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ABSTRACT

Creeping faults are difficult to assess for seismic hazard because they may participate
in rupture even though they likely cannot nucleate large earthquakes. The creeping central
section of the San Andreas fault in California (USA) has not participated in a historical large
earthquake; however, earthquake ruptures nucleating in the locked northern and southern
sections may propagate through the creeping section. We used biomarker thermal maturity
and K/Ar dating on samples from the San Andreas Fault Observatory at Depth to look for
evidence of earthquakes. Biomarkers show evidence of many earthquakes with displacements
>1.5 m in and near a 3.5-m-wide patch of the fault. We show that K/Ar ages decrease with
thermal maturity, and partial resetting occurs during coseismic heating. Therefore, measured
ages provide a maximum constraint on earthquake age, and the youngest earthquakes here
are younger than 3 Ma. Our results demonstrate that creeping faults may host large earth-

quakes over longer time scales.

INTRODUCTION

The San Andreas fault (SAF) in California
(USA) exhibits stark contrasts in slip style along
its length (Fig. 1A). The northern and south-
ern sections are locked and have hosted large
earthquakes, including the M,, 7.9 1906 San
Francisco earthquake. The central SAF, on the
other hand, releases elastic strain through aseis-
mic creep (Titus et al., 2006). Large earthquakes
are not thought to nucleate along this segment;
however, if a large earthquake initiates on either
the northern or southern section and propagates
into the central creeping section, it is possible
that the central SAF may become unstable and
fail coseismically (Noda and Lapusta, 2013).
Propagation through the central SAF would
allow for the possibility of a whole-fault rupture,
increasing the maximum-magnitude earthquake
possible on the SAF to > M,, 8 and raising the
overall seismic hazard of California (Cui et al.,
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2010). Historically, this part of the fault has not
hosted a large earthquake (M,, >6), and paleo-
seismic trenching in this region has revealed
no evidence of surface-rupturing earthquakes
in the past 2000 yr (Toké et al., 2006). How-
ever, this is a short seismic record, and studies
have demonstrated the potential for coseismic
slip over longer periods (Harris, 2017). Inter-
ferometric synthetic aperture radar (INSAR)
and GPS measurements reveal creep deficits in
the crust (~10-20 km depth), indicating that
locked patches are present and accumulating
strain (Maurer and Johnson, 2014).

We can investigate the longer-term seismic
history of the central SAF by turning to evidence
of past earthquakes in the rock record. Due to
the frictional resistance of faults, heat is rapidly
generated during coseismic slip, leading to tem-
perature spikes (Rowe and Griffith, 2015). Uti-
lizing this relationship, we identified evidence
of frictional heating during earthquakes through
the creeping section of the SAF in cores col-

lected at the San Andreas Fault Observatory at
Depth (SAFOD, https://earthquake.usgs.gov/
learn/parkfield/safod_pbo.php; Figs. 1B—1D).
Using biomarker thermal maturity and K/Ar
ages of illite from the SAFOD cores, we show
that a patch of the fault has experienced abun-
dant seismicity over the past ~16 m.y.

Coseismic Temperature Rise and the
Chemistry of Faults

Faults heat up coseismically as a function
of the earthquake source parameters—shear
stress, displacement, and slip velocity—as
well as fault properties, including thickness of
the slipping zone and material properties of the
rocks. Biomarkers have historically been used
in petroleum studies to assess the maturity
of hydrocarbon-bearing source rocks, which
undergo heating due to burial. However, they
can also be used to analyze the maturity of rocks
that have been heated at higher temperatures
over shorter earthquake durations (Savage et al.,
2014, 2018; Rabinowitz et al., 2017).

We analyzed a suite of biomarker maturity
indices in the rocks from SAFOD and focused
on methylphenanthrenes (MPs; Fig. 2; Figs. S1—
S7 in the Supplemental Material'). Because bio-
markers experience structural changes during
heating, we can quantify thermal maturity using
the increase in abundance of the thermally sta-
ble isomers of these biomarkers with increasing
temperature (Szczerba and Rospondek, 2010;
Polissar et al., 2011):

