopy category. While such localizations
formally exist, as in the classical story, we want to isolate a class of spaces for which R-localization
is ‘well behaved’. In the classical situation, for sufficiently nice spaces (e.g. nilpotent spaces), ‘well
behaved’ means that localization preserves fiber sequences, and has the effect of simply tensoring
homotopy groups with R.

Following the two-stage construction of the A'-homotopy category above, we begin in §2
by analyzing nilpotence in the more general context of the local homotopy theory of simpli-
cial presheaves on a site (with enough points in the topos-theoretic sense). In this context,
there is a ‘strong’ notion of nilpotence, which is analogous to the classical notion in the sense
that Postnikov towers for spaces can be refined to a tower of principal fibrations. However,
we also introduce a broader ‘local’ notion of nilpotence, where local nilpotence means ‘stalk-
wise’ nilpotence, which is natural from the standpoint of local homotopy theory. Section 2
closes with a quick discussion of R-localization in the local homotopy theory of simplicial
presheaves.

In §3 we begin our analysis of nilpotence in A'-homotopy theory. After reviewing founda-
tional structural facts about Al-homotopy sheaves, the bulk of §§3.1 and 3.2 is devoted to an
analysis of the relevant ‘group theory’ in the context of Al-homotopy theory. Then we analyze
variants of the above notions of nilpotence in A'-homotopy theory (see Definition 3.3.1).

A basic motivation for our analysis is that the analogs of spaces that are simple or even
simply-connected in classical algebraic topology can fail to be so in A'-algebraic topology. For
example, the projective line or, more generally, the variety parameterizing complete flags in a
vector space is Al-nilpotent (see Theorem 3.4.8). However, these examples typically fail to be
Al-simple because their A'-fundamental sheaves of groups may fail to be abelian (see
Remark 3.4.9 for further discussion).

In §4 we then proceed to analyze R-localization in Al-homotopy theory, keeping our
motivating examples in mind. Classically, R-local equivalences can be characterized as
maps that induce isomorphisms on R-local homology. The natural analog of ‘homology’
in the context of A'-homotopy theory is the Al-homology theory studied by F. Morel in
[Mor12, §6.2]. Thus, we analyze morphisms of spaces that induce isomorphisms on R-local
Al-homology.
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Remark 1. For spaces that are (Al-)simply connected, there is a tight connection between
Al-homotopy and A'-homology. In such situations, our approach agrees with previous approaches
to localization (e.g. [WW19, §3]), which use equivalent alternative approaches circumventing
discussion of Al-homology. On the other hand, more recently, G. Guzman [Guz19] has studied
localization of the unstable motivic homotopy category with respect to A'-homology. Her focus
is rather different from ours, as her goal is to obtain a ‘coalgebraic’ description of the associated
local homotopy category along the lines of [Qui69] or [Goe95].

A significant portion of §4 is devoted to analyzing the relationship between nilpotence and
A'-homology. This section closes with a construction of a model for R-localization that behaves
‘reasonably’ for suitable nilpotent spaces (see Theorems 4.3.9 and 4.3.11): for example, the effect
on higher A!-homotopy sheaves of R-localization amounts to tensoring with R).

Remark 2. Morel’s Al-homology theory does not coincide with motivic homology defined via
Voevodsky’s triangulated category of motives [MVWO06]. For example, if we consider the motivic
Hopf map 7:A?\0 — P!, then the map 7. in motivic homology is the zero map but, as
Morel observed, non-zero in A'-homology [Mor06a, Remark 3.12]. Moreover, this theory is not
Pl-stable, that is, representable in the stable A'-homotopy category of P!'-spectra (if it was, then
the A'-homology sheaves of a space in the sense of Morel could be equipped with transfers of
a suitable form, but they cannot always be equipped with this structure; see [Lev10, § 2] for an
example).

Section 5 focuses on the main applications of our constructions: we establish analogs of
some classical results of J.-P. Serre. First, Serre showed that after inverting sufficiently many
primes, compact Lie groups split as products of odd-dimensional spheres [Ser53]. Serre obtained
this decomposition by analyzing explicitly the computation of the cohomology of compact Lie
groups. An algebro-geometric analog of a compact Lie group is a split reductive group; once-
punctured affine spaces are algebro-geometric analogs of odd-dimensional spheres. With these
analogies in mind, we establish the following result.

THEOREM 3 (see Theorem 5.2.1). Suppose k is a field that is not formally real and n > 2 is an
integer. After inverting (n — 1)!, there is an A'-weak equivalence of the form

AZ\O x A\O--- x A"\ 0= SL,.

Remark 4. Our proof of this fact is rather different from the classical proof as we make no direct
cohomology computations. While the rational Voevodsky motive (or motivic cohomology) of
split reductive groups is understood [Gro97, Bigl2], the Al-homology has only been analyzed
in low degrees [Morll, Appendix A]. We are forced to construct the summands by means of
explicit maps and we do this by studying ‘Suslin matrices’ (introduced in [Sus77]). Appealing to
(complex) realization, our proof thus yields a new proof of Serre’s classical splitting in this case.

Serre also showed that the homotopy groups of $?"~! are finite except in degree equal 2n — 1.
Likewise, the homotopy groups of S?" are finite except in degrees 2n and 4n — 1. The first result is
a juxtaposition of two results: one shows that odd-dimensional spheres are rationally equivalent to
Eilenberg-Mac Lane spaces by analysis of the homotopy fiber of the map S?*~! — K(Z,2n — 1)
induced by the fundamental class (equivalently, the first non-trivial stage of the Postnikov tower),
and one establishes that Eilenberg—Mac Lane spaces have finitely generated cohomology by use
of Serre’s class theory. The second result follows from the first by construction of a fiber sequence
of the form

S — K(Z,2n) — K(Z,4n).
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We establish some motivic analogs of these results. To phrase the results in a uniform geometric
fashion, we use the split affine quadric Q2,—1 (defined by setting the even-dimensional hyperbolic
form equal to 1) and its corresponding even-dimensional analog Q9, (this is not quite obtained
by setting the odd-dimensional standard split hyperbolic form equal to 1, but it is isomorphic
to this if k£ has characteristic not equal to 2; see the beginning of §5.1 for more details).

THEOREM 5 (see Theorems 5.3.3 and 5.3.11). Assume k is a field that is not formally real.

1. The map
Qon-1 — K(Z(n),2n — 1)

induced by the fundamental class in motivic cohomology is an A'-equivalence for n =1,
and a rational A'-weak equivalence if n > 2.
2. There is a rational A'-fiber sequence of the form

Qan — K(Z(n),2n) — K(Z(2n),4n),

where the first map is the fundamental class in motivic cohomology, and second map is the
squaring map.

Remark 6. The classical proof of the first result uses the Serre spectral sequence to understand
the cohomology of the (2n — 1)-fold connective cover of S?"~!. In the motivic context, we do not
have a Serre spectral sequence of the necessary form. Our proof is by necessity quite different
from the classical proof and proceeds by appeal to Theorem 3 and rational degeneration of the
motivic spectral sequence linking algebraic K-theory and motivic cohomology. Moreover, our
result is an unstable analog of Morel’s equivalence between the rationalized stable A'-homotopy
category and Voevodsky’s category of motives (assuming —1 is a sum of squares in k). Similar
comments apply to the even-dimensional case.

After Theorem 5, the motivic analog of the finite-generation of the cohomology of classi-
cal Eilenberg-Mac Lane spaces is closely related to the Beilinson—Soulé vanishing conjecture
and the unstable A'-homotopy theory of Voevodsky’s motivic Eilenberg-Mac Lane spaces. We
refer the reader to Corollary 5.3.7 and the surrounding material for further discussion of this
relationship.

With the exception of the case n = 1 of Theorem 5(2), all of the results stated above could
be established with a more restrictive version of R-localization (i.e. for ‘simple’ spaces). Nev-
ertheless, allowing nilpotent spaces yields considerable additional flexibility, for example, good
control of fiber sequences under R-localization (see Remark 4.3.12 for further explanations). As
a consequence, the bulk of this paper is devoted to developing localization in generality suitable
for future geometric applications. For us, key among these observations is the fact that BGL,
has a ‘well-behaved’ rationalization, either if n is odd or if n is even and —1 is a sum of squares
in the base field (combine Theorems 3.4.6, 3.4.12 and 4.3.9); these results use the full strength
of the techniques developed here. A different set of applications is presented in [AFH20], where
we construct low-rank vector bundles on smooth affine varieties that are Al-weakly equivalent
to projective spaces. We refer the reader to the introduction to each section for a more detailed
description of its contents.

Preliminaries and notation. Throughout this paper k£ will denote a fixed base field and R
will be a commutative unital ring (typically a subring of the field of rational numbers Q). We
remind the reader that a field k is called formally real if —1 is not a sum of squares in k£ and
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not formally real otherwise; these notions will reappear later in the paper and we refer the reader
to [EKMOS, §95] for a discussion of some properties of formally real fields.
If C is a small category, then we use the following notation:

ADb(C), the category of presheaves of abelian groups on C;
Modpg(C), the category of presheaves of R-modules on C;
Grp(C), the category of presheaves of groups on C;
sPre(C) for the category of simplicial presheaves on C.

If C is equipped with a Grothendieck topology 7, then we use the following notation:

e Ab,(C), the full subcategory of Ab(C) consisting of 7-sheaves of abelian groups;
e Modpg (C), the full subcategory of Modr(C) consisting of 7-sheaves of R-modules.
e Grp.(C), the full subcategory of Grp(C) consisting of 7-sheaves of groups.

We will typically use script letters 27, % for objects in sPre(C). If C is a pointed category
with terminal object * (i.e. C has an initial object and the canonical map from the initial to the
terminal object is an isomorphism), then we write

e sPre(C), for the category of pointed objects in sPre(C),

that is, pairs (27, ) where 2" and z : * — 2" is a morphism.

If (C,7) is a site, sPre(C) can be equipped with a 7-local model structure (see § 2.2 for more
details); we write Ho,(C) for the associated homotopy category and Ho, .(C) for the pointed
homotopy category. We write R, for a fixed functorial fibrant replacement functor for the 7-local
model structure and, given 27, % € sPre(C), we write Map(2", %) for the associated derived
mapping space.

If G € Grp,(C), we write BG € sPre(C) for the associated classifying space; in brief,
G-torsors on spaces may be described in terms of maps in Ho,(C); we refer the reader to
[Jarl5, Theorem 9.8] in particular, and [Jarl5, Chapter 9] more generally, for further discussion
of this point. We also write B,G for a 7-local fibrant replacement for BG; we refer the reader
to [AHW18, §2.3] for more discussion of this notation.

Similarly, if A € Ab,(C), and n > 0 is an integer, we write K (A, n) € sPre(C) for the asso-
ciated Eilenberg-Mac Lane space [Jarl5, p. 212]; such objects represent sheaf cohomology with
coefficients in A in Ho.(C) [Jarl5, Theorem 8.26]. We will also use the notation K (A,n) when
A is a chain complex of T-sheaves of abelian groups situated in positive (homological) degrees.
In this case, K(A,n) represents hypercohomology with coefficients in A; see [Jarl5, Chapter 8]
for more details.

We write Smy for the category of schemes that are separated, smooth and have finite
type over Speck. When C = Smy, we set Spcy, := sPre(Smy). Typically, we will take C = Smy,
equipped with the Nisnevich topology, and if no topology is mentioned, the word ‘sheaf’
should be taken to mean Nisnevich sheaf. We set Aby, := Abnis(Smy) and Grp, := Grpy;s(Smy).
When (C, 7) = (Smy, Nis), the category Honis(Smy) (Honis «(Smy)) will be called the (pointed)
simplicial homotopy category.

The Morel-Voeovodsky A'-homotopy category Hoy, is obtained from Honis(Smy) by a further
Bousfield localization (see § 3.1 for more details); the pointed A'-homotopy category is obtained
similarly, beginning with the pointed simplicial homotopy category Honis«(Smy) instead. If
2, % € Spcy,, we set

(2, %] := Homp,, (2, %),

and similar notation will be used for pointed A'-homotopy classes of maps.
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2. Nilpotence and R-localization in local homotopy theory

Suppose R C Q is a subring. The main goal of this section is to study a notion of R-localization of
simplicial presheaves, paying close attention to the behavior of localization for ‘nilpotent spaces’
in a sense we introduce here.

In §2.1 we begin by formulating sheaf-theoretic notions of nilpotent and R-local sheaves of
groups. In §2.2 we review basic constructions related to the local homotopy theory of simplicial
presheaves on a small Grothendieck site [Jarl5]. In the case where the site has ‘enough points’,
we introduce various notions of nilpotent spaces (or maps) in this context. In §2.3 we analyze
functorial R-localizations for nilpotent spaces in the situation under consideration.

Presumably, much of what we discuss in this section could be formulated in an arbitrary
oo-topos [Lur09], but we restrict our attention to simplicial presheaves on a small Grothendieck
site both to simplify the discussion and because that is all we will use in our applications to
Al-homotopy theory.

Versions of some facts here about R-localization were worked out in [WW19, § 3|, though
they mainly analyze localization functors for the analogs of simply connected or, more generally,
simple spaces. Moreover, it was observed there that various inequivalent versions of the theory
exist, just as in the classical situation. Indeed, for non-nilpotent spaces, there are a number of
inequivalent R-localization functors (see Remark 2.3.5 for further discussion and references).

In any case, upon choosing a model of functorial R-localization for simplicial sets, one may
then define R-localization for pointed simplicial presheaves sectionwise. Then we check that
R-localization behaves well with respect to local weak equivalences. Nothing in this section
should be surprising to experts; we collected the relevant facts here for lack of a better reference.

2.1 Nilpotent (pre)sheaves of groups

Suppose throughout this section that C is a small category. If C is equipped with a Grothendieck
topology, then we formulate notions of nilpotence for sheaves of groups and actions of sheaves of
groups (see Definitions 2.1.1 and 2.1.3) and study the basic properties of such sheaves of groups.
We then study R-local sheaves of groups when R C Q is a subring and discuss the interplay of
nilpotence and the property of being R-local; we close with a definition of R-nilpotent sheaf of
groups (see Definition 2.3.4).

Nilpotent sheaves of groups and actions. If H, G € Grp(C), then an action of G on H is a
homomorphism of presheaves of groups G — Aut(H). If (C, 7) is a site (i.e. 7 is a Grothendieck
topology on C), then given a sheaf of groups H, Aut(H) is automatically a sheaf of groups.
Therefore, an action of a sheaf of groups G on a sheaf of groups H is just an action of the
underlying presheaves. We now define a notion of nilpotence for actions.

DEFINITION 2.1.1. Assume (C, 7) is a site. Suppose G, H € Grp(C).

1. Given an action of G on H, a G-central series for the given action on H is a finite decreasing
filtration
H=Hy>---ODH,=1
of H by G-stable normal subgroup presheaves such that:
(a) the successive subquotients H; /H; 1 are presheaves of abelian groups; and
(b) the induced action of G on each subquotient is trivial.
2. An action of G on H is called nilpotent if there exists a G-central series for the action.
3. If G,H € Grp,.(C), then an action of G on H is called nilpotent if the underlying action as
presheaves is nilpotent.
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4. A presheaf of groups G will be called nilpotent if the conjugation action of G on itself is a
nilpotent action.

5. If G € Grp,(C) then G will be called nilpotent if it is nilpotent as a presheaf.

6. Given a nilpotent action of G on H and a G-central series for the action, the length of the
series is the smallest integer ¢ such that H. = 1 for all ¢/ > c.

7. The nilpotence class of a nilpotent action is the minimum length of a G-central series for
the action.

Remark 2.1.2. Suppose (C, 7) is a site with enough points. If a sheaf of groups G acts on a sheaf
of groups H, then the action is trivial if and only if the action is stalkwise trivial since one may
check that G — Aut(H) is the trivial homomorphism stalkwise. It follows that one can check
whether a given filtration of H by G-stable subsheaves is a G-central series stalkwise.

In the sheaf-theoretic context, we also make the following definition.

DEFINITION 2.1.3. Suppose (C,7) is a site with enough points. An action of a sheaf of groups
G on a sheaf of groups H is locally nilpotent if there exists a decreasing filtration

H=Hy>oH;D>- -

by G-stable normal subgroup sheaves such that for every point s of (C, 7) the induced action of
the group s*G on the group s*H is nilpotent (in particular, the induced filtration on each stalk
is finite). A filtration as above will be called a locally finite G-central series for the action of G
on H.

One interesting difference between the classical story for nilpotent actions and the sheaf-
theoretic situation we consider is that local nilpotence need not imply nilpotence in general,
essentially because the nilpotence class of the action can vary with the stalks.

Ezxample 2.1.4. Consider the unramified Grothendieck-Witt sheaf GW; this is a Zariski sheaf
of rings on Smy, (in fact it is already a Nisnevich sheaf). This sheaf has a natural action by
the sheaf G,, of units. Since we will only be interested in phenomena at the level of stalks, we
mention that separable, finitely generated extensions of the base field k£ are examples of stalks
in the Nisnevich topology on Smy.

Fix a separable, finitely generated extension L/k. We now describe the action of G,, on
GW at the level of L-points. The abelian group of sections GW /(L) coincides with GW (L),
the usual Grothendieck—Witt group of (stable) isomorphism classes of symmetric bilinear forms
over L. There is an evident morphism G,,(L) — GW (L) that sends a unit u to the (invertible)
one-dimensional form (u). The action of G,, is given by tensoring a given form with the one-
dimensional form (u).

Consider the filtration of GW (L) by powers of the fundamental ideal I™(L). Note that I(L)
is additively generated by 1-fold Pfister forms,

((u)) :=1—(u),ueL*,

by appeal to [EKMO08, Corollary 4.9]. Since I(L) is generated by 1-fold Pfister forms, it fol-
lows that I™(L) is additively generated by (n-fold) Pfister forms. A straightforward calculation
shows that multiplication by (u) is trivial on the successive subquotients I"(L)/I"*1(L) [Fas08,
Lemma E.1.3]. It follows from these facts that the filtration I"(L) is the G,,,(L)-lower central
series for this action (see, for example, [HMR75, §1.4] for the definition of the latter notion).
Assume furthermore that k is not formally real and that k£ has finite étale 2-cohomological
dimension. The Arason—Pfister Hauptsatz shows that I™(L) is then trivial for n large enough
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(depending on the étale 2-cohomological dimension of L; see [EKMO8, Theorem 6.18] and [AF14b,
Proposition 5.1] for details). Thus, as L varies through the generic points of smooth k-schemes, we
see that the length of the G, (L)-lower central series varies. Later, we will see that variants of this
example arise naturally in geometry (see Example 3.2.5, Proposition 3.4.10 and Theorem 3.4.12
for further discussion).

Permanence properties for (locally) nilpotent actions. Suppose (C,7) is asite. If o : G' — G
is & homomorphism of T-sheaves of groups, and H is a sheaf of groups with a G-action, then H
inherits a G’-action via precomposition with ¢.

LEMMA 2.1.5. If ¢ : G’ — G is a homomorphism of sheaves of groups, and if H carries a
(locally) nilpotent G-action, then the G’-action induced by ¢ is (locally) nilpotent as well.

Proof. A (finite) G-central series for H gives a (finite) G’-central series as well by restriction. [
The next result is a sheaf-theoretic analog of [BK72, 11.4.2].

LEMMA 2.1.6. Suppose G is a sheaf of groups, H,H' and H” are sheaves of groups equipped
with an action of G and we are given a short exact sequence of the form

l1—H —H —H'—1,

where the homomorphisms in the exact sequence are G-equivariant. The action of G on H is
(locally) nilpotent if and only if the actions of G on H' and H” are so.

Proof. Choose a (locally finite) G-central series {H;} for H. The restriction H; " H’ yields
a (locally finite) G-central series for H'. Likewise, the quotient sheaves H;/(H' N H;) yield a
(locally finite) G-central series for H”.

Conversely, take a (locally finite) G-central series {H/} for H”. The fiber product sheaves
H; := H xy» H} exist for all ¢ and are automatically G-stable as all the morphisms defining
the fiber product are G-equivariant. Moreover, all of these sheaves contain H' by construction.
If we take a (locally finite) G-central series of H', say {H’}, then we may build a (locally finite)
G-central series of H by reindexing. O

2.2 Nilpotence in local homotopy theory

The main goal of this section is to study nilpotent spaces in the local homotopy theory of
simplicial presheaves. We begin by reviewing some terminology from local homotopy theory
following [Jar15]. We then define a notion of nilpotent morphism of simplicial presheaves using
the definitions of §2.1. We then deduce analogs of a number of ‘permanence’ properties for
nilpotent morphisms of spaces that will be useful later.

Review of local homotopy theory. Suppose C is a small category and write sPre(C) for the
category of simplicial presheaves on C. We view sPre(C) as a model category with the injective
model structure: the weak equivalences are objectwise weak equivalences, the cofibrations are
the monomorphisms, and the fibrations are determined by the right lifting property. We write
Map(.#,¥) for the derived mapping space between two objects of sPre(C).

The model category sPre(C) is known to be simplicial, proper and combinatorial [Lur09,
Proposition A.2.8.2], and we may appeal to the machinery of Bousfield localization (see [Hir03]
for a detailed treatment of localization). Recall that if S is a set of morphisms in sPre(C),
then a simplicial presheaf .# is S-local if, for every f:% — 5 in S, the induced map
f*: Map(s, F) — Map(¥,.7) is a weak equivalence. A morphism f:¥ — . is an S-local
equivalence if, for every S-local .%, the map f* is a weak equivalence.
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The S-local equivalences are the weak equivalences for a new model structure sPre(C)[S™}]
called the S-local model structure: the cofibrations in sPre(C)[S™!] are still monomorphisms,
and the fibrant objects are the fibrant objects in sPre(C) that are S-local. This new model
structure is again left proper, simplicial and combinatorial [Lur09, Proposition A.3.7.3]. The
identity functors form a Quillen adjunction

sPre(C) === sPre(C)[S™}],

and the associated Quillen derived functor Ho(sPre(C)[S~!]) — Ho(sPre(C)) is fully faithful
with essential image the subcategory of S-local objects.

If (C,7) is a small Grothendieck site, then one introduces the notion of 7-local weak equiva-
lence [Jarlh, p. 64]. The Bousfield localization of sPre(C) with respect to the class of 7-local weak
equivalences yields the (injective) T-local model structure on sPre(C), which is again a combi-
natorial, proper, simplicial model category. We will write R, for a fibrant replacement functor
in this category. If (C, 7) has enough points, then the functor R, may be assumed to commute
with formation of finite products. Indeed, this follows from [MV99, §2 Theorem 1.66], which
shows that one may use a ‘Godement resolution’ functor for R.. Note that Morel and Voevod-
sky state this assertion under an auxiliary ‘finite type’ hypothesis [MV99, §2 Definition 1.31],
which ensures that Postnikov towers converge. However, in modern terminology this hypothesis
is equivalent to a hypercompleteness hypothesis on the oco-category attached to the injective
model structure on sPre(C) [Lur09, pp. 666-669]. With that in mind, the hypothesis that (C, 1)
has enough points is sufficient to guarantee hypercompleteness [Lur09, Remark 6.5.4.7]. In any
case, we write Ho,(C) for the associated homotopy category.

If 2 € sPre(C) is a simplicial presheaf, then a base point for 2" is a morphism z from the
final object * to 2. The category of pointed simplicial presheaves sPre(C), can be equipped
with a 7-local model structure as well: a map of pointed simplicial presheaves is a cofibration,
weak equivalence or fibration in the 7-local model structure if it is so after forgetting the base
point. We use the same notation as above for the fibrant replacement functor in this context.
We write Ho, ,(C) for the associated homotopy category.

Nilpotent simplicial presheaves. Suppose (C,7) is a small Grothendieck site (which we will
assume has enough points when we speak of ‘local’ notions below). Given an object 2~ € sPre(C),
we write o(2") for the T-sheaf associated with the presheaf U — mo(2 (U)). We will say that
2 is T-connected (or just simplicially connected if 7 is clear from context) if the structure map
Z — % induces an isomorphism on 7.

If (2°,2) is a pointed simplicial presheaf, we define 7-homotopy sheaves 7;(:Z",z) as the
T-sheaves associated with the presheaves

U mi(Z(U),x).

As usual, these are sheaves of groups for ¢ = 1 and sheaves of abelian groups for i > 2. For any
integer n > 0, say that a pointed space (27, z) is simplicially n-connected if 2" is simplicially
connected, and 7;(2",z) =0 for 1 <i <n.

The standard action of the group 71 (2 (U), z) on m;(Z (U), x) is functorial in U and sheafifi-
cation yields an action of the sheaf w1 (2", z) on 7;( 2", x). (Frequently, to unburden the notation,
we will suppress base points in homotopy sheaves of pointed spaces.)

If % — & — %A is a fiber sequence of pointed simplicial presheaves (henceforth we will
refer to such sequences as simplicial fiber sequences), then, for any object U € sPre(C).,,
applying Homy,, ,(c)(U,—) to the above fiber sequence yields a long exact sequence
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[Hov99, Proposition 6.5.3]. Sheafifying this exact sequence then gives a long exact sequence
in homotopy sheaves associated with any simplicial fiber sequence.

If f: & — % is any morphism of pointed connected spaces, then we may build the simplicial
homotopy fiber of f exactly as one does classically. In more detail, consider the map % — R,%#
and functorially factor the composite & — R, % as an acyclic cofibration & — &’ followed by a
fibration &" — R.Z. If x is the base point of R;%, then we define hofib(f) to be the ordinary
fiber of & — R, % over . There is a simplicial fiber sequence of the form

hofib(f) — & — £

by construction. If U € C, then sheafifying the objectwise action of 71 (& (U)) on 71 (hofib(f)(U))
induces an action of the sheaf of groups m1(&) on the sheaf m;(hofib(f)). Granted these facts,
one makes the following definition.

DEFINITION 2.2.1. Suppose f:& — % is a morphism in sPre(C),, and write .# for the
homotopy fiber of f.

1. The morphism f is (locally) nilpotent if .7 is simplicially connected and the action of
71(&) on (%) is (locally) nilpotent for every i > 0 (in the sense of Definition 2.1.1 or
Definition 2.1.3).

2. A pointed space (2, x) is (locally) nilpotent if the structure morphism is (locally) nilpotent.

Permanence properties of nilpotence.

PRrROPOSITION 2.2.2. Suppose

q p
& —= & —= &

is a composable pair of morphisms in sPre(C).. Assume that the simplicial homotopy fibers of p,
q and pq are all simplicially connected. If any two elements of {p, q, pq} are nilpotent morphisms,
then so is the third.

Proof. Write %, for the simplicial homotopy fiber of p, .#, for the simplicial homotopy fiber of
q and %), for the simplicial homotopy fiber of the composite. In that case, by the ‘octahedral
axiom’ in the pointed homotopy category (e.g. [Hov99, Proposition 6.3.6]) there is an associated
simplicial fiber sequence of the form

Fq— Fpg — Fp,
and we may consider the associated long exact sequence of homotopy sheaves, which takes the
form
c = g1 (Fp) — Tl Fy) — Tn(Fpg) — Ta(Fg) —

By assumption, (&%) acts on the homotopy sheaves of %, and .%#,, while 7{(&1) acts on the
homotopy sheaves of .%,. Composing with the homomorphism 71 (&2) — 71(&61) defines an action
of w1(&2) on the higher homotopy sheaves of .%,, as well. The long exact sequence of homotopy
sheaves is then 71 (&2)-equivariant with respect to these actions.

We may break the long exact sequence in homotopy sheaves above 71 (&3)-equivariantly into
short exact sequences. The result then follows from repeated application of Lemma 2.1.6. U

Next, we observe that, under suitable hypotheses, (locally) nilpotent morphisms are stable
under homotopy base change.
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ProrosiTION 2.2.3. Consider a homotopy Cartesian diagram

!

g
E —= &

[l

g
B — B

in sPre(C),. If all spaces in the diagram are simplicially connected, and f is (locally) nilpotent,
then so is f'.

Proof. This follows immediately from Lemma 2.1.5: the action of 71 (&”) on the homotopy fiber of
f', which coincides with the homotopy fiber of f by assumption, is induced by the homomorphism
Wl((ga/)—)’ﬂ'l(éa). ]

PROPOSITION 2.2.4. Suppose g : & — % is a morphism in sPre(C), with homotopy fiber #,
and assume .7 ,& and A are all simplicially connected. If & is (locally) nilpotent, then % is
(locally) nilpotent.

Proof. Consider the following homotopy commutative diagram.

Héﬁ’

L

H(%

By appeal to Proposition 2.2.3 to check .# — x is nilpotent, it suffices to show that g is (locally)
nilpotent, that is, that the m(&)-action on m;(.%) is (locally) nilpotent.
To this end, observe that there is a 71 (&)-equivariant long exact sequence of the form

mit1(B) — mi(F) — wi(E) — 7i(B).

While we do not know that the action of 71(&) on m;11(Z#) is (locally) nilpotent, we do know
that im7m;41(Z%) in (%) is central for i > 1 and carries a trivial action of m1(&). In other
words, there are 71 (&)-equivariant short exact sequences of the form

1 — Mi-i—l I TI'Z(LO}\) — ker(Tri(é") I ﬂ'z(,@)) — 1,

where M1 is the image of m;11(Z£) in m;(#). In fact, the action of 7w1(&) on M, is trivial
(the classical proof of this result, for example, [HMR75, Proof of Theorem 2.2], discusses this
further). As a 71 (&)-stable subsheaf of 7; (&), the kernel in the above statement carries a (locally)
nilpotent 71 (&)-action. The nilpotence of the 71 (&)-action on 7;(.-#) then follows by appeal to
Lemma 2.1.6. O

2.3 R-localization of simplicial presheaves

We now discuss R-localization of simplicial presheaves. Suppose (C,7) is a small Grothendieck
site and consider sPre(C) with the 7-local model structure described above. We use the following
notation.

Notation 2.3.1. Suppose R is a subring of Q. The elements of R are fractions with denominator
divisible by elements of some (possibly empty) set P of prime numbers: R = Z[P~!]. Henceforth,
given R C Q, we will always write P for this associated set of primes.
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After reviewing some aspects of R-locality for sheaves of groups, we then introduce a notion
of R-local weak equivalence. We choose definitions that are well adapted to stalkwise anal-
ysis, following [WW19]. We then analyze the interaction between nilpotence properties and
R-localization for simplicial presheaves

R-localization for sheaves of groups. If G is any presheaf of groups on C, and n is an integer,
then we define the nth power map G — G to be the sectionwise nth power map of groups. Of
course, if G is not a presheaf of abelian groups, this need not be a group homomorphism.

Assume R C Q is a subring, and recall Notation 2.3.1. If G € Grp(C), we will say that G
is R-local (or P-local) if the pth power map is an isomorphism of presheaves for every p € P.
Similarly, we will say that a sheaf of groups G € Grp,(C) is R-local if the pth power map is an
isomorphism of sheaves for every p € P. The following result is immediate from the definitions.

LEMMA 2.3.2. Suppose (C,T) is a site with enough points. A sheaf of groups G € Grp,.(C) is
R-local if and only if, for every point s of (C, ), the group s*G is R-local.

One knows that an abelian group is R-local if and only if it is an R-module. It follows
immediately from the definitions that a (pre)sheaf of abelian groups is R-local if and only if
it is a (pre)sheaf of R-modules. More generally, a nilpotent group is R-local if and only if it
has a finite central series G = Gp D --- D Gy, = e such that each subquotient G;/G ;41 admits a
(necessarily unique) R-module structure [BK72, V.2.7]. The next result follows from this fact by
passing to stalks.

LEMMA 2.3.3. Suppose (C,T) is a site with enough points. The following conditions on a
(locally) nilpotent sheaf of groups G € Grp_(C) are equivalent.

1. The sheaf G is R-local.
2. The sheaf G has a (locally) finite central series with successive subquotients that are sheaves
of R-modules.

DEFINITION 2.3.4. Suppose (C,7) is a site with enough points. A sheaf of groups G € Grp_(C)
will be called (locally) R-nilpotent if it satisfies either of the equivalent conditions of Lemma 2.3.3.

R-local weak equivalences. We continue to follow Notation 2.3.1. Set Srlig := BZ; this is a Kan
complex (in fact a simplicial abelian group) weakly equivalent to A' /OA!. The multiplication by

n map induces a self-map BZ — BZ that we will call p.. For r > 2, let Yig = Srlig/\(Ar_l/aAT)+.
T

Define pj, : S, — Sy, for 7 > 2 by the formula p;, = pLAid.
For (C, 7) any small Grothendieck site, we set

Tr:={p, xidy |r>1, ne P, Uec C},

where p' is now viewed as a morphism of constant simplicial presheaves. The left Bousfield local-
ization of the injective 7-local model structure on sPre(C) with respect to the set of morphisms
Tr will be called the R-local model structure on sPre(C); since the site (C,7) will be fixed, we
hope that suppressing 7 from the notation causes no confusion. We write Lr for the fibrant
replacement functor on sPre(C) for the R-local model structure so Lr 2" is both R-local and
T-fibrant.

Remark 2.3.5. In the situation where C is the 1-point site, this definition yields the form of
R-localization on the model category of simplicial sets studied in [CP93]. The a priori strange-
looking form of Tg is necessary to ensure that localization is compatible with the action
of the fundamental group on higher homotopy groups, already in this classical situation.

665

https://doi.org/10.1112/50010437X22007321 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X22007321

A. Asok, J. FASEL AND M. J. HOPKINS

Various different notions of R-localization are compared in [CP93, §8]: these notions may dis-
agree on non-nilpotent spaces. More generally, suppose (C, 7) is a small Grothendieck site and s
is a point of this site. In Proposition 2.3.6(1) below, we investigate the commutation of Lr with
s*; here, we abuse notation and implicitly write Ly for localization of both simplicial presheaves
and simplicial sets.

The next result collects formal properties of Ly, which will be essential in the sequel; this
result restates [WW19, Lemma 3.3 and Propositions 3.4,3.8], but our proof slightly corrects that
of WW19, Lemma 3.3].

PROPOSITION 2.3.6. Suppose (C, 7) is a small Grothendieck site with enough points, and 2~ €
sPre(C).

1. The R-localization functor Ly commutes with taking stalks, that is, if s is a point of (C, T),
then s*Lr & =2 Lrs* % .

2. If & is fibrant, then 2 is R-local if and only if its stalks are all R-local for s ranging
through a conservative family of points for (C, 7).

3. The R-localization functor commutes with formation of finite products.

Proof. For (1), we first show that s*Lgr 2 is R-local. Since Lr £ is fibrant, so is s* L 2 .
Therefore, it suffices to show that if p¥ is an element of T, then the induced map

Map(S¥, s* Lp 27) — Map(S¥, s* L 2)

is a weak equivalence of simplicial sets. By definition, any point of the site (C, 7) may be realized
as a filtered colimit over neighborhoods. Explicitly, there is an isomorphism of simplicial sets of
the form

Map(Sfa s*Lp ‘%/) = Map(Sf, COthEN@ib(s) Lr %(U))

The simplicial set Sf is not a compact simplicial set (since BZ is not finite) so we cannot simply
commute the colimit past the mapping space. Instead, S* is ‘homotopically small’ in the sense
that it is weakly equivalent to a compact object (this notion is related to, but different from,
that of [DK80, §2.2]), which allows us to proceed as follows.

Set St := A'/OA' and consider the map S! — Srlig; this map is an acyclic cofibration. There
is an induced cofibration S*A(AF/ 8Aﬁ) — Sfigl. By the universal property of colimits, this map
induces a commutative square of the form

COthGNeib(s) Map(Sfig Lr %(U)) - COthGNe'Lb(s) Map(SI/\(Ak/aAi)), Lr %(U)

| |

Map(Sﬁg, COthGNeib(s) Lr %(U)) - Map(sl/\(Ak/aAljr)v COlimUGNeib(s) Lr ‘%/(U))
Since s*Lgp 2 and Lpr 2 (U) are fibrant simplicial sets, it follows that the maps
Map(S¥, s* Lr 27) — Map(S'A(A*/0AY),s* Lg 27) and

Map(S%,, Lr 2 (U)) — Map(S*A(A*/0AR ) Lg 27 (D))

rig»
are acyclic fibrations. In particular, the bottom horizontal map in the square is a weak equiv-
alence. Since filtered colimits of weak equivalences are again weak equivalences, it follows that
the top horizontal map is a weak equivalence as well. Since S*A(A*/ 8Aﬁ) is compact, the right-
hand vertical map is an isomorphism of simplicial sets. Altogether, we conclude that the left-hand
vertical map is a weak equivalence of simplicial sets.
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There is an isomorphism of simplicial sets of the form
COthGNeib(s) Map(sfigv Lr '%(U)) = COthGNeib(s) Map(sfig x U,Lg %)
As Lr 2 is R-local by assumption, pfl induces a weak equivalence on Map(Sfig x U Lr Z).

The functor s* preserves acyclic cofibrations and therefore the map s*2° — s*Lgr 2 is an
acyclic cofibration with target an object that is fibrant in the R-local model structure on sim-
plicial sets. It follows that s* Lz 2" is equivalent in the R-local model structure to any other
R-local fibrant replacement of s*2", for example, L s*2".

For (2), observe that the proof of (1) implies that if 2" is R-local, then so is s*.2". Conversely,
Z is R-local if and only if 2" is fibrant and the map 2~ — Lg 2 is a simplicial weak equivalence.
However, the map 2" — Lr 2 is a simplicial weak equivalence if and only if it is after taking
stalks. By the proof of (1), this is the case if and only if s* 2" — L s*2" is a weak equivalence
for every point s. Since $* 2 is fibrant, this amounts to the assertion that s*2  is an R-local
simplicial set.

For (3), it suffices to observe that if 2 € sPre(C), then 2" x (—) preserves weak equivalences.
Indeed, this latter fact follows from Ken Brown’s lemma [Hov99, Lemma 1.1.12] because all
objects of sPre(C) are cofibrant and 2 x (—) preserves acyclic cofibrations. To conclude, one
observes that Lr 2" x Lr % is R-local and 7-fibrant and R-locally weakly equivalent to 2" x &
and therefore also to Lr(Z x #). O

LEMMA 2.3.7. Suppose (C,7) is a small Grothendieck site with enough points, and (2 ,x) €
sPre(C), is a pointed R-local space. For any integer i > 0, the homotopy sheaves m;(Z ", x) are
R-local sheaves of groups.

Proof. We show that the homotopy presheaves are R-local, and the statement about homotopy
sheaves follows by sheafifying. Let U be an object of C. Write R = Z[P~!] for some set of primes
P. We will show that the pth power map on 7;(Lr 2 (U)) is a bijection for any p € P. To this end,
observe that the pth power map is the map induced by p; x idy on Wo(Map*(Sﬁig x U, Lr Z)).
Since Lr 2" is R-local and pzi7 x idy; lies in Tg, this map is a bijection. O
Remark 2.3.8. Lemma 2.3.7 admits a converse in the following sense. If (27, z) € sPre(C). is
fibrant in the 7-local model structure and its homotopy sheaves are R-local, then (£, x) is
R-local as well.

LEMMA 2.3.9. Assume (C,7) is a site. If f: 2 — % is a morphism in sPre(C), then the
following conditions are equivalent.

1. The morphism f is an R-local weak equivalence.
2. For every R-local space # , the map

f* i Homy, (c)(%, #') — Homy, () (2, #)
is a bijection.

Proof. The first statement implies the second by taking 7y of the simplicial mapping space. The
second statement implies the first by observing that if # is R-local, then so is Q*# for every
i>0. O

LEMMA 2.3.10. Suppose p: & — A is a (locally) nilpotent morphism of pointed simplicially
connected spaces. The morphism

Lrp:Lrp& — Lr A
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is also a (locally) nilpotent morphism, and the canonical map Lg(hofib(p)) — hofib(Lg p) is a
T-local weak equivalence.

Proof. Consider the morphism #Z — R;% and factor the composite & — R; % as an acyclic
cofibration & — &’ followed by a 7-fibration &’ — Ry so that the homotopy fiber of p is the
actual fiber of p’' : & — R,%. Both conditions in the statement may be checked stalkwise, and
stalkwise the hypotheses imply that p’ is a nilpotent fibration.

Next, recall that Bousfield and Kan construct the functor R, [BK72, 1.4.2] and show that
R+ models R-localization [BK72, V.4.3|. By [CP93, Proposition 8.1] on the category of simplicial
sets, L models localization ¢ la Bousfield and Kan. Therefore, the results about preservation
of nilpotent fibrations by R, also hold for L. Granted these observations, the result follows
directly from [BK72, I1.4.8]. O

Functorial R-localization for nilpotent sheaves of groups and spaces. We now define a func-
torial R-localization for sheaves of groups; our goal is to show that this functor is well behaved
on the category of (locally) nilpotent sheaves of groups.

DEFINITION 2.3.11. If G is a sheaf of groups, then we define
GR = 7T1(LR BG);
the sheaf of groups Gg will be called the R-localization of G.

By definition, the assignment G +— Gpg is functorial. The properties of this functor upon
restriction to the category of (locally) nilpotent sheaves of groups are recorded in the following
result.

PROPOSITION 2.3.12. Suppose R C Q is a ring. The assignment G — Gpg enjoys the following
properties.

1. The functor (—)p is left adjoint to the forgetful functor from the category of (locally) R-local
nilpotent sheaves of groups to the category of (locally) nilpotent sheaves of groups.

2. The functor (—)g preserves exact sequences of (locally) nilpotent sheaves of groups.

3. If R' C Q is another ring, then the natural transformation (—)rg,r — ((—)r)r’ is an iso-
morphism of functors from the category of (locally) nilpotent sheaves of groups to the
category of R ®y, R'-local (locally) nilpotent sheaves of groups.

Proof. For the first point, (—)g is functorial by construction and it follows from Lemma 2.3.7
that Gp is an R-local sheaf of groups. If G is (locally) nilpotent, then we claim Gpg is (locally)
nilpotent and R-local. Since Lr commutes with taking stalks, we may check this stalkwise, in
which case it follows immediately from [BK72, V.2.2].

To complete the proof of (1), it suffices to prove that G — Gp is initial among maps from
G to (locally) nilpotent R-local sheaves of groups. If H is a (locally) nilpotent R-local sheaf of
groups equipped with a homomorphism G — H, then there is an evident map R, BG — R,BH.
The space R;BH is R-local by Remark 2.3.8, and therefore, it follows that R, BG — R,BH
factors through Lz BG. Applying 7 establishes (1).

For (2), suppose

1 —-G —G—G"—1

is a short exact sequence of (locally) nilpotent sheaves of groups. In that case, we get a simplicial
fiber sequence of the form

BG' — BG — BG".
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Applying Lp to this fiber sequence yields a simplicial fiber sequence by appeal to Lemma 2.3.10.
Exactness then follows by appeal to [BK72, V.2.4], since exactness may be checked stalkwise.
If A is an abelian sheaf of groups, then there is an evident isomorphism of functors
(R®zR)® A~ R® (R ®A). Following [BK72, V.2.9], (3) is immediate from (2) and a
straightforward induction argument. 0

COROLLARY 2.3.13. Suppose (£, ) is a pointed locally nilpotent space.

1. The space Lr 2 is an R-local locally nilpotent space.
2. For every integer i > 1, the canonical map mw;(Z )r — m;(Lr Z°) is an isomorphism.

Proof. The first point is a special case of Lemma 2.3.10. The second point follows immediately
from [BK72, V.3.1] because the relevant isomorphism may be checked stalkwise. O

3. Nilpotence in Al-homotopy theory

In this section we formulate and study a notion of nilpotence in A'-homotopy theory. Section 3.1
recalls various results from Morel’s foundational work [Morl2], in particular the notions of
strongly and strictly Al-invariant sheaves of groups (see Definition 3.1.5). We then develop
the basic properties of Al-local group theory necessary to formulate suitable notions of nilpo-
tence. The main technical complication that arises is due to failure of existence of cokernels (see
Remark 3.1.15 for a precise statement). Section 3.2 then studies nilpotence in the context of
Al-local group theory.

Section 3.3 introduces various flavors of nilpotence for spaces and morphisms in A!-homotopy
theory (see Definition 3.3.1); we encourage the reader to pay attention to the notion of weakly
Al-nilpotent spaces which will play a prominent role later. Moreover, we establish a collection of
basic properties for such spaces (e.g. a characterization in terms of existence of Moore—Postnikov
factorizations, that is, Theorem 3.3.13). Finally, § 3.4 constructs a host of spaces of geometric
interest that exemplify the variant definitions we make.

3.1 Al-local group theory

Morel showed that the Al-homotopy sheaves of a pointed space in degrees greater than 1 have
the fundamental property that their cohomology presheaves are themselves Al-invariant. After
reviewing the basic definitions in A'-homotopy theory, we study what one might call Al-local
group theory, building on the foundational results of Morel [Mor12]. In particular, we analyze
functorial A'-localization of groups and various categorical properties of the resulting category.

Preliminaries on A'-homotopy theory. Fix a base field k, and write Smy, for the category
of schemes that are separated, smooth and have finite type over Spec k. We view Smy, as a site
by equipping it with the Nisnevich topology. We set Spc;, := sPre(Smy) and view this as a site
equipped with the injective Nisnevich local model structure. Similarly, we write Spcy, , for the
category of pointed simplicial presheaves on Smy.

The (pointed) Al-homotopy category Hoy can be obtained as a left Bousfield localization of
the injective Nisnevich local model structure on Spcy, (respectively, Spcy ) with respect to the
morphisms 2~ x Al — 27, 2" € Spc,,.

We write Ly1 : Spe, — Spcy, for the Al-localization functor. This functor comes equipped
with a natural transformation 6 : id — Lj:1 such that for any space 2 the following properties
hold.
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1. The space L1 2 is fibrant in the injective Nisnevich local model structure, and the map
2 — Lyt 2 is an Al-weak equivalence.

2. If # is any simplicially fibrant and A'-local space, and f:.2 — %, then f factors as
X —-LyaZ —-%.

3. The functor L1 preserves finite limits.

Remark 3.1.1. The properties of the Al-localization construction described here are all explicitly
contained in [MV99], except the last one. That the Al-localization functor can be assumed
to preserve finite limits follows from a slight modification of the construction described before
[MV99, § 2 Lemma 3.20]. There, the Al-localization functor is constructed by iterated application
of a fibrant resolution functor for the injective Nisnevich local model structure and the singular
construction. The singular construction preserves limits [MV99, § 2 p. 87]. Taking the Godement
resolution [MV99, p. 66-70] as fibrant replacement functor for the injective Nisnevich local model
structure, it follows by appeal to [MV99, §2 Theorem 1.66] that the fibrant resolution functor
can be assumed to preserve finite limits as well.

Remark 3.1.2. In [MV99] the motivic homotopy category Hoy, is obtained by Bousfield localizing
simplicial Nisnevich sheaves on Smy. By contrast, the model we use builds Hoy as a localization
of simplicial presheaves on Smy. The two constructions yield Quillen equivalent models of Hoy
by [Jar00, Theorems B.4 and B.6].

It will be important to remember that the category of Al-local objects is closed under for-
mation of homotopy limits and filtered homotopy colimits. We now recall some results about
how Al-local objects behave in fiber sequences.

LEMMA 3.1.3. If # — & — A is a simplicial fiber sequence where & and % are A'-local spaces,
then .7 is A'-local as well.

LEMMA 3.1.4 [AWW17, Lemma 2.2.10]. Suppose . — & — A is a simplicial fiber sequence of
pointed spaces. If 8 and . are both A'-local, and % is simplicially connected, then & is A'-local
as well.

Consequences of Morel’s unstable connectivity theorem. If 2~ € Spc,,, then we set 7&'6Al (Z) =
mo(Lar Z7). Similarly, if (27, z) € Spcy,,, then we write ﬂ'fl(%’,x) =m;(Ly 2, x); these
sheaves are called the A'-homotopy sheaves of 2 . Morel established a number of key structural
results for A'-homotopy sheaves. To state these results, we first recall the following definition.