3MP +2MP

MPI4 = , (D)
3MP + 2MP + 9MP + IMP

!Supplemental Material. Supplemental figures related to biomarker analysis, thermal modeling, and experimental setup; more detailed methodology, and tables
containing model parameters and biomarker data. Please visit https://doi.org/10.1130/GEOL.S.18174665 to access the supplemental material, and contact editing@

geosociety.org with any questions.
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Figure 1. (A) Map of the San Andreas fault (SAF) showing locked (blue) and creeping (yellow) sections. Black lines are other active faults
(from U.S. Geological Survey and California Geological Survey, https://www.usgs.gov/natural-hazards/earthquake-hazards/faults/, accessed
November 2019). (B,C) Cross sections of drilling at the San Andreas Fault Observatory at Depth (SAFOD, https://earthquake.usgs.gov/learn/
parkfield/safod_pbo.php) modified from Hickman et al. (2007). Fault zone is indicated in gray and includes everything to the right of the contact
between the Salinian block (green) and Great Valley Sequence (GVS) to the northern boundary fault (NBF). The southern deforming zone (SDZ)
and central deforming zone (CDZ) are indicated. Blue line is the path of SAFOD drilling, and yellow boxes are where cores were collected.
(D) Photograph of a core from the SAFOD containing black fault rock (BFR) and the western side of actively creeping SDZ.

where 2MP and 3MP are the thermally stable
isomers, and 9MP and 1MP are the thermally
unstable isomers. The kinetics of MP reaction
with temperature rise allow MPI4 to be linked
to the time and temperature conditions of an
earthquake (Sheppard et al., 2015). When inter-
preting MPI4, we assumed any heating signal
was a result of the largest event the fault has
experienced, because any smaller events will
have lower effect on the overall maturity due to
the strong temperature dependence of the kinet-
ics (Coffey et al., 2019).

While biomarkers can be used to identify
past earthquakes in the rock record, they do
not provide information on earthquake tim-
ing. Recent advances in our understanding of
geochronology in fault studies have led to the
development of a number of different dating
tools, including **Ar/**Ar dating of illite gouge

(van der Pluijm et al., 2001; Schleicher et al.,
2010) and (U-Th)/He dating of hematite fault
surfaces (Ault et al., 2015). Although “Ar/*Ar
is the analytically preferable method for argon
geochronology, we used the K/Ar method here
due to argon recoil effects associated with clay
grain sizes (van der Pluijm et al., 2001). Like
biomarker indices, we show experimentally that
thermal resetting of K/Ar ages in illite requires
much higher temperatures over the short dura-
tions of earthquakes than over geologic time
scales.

RESULTS
Earthquake Evidence at SAFOD

MPs within the SAFOD core show a clear
background maturity (0.41-0.51; Fig. 2A) due
to burial heating. Between 3192 and 3196 m,
MPI4 values are much higher than background,
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ranging from 0.54 to 0.67 (Fig. 2A), with lower
values toward the edges. Such a localized matu-
rity signal requires a high-temperature, short-
duration heating event like an earthquake. Other
transient heat sources such as hydrothermal
fluids are unlikely to cause this signal because
paleofluid temperatures measured from calcite
veins are consistent with background tempera-
tures (Luetkemeyer et al., 2016), and there is
no mineralogic evidence such as authigenic
muscovite or epidote. The high-thermal-matu-
rity region is asymmetric, with higher thermal
maturities closer to the southern deforming zone
(SDZ), and it occurs mostly within a region of
pervasive deformation, previously described
as a black fault rock (BFR; Bradbury et al.,
2011). The BFR consists of a black ultracata-
clasite with scaly fabric, and it contains many
polished, highly reflective slip layers (Bradbury
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Figure 2. (A) Methylphenanthrene index (MPI4) along analyzed sections of the San Andreas Fault Observatory at Depth (SAFOD) core (analyti-
cal uncertainties are less than symbol size). Purple shaded regions are the southern deforming zone (SDZ) and central deforming zone (CDZ);
yellow shaded area is a region of high thermal maturity. (B) Measured K/Ar ages (error bars represent 2¢ standard deviation; where these are
not shown, they are smaller than symbol size). (C) Schematic SAFOD lithology, modified from Bradbury et al. (2011). Breaks in the x axis are
gaps between cored sections. (D,E) Photomicrographs of slip layers in black fault rock (BFR) at 3194.8 and 3196 m depth, respectively. Photo
in D was taken using plane light, and a gypsum plate was inserted for E. Slip layers in D and E are outlined by white dashed lines.

etal., 2011; Fig. 1D), suggesting the occurrence
of abundant slip within this interval. Using trans-
mitted light and scanning electron microscopy,
we determined that slip layer thickness varies
from 100 pm to 1.8 cm (average = 2 mm). Pre-
vious studies show that high temperatures are
typically restricted to micrometer- and milli-
meter-thick layers during earthquakes (Savage
et al., 2018; Coffey et al., 2019; Savage and
Polissar, 2019). Therefore, given the abundance
of slip layers and spread of high maturities
across the BFR, it is very likely that this zone
has hosted many (>100) earthquakes

How Large Were the Earthquakes In and
Near the Black Fault Rock?