DEFINITION 3.1.5. Assume k is a base field.

1. A Nisnevich sheaf of groups G on Smy, is called strongly A'-invariant if BG is A'-local.
2. A Nisnevich sheaf of abelian groups A on Smy, is called strictly Al-invariant if K(A,n) is
Al-local for every n > 0.

Notation 3.1.6. We write Grp‘,ﬁ1 for the full subcategory of Nisnevich sheaves of groups consisting
of strongly Al-invariant sheaves of groups. We write Abﬁ1 for the full subcategory of Nisnevich
sheaves of abelian groups consisting of strictly Al-invariant sheaves.

Ezxample 3.1.7. If G is a finite étale group scheme, then the simplicial classifying space BG is
Allocal by [MV99, §4 Proposition 3.5], that is, G is strongly Al-invariant. In particular, if G
is a finite group, the associated constant group scheme is strongly A'-invariant. Thus, sending a
finite group to its associated constant group scheme defines a functor from the category of finite
groups to the category of strongly Al-invariant sheaves of groups.

670

https://doi.org/10.1112/50010437X22007321 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X22007321

LOCALIZATION AND NILPOTENT SPACES IN A'-HOMOTOPY THEORY

We recall some key results of Morel on the structure of the categories of strongly and strictly
Al-invariant sheaves of groups.

THEOREM 3.1.8 (Morel). Assume (2, x) € Spcy, ,..

1. The sheaf 71"1*1 (2 ,x) is a strongly A'-invariant sheaf of groups.
2. Any strongly A'-invariant sheaf of abelian groups that is pulled back from a perfect subfield
is strictly Al'-invariant.

Comments on the proof. The first statement in Theorem 3.1.8 is [Mor12, Theorem 6.1]. For the
second statement, we proceed as follows. Morel proves in [Morl2, Theorem 5.46] that if & is
a perfect field, then strongly Al-invariant sheaves of abelian groups are strictly Al-invariant.
Our claim follows from the Morel’s assertion by standard base-change results (see, for example,
[Hoy15, Lemmas A.2 and A.4]). A common application of the above result is that if (27, z) is
a space over a field k that is pulled back from the prime field, then, for any integer ¢ > 2, the
sheaf ﬂ?l(% ,x) is strictly Al-invariant. O

Remark 3.1.9. The condition that a sheaf of groups be strongly or strictly Al-invariant implies
many useful properties that will be used in the sequel. For example, if G is a strongly
Al-invariant sheaf, then G is unramified in the sense of [Mor12, Definition 2.1]; this follows
from [Morl2, Corollary 6.9(2)]. In particular, this means that if X is any irreducible smooth
k-scheme with function field k(X), then the restriction map
G(X) — G(k(X))

is injective. In particular, Theorem 3.1.8 implies that all the higher homotopy sheaves of a pointed
space (2, z) € Spc;, that are pulled back from a perfect subfield are unramified.

Theorem 3.1.8 allows one to construct a left adjoint to the inclusion Grp}f1 — Grpy.

DEFINITION 3.1.10. If G is a Nisnevich sheaf of groups on Smy, then its Al-localization is
defined by

G, = (BG).
Ezample 3.1.11. The evident homomorphism G — Gy,1 need not be injective. Take G = SL,

(or any Al-connected sheaf of groups); in that case one can show that ' (BSL,) = 1.

The next result is a consequence of [Mor05, Theorem 6.1.8 and Lemma 6.2.13].

THEOREM 3.1.12 (Morel). The category Ab‘;}l is abelian, and the forgetful functor Abf,?1 — Aby,
is an exact full embedding.

Remark 3.1.13. As observed in [Mor05, Remark 6.2.14], the above result means, in particu-
lar, that any kernel or cokernel of a morphism of strictly Al-invariant sheaves is again strictly
Al-invariant. In fact, this consequence will be used repeatedly in the sequel. In what follows, we
will study corresponding questions for strongly Al-invariant sheaves of groups where the situation
is more complicated; see, for example, Remark 3.1.15 for further discussion of this point.

Strongly A'-invariant sheaves of groups. We first examine how various group-theoretic
constructions interact with the property of being A'-local.

LEMMA 3.1.14. Assume k is a field.

1. The kernel of a morphism in Grp‘,?1 is again a strongly A'-invariant sheaf of groups.
2. Any extension of strongly Al-invariant sheaves of groups is again strongly A'-invariant.
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3. If p: A — G is any injective morphism of strongly A'-invariant sheaves of groups, and A
is (i) pulled back from a perfect subfield of k and (ii) contained in the center of G, then
G/A is strongly A'-invariant as well.

Proof. Suppose ¢ : H — G is a morphism of strongly Al-invariant sheaves of groups. There is
an induced morphism BH — BG. By assumption, both BH and BG are A'-local. Write .% for
the simplicial homotopy fiber of ¢. Since mwo(BG) vanishes by assumption, the associated long
exact sequence in homotopy sheaves takes the form

0 —m(¥) —H—G— m(7).

Appealing to Lemma 3.1.3 allows us to conclude that .% is already A'-local, which means that
™ (F) = 71"1*1 (F) is strongly Al-invariant by Theorem 3.1.8.

For the second point, suppose 1 — G1 — Go — Gz — 1 is an exact sequence of Nisnevich
sheaves of groups and Gs is strongly Al-invariant. In that case, there is a simplicial fiber sequence

BG; — BGy; — BGs.

Note that BGsy is simplicially connected by construction. If G; and G3 are strongly A'-invariant,
then BG; and BG3 are Al-local by assumption. In that case, it follows from Lemma 3.1.4 that
BG, must be Al-local as well, that is, G is strongly Al-invariant.

For the third point, by assumption there is a central extension of the form

1—A—G—G/A— 1
This central extension is classified by a simplicial fiber sequence of the form
BG — B(G/A) — K(A,2).

Since G is strongly Al-invariant, BG is Al-local. Likewise, since A is strongly Al-invariant,
abelian and pulled back from a perfect subfield of k it is strictly Al-invariant by appeal
to Theorem 3.1.8. Therefore, K(A,2) is Al-local. Since K(A,2) is simplicially connected by
construction, we conclude that BG is A'-local by appeal to Lemma 3.1.4. ]

Remark 3.1.15. In recent work, Choudhury and Hogadi have established that the kernel and
image of a morphism of strongly Al-invariant sheaves are again strongly Al-invariant [CH21,
Theorem 1.5].

We now analyze the existence of various limits in the category Grp‘%l.

LEMMA 3.1.16. The category Grp‘,f1 has all finite limits, and the forgetful functor Grrp‘,f1 — Grpy,
creates limits. More precisely,

1. the trivial group is strongly A'-invariant and is a terminal object; and

2. the pullback of a diagram of strongly A'-invariant sheaves is again strongly A'-invariant
(in particular, the intersection of strongly A'-invariant sheaves of groups is again strongly
Al-invariant).

Proof. For the first point, observe that the trivial group 1 is evidently strongly Al-invariant;
that it is a terminal object in Grp‘,?1 follows from the fact that it is a terminal object in Grpy,.

For the second point, suppose G, H; and Hy are sheaves of groups, and assume we are given
morphisms ¢ : Hi — G and ¢s : Ho — G. In that case, the simplicial homotopy fiber product
BH; ><’}3Gr BH,, fits into a fiber sequence of the form

G — BH, x%¢ BH, — BH; x BHo.
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By [MP12, Corollary 2.2.3], for example, this description implies that m§(BH; x% BH,)
coincides with the pullback of the diagram H; — G « Hg (because BH; x BHj is 1-truncated).

If G, H; and Hj are all strongly Al-invariant, then the simplicial homotopy fiber product is
Al-local, again by Lemma 3.1.4 applied to the simplicial fiber sequence of the previous paragraph
(BH; x BH, is simplicially connected as before). Thus,

H; xg Hy = w8 (BH; x/sq BHy) = o' (BH, x/3q BH,),

which is precisely what we wanted to show.

Any category that has pullbacks and a terminal object necessarily possesses all finite limits
[Mac98, Corollary V.2.1]. Finally, the results above establish that the inclusion functor preserves
the terminal object and pullbacks and therefore, creates finite limits as well. ]

Contractions.

DEFINITION 3.1.17. If G is a strongly Al-invariant sheaf of groups, the contraction of G,
denoted G_1, is defined by

G_1(U) := ker(G(G,, x U) =5 G(U)).
The next result summarizes the important formal properties of contraction.
PROPOSITION 3.1.18 (Morel). Assume k is a field.

1. The functor G — (G)_; defines an endofunctor of Grp‘,?l.
2. If k is perfect, then contraction restricts to an endofunctor of Ab‘,f1 to Abf}l.
3. The contraction functor preserves short exact sequences.

Proof. The assignment G — G_; is evidently functorial. That G_; is again strongly A'-invariant
is [Morl2, Lemma 2.32]. The second statement follows from the first and Theorem 3.1.8. The
third statement is [Mor12, Lemma 7.33]. O

The next result explains the geometric importance of the contraction construction.

THEOREM 3.1.19 [Mor12, Theorem 6.13]. Suppose (2, ) is a pointed A'-connected space. The
following statements hold.

1. The space Qq, 2 is again pointed and Al-connected.
2. w(Qa X)) =72 (2)_1.

Strong A'-invariance of group-theoretic constructions. If G is a sheaf of groups, then we
write Z(G) for the kernel of the morphism G — Aut(G) (sectionwise, sending an element to its
corresponding inner automorphism). There is a natural homomorphism

Z(G)x G — G

given by the product.

More generally, suppose we are given a homomorphism of sheaves of groups ¢ : H — G.
Consider the sheaf of pointed sets Hom(H, G). This sheaf of pointed sets comes equipped with an
action of the sheaf G by conjugation on the target. Viewing ¢ as a global section of Hom(H, G),
we define Cg(¢) to be the sheaf-theoretic stabilizer of the section ¢ € Hom(H, G) under the
conjugation action of G.
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The homomorphism ¢ induces an evaluation homomorphism
Cc;((p) xH — G;

when ¢ is the identity homomorphism on G, this homomorphism coincides with the one defined
in the preceding paragraph.

With ¢ : H — G as above, write Map(BH, BG),, for the component of the internal mapping
space containing By. The homomorphism of the preceding paragraph induces a morphism

BCG(SD) — Map(BH, BG)W,
and applying 71 defines a homomorphism
Ca(p) — m1(Map(BH, BG),).

Again, in the special case where ¢ is the identity map on G, this reduces to a homomorphism
2(G) — m1(Map(BG, BG)y).

PROPOSITION 3.1.20. Assume k is a field, and ¢ : H — G is a morphism in Grpy,.

1. The morphism
Ca(p) — w1 (Map(BH, BG),,)

is an isomorphism of sheaves of groups.
2. If G is strongly Al-invariant, then so is Cq(¢p).
3. If k is a perfect field, then Z(G) is strictly A'-invariant.

Proof. The first statement is a sheaf-theoretic variant of a classical statement about discrete
groups, which is essentially an exercise in covering space theory. Indeed, we claim that there is
an evaluation morphism Map(BH, BG), — BG that fits into a simplicial fiber sequence of the
form

Hom(H, G) — Map(BH, BG) — BG,

where Hom(H, G) is viewed as a simplicially constant presheaf, that is, all face and degeneracy
maps are reduced to the identity. Granting this, taking homotopy sheaves of this fiber sequence
with base point ¢ yields a long exact sequence in homotopy sheaves of the form

1 — m(Map(BH, BG),) — G — Hom(H,G) — - - -,

and the first statement follows immediately from the fact that the action of G on Hom(H, G)
is induced by conjugation on the target, in conjunction with the definition of Cg(¢p).

To produce this fiber sequence, recall that if H and G are (discrete) groups, we may form the
internal hom-groupoid Hom(BH, BG): objects are group homomorphisms H — G, and, given
two objects f : H — G and f' : H — G, a morphism from f to f’ is an element g € G conjugating
f to f’. Equivalently, Hom(BH, BG) is the ‘action groupoid’ attached to the set Hom(H, G)
viewed as a G-set with G acting by conjugation on the target. There is an associated morphism
of groupoids Hom(BH, BG) — BG: send an object f: H — G to the unique object of BG and
an element g € G conjugating f to f’ to the element g. In terms of action groupoids, this is the
functor corresponding to the morphism of G-sets Hom(H, G) — *. Covering space theory implies
that the nerve of the groupoid Hom(BH, BG) coincides with the mapping space Map(BH, BG),
at which point one immediately deduces the existence of a fiber sequence as above in the category
of simplicial sets.

The general case reduces to the case just mentioned using the homotopy-theoretic
interpretation of stacks in terms of 1-truncated simplicial presheaves (i.e. having no homotopy in
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degrees > 1; see [Hol08, Jar01]). Indeed, consider the action of G on Hom(H, G) by conjugation;
the homotopy quotient of this action fits into a simplicial fiber sequence of the form

Hom(H, G) — Hom(H, G),c — BG,

where Hom(H, G)p,c is modeled by the usual simplicial Borel construction.

To establish the original claim, it suffices to show that the middle term is Nisnevich locally
weakly equivalent to Map(BH, BG), in which case the original statement follows from the dis-
cussion above by taking the fiber over the base point corresponding to ¢. To see this, we use the
following model for the mapping space. The space BG is canonically simplicially weakly equiv-
alent to the simplicial presheaf BTors(G) that assigns to U € Smy, the nerve of the groupoid
BTors(G)(U) of G-torsors on U by [AHW18, Lemma 2.3.2(1)].

There is a map Hom(H, G),¢ — Map(BH, BTors(G)) induced by the classifying space func-
tor: at the level of 0-simplices, a homomorphism H — G defines a morphism BH — BG and
conjugate homomorphisms induce the same map. That this map is a Nisnevich local weak equiv-
alence can be checked sectionwise; we treat the case of 0-simplices as the general case is similar. A
section of Map(BH, BTors(G))(U) is a G-torsor over BH x U. By picking a refinement U’ — U,
the composite map EH x U’ — BG admits a trivialization. In that case, a choice of such a triv-
ialization then corresponds to a section of Hom(H, G) over U’. Unwinding the definitions, two
local sections determine isomorphic torsors if they differ by conjugation. This construction is
evidently inverse to the one given by the ‘classifying space’ map above, which is thus a Nisnevich
local weak equivalence.

For the second statement, it suffices to observe that Map(BH, BG),, is Al-local. To see this,
observe that since BG is Al-local, Map(%#/, BG) is A!'-local for any % . Likewise, any component
of an Al-local space is Al-local, so it follows that Map(BH, BG), is Al-local is well. In that
case, w1 (Map(BH, BG),,) is strongly Al-invariant, and the strong Al-invariance of Cg () then
follows immediately from the statement (1).

The third statement follows from the second by taking ¢ to be the identity map on G and
using the fact that Z(G) is a sheaf of abelian groups. O

Remark 3.1.21. The assertion that the center of a strongly A'-invariant sheaf is again strongly
Al-invariant has been recently established by different means by Choudhury and Hogadi [CH21,
Theorem 3.1].

If G is a sheaf of groups, define a sequence of quotients of G inductively as follows. Set
Go = G and define Gy, i > 1, inductively by setting G; = G;-1/Z(G;_1). In that case, we define
the ith higher center Z;(G) as the kernel of the map G — G;.

PROPOSITION 3.1.22. Suppose G is a strongly A'-invariant sheaf of groups. The following
statements hold.

1. The higher centers Z;(G) of G are all strongly A'-invariant normal subsheaves of groups
of G.

2. FEach of these sheaves is characteristic, that is, it is stable under the natural action of
Aut(G).

3. The quotients G/Z;(G) are strongly A'-invariant.

Proof. The sheaf Gg := G is strongly Al-invariant by assumption. Since G; = G;_1/Z(G;_1), it
follows inductively by combining Proposition 3.1.20(3) and Lemma 3.1.14(3) that G; is strongly
Al-invariant. The fact that Z;(G) is strongly Al-invariant follows from Lemma 3.1.14(1) since it
is the kernel of a map of strongly A'-invariant sheaves. The final statement is immediate since
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G/Z;(G) = G; by definition. The statement about being characteristic subgroup sheaves may
be checked stalkwise, in which case it reduces to the corresponding fact in group theory. U

We also make one further remark, unrelated to the above discussion, for future use.

Remark 3.1.23. If .7 is a pointed sheaf of sets, then the free strongly A'-invariant sheaf of groups
on . is defined to be ﬂ‘i‘xl(ZY ). One may check that this construction defines a functor from
the category of sheaves of sets to the category of strongly Al-invariant sheaves of groups that
is left adjoint to the evident forgetful functor [Morl2, Lemma 7.23]. Morel writes Fy1 () for
this construction in [Morl2, p. 189]. For our purposes, it will be important to remember that
’rr‘l%1 (P') = F41(G,,); we will come back to this observation in Example 3.2.11.

3.2 Al-nilpotent groups

We now define Al-nilpotent actions and Al!-nilpotent sheaves of groups in parallel with the
classical story: the latter are defined as iterated central extensions of strictly A'-invariant sheaves
of groups.

DEFINITION 3.2.1. Suppose G and H are strongly Al-invariant sheaves of groups.

1. An action ¢ of G on H is said to be Al-nilpotent (respectively, locally Al-nilpotent) if H
has a finite (respectively, locally finite) G-central series (see Definitions 2.1.1 and 2.1.3)

H=H,>H -

such that the successive subquotients H; /H; ;1 are strongly Al invariant.
2. A G-central series for H as in the preceding point will be called an A'-G-central series;
the smallest integer i such that H; = 1 for all j > ¢ will be called the length of the series.
3. We will say that G is (locally) A'-nilpotent if the conjugation action of G on itself is
(locally) Al-nilpotent, that is, G admits a decreasing filtration by normal subgroup sheaves
with abelian strongly Al-invariant subquotients and such that the induced action of G on
successive subquotients is trivial; in this case the filtration will be called an A'-central series

for G.
Remark 3.2.2. Given the above definition, a number of remarks are in order.

1. Lemma 3.1.14 states that kernels of morphisms of strongly Al-invariant sheaves of groups
are again strongly Al-invariant. Since H,; is the kernel of the morphism H; — H;/H; 1,
and the latter is strongly A'-invariant by assumption, we conclude inductively that each H;
is a strongly Al-invariant subsheaf of H.

2. By Theorem 3.1.8, assuming k is perfect, the condition H;/H;, 1 is strongly A!-invariant
implies H;/H; 1 is strictly Al-invariant. Indeed, H;/H;; is abelian since it arises as a
subquotient in a G-central series.

3. If G is an Al-nilpotent sheaf of groups, then the condition that G; /Gy is abelian is implied
by the assumption that the conjugation action of G on G;/Gj4 is trivial. As usual, if G
is Al-nilpotent, the extensions

1—G;i/Giy1 — G/Git1 — G/G; — 1
are all central extensions of strongly A'-invariant sheaves.
ProPoOSITION 3.2.3. Assume k is a perfect field, and G is a sheaf of groups.

1. The sheaf G is Al-nilpotent if and only if it is strongly A'-invariant and the upper central
series terminates in finitely many steps.
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2. In particular, a sheaf of groups G is Al-nilpotent if and only if G is strongly A'-invariant
and nilpotent as a sheaf of groups.

Proof. The standard proof from group theory that a group is nilpotent if and only if its upper
central series terminates in finitely many steps works for sheaves of groups. Next, observe that
Proposition 3.1.22 guarantees that if G is strongly Al-invariant then the upper central series
has terms that are strongly Al-invariant with strictly Al-invariant subquotients. Therefore, if
G has a finite upper central series, it has a finite A'-central series. Conversely, if G has a finite
Al-central series, then the upper central series must terminate in finitely many steps as well.
The second statement follows immediately from the first. O

Remark 3.2.4. If G is a strongly Al-invariant sheaf of groups, then one may define its
‘Al-abelianization’ G := H‘%l(BG) (see §4.1); this sheaf is the initial strictly Al-invariant
sheaf of abelian groups admitting a morphism from G. Choudhury and Hogadi prove that the
map G — G?" is an epimorphism [CH21, Theorem 1.1]. One may then inductively construct a
lower A'-central series for G.

Example 3.2.5. The key example of a locally Al-nilpotent sheaf of groups arises from the scaling
action of G,,, on the first non-vanishing Al-homotopy sheaf of A"\ 0, n > 2, at least if we work
over a base field that is not formally real. (Note that the action of G,,, on A™\ 0 does not preserve
base points, but this is irrelevant for the action on the first Al-homotopy sheaf because it can
be interpreted in terms of A'-homology via the Hurewicz theorem (Theorem 4.2.1).) In this case
Wﬁl_l(A” \ 0) = KMW  which has a filtration by the subsheaves I7 for j > n + 1, all of which are
stable under multiplication by units. The successive subquotients are isomorphic to either KM
or K?/I/27 j>n+1, with a trivial action of G,,, in either. As in Example 2.1.4, the induced
filtration on sections over any extension of the base field will be finite.

LEMMA 3.2.6. Suppose ¢ : G’ — G is a morphism of strongly A'-invariant sheaves of groups. If
H is a strongly A'-invariant sheaf of groups carrying a (locally) A'-nilpotent action of G, then
the action of G’ on H induced by precomposition with ¢ is also (locally) A'-nilpotent.

Proof. Any (locally finite) G-central series for H defines, by precomposition with ¢, a (locally
finite) G'-central series for H, that is, this is a special case of Lemma 2.1.5. O

LEMMA 3.2.7. Suppose G € Grp‘,ﬁl.

1. If G is a (locally) A'-nilpotent group, then any strongly A'-invariant subsheaf of groups of
G is again (locally) Al-nilpotent.

2. Ifk is a perfect field, then any strongly Al'-invariant quotient of G is again A'-nilpotent.

3. If A is a strongly A'-invariant sheaf of abelian groups, and G is A'-nilpotent, then a central
extension of G by A is again A'-nilpotent.

4. If H and H' are A'-nilpotent sheaves of groups, and we are given morphisms H — G and
H' — G, then H xg H' is again Al'-nilpotent.

In particular, the category of Al-nilpotent sheaves of groups is a subcategory of Gr]rp‘,i.x1 that is

stable under formation of finite limits.

Proof. Assume G is an Al-nilpotent sheaf of groups. For the first statement, suppose H is a
strongly Al-invariant subsheaf of groups of G. In that case, Lemma 3.1.16 guarantees that the
intersection of the sheaves in an Al-central series for G with H provides an A'-central series for
H. One argues in an identical way to establish local A'-nilpotence of H given the corresponding
statement for G.
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For the second statement, observe that any quotient of a nilpotent sheaf of groups is a
nilpotent sheaf of groups. Since the quotient is assumed strongly Al-invariant, the result follows
from Proposition 3.2.3.

For the third statement, suppose we have a central extension G’ of G by A. If G; is a filtration
of G witnessing Al-nilpotence with G,, = 1, then Lemma 3.1.16 implies that G, :=G; xg G
yields a sequence of strongly Al-invariant normal subsheaves containing A. Setting G/, =1
one checks that G/ provides an Al-central series for G’ as in the corresponding statement in
classical group theory.

For the final assertion, observe that if H and H’ are Al-nilpotent, then H x H’ is also
Alnilpotent: if H; and H. are Al-central series (of possibly different lengths) for each group,
then H; x H is an Al-central series for the product. As the fiber product is strongly A'-invariant
by Lemma 3.1.16, the fact that H xg H' is Al-nilpotent follows from statement (1).

That the category of Al-nilpotent sheaves of groups is stable under formation of finite limits
now follows from the fact that the terminal object in the category of groups (i.e. the trivial sheaf
of groups) is Al-nilpotent, and the fact that this category is closed under pullbacks. ]

Remark 3.2.8. After Lemma 3.2.7, the class of Al-nilpotent groups can be described as the
smallest subcategory of Grpﬁ1 containing all strongly A'-invariant sheaves of abelian groups and
closed under central extensions. Arbitrary extensions of Al-nilpotent sheaves of groups need not
be Al-nilpotent; this follows from Example 3.1.7 since constant group schemes attached to finite
groups are strongly Al-invariant.

DEFINITION 3.2.9. If G is Al-nilpotent, we will say that G has A'-nilpotence class c if the
minimum length of an A'-central series is c. Similarly, if H is a strongly A'-invariant group that
has an Al-nilpotent action of a strongly Al-invariant group G, the A'-G-nilpotence class of H
is the minimum length of an A'-G-central series for H.

LEMMA 3.2.10. If k is a perfect field, and G € Grp‘;}l is an Al-nilpotent sheaf of groups, then
the A'-nilpotence class of G is the length of the upper central series for G.

Proof. This fact follows immediately from the characterization of Al-nilpotent sheaves of groups
given in Proposition 3.2.3, and the proof of the corresponding fact in group theory. O

Example 3.2.11. The most basic example of an A'-nilpotent sheaf of groups is 71"1*1 (P1); this
is a non-abelian group which Morel shows is a central extension of G,, by K12VIW [Mor12,
Theorem 7.29 and Remark 7.31]. This example presents the interesting situation that the free
strongly Al-invariant sheaf of groups on a (non-trivial) sheaf of sets .7 may be Al-nilpotent (see
Remark 3.1.23 for discussion of the free strongly Al-invariant sheaf of groups on a sheaf of sets;
in this case ./ = G,,,). This example will be discussed in greater detail in Remark 3.4.9.

More on Al-nilpotent actions. Momentarily, we will define Al-nilpotent spaces. We consider
in more detail Al-nilpotent actions of a strongly Al-invariant sheaf of groups. The following
result will be a key technical tool; it is the analog for Al-nilpotent groups of Lemma 2.1.6,
though we note that the statement differs slightly from that one because of the behavior of
limits and colimits in the category of strongly Al-invariant sheaves.

PROPOSITION 3.2.12. Assume k is a perfect field, G € Grp‘,‘?l, H,H' and H” are strongly
Al-invariant sheaves with an action of G, and

1—H —H-—H"—1

is a G-equivariant short exact sequence of strongly A'-invariant sheaves.
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1. If the actions of G on H' and H" are (locally) A'-nilpotent, then the action on H is (locally)
Al-nilpotent.

2. If the action of G on H is (locally) Al-nilpotent, then the action of G on H' is (Iocally)
Al-nilpotent, and, if the sequence is a central extension, then the action of G on H” is also
(Iocally) Al-nilpotent.

Proof. For the first statement, it suffices to observe that Lemma 3.1.14(2) implies that strongly
Al-invariant sheaves of groups are stable by extensions; the result then follows from the
corresponding sheaf-theoretic statement, Lemma 2.1.6.

For the second statement, we proceed as follows. We prove the statement for locally
Al-nilpotent actions; the proof in the Al-nilpotent case follows by simply dropping the word
‘locally;. Suppose we have a locally finite A'-G-central series for H. Lemma 3.1.16 guarantees
that the restriction of the corresponding filtration to H' provides a locally finite G-central series
of H'.

We claim that, if the exact sequence is a central extension, then the image of the locally
finite A'-G-central series for H in H” is also a locally finite A'-G-central series for the target.
To see this, it suffices to show that the image of each term in H” is again strongly Al-invariant.

To this end, let H; be an arbitrary term in the locally finite A'-G-central series for H. We
already know that H; N H' =: H/ is strongly Al-invariant. However, since the exact sequence in
the statement is a central extension, we conclude that HY, is contained in the center of H;, in which
case the quotient is strongly Al-invariant subsheaf HY ¢ H” by appeal to Lemma 3.1.14(3). O

COROLLARY 3.2.13. Suppose G is a strongly A'-invariant sheaf of groups acting on strongly
Al-invariant groups H, H' and H” and suppose we are given G-equivariant morphisms H' —
H and H” — H. If the G-actions on H' and H" are (locally) Al-nilpotent, then the induced
G-action on H' xgy H” is also (locally) Al-nilpotent.

Proof. As before, the fiber product is strongly A'-invariant by Lemma 3.1.16. Moreover, the fiber
product is equipped with a G-action: it is a G-stable subsheaf of the product H x H' equipped
with the diagonal G-action. If H; and H/ are (locally finite) A'-G-central series, then H; x g HY
yields a G-central series for the fiber product by appeal to Proposition 3.2.12(1). O

3.3 Al-nilpotent spaces and Al-fiber sequences

We now define various notions of Al-nilpotence for morphisms of spaces by analogy with the
situation in classical topology; we defer the explicit construction of examples to §3.4. Here,
we discuss some of the basic formal properties of such morphisms and give some useful crite-
ria for checking nilpotence. We also analyze the interaction between nilpotence and A'-fiber
sequences.

DEFINITION 3.3.1. Suppose f:(&,e) — (%,b) is a morphism of spaces with Al-homotopy
fiber ..

1. The morphism f will be called a (locally) Al-nilpotent morphism if .F is Al-connected,
and for any choice of base point % in .# the action of Tr‘l*l(@‘" ,€) on w?l(ﬁ ,*) is (locally)
Al-nilpotent.

2. A pointed space (2°,x) will be called (locally) A'-nilpotent if the structure morphism
2 — x is (locally) A'-nilpotent;

3. weakly Al-nilpotent if 2 is locally A'-nilpotent and ﬂ‘?l(%) is Al-nilpotent; and

4. Al-simple if w‘fl(%,x) is abelian and acts trivially on the higher A'-homotopy sheaves
of Z'.
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PROPOSITION 3.3.2. Assume k is a perfect field, and suppose q : & — &1 and p : & — &y are
pointed morphisms in Spc,, such that the A'-homotopy fibers of p, ¢ and pq are all connected.

1. Ifp and q are (locally) A'-nilpotent, then so is pq; if pq and p are (locally) Al-nilpotent, so
is q.

2. If pq and q are (locally) Al-nilpotent, and p is 1-connected, then p is (locally) A'-nilpotent
as well.

Proof. The proof parallels that of Proposition 2.2.2. In particular, by the ‘octahedral axiom’ in
the Al-homotopy category, there is an A'-fiber sequence of the form
Fq — Fpg — Fp;
where each term is the A'-homotopy fiber of the map in the subscript. All the spaces in this
Al-fiber sequence are A'-connected by assumption. There is an induced action of 71'1 (@“’2) on all
of the homotopy sheaves of each of these spaces, and a 7% (c%) -equivariant long exact sequence
of Al-homotopy sheaves which ends as follows:
’—’7"2 (Jp) —>7"lx (F4) —’7"1 (Jpq) —>7"1 (’/p) — L

The kernel K of w4 (G‘q) — 7 (Jpq) which coincides with the i 1mage of 7y (Jp) in W% (Zq)
by exactness, is strongly Al-invariant by Lemma 3.1.14 and 771 (<§’2) stable by construction.
Moreover, K is contained in the center of 7 (ﬁq).

We may then break the above long exact sequence of sheaves 74 (@“’2) -equivariant short exact
sequences of strongly Al-invariant sheaves. In particular, we obtain the two 71 (&)-equivariant
exact sequences:

which we now analyze.

If pg and p are (locally) Al-nilpotent, then we conclude by appeal to Proposition 3.2.12
that the action of mf (&) on m1(F,) is (locally) Al-nilpotent. If p and q are (locally) Al-
nilpotent, then observe that since the first exact sequence above is a 7} (é?g) equlvarlant central
extension we may conclude that the action of 7} (&) on ker(ﬂ‘f (Fpq) — T4 (Jp)) is (locally)
Al- nllpotent again by appeal to Proposition 3.2.12. Another appeal to this result then implies
that the 7f ' (&)-action on ﬂ‘f (Fpq) is Al-nilpotent. The statements about higher homotopy
sheaves are established similarly, by repeated appeal to Proposition 3.2.12 (since all sheaves are
strictly Al-invariant; this also treats the case where pq and ¢ are (locally) Al-nilpotent and p is
1-connected. O

If 2 is any pointed A'-connected space, then we write 2 for the Al-universal cover of 2~
in the sense of [Morl2, §7.1]. If 7 := 71"1*1 (27), then there is an Al-fiber sequence of the form

2 — 2 — Br

and 2 is Al-1-connected. The action of 7 on 2 is by ‘deck transformations’, which do not
preserve base points. Nevertheless, analysis of this action in conjunction with Proposition 3.3.2
can be used to produce a computationally useful characterization of Al-nilpotence.

COROLLARY 3.3.3. Assume (2, x) is a pointed Al-connected space with m := 77‘1*1(5&”,:1:) an
Al-nilpotent sheaf of groups. The following conditions are equivalent.

1. The space 2 is (locally) Al-nilpotent.
2. The action of  on w;&l (2) is (locally) Al-nilpotent for every i > 1.
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Proof. Since B is Al-nilpotent by assumption, and Z is Al-simply connected, the statements
involving the Al-nilpotence hypothesis follow immediately by applying Proposition 3.3.2 to the
composite morphism 2 — Bw — . In fact, essentially the same proof works assuming the
hypothesis of local Al-nilpotence because B is 1-truncated. Indeed, both the forward and
reverse implications follow from this observation because the m-action on the higher homotopy
sheaves of 2 coincides with the 7r-action on the higher homotopy sheaves of 2 . O

Remark 3.3.4. Just as in classical topology, if the action of 7 on 2 is null-A'-homotopic, then
the induced action on higher A'-homotopy sheaves will be trivial. Because the homotopy sheaves
Al

w8 (Z) are all strictly Al-invariant, they are unramified (see Remark 3.1.9), and thus triviality

of the necessary actions may be checked on sections over finitely generated extensions of the base

field.

PRrROPOSITION 3.3.5. Assume we are given a homotopy Cartesian diagram of pointed
Al-connected spaces of the following form.

/

g
E —= &

b, b

B — A

If f is (locally) Al-nilpotent, then so is f’.

Proof. Up to Al-weak equivalence, we may replace the diagram in question by L,1 f and L1 g.
In that case, L1 & xI}fAl o L1 A is Al-local since there is a simplicial homotopy fiber sequence
of the form

QL B — Ly & xlﬁAl gLy B — Ly & x Ly B

Since & and %' are A'-connected by assumption, L1 & x L1 %' is simplicially connected as well,
so appeal to Lemma 3.1.4 allows us to conclude the middle term is A!-local. It also follows that the
induced map & — L1 & fol 5 L1 A is an Al-weak equivalence since all spaces are connected.
In that case, the result follows from the corresponding result for simplicial presheaves, that is,
by appeal to Proposition 2.2.3 (replacing appeal to Lemma 2.1.5 by appeal to Lemma 3.2.6). O

THEOREM 3.3.6. Assume k is a perfect field. Suppose .F — & — 9 is an A'-fiber sequence of
pointed A'-connected spaces. If & is (locally) A'-nilpotent, then .% is (locally) A'-nilpotent.

Proof. The proof is essentially identical to that of Proposition 2.2.4. By assumption, there is an
Al-homotopy Cartesian square of the following form.

Héa

F
.-
* —> R

By Proposition 3.3.5, to check that .# — * is (locally) Al-nilpotent, it suffices to show that f is

(locally) Al-nilpotent, that is, the action of 71"1*1 (&) on m;(F) is (locally) Al-nilpotent.

There is a 71"1*1(éa )-equivariant long exact sequence in A'-homotopy sheaves associated with

the above fibration, which may be ﬂ%l (&)-equivariantly broken into short exact sequences of the
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form
1 — K — 72 (F) — ker(n?' (&) — « () — 1.

(2 (2
In this case, by exactness of the sequence, both K;;; and kelr(ﬂ'fz*1 (&) — 71'?1 (A)) are strongly
Al-invariant by appeal to Lemma 3.1.14. Moreover, as a homotopy exact sequence, the above
short exact sequence is actually a central extension of strongly Al-invariant sheaves. Now, by
assumption, 74" (&) acts in a (locally) Al-nilpotent fashion on w?l (&) and therefore in a (locally)
Al-nilpotent fashion on the kernel in the above short exact sequence by appeal to Lemma 3.2.7.
Likewise, the ﬁ‘%l(éa)—action on K1 is trivial and it follows again by appeal to Lemma 3.2.7

that the extension is (locally) ﬂ’%l(g )-nilpotent. O
We record the following special case of the above for later use.

COROLLARY 3.3.7. If # — & — % is an A'-fiber sequence of connected spaces, and & and %
are weakly Al-nilpotent, then .F is weakly A'-nilpotent.

PROPOSITION 3.3.8. Assume k is a perfect field. Suppose % — & — 2 is an A'-fiber sequence
of pointed A'-connected spaces. If % is A'-simply connected, and .% is (locally) A'-nilpotent
(respectively, Al-simple), then & is (locally) Al-nilpotent (respectively, Al-simple) as well.
Proof. Under the hypotheses, ﬂ"jtkl (&) is a quotient of ﬂ"i&1 (.7), and since all spaces have a 71"1*1 (&)-
action, they inherit an action of ﬁ‘l*l (.Z) by restriction. Now, the image of 71"2*1 (#) in 71"1*1 (7)is
a central subsheaf. Moreover, by exactness of the long exact sequence, the image of this subsheaf
is again strongly Al-invariant as it is identified with the kernel of the map 71"1*1 (#) — &. Then,
since &' (F) is (locally) Al-nilpotent, it follows that (locally) 72" (&) is also Al-nilpotent by
appeal to Lemma 3.2.7(2).
Next, consider the portion of the long exact sequence in A'-homotopy sheaves:

W(F) () i (B) —

: U n n

Since k is perfect and n > 2, the homotopy sheaves in question are strictly Al-invariant (so all
images and cokernels are strictly Al-invariant as well by appeal to Theorem 3.1.12). Moreover,
by assumption Wﬁl (A) carries a trivial action of 71"1*1 (A), so the quotient rﬁl (éa)/lm(rﬁl(ﬁ))
carries a trivial action of 77‘%1 (&), which is, in particular, (locally) Al-nilpotent.

Thus, to conclude, it suffices by Proposition 3.2.12 to show that im(ﬂ'ﬁl(ﬂ)) carries a
(locally) Al-nilpotent action of 72" (&). However, im(w2' (%)) carries a (locally) Al-nilpotent
action of w‘fl(ﬁ ) by assumption. If we pick a (locally finite) Al—ﬂ‘fl(ﬁ )-central series for
A (F), it induces a (locally finite) Al-wA" (.7 )-central series im(wA" (F)); this is also a (locally
finite) Al—ﬂ"fl (&)-central series by restriction, which is what we wanted to show.

The statement about Al-simplicity is established similarly. If 71"1*1 (%) is abelian, then ﬂ‘lv (&)
is necessarily abelian as well. If w‘l%l () acts trivially on the higher A'-homotopy sheaves of .7,
then the argument of the preceding paragraph also shows that 71'%1 (&) acts trivially on the higher

Al-homotopy sheaves of &. O

Al-nilpotence and Moore—Postnikov factorizations. A pointed morphism f : (&,¢e) — (%, b)
is an A'-principal fibration if there exist a pointed space (%, c) and a pointed ‘classifying’ map
w: PB — € such that & is the homotopy pullback of the path-loop fibration along w. We may
consider factorizations of a pointed morphism as a tower of principal fibrations in a sense we
now make precise; we largely follow the discussion of [HMRT75, I1.2].

DEFINITION 3.3.9. Suppose f : (£, e) — (%, b) is a morphism of pointed Al-connected spaces. A
factorization of f as a tower of Al-fibrations consists of a sequence of pointed spaces 7<; f, i > 0,
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morphisms p; : 7<;f — 7<i—1f, & — 7<if and 7<;f — 2 fitting into a commutative diagram of
the form

&

LI

Pi+1 Pi Pi—1
> Tt f —— T, f —> T f ——

N

¥

having the following properties.

1. 7<of = £ (thus, the composite morphisms & — 7<;f — 2 coincide with f).
2. The induced morphism & — holim; 7<; f is an Al-weak equivalence.

If, furthermore,

3. for each integer i > 0, the morphism p; is an Al-principal fibration in the sense mentioned
above,

then we will say that the given factorization of f is a factorization of f as a tower of A'-principal
fibrations.

Ezample 3.3.10. Suppose f : (&,e) — (%,b) is a morphism of pointed Al-connected spaces. If
the morphism ﬂ‘fl (&) — 71"1*1 (A) is surjective, then f admits a standard factorization as a tower
of Al-fibrations: the A'-Moore-Postnikov factorization. Indeed, this is a factorization of f as
a tower of Al-fibrations where, in addition to the statements in Definition 3.3.9, the following
statements hold.

1. The morphisms & — 7<; f induce epimorphisms on Al-homotopy sheaves in degrees < i + 1
that are furthermore isomorphisms in degrees < i.

2. The map on Al-homotopy sheaves induced by the morphisms 7<;f — 2 are isomorphisms
in degrees > i + 1, and a monomorphism in degree ¢ + 1.

DEFINITION 3.3.11. Suppose f : (&,e) — (£,b) is a morphism of pointed A'-connected spaces
equipped with a factorization as a tower of Al-fibrations as in Definition 3.3.9. We will say that
this factorization admits an A'-principal refinement if, for each n > 1, there exists an integer ¢
(which will depend on n) such that

1. the morphism p,, : 7<,, f — 7<,—1f factors as

Pn, Pn,0
T<nf = T<nef = T<ne1f — -+ — T<n1f = T<nof = T<n-1f,

and
2. the new tower 7<, ; f is a factorization of f by Al-principal fibrations.

Remark 3.3.12. The statement that the A!-Moore-Postnikov factorization (Example 3.3.10)
admits an A'-principal refinement amounts to asking that, for each n,i as in Definition 3.3.11,
the morphism p,, ; is an Al-principal fibration in the sense that there exist a strictly Al-invariant
sheaf G, ; and an Al-fiber sequence of the form

Pni
T<nif == T<ni-1f — K(Gpi,n+1).
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The following result is the A'-homotopic analog of one of the classical characterizations of
nilpotent spaces.

THEOREM 3.3.13. Suppose f : & — % is a morphism of pointed A'-connected spaces such that
the induced morphism 7' (&) — ' () is an epimorphism. The morphism f is Al-nilpotent
if and only if the A'-Moore—Postnikov tower of f admits an A'-principal refinement.

We give the proof of the forward implication below. We will defer the proof of the reverse
implication to Corollary 4.2.4. Note that Theorem 3.3.17 below depends on this characterization
of Al-nilpotence, but is placed in this section (as opposed to after Corollary 4.2.4) for stylistic
reasons.

Proof. See [HMRT75, Theorem 11.2.14] for the corresponding statement in classical topology,
which we essentially follow. Observe that the hypotheses on f imply that the A!-homotopy
fiber .# of f is Al-connected. We show that if the A'-Moore Postnikov filtration admits an
Al-principal refinement, then f is Al-nilpotent.

We want to show that the action of ’rr‘%l(éa ) on all the higher homotopy sheaves of .Z# is
Al-nilpotent. Assuming p, admits a factorization as in the statement, there is an induced action
of 71"1*1 (&) on ﬂ?l (T<nf) for every n and therefore an induced action on 7<,, ; f for every ¢, making

T<nif LS T<ni—1f — K(Gpni,n+1)

into a fiber sequence where all the morphisms are ﬂ"?l (&)-equivariant. Repeated application of

Proposition 3.2.12 then yields the result. O

Al-nilpotence and mapping spaces.

DEFINITION 3.3.14. Assume k is a field. We will say that 2 € Spc,, has A!-cohomological
dimension < d if, for every strictly A'-invariant sheaf A and every integer i > d, the group
Hi (2 ,A) =0, and Al-cohomological dimension d if 2 has Al-cohomological dimension
<d but not <d—1. We will say that 2" has finite A'-cohomological dimension, if it has
A'-cohomological dimension < d for some integer d, and strongly finite A'-cohomological dimen-
sion if, for every extension L/k, the base change 27 € Spc; has Al-cohomological dimension
no higher than d for some integer d, independent of L.

Ezxample 3.3.15. If X is a smooth k-scheme of dimension d, then X has strongly finite
A'-cohomological dimension < d. From this and the suspension isomorphism in Nisnevich coho-
mology, one deduces that /X also has strongly finite A'-cohomological dimension. More
generally, if 2 is any pointed space for which there exist integers i,j such that X2  has
the A'-homotopy type of ¥/X, for some smooth scheme X, then 2" has strongly finite
Al—cohomological dimension. In particular, this last statement holds for any motivic sphere
SiAGp! since it holds for Gip? (use A7\ 0).

THEOREM 3.3.16. Assume k is a perfect field. If 2" is any pointed A'-nilpotent space, and %
is a pointed space having strongly finite A'-cohomological dimension, then for any fixed pointed
map f:% — %, the Al-connected component of the mapping space Map(%', Z')s containing
f is again A'-nilpotent.

Proof. First, suppose 2 = K(A,n) for some integer n > 1 and a strictly Al-invariant sheaf of
groups A. In that case, consider the space

Map(#', K(A,n))y,
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for some map fe H"(#,A). Observe that Map(#,K(A,n)) is itself a (possibly
Al-disconnected) A'-h-space. Indeed, the space K(A,n) is Al-local by assumption, so the
mapping space Map(%, K(A,n)) is Al-local as well. Now, any Al-connected component of an
Al-local space is again Al-local, so Map(%/, K(A,n)); is Al-local also. The identity component
Map(#Z, K(A,n))g is itself an Al-h-space and therefore Al-simple. On the other hand, multiplica-
tion by f induces an Al-weak equivalence between Map(%, K(A,n))o and Map(%, K(A,n)),
so we conclude the latter is Al-simple as well. Explicitly, ﬂ?l(Map(@ ,K(A,n))s) coincides
with m;((Map(#', K(A,n))¢)); for any i > 0, this latter sheaf, which is necessarily strictly
Al-invariant, has sections ﬁl’\}:(%, A ) over a finitely generated extension L/k.

Next, assume that the 2 is Al-n-truncated and A'-nilpotent for some integer n, that is,
there exists an integer n such that W?l(% ,x) vanishes for ¢ > n. In that case, by appeal to
Theorem 3.3.13 we know that the A’ Postnikov factorization of the structure morphism admits
an Al-principal refinement, and furthermore that the resulting factorization is a finite tower; in
this case, we will say that 2 has a finite A'-principal series. We then proceed by induction. Since
applying mapping spaces preserves Al-fiber sequences, we reduce inductively to the following
situation: there are Al-fiber sequences of the form

Ma‘p(g”'/v %)f I Map(g7 ‘%/)f - Map(?!/, K(Aa n))fv

where 2~ admits a finite A'-principal series and 2~ admits a finite Al-principal series of shorter
length. By the discussion of the preceding paragraph Map(%, K(A,n))y is Al-simple, and one
assumes that Map(%/, 2”); is Al-nilpotent by induction. In that case, Map(%/, 2) s is necessar-
ily also Al-nilpotent by appeal to Corollary 3.3.7. The discussion of the preceding paragraph
also implies, by appeal to the long exact sequence in A'-homotopy sheaves of a fibration,
that 2" (Map(#, Z")s) only depends on 7 () for n <d+i+1, if # has strongly finite
Al-cohomological dimension < d.

Now assume that 2  is a general Al-nilpotent space. To check that Map(%, 2); is
Al-nilpotent, we need to know that ﬂ'?l (Map(#', Z7)y) is Al-nilpotent and that this sheaf
of groups acts Al-nilpotently on wfl (Map(#', Z")¢) for all i>0. Thus, Map(#,2")s is
Al-nilpotent if and only if all its finite Postnikov sections are A'-nilpotent. We know that 2" is
the homotopy limit of its finite A'-Postnikov sections. The map 2~ — 7<, 2" induces a map

T<m(Map(#', Z7) ) — T<m(Map(¥,7<n Z")).