We estimated temperatures within the BFR
by modeling heat generation and diffusion along
a slip layer (Lachenbruch, 1986; Fulton and Har-
ris, 2012; see the Supplemental Material). Cou-
pling this modeling with MP reaction kinetics
allowed us to forward model biomarker reaction
for different earthquake properties and identify
the thermal maturity and temperature profiles
that best fit our measurements (Sheppard et al.,
2015). No evidence of bulk melting has been
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documented in the SAFOD cores; therefore, we
capped temperatures at 1100 °C (Srinivasachar
et al., 1990). The mean maximum temperature
modeled for the reacted samples was 840 °C
(95% confidence interval [CI] of 570-1100 °C;
Fig. 3A; Fig. S9). Using best-fitting temperature
profiles along with thermal and fault parameters
(Table S1), we placed constraints on earthquake
displacement through this patch assuming an
average friction of 0.1-0.2 (Fig. S12). Our mod-
els showed that possible displacements for each
sample fall into a 95% confidence interval of
0.5-2.9 m (Fig. 3B). Uncertainties in friction,
thickness of the slipping layer (Figs. 2D and
2E), and the reaction kinetics of MPI4 led to
the wide range of possible displacements that
matched our signal. The lower end of these dis-
placements is consistent with M,, 6 Parkfield-
sized earthquakes, and this may mean that some
Parkfield events have propagated this far into
the creeping section. However, given that we
expect the average friction during most mod-
eled events to be close to 0.1 (Fig. S12), most
earthquakes in this patch would have an average
displacement of 1.5 m, which corresponds to
earthquakes of > M,, 6.9 (see the Supplemental

Material). Therefore, it is likely that many of
these earthquakes were larger-magnitude events
than the Parkfield events.

Despite sampling along 41 m of the SAF,
we found evidence of seismicity only within
and adjacent to the ~3.5-m-wide BFR. It is
unclear why earthquakes continually rupture
through this patch instead of the frictionally
weaker SDZ or CDZ (central deforming zone;
Carpenter et al., 2011). While it is possible
earthquakes occurred in unsampled regions of
the fault zone, the BFR appears to be suscep-
tible to earthquake rupture that does not occur
elsewhere in the sampled intervals. Proximity
to a bimaterial interface between Salinian and
Great Valley Sequence (GVS) rocks may lead
to earthquake localization close to this bound-
ary, as suggested by Ben-Zion (2008) and docu-
mented previously in other fault zones (Rabi-
nowitz et al., 2020).

When Did Earthquakes Occur In and Near
the Black Fault Rock?

The measured K/Ar ages within bulk sam-
ples from the SAFOD core range from 62.3 Ma
to 3.2 Ma (Fig. 2B). These ages can be split

www.gsapubs.org | Volume 50 | Number 4 | GEOLOGY | Geological Society of America

Downloaded from http://pubs.geoscienceworld.org/gsa/geology/article-pdf/50/4/516/5568651/g49451.1.pdf
bv Columbia Universitv user



1200
1100

C)

s 1000
900
800
700
600

Max temperature (

500

400

Displacement (m)
N

A
i

MP14

@
o0

Figure 3. (A) Probability distribution functions (PDFs) of maximum temperature modeled for each reacted sample. PDF width is largely due to
uncertainties in methylphenanthrene index (MPI4) kinetics (see the Supplemental Material [see footnote 1]). (B) Possible earthquake displace-
ments for p = 0.1 (blue) and p = 0.2 (green) cases. Dotted lines in each plot are the most likely temperatures and displacements.

into three distinct populations: those that lie
within the BFR, those in the deforming zones,
and those in the background GVS. The mean
age of the GVS is 56.1 Ma, with ages ranging
between 62.3 and 46.5 Ma. The oldest of our
ages are consistent with reported ages of the
GVS (Dickinson and Rich, 1972). Ages within
the CDZ are slightly younger, with a mean age
of 38.4 Ma (43.1-33.8 Ma). A sample from
the SDZ was also measured, but it contained
a large amount of air and very little potassium,
so it is not included here. Ages in the CDZ are

consistent with GVS ages but are younger than
background samples, possibly due to authi-
genic illite produced by continuous deforma-
tion and fluid-rock interaction during aseismic
creep (Schleicher et al., 2010). The youngest K/
Ar ages occur within and adjacent to the BFR
(9.5-3.3 Ma) and are slightly older in the two
thermally mature samples northeast of the BFR
(16-15 Ma). We observed that the youngest ages
occurred in samples with the highest MPI4
(Fig. 4A), indicating that the high temperatures
identified from biomarkers also led to partial or

complete resetting of the K/Ar chronometer. As
aresult, we infer that these samples have expe-
rienced at least some resetting during coseismic
slip and reflect maximum earthquake ages.