Because % has strongly finite A'-cohomological dimension, it follows that for any m, the map
of the preceding display induces an A'-weak equivalence as n — oo by the final comment of the
preceding paragraph. Indeed, the map on homotopy sheaves is an isomorphism for n sufficiently
large depending on m and d. O

The above results have consequences for the contraction construction from Definition 3.1.17.
For example, we may analyze A!-nilpotence of iterated G,,-loop spaces of Al-nilpotent spaces.
As a corollary of Theorem 3.3.16, we deduce the following result, which shows that G,,-loop
spaces of Al-nilpotent spaces are Al-nilpotent. Unlike the situation in classical homotopy theory,
G,,,-loop spaces need not automatically have an h-space structure since G,, has no cogroup
structure in Hoy,.

THEOREM 3.3.17. Assume (2, z) is a pointed A'-nilpotent space, then Qgpn 2 is Al-nilpotent

for every n > 0. In particular, if G is an A'-nilpotent sheaf of groups, then G_, is again an
Al-nilpotent sheaf of groups for every n > 0.
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Proof. By appealing to Theorem 3.1.19(1) we conclude that Qgpn 27 1s always Al-connected.
Furthermore, in Example 3.3.15 we observed that G/" has strongly finite A!-cohomological
dimension. Granted those two facts, the first statement is a consequence of Theorem 3.3.16: take

% = G)". The second statement follows from the first by repeated application of Theorem 3.1.19:
T4 Qg BG) = Gy O

3.4 Explicit examples

In this subsection we collect a number of examples of spaces as in Definition 3.3.1. After reviewing
some basic examples (see Example 3.4.1), we show that IP’%"+1 and BG Lo, 1 are Al-simple (see
Proposition 3.4.4, and Theorem 3.4.6). Then we show that generalized flag varieties are typically
Al-nilpotent but not Al-simple (see Theorem 3.4.8 and Remark 3.4.9). Finally, we observe that
IP’%” and BG Ly, are not locally Al-nilpotent over general fields k, but are weakly Al-nilpotent if
k is a field that is not formally real (see Proposition 3.4.10, Theorem 3.4.12 and the discussion
of Remarks 3.4.11 and 3.4.13).

Al-simple spaces. If (2 ,e) is an h-space in sPre(Smy), then Ly 2 is also an h-space since
L1 preserves finite products. If (2, e) is an Al-connected h-space, then it follows from the usual
Eckmann—Hilton argument that 71'11*1 (Z,e) is abelian and that this sheaf of groups acts trivially
on the higher Al-homotopy sheaves since this is true stalkwise. Thus, if 2 is an A!-connected
h-space, it follows that 2" is Al-simple.

Ezample 3.4.1. The following are well-known examples of A!-simple spaces (see Definition 3.3.1):

1. split, simply connected, semi-simple algebraic groups (the hypotheses guarantee that the
resulting space is A'-connected and the result is evident for any A'-connected sheaf of
groups);

2. the space BnisA for any abelian sheaf of groups A;

the stable group BGL (this is an Al-connected h-space);

4. the motivic Eilenberg—-Mac Lane space K(Z(n),2n) or K(Z/m(n),2n) for any integers
m,n > 0 (the hypotheses guarantee that the resulting space is A'-connected; see §5.3 for
further discussion of this example).

©

Remark 3.4.2. In classical algebraic topology, the odd-dimensional real projective spaces RP?**1
are all simple spaces (i.e. have abelian fundamental group and the action on higher homotopy
groups is trivial), not just nilpotent. In contrast, P} is not Al-simple because 71"1*1 (P4) is not even
a sheaf of abelian groups. Nevertheless, the Al-fundamental sheaves of groups of P for n > 2
are isomorphic to G,,,, which is abelian.

The A'-fiber sequences produced by the following result will be essential in our construction
of (locally) Al-nilpotent spaces to follow.

THEOREM 3.4.3. Assume k is a field and G is a split, simply connected, semi-simple k-group
scheme. If H C G is a closed subgroup scheme, such that the H-torsor G — G/H is Nisnevich
locally trivial, then there is an A'-fiber sequence of the form

G/H — BH — BG.

Proof. Under these hypotheses, there is a simplicial fiber sequence of the form

G/H — BnisH — BnisG
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by [AHW18, Lemma 2.4.1]. The space BnisG is Nisnevich local by definition and it satisfies Nis-
nevich excision by [AHW17, Theorem 3.2.5]. Furthermore, mo(ByisG) is Al-invariant on affines
by [AHW20, Theorem 2.4]. Therefore, by appeal to [AHW18, Theorem 2.2.5], we conclude that
the above simplicial fiber sequence is an A'-fiber sequence. O

PROPOSITION 3.4.4. If k is a field, then for every integer n > 0, the space Pi"“ is Al-simple.

Proof. We suppress k from the notation. We proceed by analogy with the argument establishing
nilpotence of odd-dimensional real projective spaces in classical topology. In other words, we will
establish the equivalent conditions of Corollary 3.3.3. To this end, let us recall that there is an
Al-fiber sequence of the form

A2n+2 \ 0 — P2n+1 N BGm

classifying the tautological G,,-torsor over P?"*! [Mor12, Lemma 7.5]. In particular, the first
map is the quotient of the standard scaling action of G,, on A?"2\ (.

For any n > 0, A2"*2\ 0 is A'-1-connected, and thus is a model for the A'-universal covering
space of P?"*! [Mor12, Theorem 7.8]. Thus, it suffices to show that the action of G,, on the
higher A!-homotopy sheaves of A?2"+2\ 0 is Al-nilpotent.

Following the observation of Remark 3.3.4, we will show that the scaling G,,-action on
A?7+2)\ 0 is null Al-homotopic; we prove this in a fashion analogous to [AF14b, Lemma 4.8].
Since the homotopy sheaves of A2"*2\ 0 are unramified, to show that the action of G,,, is trivial,
it suffices to show that, for every finitely generated separable extension L of the base field k£ the
action of G,,,(L) is null Al-homotopic.

Thus, it suffices to show that for every unit u € L, the endomorphism of A?**2\ 0 induced
by scaling via u has trivial motivic Brouwer degree. Indeed, the motivic Brouwer degree of the
map (z1,...,Tmt2) — (Ux1,uxs, ..., uT2,42) can be computed via the procedure described in
[Fas12, Remark 2.6]. Following this procedure, one sees that the Brouwer degree of the above
map is (u)?"2 which, as a square class, is trivial in GW (L). O

Remark 3.4.5. One can also establish the preceding result as follows. One shows that there is an
Al-fiber sequence of the form

]P’,lc — IP’%"H — HP?,

where HP" is the Panin—Walter model for quaternionic projective space [PW10, §3]. By con-
struction, HP™ = Spa,,12/(Span X Sp2), and the map P?"*+! — HP" is the map Spani2/(Span X
G,,) — Spon+2/(Span x Sp2) induced by the inclusion of G,,, < Spa as a maximal torus. Here
Spant2/(Span x G,,) is a model for the standard Jouanolou device over P2"*! for every n > 0.
One may show that HP™ is A'-1-connected. Then, since P! is Al-nilpotent by Theorem 3.4.8
below, one may conclude by appealing to Proposition 3.3.8.

The next result is an analog in A!-algebraic topology of the classical fact that BO(2n + 1)
is a simple space.

THEOREM 3.4.6. Ifk is a field, then, for every integer n > 0, the k-space BG Lo, 11 is A'-simple.

Proof. Again, we suppress k from the notation. For n =0, the assertion is that BG,, is
Al-simple, which follows from the fact that BG,, admits an A'-h-space structure. Therefore, we
assume n > 0.

We begin by considering the homomorphism G Ly, — SLy,41 defined at the level of points by
sending an invertible m x m matrix X to the block matrix (X, det X !). This homomorphism
identifies GL,, as the Levi factor of a parabolic subgroup in SL;,;1. The quotient morphism
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SLy+1 — SLp+1/GLy, is Zariski and hence Nisnevich locally trivial, so Theorem 3.4.3 yields
an Al-fiber sequence of the form

SLy+1/GLy — BGLy, — BSLpy41.

The fiber here is identified as the standard Jouanolou device over P (i.e. the complement of
the incidence divisor in the product of P™ x P™, where the second copy of projective space is
viewed as the dual of the first).

If m = 2n + 1 is odd, then it follows from Proposition 3.4.4 and the identifications described
in the preceding paragraph that SLoj42/GLaptq is Al-simple. Since BSLy,41 is always Al-1-
connected, the result follows from Proposition 3.3.8. O

Examples of A'-nilpotent spaces. Examples of Al-nilpotent spaces may be built from those
in Example 3.4.1 by taking homotopy fibers of maps.

Ezample 3.4.7. Any finite product of (Al-connected) spaces of the form K(A,i) is also an
Al-simple space and thus Al-nilpotent. By an Al-polyGEM, we will mean a space contained
in the smallest class of spaces that (i) contains finite products of Eilenberg-Mac Lane spaces,
and (ii) is closed under the operation of taking homotopy fibers of morphisms of A!-polyGEMs.
A straightforward induction argument appealing to Corollary 3.3.7 guarantees that such spaces
are automatically Al-nilpotent. For example, any finite Postnikov truncation of an Al-nilpotent
space is an Al-polyGEM.

More interesting examples of Al-nilpotent spaces are constructed in the following result.
THEOREM 3.4.8. Suppose k is a perfect field, assume G is a split, semi-simple, simply connected
k-group scheme, and let B be a split Borel subgroup. For every integer n. > 0, the space QGM G/B
is Al-nilpotent.

Proof. We first treat the case n = 0. Fix a split maximal torus T' C GG and observe that there
are induced maps

G/T — G/B.
The above morphism is Zariski locally trivial with affine space fibers and thus an A'-weak equiv-
alence. Moreover, the T-torsor G — G/T is Zariski and hence Nisnevich locally trivial (and thus

Nisnevich locally split). Since the map G/T — G/B is an A'-weak equivalence, Theorem 3.4.3
allows us to conclude that there is an A'-fiber sequence of the form

G/B — BT — BG.

Since BT is Al-nilpotent (A!-simple in fact) and all spaces are A'-connected, the result follows
from Theorem 3.3.6. For n > 0, we conclude by appeal to Theorem 3.3.17. g

Remark 3.4.9. In the simplest case G = SL, the above result shows that P! is Al-nilpotent.
Indeed, in that case ﬂ‘fl (P!) is non-abelian by Example 3.2.11. More generally, the fiber sequence
in the statement, together with the facts that 77‘?1 (BT) =T and BT is Al-1-truncated, yields a
central extension of the form

1 — w§1(BG) — ﬂ‘fl(G/B) — T — 1.

For simplicity, assume G is a split, simple, simply connected k-group scheme. In that case, the
description of w§1 (BG) depends on the Dynkin classification of G. For example, if G is not of type
Ch, then w4 (BQ) is K, while if G is of type Cy, then w4 (BG) is KY™W. For G = SL,,, this
result appears in [Mor12, Theorem 7.20]. For k infinite and general G, this appears in [VW16].
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A uniform proof, without assumption on cardinality of k, appears in [MS20, Theorem 1]. More-
over, it is known that the resulting extension is non-trivial in general and ﬂ"%1 (G/B) is a
non-abelian sheaf of groups.

Examples of locally A'-nilpotent spaces. In contrast to the situation for BG Lo, 1 discussed
in Theorem 3.4.6, one knows that 7("1%1 (BGLay,) = G,, can act non-trivially on wfl (BGLay,) (e.g.
for n = 1, see [AF14b, Corollary 4.9]). Thus, BGLa, is not Al-simple. Nevertheless, we will see
that under appropriate assumptions on the base field, BG Ly, is locally Al-nilpotent. To show
this, we first establish a local Al-nilpotence result for even-dimensional projective spaces. As
discussed in Remark 3.4.11, IP’%" is not Al-nilpotent for general fields k. Furthermore, we will see
that BG Lo, is also not Al-nilpotent for general fields k.

ProPOSITION 3.4.10. Suppose n > 1 is an integer. If k is not formally real, then IP’%" is weakly
Al-nilpotent.

Proof. The Al-fiber sequence
A2n+1 \0 N P2n SN BGm

shows that ﬂ‘fl (P?") = G,,, which is, in particular, Al-nilpotent. To establish local
Al-nilpotence, we again appeal to Corollary 3.3.3. As in the proof of Proposition 3.4.4, we reduce
to showing that the action of G, on A2"*1\ 0 is homotopically nilpotent. If L/k is an extension
field, and w € L* is a unit, then the scaling action by u has motivic degree (u?>"*!) = (u). On
the other hand, 1 — (u) lies in I(L). Since k is not formally real, so is L and a well-known result
of Pfister [EKMOS8, Proposition 31.4] asserts that I(L) is the nilradical of GW(L). Therefore,
some power of 1 — (u) is zero and we conclude. O

Remark 3.4.11. If k£ is R or, more generally, any formally real field, then IP’%" is not locally
nilpotent. Indeed, under this hypothesis, the filtration discussed in Proposition 3.4.10 remains
infinite stalkwise. In fact, the lower central series for the ﬂ‘fl (P?")-action on the homotopy
sheaf 775*; (P?m) = KXW, is not stalkwise finite. One may write down the A'-G, -lower central
series for this sheaf as follows. The kernel of the canonical epimorphism K3}V, — K3 | is
I?"+2; the induced G,,-action on K3! ; is trivial. The induced action of G,, on I*"*2 is, upon
taking sections over fields, the action by multiplication by units. As a consequence, the powers
of U C I?"*2) j > 2n + 2 then yield a filtration for which G, -acts trivially on the successive
subquotients.

THEOREM 3.4.12. If k is not formally real, then the k-space BG Lo, is weakly A'-nilpotent.
Proof. As in the proof of Theorem 3.4.6, there is an Al-fiber sequence of the form
P?" — BGLy, — BSLapy1

where the base is Al-simply connected. Since the fiber is locally Al-nilpotent by appeal to
Proposition 3.4.10, the result then follows by appeal to Proposition 3.3.8. U

Remark 3.4.13. Again, if k =R (or, more generally, any formally real field), then the space
BG Lo, fails to be locally Al-nilpotent. Indeed, along the lines of Remark 3.4.11 one can explicitly
show that Wé;(BGLQn) does not have a stalkwise finite G,,-central series. To see this, begin by
observing that 74 (BGLy,) is described in [AF14a, Theorem 1.1]: it is an extension of K?n
by a sheaf T, that is the cokernel of a certain morphism Kg’)n 41— K3V, The composite

morphism K?n b1 I?"*! is trivial by [AF14a, Lemma 3.13], and Ta,; is a fiber product of

689

https://doi.org/10.1112/50010437X22007321 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X22007321

A. Asok, J. FASEL AND M. J. HOPKINS

I?"*+1 and another sheaf S, ;1 whose precise description is unimportant. Appealing to the long
exact sequence in A'-homotopy sheaves attached to the Al-fiber sequence appearing in the proof
of Theorem 3.4.12, one sees that T, is precisely the image of 4, (P2") in w4 (BGL,). The
G, -action on the copy of I?"*! in T?"*! thus does not have a stalkwise finite A'-G, -central
series by the conclusion of Remark 3.4.11.

4. Nilpotence, R-localization and A'-homology

In this section we study R-localization in A'-homotopy theory. We introduce a notion of
R-homology equivalence in A'-homotopy theory, and show that R-localization is well behaved
on locally Al-nilpotent spaces. Section 4.1 introduces A'-homology (following Morel) and stud-
ies its various properties. Section 4.2 considers various refinements of Hurewicz theorems in
Al-homotopy theory; in particular, we finish the proof that Al-nilpotent spaces have
A'-Postnikov towers that admit principal refinements (see Theorem 3.3.13). Finally, § 4.3 studies
R-localization for A'-nilpotent spaces; Theorems 4.3.9 and 4.3.11 show that R-localization has
good properties for (locally) Al-nilpotent spaces.

4.1 Sheaf cohomology and A'-homology

In this section we study A'-homology theory and establish analogs of classical results about the
A'-homology of nilpotent spaces. We establish generalizations of the known relative Hurewicz
theorems in Al-homotopy theory (keeping track of actions of the Al-fundamental group).

Sheaf cohomology. We briefly recall some notation related to sheaf cohomology in the context
of local homotopy theory; we refer the reader to [Jarl5, Chapter 8] for a detailed treatment of
this circle of ideas, which goes back to the foundational work of Brown and Gersten. Suppose
(C, ) is a site with enough points. We write Ch¢ for the abelian category of chain complexes
(i.e. differential of degree —1) of presheaves of abelian groups on C situated in degrees > 0.
The category Che can be equipped with an injective local model structure: cofibrations are
monomorphisms, weak equivalences are Nisnevich local quasi-isomorphisms (i.e. morphisms that
induce isomorphisms on homology sheaves), and fibrations are defined by the lifting property. We
write D(Ab(C)) for the homotopy category of Chg, that is, the derived category of (bounded-
below complexes of ) presheaves of abelian groups on C.

If 2" € sPre(C) is a space, the presheaf Z[2] is a simplicial abelian group. We abuse termi-
nology and write Z[Z'] for the associated normalized chain complex which is an object of Chc
(the Dold—Kan correspondence). Likewise, if A is a chain complex in non-negative degree, then
we write K (A) € sPre(C) for the associated Eilenberg-Mac Lane space [Jarl5, p. 212].

We write H;(2") for the associated homology sheaves of Z[2'], and we write H;(2) for
the associated reduced homology sheaves of 2" (i.e. the homology sheaves of the kernel Z[2] of
Z|Z] — 7Z[«]). Note that taking (reduced) homology sheaves commutes with taking stalks, that
is, if s is a point of (C, 1), then s*H;(Z") = H;(s*Z") (the latter being homology with integral
coefficients of a simplicial set); we use this fact freely in the sequel.

A'-homology. We now recall Al-homology and Morel’s (effective) Al-derived category. The
Al-derived category sz{(k) is obtained by Nisnevich and A'-localizing the derived category of
presheaves of abelian groups on Smy, (this is the construction described in [Morl2, §6.2], but
our notation for the category contains the superscript eff to distinguish from a corresponding
‘G,,,-stabilized’ version). We write Lf‘&]ﬁ for the endofunctor that effects this localization; this is
an exact endofunctor on the category of chain complexes of presheaves of abelian groups on Smyg.
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If f: 2 — % is an Al-weak equivalence in Spcy, then one knows the induced map Z[.2"] —
Z|#] is an isomorphism in DT (k). Thus, the assignment 2~ — Z[2'] passes to a functor Hoj, —
DS (k). We set

L[ 2] :=L% Z[ 2]
and define A'-homology sheaves by the formula
HY(2) = Hi(Z [2)).

As usual, one may also define analogs of reduced homology, and, following the standard notation,
we write ﬁﬁl (2) for the reduced A'-homology sheaves of 2.

Morel’s stable Al-connectivity theorem [Mor05, Theorem 3] implies that if 2" is a space,
then Z,1[2] is a (—1)-connected object of the derived category of Nisnevich sheaves of abelian
groups. In particular, Hfl (Z) =0 fori<D0.

If (27, z) is a pointed space, then the Hurewicz homomorphism is induced by a morphism

2 — K(Z[2).
It follows that there are induced actions of 71"1*1 (2) on all the A'-homology sheaves.

Remark 4.1.1. Voevodsky’s derived category of motives is constructed by starting with the
‘presheaves with transfers’ and then Nisnevich and A'-localizing. Write SmCor;, for the cate-
gory whose objects are smooth schemes and where morphisms are finite correspondences. One
writes PST}, for the category of contravariant additive functors on SmCory; this is called the
category of presheaves with transfers. There is a functor Smy — SmCory, that induces a restric-
tion functor from presheaves with transfers to presheaves of abelian groups. Voevodsky’s derived
category of motives DM?fZ is constructed by localizing the derived category of chain complexes
of presheaves with transfers with respect to Nisnevich and A'-local weak equivalences. Write
Z[X] for the representable functor on SmCorj, determined by a smooth scheme.

The left Kan extension of the assignment Z[X] — Z[X] yields a functor Dt (k) — DMZ?Z
(usually called the functor of ‘adding transfers’). It follows that any morphism of spaces f :
2 — % that induces an isomorphism in the A!-derived category also induces an isomorphism
in Dsz:fZ. Nevertheless, the two categories are typically quite far from each other.

Al-homology equivalences and cohomology equivalences. Suppose R C Q is a subring. We
write Ry1[2] for R @ L} Z[27]. Since tensoring with R is exact and L3} is exact, the order in

which we localize and tensor is irrelevant. We set HA' (27, R) := HA' (R,1[27]). We now give a
number of equivalent characterizations of morphisms inducing an isomorphism on A'-homology.

PROPOSITION 4.1.2. The following conditions on a morphism f: 2 — % of spaces are
equivalent.

1. The morphism Ry:1([f]: Ry1[Z] — Rp1[#] is a quasi-isomorphism.

2. For every integer i > 0, the morphism f, : H?l (Z,R) — H?l(@, R) is an isomorphism.

3. For any strictly A'-invariant sheaf M of R-modules and any integer i > 0, the map f* :
HY (% , M) — H(%Z ,M) is an isomorphism.

Proof. That (1) < (2) is immediate. That (2) = (3) follows from the universal coefficient spectral
sequence. Indeed, there is a functorial, strongly convergent spectral sequence of the form

EY? = Eatyy, (He(Rp[27]), M) = Homp(ap,) (R [27], M[p + q])
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(see [Jarl5, Lemma 8.30] for the spectral sequence); the strong convergence follows from the fact
that the homology sheaves of Ry1[2] vanish in degrees < 0, which is the stable Al-connectivity
theorem.

For the implication (3) = (2), we proceed as follows. If C is an (i — 1)-connected and A!-local
chain complex of R-modules, then for any strictly Al-invariant sheaf of R-modules M, there is
a canonical isomorphism of the form

Hom(HA' (C, R), M) = RHom(C, M[i]).

In particular, we conclude that if RHom(C, M[i]) vanishes for all M, then Hﬁl(C) vanishes
by the Yoneda lemma. Applying this observation inductively to the cone of the map f, the
hypothesis in (3) implies inductively that the cone of f has vanishing A!-homology sheaves in
all degrees, and the result follows. O

Remark 4.1.3. Extending Remark 4.1.1, if f is a morphism of spaces such that Ryi[f] is a
quasi-isomorphism, then the induced map of motives with R-coefficients is an isomorphism as
well.

A homological connectivity lemma. The next result analyzes how homological connectivity
behaves under A'-localization.

LEMMA 4.1.4. Assume 2 is a simplicially connected space and n > 1 is an integer. If 2" is
homologically (n — 1)-connected, that is, H;(Z") vanishes fori < n, then the following statements
hold.

1. The sheaves I:I?1 (Z") vanish for i < n.
2. The morphism H,(2) — HA' (2) is the initial morphism from H,(2') to a strictly
Al-invariant sheaf.

Proof. While the first statement is an immediate consequence of the stable Al-connectivity
theorem, we give a different proof that will be useful in setting up the notation to establish the
second statement as well. By assumption % is simplicially connected. Therefore, the reduced
singular chain complex Z[% ] is a chain complex that has vanishing homology sheaves in negative
degrees and is thus a 0-connected chain complex. By Morel’s stable A'-connectivity theorem,
the complex Z,1[2] := L3k Z[ 2] is thus also 0-connected.

Since Z[.2'] is 0-connected, by [Mor12, Proposition 6.25], the space K (Z,:[2]) is A'-local.
As a consequence, the map K(Z[2]) — K(Zx:[2']) arising by functoriality factors through a
morphism

Ly K(Z[2)) — K(Zy|2]).

By [Mor12, Corollary 6.27] this morphism is a simplicial weak equivalence.
By construction, the homotopy sheaves of K (Z[2]) are the (reduced) homology sheaves of

2 . Our assumption on the homological connectivity of 2" thus implies that the space K (Z[.2])
is simplicially (n — 1)-connected. Therefore, Morel’s unstable connectivity theorem guarantees
that Ly K(Z[.27]) is again simplicially (n — 1)-connected. The simplicial weak equivalence of
the previous paragraph thus implies K (Z41[27]) is also simplicially (n — 1)-connected. However,
the homotopy sheaves of K (Z1[2]) are precisely the reduced A'-homology sheaves of 2" and

thus vanish in degrees < n as well.
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For the final statement, observe that [Morl2, Corollary 6.60] applied to the simplicially

(n — 1)-connected space K(Z[Z']) shows that the morphism
H,(2) = mo(K(Z[2]) — mn(L K(Z[27))) = 700 (K (2 [2])) = HL (2)

has the desired universal property. ]

4.2 Relative Hurewicz theorems revisited

In this section we refine the Hurewicz theorems in Al-homotopy theory by keeping track of
the action of the A'-fundamental sheaf of groups. In particular, we refine the strong form of
the relative Hurewicz theorem, which follows from the Blakers—Massey theorem established in
[AF16, Theorem 4.1] (and independently in [Str12, Theorem 2.3.8]).

The relative Hurewicz theorem and coinvariants. Suppose f:& — % is a morphism of
pointed, connected simplicial presheaves with homotopy fiber .% and homotopy cofiber . In
that case, there is a morphism of simplicial fiber sequences as follows.

F—=E — A

RN

The sheaf 71 (&) acts on the higher homotopy sheaves m;(.%). By functoriality there is also an
action of m1(&) on the higher homotopy of sheaves in the bottom row, though this action is
necessarily trivial since * is certainly simplicially 1-connected.

The relative Hurewicz theorem analyzes the connectivity of the morphism .# — Q% under
suitable hypotheses on the connectivity of f. More precisely, there is an evident morphism
i (F) — 7;(Q%F). The counit of the loop suspension adjunction yields a morphism £Q% — €.
This morphism in turn yields the composite

where the isomorphism is the suspension isomorphism. Thus, we obtain a morphism
m(ﬂ‘) — Hi+1(%)

that we will call the relative Hurewicz homomorphism.

Note that, even if & and % are Al-local, ¥ need not be. Nevertheless, the morphism
¢ — L1 € is an isomorphism on A'-homology sheaves, and models the Al-homotopy cofiber of
& — 2. The canonical map ¥ — L1 € yields a map Q% — QL1 €, and the latter is already
Al-local. Composing with the map .# — Q% described above, we obtain a map

g. —>QLA1 %

The counit of the loop-suspension adjunction yields a morphism QL1 @ — L1 €. Since the
target of this morphism is Al-local (even though the source need not be), there is a factorization

EQ LAI % — LAl EQ LAl (g — LAI %

In a fashion analogous to that described above, we obtain morphisms 7;(2Lg1 €) — Hfiﬂ%)
and thus a relative Hurewicz homomorphism

' (F) — HE (%)

(2

that we now analyze.
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THEOREM 4.2.1. Suppose f : & — % is a morphism of pointed, A'-local and simplicially con-
nected spaces. Write % for the simplicial homotopy fiber of f and € for the simplicial homotopy
cofiber of f. If F is Al-(n — 1)-connected for some integer n > 1, then the following statements
hold.

1. The sheaves HA' (€) vanish for i < n.
2. The relative Hurewicz homomorphism

A7) — HY L (7)

Trn

is the initial morphism from 7' (F) to a strictly A'-invariant sheaf on which 7' (&) acts
trivially.

3. If n =1 and w1 (%) is strictly Al-invariant, or if n > 2, then the morphism of the previous

statement induces an isomorphism

ﬂ-Al (g)ﬂ“l&l (&) — Hﬁ—l&-l ((5)7

where the source is the sheaf of coinvariants.

Proof. Since & and % are simplicially connected and A'-local by assumption, the simplicial
homotopy fiber .Z is Al-local by Lemma 3.1.3 and thus ﬁ?l (ZF) =mi(F) so F is simplicially
(n — 1)-connected.

The simplicial homotopy cofiber hocofib f need not be A'-local, so we consider L1 hocofib f
and we have a commutative diagram of simplicial fiber sequences

F & B

| N

QL1 hocofib f —— % —— L1 hocofib f

where Q L1 hocofib f is already A'-local.

Consider the action of 71 (&) on all of the spaces in the diagram. Since we saw above that .# is
simplicially (n — 1)-connected, the classical relative Hurewicz theorem [Whi78, Theorem IV.7.2]
applied stalkwise implies that the map 7;(.-#) — H,1(hocofib f) is the map ‘factoring out the
action of m1(&)’. More precisely, we conclude that H;i(hocofib f) vanishes in degrees <n
and that H,, 11 (hocofib f) is the 71 (&) coinvariants of m,(.%). Since hocofib f is homologically
n-connected, it follows by appeal to Lemma 4.1.4(1) that I:I?_;l(hocoﬁb f) also vanishes for i < n,
which establishes the first point of the theorem.

To establish the second point of the theorem, observe that Lemma 4.1.4(2) implies
that Hﬁil(hocoﬁb f) is the initial strictly A!'-invariant sheaf admitting a morphism from
H,, 1 (hocofib f). We observed in the preceding paragraph that the m;(&)-action on the latter
sheaf is already trivial, so the induced action on Hﬁil(hocoﬁb f) is also trivial.

To see that the morphism in question is an isomorphism if either n =1 and w’lv (Z) is
strictly Al-invariant or for n > 2, we proceed as follows. Let K be the kernel of the morphism
AN F) — Hﬁil(hocoﬁb f). Then K and the quotient 74" (%) /K are strictly Al-invariant by
appeal to Theorem 3.1.12. By universality, it follows that the identity map on wﬁl (%#)/K factors
through an epimorphism 72" (%)/K — H‘ﬁ}jrl(hocoﬁb f)- Then, as observed above, the ordinary
Hurewicz theorem identifies 74" (%)/K with H, 1 (hocofib f) and the latter is precisely the
71 (& )-coinvariants of 7w, (.7 ). O
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The A'-Whitehead theorem for A'-simple spaces. The relative Hurewicz theorem above has
a number of consequences, including the following result that generalizes other ‘homological’
forms of the Al-Whitehead theorem in the literature (e.g. [WW19, Corollary 2.22]).

THEOREM 4.2.2. If f : 2" — % is a morphism of A'-simple spaces (see Definition 3.3.1) and f.
is an isomorphism Z[2"] — Z|#] in DS (k), then f is an Al-weak equivalence.

Proof. Since 2 and % are Al-simple, we know their A'-fundamental sheaves of groups are
strictly Al-invariant. For any A'-simple space, the canonical map 77‘1%1(32’) — H‘%l(%) is an
isomorphism. Indeed, the latter is the initial strictly Al-invariant sheaf of (abelian) groups admit-
ting a map from 7 (2"), but since the former is strictly Al-invariant already, this map must be
an isomorphism. Let .# be the A'-homotopy fiber of f and consider the associated long exact
sequence of homotopy sheaves,

(X)) — w (@) — w(F) — 7 (2) Lo w (2) —

here the map f. coincides with the map on A'-homology sheaves induced by f by the discussion
above. Therefore, our assumption on f guarantees that the map f, is an isomorphism. Thus, we
conclude that w%l (F) is a cokernel of a morphism of strictly Al-invariant sheaves and thus itself
strictly Al-invariant. Granted that observation, the result follows from Theorem 4.2.1(3) and a
straightforward induction. O

Remark 4.2.3. Theorem 4.2.2 applies to show that a map of pointed, Al-connected, A'-h-spaces
is an Al'-weak equivalence if and only if the map is an A'-homology equivalence.

Nilpotence and Moore—Postnikov factorizations. With the relative Hurewicz theorem in hand,
we may establish the reverse implication in Theorem 3.3.13.

COROLLARY 4.2.4. Assume k is a perfect field. If f:& — % an A'-nilpotent morphism of
pointed A'-connected spaces, then the A'-Moore—Postnikov tower admits a principal refinement
(see Definition 3.3.11).

Proof. Consider the morphism 7<;f — 7<;—1f. We treat two cases: ¢ =1 and 7 > 2. For i =1,
we want to show that 72" () admits a 72 (<1 f) = &' (&)-invariant central series. Since k is
perfect, by Proposition 3.2.3 we know the A'-upper central series witnesses the Al-nilpotence
of wh! (F); furthermore, it is 74 (&)-invariant by definition of the action and the fact that the
terms of the upper central series are characteristic subgroup sheaves (i.e. stable by automorphisms
of G). By induction, one sees that the subquotients of the A'-upper central series provide the
necessary factorization.

For i > 2, the result follows directly from the relative A!-Hurewicz theorem as in the classical
argument [HMR75, Theorems 11.2.9 and I1.2.14]. Arguing inductively, the Al-relative Hurewicz
theorem above yields a canonical strictly Al-invariant quotient of the ith homotopy sheaf of the
Al-homotopy fiber equipped with a trivial action of 71"1*1(7'32- f) = ﬂffl(g); in fact, as the sheaf
of coinvariants this quotient is the maximal strictly Al-invariant quotient with trivial action of
7' (&). We define the first stage of the refinement to be the pullback of 7<;_ f — K(Hfl(f),
i+ 1) and iterate this procedure. By assumption w‘l%l (t<if) is an Al—ﬂ‘fl(@‘“’)—nilpotent sheaf,
so has a finite 71"1*1(@“> )-central series. The Tr‘l*l(éa )-central series obtained by iteratively taking
coinvariants is thus finite and the iterative procedure just sketched necessarily terminates. [

Remark 4.2.5. In contrast to the standard proof of this result, for n = 1, the A'-principal refine-
ment constructed above need not be ‘maximal’ because of the form of the relative Al-Hurewicz
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theorem (Theorem 4.2.1). Indeed, the first quotient of 71"1*1 (.#) described above is just some
strictly Al-invariant sheaf on which 71"%1 (&) acts trivially: a priori there is no reason this quo-
tient has to coincide with the coinvariant subsheaf in general since we do not know that the latter
sheaf is actually strictly Al-invariant. Moreover, because we use the A'-upper central series, the
above principal refinement fails to be a functorial principal refinement.

4.3 R-localization for Al-nilpotent spaces

Finally, in this section, we discuss R-localization of motivic spaces. We show that locally
Al-nilpotent spaces have well-behaved localizations and that localization preserves various fiber
sequences.

The basic definitions.

DEFINITION 4.3.1. Suppose f: 2 — % is a morphism in Spc,. If R C Q is a subring, then
we will say that f is an R-local A'-weak equivalence or R-A'-weak equivalence if the induced
morphism Ry1[2"] — R [#] is an isomorphism in D§T (k). When R = Zp) for a set of primes
P, we will call f a P-local Al-weak equivalence and a rational A'-weak equivalence if P is empty;
when R = Z[1/n], we will say that f is an Al-weak equivalence after inverting n.

Remark 4.3.2. We have defined the notion of R-local Al-weak equivalence above using homology
in contrast to our earlier definition of R-local equivalence using self-maps of the circle (§2.3).
One reason for this disjunction is simply convenience of referencing. In Theorem 4.3.9 we will
see that, for weakly A'-nilpotent spaces, in essence, R-A!-localization can be modeled by first
Al-localizing and then applying the R-localization functor studied previously.

Granted this definition, we may construct the R-A'-local homotopy category by techniques
of Bousfield localization.

DEFINITION 4.3.3. We write Hoy for the R-A'-local homotopy category, that is, the category
obtained by left Bousfield localizing Spc,, at the set of R-A!-weak equivalences. Likewise, if n # 0,
we write Hog[1/n] for the category Hokzi /y,)-

DEFINITION 4.3.4. A space Z is R-A'-local if, for every R-Al-weak equivalence f: 2 — %,
the map Map(%/, Z°) — Map(Z", Z) of derived mapping spaces is a weak equivalence.

The next lemma summarizes some basic facts about R-A'-local spaces.
LEMMA 4.3.5. The following statements hold.

1. If A is an R-local strictly A'-invariant sheaf of abelian groups, then, for any integer n > 0,
K(A,n) is R-Al-local.

2. If F — & — P is a simplicial fiber sequence of pointed, A'-connected spaces and both &

and % are R-A'-local, then .Z is R-A'-local as well; the R-A'-model structure is right

proper.

If G is an R-local A'-nilpotent sheaf of groups, then BG is R-A'-local.

4. If 2 € Spc, is a connected A'-nilpotent space such that ﬂ'?l (Z) is R-local for every i > 0,
then 2 is R-A'-local.

b

Proof. Since K(A,n) is Al-local, for any space 2~ there are identifications of the form
(2, K(A,n)]s =[Z,K(A,n)|y = H (27, A).

Granted these identifications, the fact that K (A, n) is R-Al-local is an immediate consequence
of the equivalent conditions listed in Proposition 4.1.2.
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For the second statement, observe that applying Map(Z", —) preserves fiber sequences. If
% — % is an R-A'-equivalence, then there is a morphism of simplicial fiber sequences as follows.

Map(Z',.#) —— Map(Z,&) —— Map(Z', %)

i | |

Map(?%,.%) —— Map(¥,.%) —— Map(¥, AB)

By considering the associated long exact sequence in homotopy, for example, one checks that the
map Map(Z, #) — Map(#,.%) in the above diagram is again a weak equivalence. The right
properness of the R-A'-local model structure is now immediate from this observation.

For the third statement, consider BG where G is R-local and Al-nilpotent. In that case,
G may be written as an iterated central extension by strictly Al-invariant sheaves of R-modules.
Given such a central extension, there is an associated A!-fiber sequence of the form

BG — BG' — K(A,?2).

The first statement guarantees that K (A, 2) is R-A'-local, and we may inductively assume that
BG' is R-A'-local, so we conclude that BG is R-A'-local as well.
The final statement is immediate from Theorem 3.3.13 and the preceding points. ([l

R-A'-localization of A-nilpotent groups.
LEMMA 4.3.6. If A is a strictly A'-invariant sheaf of groups, then, for every integer n > 0,
LrRnisK(A,n) 2 K(R® A, n)
is a functorial R-A'-localization of K(A,n).

Proof. The space K(R® A,n) is R-A'-local by Lemma 4.3.5(1). The canonical morphism A —
R ® A yields a morphism K(A,n) — K(R® A,n). We want to show that this morphism is an
R-A'-weak equivalence. In fact, the morphism RyisK(A,n) — RyisK (R ® A,n) is an R-local
simplicial weak equivalence. Indeed, this can be checked stalkwise, in which case it follows from
[BK72, Chapter V.3.2]. O

We may now define a functorial R-A!-localization for Al-nilpotent sheaves of groups.

THEOREM 4.3.7. Assume k is a perfect field, and suppose G € Glrp‘,zxl is an A'-nilpotent sheaf
of groups.

1. The space Lr BG is R-A'-local.
1 1
2. The functor Aby — Modp, sending a strictly Al-invariant sheaf A to R® A extends to a
functor

G — 7 (Lg BnisG) =: Gr

from the category of Al-nilpotent sheaves of groups to the category of R-local A'-nilpotent
sheaves of groups.

3. The functor of (2) preserves short exact sequences of A'-nilpotent sheaves of groups.

4. For any Al-nilpotent sheaf of groups G, there is a canonical isomorphism (G_1)r = (Gg)_1
(see Definition 3.1.17).

Proof. If A is strictly Al-invariant, then we know that Lz BA is R-A'-local by appeal to
Lemma 4.3.6 and w1 (L BA) 2 A® R =: Ap.
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To treat the general case, suppose we have a central extension of the form
1—A—G—G —1

where A is strictly Al-invariant and G and G’ are Al-nilpotent. In that case, there is a fiber
sequence of the form

BG — BG' — K(A,2)

in which each term is Al-local (i.e. this is an Al-fiber sequence). We claim that the sequence
Lr BG — Ly BG' — Lr K(A,2) (4.1)

is a simplicial fiber sequence of A'-local spaces. To this end, observe that L K(A,2) is simpli-
cially 1-connected and A'-local by appeal to Lemma 4.3.6. Next, observe that BG’ and BG are
Al-nilpotent and therefore nilpotent in the classical sense. It follows from Lemma 2.3.10 that the
canonical map from the R-localization of BG to the homotopy fiber of Lg BG' — Li K(A,2)
is a simplicial weak equivalence.

We claim that by induction Lz BG is R-A'-local. The base case is Lemma 4.3.6: in particular,
we may assume inductively that L BG’ is simplicially connected, A'-local, has an R-local
strongly Al-invariant sheaf of groups 71 (Lg BG') and is 1-truncated, that is, all higher homotopy
sheaves vanish. In that case, Lemma 4.3.5 guarantees that Ly BG' is R-A'-local. Then combining
Lemmas 4.3.6 and 4.3.5 with the fiber sequence of (4.1) implies that Lz BG is R-Al-local as
well.

Statement (2) is immediate from (1). Statement (3) follows immediately from Lemma 2.3.12.
For (4), consider the map G — Gpg. Taking contractions yields a morphism G_; — (Gg)_1.
The construction of R-localization, together with the fact that (—)_; preserves exact sequences,
implies that (Gr)_1 is an R-local Al-nilpotent sheaf of groups, and therefore there is an induced
morphism (G_1)r — (GRr)—1. By definition of contraction, this map is an isomorphism if G is
abelian, and one deduces it is an isomorphism in general by induction on the Al-nilpotence class
of G. 0

A technical result. Before moving on to analyze R-A'-localization of Al-nilpotent spaces,
we establish a useful technical result here about the interaction between Al-localization and
R-localization in the sense of §2.3.

PROPOSITION 4.3.8. Suppose (£ ,x) is a pointed, connected space. If 2 is a weakly
Al-nilpotent and A'-local space (see Definition 3.3.1 for the former notion), then Ly 2 is again
Al-local. Moreover, for each integer i > 1, there are identifications of the form

Wi(LR %) = Wi(%)R
and Lr 2 is again a weakly A'-nilpotent space.

Proof. By [AWW17, Lemma 2.2.11(2)], to check a connected space % is Al-local, it suffices to
show that 1(%) is strongly Al-invariant and ;(#%) is strictly Al-invariant for i > 2.

Replacing 2~ by L1 2 if necessary, we may assume that 2" is simplicially fibrant and
Allocal. Set 7 := m1(2", x) and consider the first stage of the A!-Postnikov tower for 2", that
is, the morphism 2~ — Bw. Write Z for the simplicial homotopy fiber of 2~ — Bmw. Since =
is strongly Al—lrlvariant, Br is Al-local as well, so 2 is Al-local by appeal to Lemma 3.1.3.
Furthermore, 2" is simplicially 1-connected by assumption. Of course, m;(2") = 7;(Z") for i > 2
as well.
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The morphism 2~ — B is a locally Al-nilpotent morphism of simplicially connected spaces
by the identifications of the preceding paragraph. If we apply Lg to this simplicial fiber sequence,
then Lemma 2.3.10 guarantees that there is again a simplicial fiber sequence of the form

Lp 2 — Lp 2 — Ly Br.

Since the simplicial connectivity of Lp X may be checked stalkwise, and Lg commutes with
formation of stalks, since stalkwise R-localization preserves connectivity, we conclude that Lr 2~
is again simplicially 1-connected. .

Corollary 2.3.13 allows us to conclude that 7;(Lr 27) = mw;(Z")r. Since m;(Z") is strictly
Al-invariant as 2" is Al-local, and we know that tensoring with R preserves strict Al-invariance,
we conclude that m;(Lp 2) = m;(Lg 2°) is strictly Al-invariant for all i > 2. Likewise, from
Theorem 4.3.7, we conclude that 7 (Lr 2°) = 71(Lg B) is an R-local strongly Al-invariant
sheaf of groups.

We already know that 71 (2 ) is an R-local Al-nilpotent sheaf of groups. To establish the
local Al-nilpotence of the higher homotopy sheaves, simply observe that because R-localization
is given by tensoring with R and R is flat as a Z-module, if we take any locally finite w-central
series for 7;(Z"), then tensoring that series with R provides a locally finite 7 p-central series for

(2 )R- O

R-A'-localizations of Al'-nilpotent spaces. We may now construct a convenient functorial
model for the R-Al-localization of a weakly A'-nilpotent spaces.

THEOREM 4.3.9. Suppose k is a perfect field and 2 € Spcy, is a pointed, connected, Al-local
space. If 2" is weakly A'-nilpotent (see Definition 3.3.1), then the following statements hold.

1. The canonical map 77‘?1( X Vr — ﬂ'?l(L r %) is an isomorphism for every i > 1. Moreover,
Lr Z is connected, W?I(LR %) is an R-local A'-nilpotent sheaf of groups, and Lr 2 is
again locally A'-nilpotent.

2. The canonical map 2~ — Lr Z is an R-A'-weak equivalence.

3. The R-A'-localization functor commutes with formation of finite products for weakly
Al-nilpotent spaces.

Proof. The first point is precisely Proposition 4.3.8. To check that 2 — Lr 2 is an R-Al-
weak equivalence, we proceed as follows. Observe that 2~ — Lgr 2 is an R-local simplicial weak
equivalence since it is so stalkwise. Therefore, appeal to [BK72, Proposition V.3.2] implies that
the map R[Z| — R[Lr 2] is stalkwise a weak equivalence, which means it is an isomorphism
in the derived category of Nisnevich sheaves of R-modules. It follows that the map remains an
isomorphism after applying LX?, so the map 2~ — Lg 2" is an R-Al-equivalence as well.

For the final point, note that both Lz and L1 commute with formation of finite products by
construction (see Proposition 2.3.6 for the former). Since products of weakly A!-nilpotent spaces
are weakly Al-nilpotent, the conclusion of third point follows from the first two. O

The above theorem has the following very useful consequence.

COROLLARY 4.3.10. Suppose k is a perfect field. A morphism f: Z — % of pointed, weakly
Al-nilpotent spaces is an R-A'-weak equivalence if and only if the induced maps f, : ﬂfl (Z2)r —
Al

i (%) are isomorphisms for every i > 1.

We conclude this section by observing that our model for R-A'-localization behaves well in
fiber sequences.
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THEOREM 4.3.11. Suppose
F —E — B

is an Al'-fiber sequence of pointed A'-connected spaces. If & and % are weakly A'-nilpotent,
then

Lp¥ — Lr& — Lrp A
is again an A'-fiber sequence.

Proof. By applying L,1 to the fiber sequence, we may assume that the sequence in question
is a simplicial fiber sequence of pointed simplicially connected and A!-local spaces. Moreover,
Corollary 3.3.7 implies that .# is weakly Al-nilpotent.

The canonical map Lg% — hofib(Lp & — Li £) is a simplicial weak equivalence by appeal
to Lemma 2.3.10. On the other hand, Theorem 4.3.9 guarantees that the canonical maps .% —
Lr#, & - Lr& and & — L % are R-Al-weak equivalences. In total, we conclude that the
map

F — hOﬁb(LR@@ — LR %)
is an R-Al-weak equivalence. O

Remark 4.3.12. As in the classical situation, even if f:& — 2 is a morphism of Al-simple
spaces, the homotopy fiber of f may be Al-nilpotent. Here is a rather geometric example: over
any field k, the proof of Theorem 3.4.6 in the case where n = 0 yields an Al'-fiber sequence of
the form

P! — BG,, — BSLs,

where we have identified P* with SLy/G,,. The middle term is Al-simple and BSLs is even
Al-simply connected. As mentioned in Remark 3.4.9, 71'11*1 (P') is non-abelian and A!-nilpotent.

5. Applications

H. Hopf observed that compact Lie groups have the same real cohomology as products of spheres
[Hop45] and J.-P. Serre [Ser53, V.4] established the same results after inverting smaller sets of
primes. More precisely, suppose one is given a compact Lie group G. Serre called a prime p
reqular for G if there exist a product of spheres X = Hle S™ and a map f: X — G such that
f« : H(X,Z/p) — H«(G,Z/p) is an isomorphism. If p is regular for G, then G is p-locally a
product of spheres. Later, B. Harris [Har61] observed that similar p-local decompositions exist
for various homogeneous spaces of compact Lie groups. In this section we study motivic analogs
of these and related p-local decompositions.

5.1 Self-equivalences of motivic spheres

We study self-maps of motivic spheres that are weak equivalences after suitable localization. To
construct such maps, we review some constructions of Suslin and then analyze computations
of motivic Brouwer degree for the relevant self-maps. We begin by recalling some facts about
Grothendieck—Witt rings and motivic Brouwer degrees.