In order to further investigate whether the
measured ages within the heated region reflect
the timing of earthquake slip, we performed a
series of rapid heating experiments to explore
the relationship between argon degassing and
temperature. Experiments were performed on a
62.3 Ma GVS sample with a background MPI4,
which was not affected by earthquake heating.
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Figure 4. (A) Measured ages plotted against the methylphenanthrene index (MPI4) showing a clear negative relationship between age and
MPI4, and hence age and temperature rise. Gray region encompasses samples collected from black fault rock (BFR). (B) Fraction of argon
released as a function of temperature from the heating experiments.
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We used a diode laser to heat the sample to tem-
peratures of 500-820 °C for 10 s to directly sim-
ulate earthquake conditions and measured the
fraction of argon released (Fig. 4B; see the Sup-
plemental Material). The results of these experi-
ments support the inference that K/Ar ages are
reset during short-duration heating events and
that the fraction of argon released is a simple
function of temperature when time is held
constant. Argon loss during heating occurred
at temperatures above 500 °C, and complete
degassing occurred by ~800 °C (Fig. 4B). While
these temperatures are like those modeled for
SAFOD (Fig. 3A), we do not have constraints
on the slip duration, and hence heating dura-
tion, at SAFOD. However, with modeled dis-
placements of up to 2.9 m and a slip velocity of
~1 m s (Heaton, 1990), the heating duration
of our experiments was likely longer than the
duration of coseismic heating at SAFOD. There-
fore, these results likely reflect partial resetting
of K/Ar ages at SAFOD, as shown by Figure 4A,
and measured ages can be treated as maximum
earthquake ages, but true earthquake ages are
likely younger.

DISCUSSION

We have shown that there is ample evidence
for earthquake slip within and around the BFR
since 16 Ma. Although there is no consensus
on how long the creeping section has persisted,
analysis of deformed Quaternary sediments sug-
gests that the central SAF has been creeping for
at least 2 m.y. (Titus et al., 2011) and possibly
up to 5 m.y. (d’Alessio et al., 2006). Therefore,
some of the earthquakes identified here may
have occurred when the central SAF was locked.
However, several of the measured K/Ar ages are
younger than 5 Ma, and if partially reset, other
measured ages fall within this interval and reflect
propagation of large-displacement earthquakes
into the creeping section. An alternative expla-
nation could be that the creep only began ca.
3 Ma, which is the youngest measured age of the
inferred earthquakes. However, as stated above,
these earthquakes ages could be much younger.

It is also possible that some of the older
inferred earthquakes originally occurred along
the locked southern SAF before the BFR block
was translated to its present-day position at
SAFOD. The central SAF at its southern end
creeps at a rate of ~26 mm/yr (Toké et al.,
2011), meaning it would take 1.5 m.y. to trans-
port the BFR 40 km from the locked portion of
the fault at Cholame to the SAFOD site. How-
ever, we think it is unlikely that the fault rock
would move in one direction over geologic time.
The BFR is located within the fault zone, and as
localized slip zones migrate around over time,
it could be translated with the Pacific plate or
the North American plate. Despite being on the
Pacific plate side of the actively deforming SDZ
and CDZ, displacement that occurred between
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the BFR and the Salinian block (of which there
is ample evidence in the SAFOD core) would
move the BFR relatively southeast.

A fundamental takeaway from this work
is that by combining independent temperature
proxies with thermochronology and detailed tex-
tural observations, we can access the seismic
history of the SAF over millions of years. This
provides a powerful new method for conducting
paleoseismology on the >100,000 yr time scale.
In doing this, we show that large (displacement
>1.5 m) earthquakes have repeatedly ruptured
the rocks at SAFOD, and K/Ar dating of fault
rocks can constrain these earthquakes to within
the past 16-3 m.y. Furthermore, biomarkers
demonstrate that earthquakes were localized
outside of the weak deforming zones, suggesting
that fault zones can fail in different slip styles
across their width, and major earthquakes may
occur along creeping faults, provided that some
strain accumulates. Ultimately, our work points
to the potential for higher-magnitude earth-
quakes in central California and highlights the
importance of including the central SAF and
other creeping faults in seismic hazard analysis.
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