Fix an arbitrary field k. We use the notation (2,1 for the odd-dimensional smooth affine
quadric defined by the equation ) | z;y; =1 in A?" with coordinates 1,...,%n, Y1, Yn-
Projection onto the z-variables determines a morphism Q2,-1 — A™\ 0 that is a torsor under
a vector bundle, in particular an A'-weak equivalence; we also refer to this morphism as the
‘universal unimodular row’. For any integer n > 1, the quadric Q2,1 is A'-weakly equivalent to
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¥n=1GA". We also use the notation @, for the smooth affine quadric defined by the equation
S xiy = 2(1 — z) in A2"T! with the evident coordinates. By [ADF17, Theorem 2], this quadric
is Al-weakly equivalent to P (in fact, all of these assertions hold over SpecZ).

Grothendieck—Witt groups and motivic Brouwer degree. Morel described the ring of homotopy
endomorphisms of motivic spheres by establishing the following result.

THEOREM 5.1.1 (Morel). Suppose k is a field. For any integer n > 2, there is an isomorphism
of rings:

deg : [Q2n—1, Q2n—1]a1 — GW (k).

Proof. For a casual exposition see [Mor0O6a, § 1], and for a very explicit ‘classical’ description
of the above degree map see [Caz12]. The result as stated follows by combining a number of
statements from [Mor12]. We observed above that for any integer n > 1, Q2,1 is Al-weakly
equivalent to X" 1G/". Appealing to [Mor12, Corollary 6.43], one knows that there are iso-
morphisms of abelian groups of the form wﬁil’n(QQn_l) =~ K}W (k) for n > 3; the corresponding
isomorphism for n = 2 follows from [Mor12, Theorem 7.20]. By [Mor12, Lemma 3.10], one knows
that K)™W (k) =2 GW (k) as abelian groups. The fact that the ring structure on homotopy endo-
morphism induced by composition corresponds to the ring structure in the Grothendieck—Witt
group follows from [Mor12, Theorem 7.35]. O

We will refer to the isomorphism deg as the motivic Brouwer degree. In order to apply our
localization techniques, we will need to observe that GW (k) simplifies after inverting primes, at
least under suitable assumptions on the base field.

LEMMA 5.1.2. Suppose A is a ring which is 2-divisible and k is a field that is not formally real.
The rank map GW (k) — Z induces an isomorphism GW (k) ® A = A.

Proof. There is an isomorphism of rings GW (k) = Z Xz, W (k). If k is a field that is not formally
real, then W (k) is a 2-primary torsion group [EKMO8, Proposition 31.4(6)]. It follows that
GW (k) ® A= A as A is 2-divisible. O

Remark 5.1.3. If k is formally real the situation is rather different. For example, when k£ = R,
then GW (k) 2 Z & Z.

Suslin matrices and motivic degree. Recall that there is a quotient morphism
q:SLy, — SL,/SL,_1

where the latter is isomorphic to Q2,1 by the map sending a matrix to the first row times the
first column of its inverse. This morphism factors the ‘first row’ morphism SL,, — A"\ 0, where
the induced map SL,,/SL,—1 — A™\ 0 is Zariski locally trivial with affine space fibers and thus
an Al-weak equivalence.

Let R be any commutative ring, and let a = (ay,...,a,) be a unimodular row in R. Such
a row corresponds to a morphism of schemes Spec R — A"\ 0. In this case, we can always find
b= (by,...,b,) such that ab® = 1. Suslin showed [Sus77, Theorem 2] (see also [Sus77, p. 489,
point (b)]), that there exists Sy(a,b) € SL,(R) whose first row is equal to (a1, az,d3,...,al"1).
The ‘universal’ S,, corresponds to a morphism

Shp QQn—l — SLy;
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we refer to such morphisms as Suslin matrices. The composite map

®n =qoSp: Qan—1 — Qan—1
has a motivic Brouwer degree, which we now compute.

LEMMA 5.1.4. Suppose k is a field. For any integer n > 2, the following formula holds in GW (k):

(1) ifn =2,
de = —1)!
8(¢) 7(71 ) h ifn>2;
2
here h is the class of the hyperbolic form.

Proof. The degree of the element in question coincides with the degree of the map A™\0 —
A™\ 0 given in coordinates by (a1, ...,an) — (a1,az2,d3...,a% 1). As explained in the proof of
[AF14a, Theorem 4.10], the degree of this map can be computed as follows. By elementary
manipulations, we can view the element [a1,az2,a%...,a" '] as a symbol in KMW (k). If n = 2,
the map in question is the identity map.

If n > 2, then we proceed as follows. Following [Morl12, p. 51], write ¢ = —(—1), then h =
1 — e. If r is any positive integer, set re = > ._;((—=1)""!). A straightforward computation shows
that rese = (rs).. Appealing to [Morl2, Lemma 3.14], one knows that [a™] = mc[a]. Therefore,
for any integer n > 3.

[al,ag,ag .. .,az_l] = ((n—1))elar,az, ..., an].

Since n > 3, (n — 1)! is even, and we conclude that ((n — 1)!)e = ((n — 1)!/2)h as asserted. O

Self equivalences of motivic spheres.

PROPOSITION 5.1.5. If k is a field that is not formally real, then the map ¢, is an A'-weak
equivalence after inverting (n — 1)!.

Proof. The maps ¢, are all defined over SpecZ. By standard base-change results, it suffices to
prove that ¢, is an Al-weak equivalence over a non-formally real perfect subfield (e.g. the prime
field if k£ has positive characteristic or Q[é] if k£ has characteristic 0).

Set R =7Z[1/(n — 1)!]. By the equivalent characterizations of what it means for a map to be
an R-Al-equivalence (see Definition 4.3.4 and apply the variant of Lemma 2.3.9 in that context),
it suffices to show that if # is an arbitrary R-Al-local space, then the map induced by ¢,

[A"\ O, # |10 — [A"\ 0, # ]

is a bijection. Because A™\ 0 is Al-connected, we can assume without loss of generality that %
is pointed and connected. In that case, the canonical map from pointed to free homotopy classes
of maps is a surjection. Thus, it suffices to prove that the map of pointed sets is a bijection.
However, the sets in question are, by definition, ﬂﬁl_ln(W)(k) For any integer n > 2, the
Al

n_1n(#7)(k) is a GW (k)-module with module structure induced by precomposition.
However, we know that 72 | (#)(k) is an R-module, which means that the GW (k)-module

n—1n
structure factors through an action of GW (k) ® R. Using Lemma 5.1.2, we conclude that
GW(k)® R=R.
By appeal to Lemma 5.1.4 the self-map ¢,, has motivic degree (n — 1)! in GW (k) ® R = R.

Since (n — 1)! is invertible in R by assumption, the result follows. O

group
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5.2 Unstable splittings of special groups and associated homogeneous spaces

We now analyze splittings of classical split reductive groups using the results of the preceding
subsection. In particular, we construct unstable splittings of SL, and Sp,, (Theorem 5.2.1 and
Corollary 5.2.4) as well as splittings of associated symmetric spaces (see Corollary 5.2.5). We
then use these results to deduce splittings for all the stable classical groups (see Proposition 5.2.8
and Corollary 5.2.14).

Splittings for the special linear group. If m < mn, then we may consider the composite
morphism

D, : Q2m—l S_m> SLy, — SLy,

where the second morphism is given as the inclusion X +— diag(X, Id,_,,). Then we obtain a
morphism
D:Q3x - xQap-1 —> SLy

by taking the composite of [],. ., ®m and the product map SLX"~1 — SL,. The following
result about the morphism ® corresponds to Theorem 3 in the introduction.

THEOREM 5.2.1. Assume k is a field that is not formally real. The morphism
D:Q3 X - xQap—1 —> SLy
becomes an Al-weak equivalence after inverting (n — 1)!.

Proof. The map sending X € SL,, to its first row and the first column of its inverse defines a
morphism SL,, — Q2,—1. The quotient SL,,/SL,_1 exists as a smooth scheme, and the morphism
just described defines an isomorphism SL,/SL,—1 — Q2,—1. By Theorem 3.4.3, there is an
Al-fiber sequence of the form Qo,—1 — BSL,_1 — BSL,_1, which yields an Al'-fiber sequence
of the form

SLy,_ 1 —> SL, — Qon_1

by simplicially looping. By appeal to Theorem 4.3.11, this fiber sequence remains a fiber sequence
after R-A'-localization for any R C Q.

Under the hypothesis on k, the composite map S, : Q2,—1 — SL, — Q2,—1 becomes an
Al-weak equivalence after inverting (n — 1)! by appeal to Proposition 5.1.5. Therefore, tak-
ing R = Z[1/(n — 1)!], the fiber sequence is split after R-Al-localization, and the product map
Qan_1 X SLy,_1 — SLy, is an A'-weak equivalence after inverting (n — 1)!. The result then follows
by a straightforward induction. O

Remark 5.2.2. Since R-localization commutes with the formation of finite products, and since
Q2n_1 is a retract of SL, after inverting (n — 1)!, we conclude that Q2,1 is an A'-h-space after
inverting (n — 1)!.

Splittings for the symplectic group. In [AF17, Proposition 3.3.3], we observed that a slight
modification of the Suslin matrix can be viewed as a morphism P, : Q4n—1 — Spon-1.

LEMMA 5.2.3. The morphism P, : Qun—1 — Spyn—1 lifts uniquely up to A'-homotopy to a
morphism Q4n,—1 — Spoy In such a way that the composite map Qqn—1 — Spon — SLoy, is
A'-homotopic to the morphism Ss,, considered above.

Proof. The modified Suslin matrices are obtained from usual Suslin matrices by left and right
multiplying by matrices that are elementary and thus naively A'-homotopic to the identity.
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It follows from this observation that the morphism P, is A'-homotopic to a morphism Qun_1 —
S Lon-1 defined by the appropriate Suslin matrix. Therefore, if we can lift P, through Spa,, it
follows immediately that the composite with the inclusion Spa,, — SLg, is Al-homotopic to Sa,,.

To that end, recall that there is a Cartesian square of closed-immersion group homo-
morphisms of the following form.

Spon—o — SLop_1

]

Sp2n — SLo,

Here the vertical maps are the usual stabilization maps for symplectic and special
linear groups, respectively. This Cartesian square defines an isomorphism of quotients
Spon/Spon—2 — SLop/SLay—1 and thus an isomorphism Spoy, /Spon—2 = Qan—1.

Now, there is an Al-weak equivalence Q4,1 — A?"\ 0, and we know that A?"\ 0 is at least
A'-(2n — 2)-connected. Appealing to Theorem 3.4.3 and looping, we deduce that there is an
Al-fiber sequence of the form

Span—2 — Span — Quan—1,

that is, the Al'-homotopy fiber of Spa, o — Spo, is QQun_1, which is at least Al-(2n — 3)-
connected.

We now proceed by induction. Given a morphism Q4,-1 — Span, we can analyze induc-
tively the obstructions to lifting along the inclusion Spoy_s. These obstructions live in
HY(Qun_1, 7 (A2V\ 0)). The group H*(Qun_1, w4 (A2NV\0)) vanishes unless i = 0 or 2n — 1
[AF14a, Lemma 4.5], and the sheaf w?l (A2N'\ 0)) is trivial if i < 2N — 2 by the connectivity
observation of the previous paragraph. If all of these obstructions vanish, then a lift necessarily
exists. The result then follows by a straightforward induction. ([l

As was the case with the special linear group, these modified Suslin matrices yield a morphism
Q: Q3 X Q7 X+ X Qup—1 — Span.
We then obtain a splitting analogous to that of Theorem 5.2.1.
COROLLARY 5.2.4. Assume k is a field that is not formally real. The morphism
D:Q3x Q7 X+ X Qun-1 — Span
becomes an isomorphism in Hoy, after inverting (2n — 1)!.
Proof. We repeat the proof of Theorem 5.2.1 appealing to the Al-fiber sequence
Span—2 — Span — Qan—1-

Then we simply observe that the morphism Q4,1 — Spo, uniquely lifting F,, when composed
with the map Spa, — Q4n_1 gives an Al-homotopy endomorphism of A?"\ 0 with degree (n — 1)!
after Lemma 5.2.3. U

Splittings for some homogeneous spaces. Harris generalized some of Serre’s splittings for
compact Lie groups to some classes of homogeneous spaces [Har61]. We now establish some
analogs of the splitting results he established. Let X,, = SLo,/Spa,. Using the isomorphism
Xni1 2 SLayt1/Spon obtained from diagram (5.1), one sees that there is an Al-fiber sequence
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of the form

Xy — Xn+1 B Q4n+1-

The Suslin morphism Soy,11 : Qant+1 — SLopy1 thus yields a morphism Qaopt1 — Xnt1-
COROLLARY 5.2.5. Assume k is a field that is not formally real. There is an A'-weak equivalence

X1 = Qs X Qo X -+ X Qupt1
after inverting (2n — 1)\

Proof. There is an A'-fiber sequence of the form
Span — SLop — X,.

Appealing to the proofs of Theorem 5.2.1 and Corollary 5.2.4 and recalling Lemma 5.2.3, we
conclude that after inverting (2n — 1)! the left-hand morphism is split and corresponds to the

inclusion Q3 X Q7 X - -+ X Qqn_1 — H2§m§n Qom—1. O

Infinite products. We need to make some comments about infinite products of spaces.

LEMMA 5.2.6. Suppose %, € Spcy, n € N, is a sequence of pointed fibrant, simplicially con-
nected and A'-local spaces. Suppose for each positive integer m there exists an integer c(m)
such that 2 is at least A'-m-connected for every N > c(m). If we consider the system of finite
products [[}"_, 2, as a directed system with respect to the evident inclusion maps arising from
the base point, then the induced map

colim,, ﬁ Z; — H Z;
i=0 ieN

is an isomorphism on A'-homotopy sheaves and thus is an A'-weak equivalence.
Proof. Under the stated connectivity hypotheses, for any given integer j, the jth A'-homotopy
sheaf of the left-hand side stabilizes at a finite stage; more precisely, the map =; (Hf\il %) —

Ui (Hf(zjl) %) induced by the projection is an isomorphism for all N > ¢(j). It follows from [BK72,
Theorem IX.3.1] that the map in the statement induces an isomorphism on homotopy sheaves
and is thus an A'-weak equivalence. ]

Ezample 5.2.7. If i < n, then the spaces K(Z(n),2n — i) are at least A'-(n — i)-connected. Like-
wise, the spaces A"\ 0 are at least Al-(n — 2)-connected. In the sequel, we will use Lemma 5.2.6
with these sequences of spaces.

Rational splittings of the stable linear and symplectic groups. Using the facts about infinite
products discussed above, we now establish splitting results for stable linear and symplectic
groups. Before Theorem 5.2.1, we constructed morphisms

H Q21 — SL,

=2

for each integer n. If we take the colimit of the maps on the left-hand side with respect to
inclusions of base points, and the maps on the right-hand side with respect to the inclusions
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SL, — SLyy1 described before Theorem 5.2.1, we obtain a morphism

n
colim,, H Q2i—1 — SL.
=2

The same construction can be performed for the symplectic groups (see the discussion preceding
Corollary 5.2.4) to obtain a morphism

n
colim,, H Q1i—1 — Sp.
i=2
We use these morphisms in the next statement.

ProproOSITION 5.2.8. There are diagrams of the form

HQgFl «—— colim,, H Q21 — SL,

i>2 2<i<n
[[ Qa1 — colim,, [] Qui-1x — Sp,
i>2 2<i<n

where all morphisms are Q-A'-weak equivalences.

Proof. Theorem 5.2.1 implies that the maps [[,-,,, @2i—1 — SL, become Al-weak equiva-
lences after inverting (n — 1)! and thus are all Q-Al-weak equivalences. By definition, SL =
colim, SL, where the colimit is taken with respect to the standard inclusions as block diago-
nal matrices. Since filtered colimits of Al-weak equivalences are Al-weak equivalences [MV99,
§Lemma 2.2.12], it follows that the induced morphism

colim,, H Q2i-1 — SL

2<i<n

is a Q-Al-weak equivalence as well. That the map

colimy, H Q2i-1 — HQZifl

2<i<n i>2

is an Al-weak equivalence is an immediate consequence of Lemma 5.2.6. The argument for Sp is
formally identical to that for SL: one makes appeal to Corollary 5.2.4 instead of Theorem 5.2.1.
O

Rational splittings of the stable orthogonal group. Assume through the remainder of this
subsection that one works over a base field k& having characteristic not equal to 2 (this assumption
will be made explicit in theorem statements below, and it simplifies the discussion). We may use
the above results to give a corresponding decomposition for the stable orthogonal group as well.
Let O,, (respectively, SO,,) be the usual split (special) orthogonal group, that is, the (special)
orthogonal group of the split quadratic form in n variables.

There are closed immersion group homomorphisms O,, — GL,, and H], : GL,, — Oa, (map-
ping a matrix M to the block-diagonal matrix diag(M, (M ~1)!)); we will also use the hyperbolic
morphism H, : GL, — Spo, defined in an analogous way. Explicitly, if X is a smooth affine
scheme, then the composite X — BGL,, — B.;Os, sends a vector bundle ¥ on X to the bundle
¥V @ ¥V equipped with its canonical symmetry automorphism: if ¢: ¥ — ¥V is the canonical
isomorphism, then the symmetric space structure is given by the matrix (8 6) Likewise, the
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composite X — BGL, — BSps, sends a vector bundle ¥ on X to ¥ @& ¥V equipped with its
canonical antisymmetry automorphism.

There are stabilization homomorphisms O,, — O, 1 for every integer n > 2. The composite
homomorphisms

O, — GL, — Span,
Sp2n — GLQn — O4n

are compatible with the aforementioned stabilization maps in the sense that the diagrams

On Sp2n and SpZn Oun

_ L

Ony1 — Spon42 Spont+2 — Ounta

are Al-homotopy commutative. One therefore obtains stable homomorphisms
O— Sp and Sp— O

that are well defined in the A!-homotopy category. We would like to show that these homo-
morphisms are Al-weak equivalences after inverting suitable primes, but our statements
are slightly complicated because of connectivity issues: the stable symplectic group Sp is
Al-connected, but as the next remark explains, the stable orthogonal group is not.

Remark 5.2.9. Since 2 is invertible in the base field, the stable orthogonal group O has two
connected components corresponding to elements of determinant +1. As a consequence we do
not know that O has a ‘well-behaved’ A'-localization because Theorem 4.3.9 does not necessarily
apply. In the analogous situation in topology, this problem can be rectified by passing to the
special orthogonal group, which is connected as a topological space. However, in the algebro-
geometric setting, while the special orthogonal group SO is the component of O corresponding
to elements of determinant 1, it is not A'-connected. Indeed, there is an Al-fiber sequence of the
form

Spin — SO — Bggjio

classifying the spin double cover. As a consequence of Lemma 5.2.10, it follows that there is an
injective morphism ﬂ‘gl(SO) — WéAl(Bét/LQ). The composite morphism SO — WéAl(Bét/LQ) is a
sheafification of the spinor norm homomorphism (see, for example, [Bas74]; it coincides with this
homomorphism on sections over essentially smooth local rings), which is non-trivial in general.

LEMMA 5.2.10. Assume k is a field. The stable group Spin is A'-connected and A'-simple.
Moreover, the map Spin — SO — O induces an isomorphism on A'-homotopy sheaves in degrees
> 1 (pointed by the identity element).

Proof. Granted A!'-connectedness, Al-simplicity is immediate since all spaces in question are
Al-h-groups. To see that Spin is Al-connected, we proceed as follows. To check that a space
Z is Al-connected, it suffices by [Mor05, Lemma 6.1.3] to check that WO(SingAI%(L)) consists
of a single element for every finitely generated separable extension field L/k. Since Spin is, by
construction, a filtered colimit, every element of SingAlspin(L) lies in SingAlsz'nn(L) for some
integer n. Thus, it suffices to show that wo(SingAlSpmn(L)) is trivial for n sufficiently large. To
to check the latter statement, it suffices to know that every element of Spin,, (L) is A'-homotopic
to the base point. Recall from that if GG is a split, reductive k-group scheme, and R is a k-algebra,
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then the elementary subgroup F(R) is the subgroup of G(R) generated by root subgroups (see
[Abe69, Definition 1.5] for a more precise definition). Any element of the elementary subgroup
is Al-homotopic to the identity. It follows from [Mat66, Corollary 2], that Spin, (L) coincides
with its elementary subgroup if n > 5 (which guarantees it has rank > 2) and we conclude that
WO(SingAlSpmn(L)) = % in that range as well. O

Remark 5.2.11. While the blanket assumption that k has characteristic not equal to 2 is in place
in the preceding statement, the assertion that Spin, is Al-connected for any n > 5 holds even
without that assumption. Thus, the assertion that the stable group Spin is A'-connected also
holds without that assumption; for this reason, we have not included any hypothesis on the field
explicitly in the statement.

We consider the composite map Spin — SO — Sp. The homomorphism Spo,, — Oy, dis-
cussed above lifts uniquely through a morphism Spa, — Spin, (use [Conl4, Exercise 6.5.2(iii)])
and these lifts are compatible with stabilization maps. Therefore, we obtain a morphism
Sp — Spin factoring the map Sp — O described above.

THEOREM 5.2.12. Suppose k is a field that is not formally real and has characteristic not equal
to 2, and R C Q is a subring in which 2 is invertible. The morphisms Spin — Sp and Sp — Spin
just defined are mutually inverse A'-weak equivalences after inverting 2.

Proof. The composite O,, — Oy, induces a morphism BgO,, — B¢ Oy, that stabilizes to a mor-
phism 9 : BgO — BeO. For any smooth affine k-scheme X, if (¥, ) is a symmetric bilinear
space, then the formulas for the hyperbolic morphisms described above show that the composite
X — BgO — BeO of the classifying map of (¥, ¢) with ¢ sends [(¥, ¢)] — (1,1, =1, =1)[(¥, ¢)]
and therefore induces multiplication by this class at the level of Al-homotopy sheaves. Likewise,
one shows that the other composite BSp — BSp induced by Spa, — Sps, also coincides with
multiplication by (1,1, —1, —1) and thus induces multiplication by this class in homotopy sheaves
as well.

We now use the observation above to deduce corresponding statements about the induced
self-maps of the stable group Spin by passing to suitable connected covers. The proof of
[ST15, Theorem 5] shows that BnisO is the Al-connected component of the trivial torsor in
B O. Likewise, ByisSpin is Al-1-connected by appeal to Lemma 5.2.10. The map Spin — O
induces a morphism ByisSpin — BnisO — Bg O which makes ByisSpin into the Al-1-connected
cover of BgO. Therefore, the composite of ByisSpin — BgO and the map Bg;O — BgO
described in the previous paragraph lifts uniquely up to A'-homotopy through a morphism
BnisSpin — ByisSpin. By the uniqueness of this lift, this map coincides up to A'-homotopy
with the self-map Spin — Spin defined as the composite Spin — Sp — Spin after taking loop
spaces.

It follows from the discussion above that the composite map Spin — Spin induces multi-
plication by the class of (1,1,—1,—1) in GW (k) after passing to Al-homotopy sheaves. If k
is not formally real, then Lemma 5.1.2 shows that GW (k) ® R =~ R via the rank map. Since
(1,1,—1,—1) has rank 4 we conclude that the induced map on homotopy sheaves is an iso-
morphism after inverting 2. Likewise, the map Sp — Sp is an isomorphism on A!-homotopy
sheaves after inverting 2. O

Remark 5.2.13. The assumption that k has characteristic not equal to 2 in Theorem 5.2.12
arises implicitly in our appeal to [ST15] where this assumption is used to analyze the higher
Grothendieck—Witt space.
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The next result, which follows by combining Theorem 5.2.12 and Proposition 5.2.8, is an
unstable variant of a result originally announced by Morel [Mor0O6b]; it completes the description
of rational A'-homotopy groups of stable classical groups (away from fields of characteristic 2).

COROLLARY 5.2.14. Ifk is a field that is not formally real and has characteristic not equal to 2,
then the composite morphism

H Qui—1 — Sp — Spin,
i>1

where the first morphism is that from Proposition 5.2.8 and the second is the morphism
constructed just prior to Theorem 5.2.12, is a Q-A'-weak equivalence.

5.3 On rational homotopy sheaves of motivic spheres

In this section we combine the results of the previous section with some results about rationalized
K-theory to deduce information about the structure of unstable A'-homotopy sheaves of spheres.
We will freely use facts about Voevodsky’s motivic Eilenberg—-Mac Lane spaces; we refer the
reader to [Voel0, §3] and the references therein for more discussion about these objects. For
any integer n > 0, we write Z(n) for a model of Voevodsky motivic complex (see, for example,
[MVWO06, Definition 3.1]). Viewing Z(n) as a chain complex of Nisnevich sheaves of abelian
groups, its homology sheaves are concentrated in degrees > —n. If m > n, we use the notation

K(Z(n),m)

to denote the Eilenberg—Mac Lane space attached to the complex Z(n)[m]; this space represents
motivic cohomology in Hoy (see [Voe03, §2] for a summary and [Del09] for details).

Rationalized K -theory. The motivic cohomology of BGL, is generated as a module over
motivic cohomology of a point by Chern classes ci,...,¢, in bi-degrees (2i,7) [Pus04]. As a
consequence, for every integer n, and every integer ¢ < n, the ith Chern class corresponds to an
Al-homotopy class of maps

¢i :BGL, — K(Z(i),2i),

¢i :BGL — K(Z(3), 2i).
Since BGL is already Al-local [MV99, §4 Proposition 3.8], and Z(1) = G,,,[—1], the map c; :
BGL; — K(7Z(1),2) is an Al-weak equivalence essentially by definition.

Taking products of Chern classes, there are induced morphisms BGL,, — [ K(Z(7), 27)
and a morphism

c: BGL — H K(Z(n),2n).

n>1

Likewise, Chern classes induce maps BSL,, — [[\"_5 K(Z(i),2i) and a morphism

d:BSL — H K(Z(n),2n).

n>2

The direct sum of vector bundles equips the classifying spaces BGL and BSL of the sta-
ble general and special linear groups with the structure of A'-h-spaces; these spaces are thus
Al-simple. We know that SL, and SL are all Al-connected spaces. Taking simplicial loops,
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one obtains a morphism
Oc : SL — [[ K(Z(n),2n - 1).
n>2

The next result analyzes these morphisms.
PROPOSITION 5.3.1. The following maps are Q-A'-weak equivalences:

1. the map ¢: BGL — [],~; K(Z(n),2n);
2. the map ¢ : BSL — Hn_22 K(Z(n),2n);
3. the map Qc’ : SL — [[,59 K(Z(n),2n — 1).

Proof. For the first statement, it suffices to show that the induced map on homotopy sheaves after
rationalization is an isomorphism. The map of the statement induces a morphism of presheaves
on Smy, of the form

(XU, BGL]y1 — [2 U, [[ Kz Qn)]
n>1 Al
The left-hand side is precisely K;(U) by appeal to [MV99, §4 Theorem 3.13] (see [ST15, §8
Remark 2 p. 1162] for some corrections). Since [S'U, K(Z(n),2n)] 41 = H**~4"(U) the universal
property of a product allows us to identify the right-hand side with [, <, [S'U, K(Z(n),2n)| s
and thus [],,~; H**~%"(U). Now, one knows that, after tensoring the groups on the both sides
with Q, this map is an isomorphism; this is the degeneration of the motivic spectral sequence,
which identifies the graded pieces for the ~-filtration in K-theory with Bloch’s higher Chow
groups (this is originally due to Bloch [Blo86], but see [Lev94] for a corrected version). In the
context of motivic homotopy theory, see [Riol0, Theorem 5.3.10] and [Riol0, Remark 6.2.3.10].
For the second statement, observe that there is a commutative diagram

BGL — HiZl K(Z(i),21)

.

BG,, K(Z(1),2)

where the left-hand vertical map is induced by the determinant and the right-hand vertical map
is projection onto the first factor. As remarked above, the bottom morphism here is an Al'-weak
equivalence. The left-hand vertical map fits into an A!-fiber sequence where the A'-homotopy
fiber is BSL. The Al-homotopy fiber of the right-hand vertical map is [[;~, K (Z(4), 2i). The
induced map on homotopy fibers is the morphism ¢’ by construction. Since the morphisms ¢ and
c1 are Q-A'-weak equivalences, the latter assertion having been discussed before the statement
of the proposition, one concludes that ¢’ is a Q-A'-weak equivalence as well. The final statement
follows by looping the previous one. O

Remark 5.3.2. Looping the map BSL, — [[", K(Z(i),2i), one obtains a morphism SL, —
[Ty K(Z(i),2i — 1). Taking colimits on both sides, one obtains a morphism

colim,, SL,, — colim,, H K(Z(i),2i —1).
=2

The colimit on the left-hand side is SL, and there is thus a morphism

SL—>cohmnHK ),2n —1) —>HK n),2n — 1).
n>2 n>2
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By appeal to Lemma 5.2.6 the right-hand map is an A'-weak equivalence. Since S' is a compact
object, taking simplicial loops commutes with formation of filtered (homotopy) colimits. It follows
that the morphism described in the previous display coincides with Qc’.

Rational homotopy of motivic spheres: odd-dimensional quadrics. Another classical result
of Serre is that the morphism $?"~! — K(Z,2n — 1) corresponding to the fundamental class
(alternatively, the first non-trivial stage of the Postnikov tower) is a rational weak equivalence.
Because of the weak equivalence A"\ 0 =2 X"~ 1G/A" we conclude that there is an isomorphism
M(A™\0) = Z @ Z(n)[2n — 1] in the Voevodsky triangulated category of motives [MVWO0G,
Corollary 15.3]. Thus, for any integer n > 2, H>"~L7(A™\ 0,7) = Z. A choice ¢ of generator can
thus be realized by an Al-homotopy class of maps A"\ 0 — K(Z(n), 2n — 1). Above, we described
an Al-weak equivalence Q2,1 — A"\ 0. So the preceding map also defines a morphism

Qon_1 — K(Z(n),2n —1). (5.2)

We now establish an analog of this result in A!l-homotopy theory, which corresponds to the first
part of Theorem 5.

THEOREM 5.3.3. If k is a field that is not formally real, then for every integer n > 1, the map
Qon-1 — K(Z(n),2n —1)

of (5.2) is a Q-Al-weak equivalence.

Proof. After Proposition 5.2.8 there is a Q-A!-weak equivalence of the form Hn22 Qon—1 — SL.

Composing this Q-A'-weak with Qc’, we conclude that there is an induced Q-A'-weak equivalence
of the form

[T @21 — [] K(@(n),20 - 1)

n>2 n>2

and we now give an alternative identification of the component maps.

The map Q2,—1 — SLy, is given by a Suslin morphism, while the map SL,, — K(Z(n),2n — 1)
is given by the loops on the nth Chern class. Since Qa1 = X" G/, it follows from [MV99,
§4 Theorem 3.13] that SK;(Q2,—1) = Ko(k) = Z. Suslin showed that the class of the composite
map Q2,1 — SL, — SL in SK1(Q2,-1) is a generator [Sus82, Theorem 2.3 and Corollary 2.7].

Since rationally the motivic cohomology of (Q2,—1 coincides with the rationalized K-theory,
we conclude that the Suslin matrix is a rational multiple of the class . In fact, we can be
slightly more precise. The motivic cohomology of SL,, is computed in [Will2]. In particular, one
knows H2"~1"(SL,,7) = 7Z and the relevant generator is the image via pullback along the map
SL, — A™\ 0 of the corresponding generator of H?"~1"(A™\0). In particular, the composite
with the Suslin morphism corresponds to (n — 1)! times the generator. Thus, after inverting
(n — 1)! this morphism coincides with the map Q2,1 — K(Z(n),2n — 1) from (5.2). Therefore,
we conclude that the map

II @2n1 — [] K(Z(n),2n - 1)
n>2 n>2

defined by taking colimits of the finite products of the morphisms in (5.2) is also a Q-A'-weak
equivalence (see Remark 5.3.2 for related discussion).

Finally, for every integer n > 2, the map of (5.2) is, by construction, a retract of the map
displayed in the previous paragraph. Therefore, we conclude that (5.2) is a Q-Al-weak equivalence
as well, which is what we wanted to show. ]

711

https://doi.org/10.1112/50010437X22007321 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X22007321

A. Asok, J. FASEL AND M. J. HOPKINS

Remark 5.3.4. If k is a subfield of C, then the conclusion of Theorem 5.3.3 is compatible
with complex realization. Indeed, the complex realization of K(Z(n),2n —1) is homotopy
equivalent to K(Z,2n — 1) [Voel0O, Corollary 3.48], while the complex realization of A™\O0
or Qa,—1 is homotopy equivalent to S?*~!. The induced map on realizations yields the map
Sn=l . K(Z,2n —1).

Remark 5.3.5. Theorem 5.3.3 is an unstable variant of a result due originally to Morel in the
stable case ([Mor04, Theorem 5.2.2] or [Mor06b]): if —1 is a sum of squares in k, then the ratio-
nalized motivic sphere spectrum is simply the rational motivic Eilenberg—Mac Lane spectrum
(see [CD19, Theorem 16.2.13] for a proof).

Theorem 5.3.3 may be used to reformulate the Beilinson—Soulé vanishing conjecture (see, for
example, [Kah05, 11.4.3.4] for a statement of the conjecture). Before stating the reformulation,
we include the following result explained to us by F. Déglise.

LEMMA 5.3.6. If E/k is an arbitrary field extension, then the map
HP,Q(]{;, Q) - HP,Q(E’ Q)

is injective. In particular, if the Beilinson—Soulé vanishing conjecture holds for E, then it holds
for k as well.

Proof. One may reduce to the case where E/k is a finitely generated extension by a continuity
argument; this follows from, for example, [Dég07, Proposition 1.24]. To treat the case of finitely
generated extensions, it suffices to treat two special cases: E/k is finite and E = k(t).

If E/E is finite, the result follows by existence of transfers in motivic cohomology; indeed,
there is a pushforward map H?4(E, Q) — HP(k, Q) such that the composite of pushforward and
pullback is multiplication by the degree of the extension; injectivity follows immediately. Finally,
we treat the case where E = k(t). In that case, by [Dég08, Proposition 6.1.1 and Corollaire 6.1.3]
we know that

HPA(k(), Q) = HPI(k) ety HP 0 (0, Q)

the sum is taken over the codimension-1 points of A}C, and the pullback map corresponding to
the inclusion k < k(t) is the inclusion of the first summand on the right.

The injectivity assertion in the case E = k(t) is actually ‘softer’ than the more precise asser-
tions above, as observed by the referees. Indeed, if k is infinite, which we may assume without
loss of generality, injectivity can be deduced as follows. The group HP4(k(t),Q) is a colimit
of HPY(U,Q) where U ranges over the non-empty open subschemes of the affine line. Since
non-empty open subschemes over an infinite field have a rational point, the pullback along the
inclusion of that rational point provides the splitting of the statement. (Il

As a consequence, we obtain the following reformulation of the Beilinson—Soulé vanishing
conjecture.

COROLLARY 5.3.7. Suppose k is a field that is not formally real, and assume n > 1 is an integer.
If L/k is an extension, then the following statements are equivalent.

1. The Beilinson—Soulé vanishing conjecture holds for every subfield of L in weight n.
2. The group wfl (A"\0)g(L) =0 fori>2n—1.
3. The group H?l (A"\0,Q)(L) =0 for i >2n — 1.
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Proof. Note that
a2 (K(Z(n),2n — 1)(L) =[S Spec Ly, K(Z(n),2n — 1)y = H*1=9"(Spec L, 7).
The Beilinson—Soulé vanishing conjecture for fields in weight n is equivalent to
H?*"=1="(Spec L, Z) = 0 if i > 2n — 1.

The equivalence of the first two statements is then immediate from Theorem 5.3.3 and
Lemma 5.3.6.

The equivalence of the second and third statements is an immediate consequence of the
Whitehead theorem. Indeed, consider the map A"\ 0 — 7<2,-2A"\ 0 from punctured affine
n-space to its (2n — 2)th A'-Postnikov truncation. The vanishing of rational homotopy in (2) is
equivalent to this map being a Q-A'-equivalence. Since both spaces in question are simple, this
map is a Q-A'-equivalence if and only if it is a Q-A'-homology equivalence by the Whitehead
theorem (see Theorem 4.2.2). O

Remark 5.3.8. Since the Beilinson—Soulé vanishing conjecture is known to hold for finite fields,
totally imaginary number fields or function fields of curves over finite fields, Corollary 5.3.7 can
also be viewed as a rational computation of the sections of motivic homotopy sheaves of A™\ 0
over such fields.

On the other hand, the vanishing of the integral Al-homology of A™\ 0 in degrees > 2n — 1 is
a special case of a conjecture of Morel [Mor12, Conjecture 6.34]. At least with rational coefficients,
and over fields in which —1 is a sum of squares, Morel’s vanishing conjecture in the case of A™\ 0
is thus equivalent to the Beilinson—Soulé vanishing conjecture over all finitely generated separable
extensions of the base field.

COROLLARY 5.3.9. Assume k is a field that is not formally real. If Ml is any strictly A'-invariant
sheaf of Q-vector spaces, then, for any integer n > 2, the following statement holds:

M(k)  ifi=0,

. 0 if1<i<n-—2
H'(K(Z(n),2n — 1), M) = PostEnTs
M_, (k) ifi=n—1, and
0 ifi>n—1.
Proof. This follows by combining [AF14a, Lemma 4.5] and Proposition 4.1.2. g

Rational homotopy of motivic spheres: even-dimensional quadrics. The motivic analog of
even-dimensional spheres are the quadrics Qo,,, which are Al-homotopy equivalent to pL" (see
the beginning of §5.1). Indeed, the complex realization of such spheres is homotopy equivalent to
S$27. We also obtain the following motivic analog of a result of a classical result of Serre [Ser53,
IV.4 Corollaire 2]. In order to formulate the statement, we use the A'-EHP sequence of [WW19].

PRrROPOSITION 5.3.10. Suppose k is a field that is not formally real and R is a subring of Q in
which 2 is invertible.

1. There is an A'-fiber sequence of the form

Q2n-1 — QQ2n — QQupn-1.
2. The sequence from (1) splits to yield an R-A'-equivalence of the form
QQ2n — Q2n—1 X QQun—1.
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Proof. The first statement is a special case of [WW19, Theorem 8.3] applied to 2" = Q2,1 =
yrolGAT (see [WW19, Corollary 1.4]: by hypothesis, k is not formally real, and the parity
condition from their statement is satisfied by construction). Thus, we obtain an A!-fiber sequence
of the form

Qan—1 — 2Q2, — QQup—1.

For the second point, the Al-fiber sequence in question remains an R-Al-fiber sequence, for
example, by appeal to Theorem 4.3.11. The long exact sequence in Al-homotopy sheaves of the
resulting fiber sequence takes the form

s T (Qone ) r = T Qo) o T (QQun) R —

Since k is not formally real, GW (k) ® R = R by Lemma 5.1.2. Consider the Whitehead square
[¢, 1] of the identity map ¢ on Qg,; this corresponds to an Al-homotopy class of maps Q1 — Q2n
(see [AWW17, §4.1] for further discussion of Whitehead products in this motivic setting).
The computation of H on the Whitehead square of the identity is contained in [AWWI17,
Theorem 4.4.1]; in this case, the relevant class lies in GW (k) ® R. Indeed, it follows that this
class is a unit GW (k) ® R under the hypotheses on k and R. In other words, the simplicial loops
of the Whitehead square of the identity yield a splitting of the A'-EHP sequence and thus a
decomposition of the form

QQZH = Q2n—1 X Q62471—1-

In essence, the argument we have given is a straightforward translation of Serre’s proof to motivic
homotopy theory; the results of [AWW17, WW19] guarantee that the necessary technology to
make this translation sensible is in place. O

In classical topology there is a Q-fiber sequence S?" — K(Z,2n) — K(Z,4n), where the
first map is given by the fundamental class and the second map is given by the squaring
map. In motivic homotopy theory, the Al-weak equivalence Qa, = P shows that M(Q2,) =
7 @ Z(n)[2n] in Voevodsky’s derived category of motives. As a consequence H?""(Qoyp, Z) = Z,
and a choice of generator corresponds to an Al-homotopy class of maps Qa, — K(Z(n),2n).
The following result, which refines and extends Proposition 5.3.10 is the second statement of

Theorem 5 from the introduction.

THEOREM 5.3.11. Ifk is a field that is not formally real, then, for any integer n > 1, there is a
Q-A'-fiber sequence of the form

Q2n — K(Z(n),2n) — K(Z(2n),4n),

where the first morphism is the fundamental class in motivic cohomology, and the second
morphism is the squaring map.

Remark 5.3.12. The standard proof of the corresponding statement in classical topology goes as
follows. One considers the squaring map K(Z,2n) — K(Z,4n), and then computes the rational
cohomology of the homotopy fiber by a Serre spectral sequence argument. The map from S2"
to the homotopy fiber is easily seen to be a rational cohomology isomorphism and the result
follows. Just as with Theorem 5.3.3, our proof of the corresponding motivic result is not a direct
translation of this standard proof from topology. In addition to our lack of a usable Serre spec-
tral sequence, there are ‘weight’ issues that would arise. In conjunction with Corollary 5.3.7,
Theorem 5.3.11 gives another geometric interpretation of the Beilinson—Soulé vanishing conjec-
ture; the resulting statement is our candidate for the natural motivic analog of the vanishing
statement for rational homotopy groups of even-dimensional spheres.
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Proof. The cup square map corresponds to a morphism

K(Z(n),2n) — K(Z(2n),4n).
As discussed before the statement, we may choose a map Qa, — K(Z(n),2n) corresponding to
a generator of H2""(Qay, 7). Since M(Q2,,) = Z @ Z(n)[2n], the group H*™?"(Qy,,,Z) vanishes

and thus the composite map Qo, — K(Z(n),2n) — K(Z(2n),4n) is null A'-homotopic. A choice
of a null A'-homotopy yields a morphism fitting into the following diagram:

F - K(Z(n),2n) —— K(Z(2n),4n)

Fix such a choice once and for all for the rest of this proof.

Since the spaces K (Z(n),2n) and K(Z(2n),4n) are Al-simple, it follows from Theorem 3.3.7
that the Al-homotopy fiber is Al-nilpotent. In that case, Theorem 4.3.11 implies that the
Q-A'-localization of the induced fiber sequence

F — K(Z(n),2n) — K(Z(2n),4n)

is again an A!-fiber sequence. We want to show that the map Qs, — .% corresponding to our
choice of null homotopy of the composite is a Q-A'-weak equivalence. Corollary 4.3.10 states
that to check this morphism is a Q-Al-weak equivalence, it suffices to show that the induced
map on Q-A'-homotopy sheaves is an isomorphism.

We first compute the Q-A'-homotopy sheaves of .%. By appeal to Theorem 4.3.9,
r?l (Lo7) = ﬂ?l(ﬂ)(@. The Q-A'-homotopy sheaves of K(Z(n),2n) and K(Z(2n),4n) may be

computed by using the path-loop fibration
K(Z(n),2n — 1) — PK(Z(n),2n) — K(Z(n),2n)
and Theorem 5.3.3. In particular, we conclude that

7 (K(Z(n), 2n))g = 7 (K(Z(n), 2n — 1))g = 721 (Q2n-1)g-

(]

Likewise, we conclude that
Al ~ Al
™ (K(Z(2n),4n))q = ™21 (Qan—1)o-
Putting these facts together, rationalizing the long exact sequence in A'-homotopy sheaves yields
an exact sequence of the form
1 1 1 1
I 7‘-;& (Qanl)Q I 7‘-;'% (Q4n71)(@ - 71-;’& (ﬁ)(@ - 7‘-?—1(@27171)@

1
— 1 (Qan-1)g — -+
We claim that this sequence is canonically split.

Consider the cup-squaring map K(Z(n),2n) — K(Z(2n),4n). We claim that this map is
null-A'-homotopic after taking simplicial loops. Indeed, the map obtained by simplicial looping
is adjoint to a map

YQK(Z(n),2n) — K(Z(2n),4n).
Since cup-products are null-homotopic in a suspension, it follows that the above map is null-A’-
homotopic; this observation yields the claimed splitting.

We use this observation now to show that the map @2, — % described before the statement
induces an isomorphism on homotopy sheaves, and is therefore a Q-A'-weak equivalence. We may
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directly compute the Q-A'-homotopy sheaves of Q2, by appeal to Proposition 5.3.10. Indeed, we
observe that ﬂ'ﬁl(an)@ = ﬂ'ﬁll(anfl)Q ® W?l(Qm,l)Q. To prove that the induced maps are
isomorphisms, we just have to show that the induced maps on each summand are isomorphisms;
this involves unwinding the definitions of the various maps.

To see that the map @9, — % induces an isomorphism on the summand W‘ﬁ_ll(an_l)@

we proceed as follows. The summand of ’n'ﬁll(an,l)Q in the 71'?1(@2”)@ arises via the map
Qan—1 — QEQan—1 = QQ2, in the A'-EHP sequence. Likewise, the summand of 71'?_11(@2”_1)@
in A" (F)q arises from the map .% — K (Z(n), 2n). We therefore have a diagram of the form

i

Qanl QQ2n OF

| |

K(Z(n),2n —1) —— QXK(Z(n),2n — 1) — QK(Z(n),2n)

where the top left horizontal morphism arises from the EHP sequence, the leftmost vertical
morphism is the fundamental class, the middle vertical morphism is obtained by applying QX
to the leftmost vertical morphism, and the right vertical map is the simplicial loops of the map
F — K(Z(n),2n). By construction the composite of the top right horizontal morphism and
the rightmost vertical morphism is the loops on the fundamental class Q2, — K(Z(n),2n). The
bottom right horizontal morphism exists by appeal to the suspension isomorphism in motivic
cohomology: there is an isomorphism in motivic cohomology H?"~1"(Qa,_1,7Z) = H*"(Qan,Z),
and the resulting square commutes. The claim about the summand 71'?_11(@2”_1)@ then follows.

The statement about the summand ﬂ'?l(QM,l)Q is obtained similarly. Indeed, as in the
proof of Proposition 5.3.10, the summand in question in w?l (Q2y) arises from the choice of map
Q4n—1 — Qan; for concreteness we fix the one given by the A'-homotopy class of the Whitehead
square [¢,¢]. This morphism fits into a square of the form

[e:t]

Q4n71 QQn

| |

K(Z(2n),4n —1) —— Z

where the left vertical map is the fundamental class, and the bottom horizontal map is the map
QK(Z(2n),4n) — .# from the fiber sequence structure. Under the assumptions on k, the left
vertical map is a Q-A'-weak equivalence, and the bottom horizontal map induces the summand
of ﬂ?l (Qan—1)g in ﬂfl (:#)q. This square commutes after rationalization. Indeed, the composite
map Qqn—1 — Q2n — K(Z(n),2n) is null, and therefore lifts (rationally) to a map Qg,—1 —
K(Z(2n),4n — 1). The group of such homomorphisms is isomorphic to Q, so it suffices to observe
that the lifted map is non-zero, in which case it is a multiple of the fundamental class. Since
[t,¢] splits the AL-EHP sequence, it induces the identity QQ4,_1 — QQ4n_1 and thus is not

null-A'-homotopic. U

Remark 5.3.13. If k is a subfield of C, then the complex realization of the Q-A!-fiber sequence of
Theorem 5.3.11 is the Q-fiber sequence S?" — K(Z,2n) — K(Z,4n). This fact follows immedi-
ately from the fact that the complex realization of Qg, is S*” and that the complex realizations of
motivic Eilenberg—Mac Lane spaces of this form are corresponding ordinary Eilenberg—Mac Lane
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spaces [Voel0, Corollary 3.48]. Indeed, the induced map H*""(Q2n,Z) — H?*"(S*",Z) is pre-
cisely the cycle class map, which sends the fundamental class to the fundamental class, and a
similar statement holds for the squaring map.
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